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Abstract 

Context:  Short sleep duration and sleep disruptions are associated with impaired 
glucoregulation in type 1 diabetes (T1D). However, the mechanistic pathways between 
sleep and glucose variability remain unclear.
Objective: To determine within- and between-person associations between objective 
sleep-wake characteristics and glucose variability indices.
Methods:  Multilevel models were used to analyze concurrent sleep and glucose patterns 
over 7 days in 42 young adults with T1D in their natural home environment. Young adults 
with T1D (mean age 22.2 ± 3.0 years, HbA1c 7.2%, 32.6% male) for at least 6 months 
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with no other medical or major psychiatric comorbidity were included. Sleep-wake 
characteristics were measured via wrist actigraphy and glucose variability indices via a 
continuous glucose monitor (CGM).
Results:  Lower sleep efficiency predicted higher glucose variability (less time in range 
β = 0.011 and more time in hyperglycemia β = −0.011) within-person. A longer wake after 
sleep onset and more sleep disruptions were associated with higher glucose variability 
between persons (β = 0.28 and 0.31). Higher glucose variability predicted poorer sleep 
within-person (delayed bedtime, waketime, mid-sleep time, and lower sleep efficiency), 
while higher glucose variability was associated with poorer sleep and more sleep 
disruptions between persons (lower sleep efficiency, longer wake after sleep onset, and 
a higher sleep fragmentation index).
Conclusion:  Clinicians can address the reciprocal nature of the sleep-glucose relationship 
by optimizing sleep and targeting efforts toward a euglycemic range overnight. Sleep 
habits are a modifiable personal target in diabetes care.

Key Words: sleep, actigraphy, young adult, type 1 diabetes, glucose variability, multilevel model

Sleep is a multidimensional facet of health, but one compo-
nent, sleep duration, is decreasing in the United States, with 
a majority of young adults ages 18 to 30 years not meeting 
the recommended sleep duration of 7 to 9 hours per 
night (1-3). Environmental, social, and biological factors 
(eg, blue light, social interactions, the stress of academics 
or work, and delayed melatonin onset, later chronotype) 
contribute to young adults’ short sleep. These influencing 
factors are also juxtaposed with a competing need to main-
tain early wake times during the school or work week (2). 
Young adults with type 1 diabetes (T1D) have additional 
barriers to achieving adequate sleep, with more variability 
in their sleep duration than the general population (4-6). 
These barriers may include a need to monitor and manage 
hypo/hyperglycemia, a fear of hypoglycemia, an intensive 
insulin therapy regimen, and device alarms which can delay 
bedtimes and disrupt sleep overnight (7-9).

T1D is one of the most common chronic conditions in 
young adulthood, affecting 45 million people with a rising 
increase of 3% annually and a projected 70 million people 
to be affected globally by 2045 (10). Only 1 in 8 young 
adults achieve glycemic targets (glycosylated hemoglobin 
A1c  [HbA1c] < 7%) (10), and higher HbA1c values pre-
dict premature micro- and macrovascular complications 
(11). HbA1c does not account for glycemic variability 
or hypoglycemia in those with T1D (11). Glycemic vari-
ability detected through continuous glucose monitoring 
(CGM) contributes to endothelial damage and the onset 
or progression of premature complications (12-14) and has 
gained attention in research.

Short sleep leads to impaired glucose metabolism and 
hormonal and body weight regulation in individuals 
without chronic conditions and in those with T1D (15-19). 

Short sleep is associated with higher body mass index (20), 
lower leptin and higher ghrelin levels (21, 22), and higher 
cortisol secretion (23). Short sleep is associated with poorer 
glycemic control in adolescents (24), young adults (25, 26), 
and middle-aged adults with T1D (27).

Most researchers focus on person-level predictors and 
outcomes, such as person-specific mean or standard devi-
ation of sleep duration and HbA1c, yielding between-person 
comparisons. Based on prior studies, it is indicated that, at 
a group level, young adults without chronic conditions and 
T1D with short sleep or with higher sleep variability have 
poorer glycemic control or more glucose variability (7, 28). 
Those with poorer glycemic control are at greater risk for 
sleep that is of a shorter duration (27, 29). These findings 
do not clarify, however, day-to-day associations within a 
person, eg, whether a young adult with T1D is more likely 
to have more glucose variability or less time in range with 
shorter sleep duration or experience shorter sleep duration 
at an individual level (eg, within-person level of analysis). 
Given the rising incidence of T1D, more detailed research 
that addresses objective sleep-wake behaviors at home is 
critical, including to examine both the between-person and 
within-person associations. This in turn would inform our 
understanding of the true nature of the sleep-glucose asso-
ciation in young adults with T1D to uncover modifiable 
sleep targets to improve glucose variability and glycemic 
control and reduce premature micro-and macrovascular 
complications.

The aim of this analysis was to evaluate the extent to 
which daily variations in objective sleep-wake charac-
teristics (total sleep time, wake after sleep onset, bed/rise 
times, awakenings, sleep fragmentation index, mid-sleep 
time) predict subsequent glucose variability (time in range, 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article/107/3/e1085/6410559 by U
niversity of M

assachusetts M
edical School user on 13 April 2022



The Journal of Clinical Endocrinology & Metabolism, 2022, Vol. 107, No. 3� e1087

J index, coefficient of variation, and high and low blood 
glucose indices) and the extent to which daily variations 
in glucose predict sleep-wake characteristics within-person. 
We hypothesized that poorer person-specific average sleep 
(shorter total sleep time, lower sleep efficiency, later bed-
times, earlier wake times) and more sleep disruptions (more 
awakenings, higher sleep fragmentation index) would pre-
dict worse next-day glucose variability (less % time in 
range, higher J index, higher high and low blood glucose 
indices) and vice versa (within-person). We also hypothe-
sized that poorer sleep and more disruptions would be as-
sociated with worse glucose variability at the group level 
(between persons).

Method

Study Objectives and Design

We reported previously, based on descriptive between-
person analyses of person-level averages, that higher 
sleep variability, daytime sleepiness, and sleep fragmen-
tation were associated with glucose variability (mean of 
daily differences) in young adults with T1D (30). For this 
study, in addition to person-level averages, we analyzed 
daily data from actigraphy and CGM in estimating asso-
ciations in sleep and glucose patterns. This approach al-
lows us to distinguish associations of glucose variability 
with a participant’s typical sleep pattern (between-person 
differences in person-level summaries) from associations 
with prior-day sleep characteristics (within-person analyses 
of daily-level variables). A  between-persons relationship 
would indicate relationships among interindividual differ-
ences in sleep and glucose variables (ie, level-2, group or 
macro level of analysis) (31). A within-person relationship 
between sleep and next-day glucose and vice versa would 
indicate existence of intraindividual variation within a 
person repeatedly over time. In other words, how a person 
varies from their own baseline data (ie, level-1, individual 
or the micro level of analysis) (31). Details pertinent to this 
report are summarized below:

Young adults monitored their sleep and glucose patterns 
concurrently for 6 to 14 days with a sleep-wake activity 
monitor (Phillips Respironics Spectrum Plus) and either 
their own CGM or a provided blinded Dexcom G4. The 
CGM was blinded to avoid intervention effects as the in-
tention was to observe the sleep-glucose relationship in a 
naturalistic setting. Within-person and between-persons 
variations in sleep and glucose patterns using the actigraphy 
and CGM data were analyzed. The study followed the 
World Medical Association Declaration of Helsinki for re-
search involving human subjects (32), and it was approved 
by both the Case Western Reserve University (#20200650) 

and the Yale University Human Investigation Committee 
(#1507016174).

Procedures

Research Electronic Data Capture (REDCap), a secure 
web-based software, was used to administer the question-
naires at baseline with twice-daily diaries for 14 days. Each 
diary entry was time-stamped, so it was evident when par-
ticipants completed each survey, reducing the potential for 
recall bias. Electronic Medical Record (EMR) data were en-
tered directly into REDCap. Young adults completed sleep 
diaries daily in the mornings and evenings to track daytime 
sleep-related behaviors (eg, caffeine use, exercise) and noc-
turnal sleep-wake characteristics (eg, bedtime, awakening). 
Actigraphy scoring methods were reported previously (33).

Participants

A total of 46 participants consented and completed base-
line questionnaires. Of these, 42 successfully wore the 
CGM and Spectrum Plus concurrently for 7 continuous 
days/nights (mean  =  7.4  ±  3.3  days/nights) and were in-
cluded in this analysis. Each of 42 participants provided 
7 consecutive days of data. Because daily-level predictors 
were lagged by 1  day, eg, sleep on day 1 predicting gly-
cemic outcomes on day 2, analyses included 6 observations 
per participant. The data presented for this article represent 
daily CGM and sleep actigraphy data for a total of 252 re-
ports. A sample size of 42 and 252 reports are comparable 
to previously published studies using daily actigraphy data 
or glucose among adolescents/young adults (18, 34-36).

The participants were: between 18 to 30  years, had 
been diagnosed with T1D for at least 6 months, with no 
other major health problems (eg, chronic medical condi-
tions or severe psychiatric illness), not participating in any 
intervention studies, and understood English. Those with 
a previous obstructive sleep apnea (OSA) diagnosis, night 
shift workers, and current pregnancy were not eligible to 
participate. The Berlin Questionnaire was used to screen 
participants for inclusion in the study (37). Participants 
considered to be at high risk for sleep apnea were referred 
for treatment and not included in the study.

Measures

Demographics and clinical characteristics
Clinical and demographic data were extracted from the 
EMR, including age, body mass index (in kg/m2), dur-
ation of diabetes, most recent HbA1c, and medical his-
tory. Ethnicity, education, primary caregiver, employment 
status, full-time student status, work hours, marital status, 
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residence, household count, income, cigarette smoking, al-
cohol or other substance use, insulin therapy regimen (eg, 
insulin injections or an insulin pump), CGM pump brand 
(if applicable), and last menstrual period (for females) data 
were collected via self-report survey. Self-report data were 
cross-validated with the EMR.

Objective sleep-wake characteristics
Actigraphy is a valid, reliable method to objectively esti-
mate sleep-wake based on activity and inactivity measures 
(38). Actigraph data were collected in 30-second epochs 
(39). Participants were instructed to wear the actigraph 
continuously on their nondominant wrist for 7 to 14 days. 
They were instructed to depress the event marker at “lights 
out” and “lights on” times to demarcate time in bed. The 
following objective sleep-wake characteristics were de-
rived: bedtime, waketime, total sleep time, sleep efficiency 
(indicator of sleep quality) (%), wake after sleep onset 
(minutes), awakenings (number), and sleep fragmentation 
index (% movement index + % fragmentation index). Mid-
sleep time was determined as the midpoint between sleep 
onset (bedtime plus sleep onset latency) and sleep offset 
(waketime) (40). Actigraphy provides the greatest agree-
ment and least bias compared with polysomnography in 
young adults with T1D (41).

Glucose variability
CGM data from the time the wrist actigraph was worn 
were downloaded directly from each young adult’s ex-
isting or provided blinded Dexcom G4 Professional CGM 
to capture daily glucose patterns. Participants inserted a 
small sensor wire just under their skin using an automatic 
inserter (42). CGMs are accurate across a wide range of 
levels (43). CGM systems provide real-time, dynamic glu-
cose information every 5 minutes—up to 288 readings in a 
24-hour period—and values are measured in mg/dL (43). 
Glucose variability was calculated from CGM with the fol-
lowing indices: Mean ± SD, J index (calculated as 0.001 × 
[mean + SD]2), low (LGBI) and high blood glucose risk in-
dices (HGBI), time in range (calculated as % in target range 
70-180 mg/dL, hypoglycemia < 70 mg/dL and severe hypo-
glycemia < 54 mg/dL, and hyperglycemia > 180 mg/dL and 
severe hyperglycemia > 250 mg/dL) (44).

Data Analysis Plan

Actigraphy data were scored with Actiware v. 6.0.9 soft-
ware. GlyCulator 2.0 was used to calculate glycemic vari-
ability indices from raw CGM data. GlyCulator 2.0 follows 
CGM reporting guidelines specified in the International 
Consensus on Use of Continuous Glucose Monitoring (45). 
Prior to the analysis, data were screened for missing or 

out-of-range values and distributions of continuous vari-
ables. Descriptive statistics were calculated for all variables 
and analyzed using Statistical Package for Social Sciences 
(SPSS) version 27 for Mac (Armonk, NY: IBM Corp) 
and Statistical Analysis Software (SAS) version 9.4 (SAS 
Institute, Inc., Cary, NC, USA).

A series of multilevel models were performed to 
examine the associations of sleep-wake characteristics 
with glucose variability at both the day- and person-
level; the day-level predictor reflects within-person 
differences, and the person-level predictor reflects 
between-person differences (46). Daily sleep reports 
comprised level-1 variables (N = 252) nested within-
person at level-2 (N  =  42 individuals). Models were 
run using all available data in collection days 1 to 
7, assuming missingness at random (47). The multi-
level models were set with a random intercept for in-
dividual variability to place the fewest restrictions on 
the models and allow variances and covariances to be 
freely estimated from the data. All models included a 
contrast indicator of weekend = 1 (Friday or Saturday) 
vs weekday  =  0 (Sunday to Thursday) at level-1 to 
examine weekly differences between weekday and 
weekend sleep-wake and glucose patterns. All models 
also included sex (male = 1, female = 0), as a level-2 
covariate.

In the first set of models, sleep-wake characteristics—
prior-day sleep (level 1) and person-specific average sleep 
(level 2)—were examined as a predictor of glucose vari-
ability outcomes. Each participant had 6 observations due 
to the lagged predictor (eg, day 1 glucose variable to predict 
day 2 sleep variable, and vice versa). Next, parallel models 
with all glucose indices as predictors of sleep-wake char-
acteristics indices were examined. In supplemental ana-
lyses, daily glucose outcomes were modeled as a function 
of person-specific variability in each sleep characteristic, 
where variability was operationalized as mean of squared 
successive daily differences (MSSD) (48). Outcomes were 
transformed as needed, such as by square root or Tobit 
(49), to satisfy model assumptions, including normally dis-
tributed residuals.

Results

Descriptive Analyses

Young adults in the study (N  =  42) had a mean age of 
22.2  ±  3.0  years, were 66.7% female, and were 83.3% 
non-Hispanic white. The mean T1D duration was 
10.3 ± 6.1 years, mean HbA1c was 7.2% ± 1.1%, and most 
used an insulin pump (78.6%) and CGM (80.9%) for treat-
ment. Participants used various CGM systems including 
Dexcom G6 (54.8%, n = 23), Dexcom G5 (19.0%, n = 8), 
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Medtronic MiniMed 670G (11.9%, n = 5), and Freestyle 
Libre (2.4%, n = 1). Participants without a CGM were pro-
vided with a blinded Dexcom G4 (11.9%, n = 5). The mean 
glucose was 163.0 (SD = 30.5) mg/dL, mean coefficient of 
variation (CV) was 36.8 (SD = 5.9), mean amplitude of gly-
cemic excursions was 152.5 (SD = 40.0), and the mean of 
daily differences was 64.9 (SD = 21.4), measured via CGM 
across the 6 to 14 days. Descriptive statistics for sleep-wake 
characteristics and glucose variability indices are presented 
in Table 1.

Sex and Weekend Differences

Females with a later bedtime and later mid-sleep time 
had less glucose variability (J index, P = 0.008 and CV 
P = 0.009), lower low and high blood glucose index risk 
scores (P = 0.006 and P = 0.008, respectively), less time 
in range (P = 0.01), less time spent in hypoglycemia/se-
vere hypoglycemia (P = 0.002 & P = 0.008 & P = 0.002, 
respectively), and hyperglycemia/severe hyperglycemia 
(P  =  0.009 and P  =  0.009 respectively). On weekends 
those with a later waketime had higher glucose vari-
ability (J index P = 0.032 and CV P = 0.016), higher low 
and high blood glucose index risk scores (P = 0.027 and 
P = 0.032 respectively), more time in range (P = 0.026), 
and more time spent in hyperglycemia and hypoglycemia 
(all P < 0.04).

Temporal Models of Sleep-Wake 
Predicting Glucose

We present the temporal models of sleep-wake character-
istics predicting glucose indices in Tables 2 and 3. Higher 
sleep efficiency predicted more time in range (P = 0.036) 
and less time in hyperglycemia (P = 0.037) within-person. 
Higher sleep efficiency predicted a higher low blood glu-
cose index risk (P = 0.042) within-person. More awaken-
ings predicted higher glucose variability (P  =  0.040), a 
higher high blood glucose risk score (P = 0.036), and more 
time spent in hyperglycemia (P = 0.037) between persons.

Temporal Models of Glucose Variability 
Predicting Sleep-Wake

We present the temporal models of glucose indices predicting 
sleep-wake characteristics in Tables 4 and 5. Lower glu-
cose variability (CV), a lower low blood glucose index risk 
score, a higher blood glucose index risk score, and more 
time spent in hyperglycemia/severe hyperglycemia delayed 
bedtime within-person (P = 0.047, P = 0.006, P = 0.040, 
P = 0.014, and 0.027 respectively). More time in range and 
less time spent in hyperglycemia delayed waketime within-
person (P = 0.048 and 0.040 respectively). A higher high 
blood glucose index, less time in range, and more time 
spent in hyperglycemia predicted a later mid-sleep time 
within-person (all P < 0.05).

Table 1.  Descriptive statistics of sleep-wake characteristics and glucose variability indices (N = 42) days 1 to 7

Variables Participant-specific daily average Participant-specific standard deviations

 Mean (SD) Mean (SD)

Sleep-wake characteristics
  Bedtime (hh:mm) 22:32 (6:34) 1:01 (0:31)
  Wake time (hh:mm) 8:05 (1:30) 1:16 (0:41)
  Sleep midpoint (hh:mm) 04:18 (1:18) 1:03 (0:45)
  Total sleep time (min) 421.53 (64.37) 72.49 (32.42)
  Sleep efficiency (%) 85.02 (4.80) 7.05 (4.87)
  Wake after sleep onset (min) 36.66 (17.61) 15.64 (15.15)
  Awakenings* 35.42 (9.48) 9.64 (4.79)
  Sleep fragmentation index 17.82 (5.67) 5.66 (3.52)
Glucose indices
  J index 50.14 (19.18) 15.94 (9.21)
  Coefficient of variation (CV) 31.58 (5.56) 8.50 (4.47)
  Low blood glucose index 1.07 (1.38) 0.77 (0.68)
  High blood glucose index 8.50 (5.00) 4.23 (2.71)
  Time in range of 70-180 mg/dL, % 60.00 (17.86) 17.49 (7.07)
  Hypoglycemia (time < 70 mg/dL), % 4.32 (7.22) 3.76 (3.56)
  Severe hypoglycemia (time < 54 mg/dL), % 0.96 (2.05) 0.99 (1.42)
  Hyperglycemia (time > 180 mg/dL), % 35.68 (19.57) 17.76 (8.34)
  Severe hyperglycemia (time > 250 mg/dL), % 12.61 (11.11) 10.23 (8.44)

Note: Awakenings is the number of wake bouts.
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Higher glucose variability (J index) and more time spent 
in severe hyperglycemia were associated with a lower sleep 
efficiency between persons (P = 0.041 and P = 0.046, re-
spectively). A  higher high blood glucose index risk score 
and more time spent in severe hyperglycemia were associ-
ated with a longer wake after sleep onset between persons 
(P = 0.044 and 0.021 respectively). More time spent in se-
vere hyperglycemia was associated with a higher sleep frag-
mentation index between persons (P = 0.039).

Supplemental analyses of within-person MSSD in sleep 
characteristics and glucose variability outcomes (data not 
shown) identified only 2 marginally statistically signifi-
cant (P  <  0.10) associations. Higher within-person vari-
ability in bedtime was associated with higher CV (β = 0.61, 
P  =  0.0725), whereas higher within-person variability in 

total sleep time was associated with less time spent in hypo-
glycemia (< 70 mg/dL) (β = −0.36, P = 0.0573).

Discussion

This is the first study in young adults with T1D where 
both between- and within-person variations in objective 
sleep-wake characteristics and the link to glucose vari-
ability indices were examined. Results showed significant 
temporal associations where poorer sleep led to poorer 
achievement of glucose targets and vice versa within-
person. Higher sleep efficiency predicted better achieve-
ment of glucose targets within-person (eg, more time 
in range and less time in hyperglycemia). More time in 
range led to an earlier bedtime and later waketime, 

Table 2.  Person- and day-level effects of sleep-wake characteristics on glucose variability—multilevel models (N = 42)

Predictors Bedtime β±SE (P value) Wake time β±SE  
(P value)

Total sleep time β±SE  
(P value)

Sleep efficiency β±SE 
(P value)

Outcomes
J indexa Person level 0.08 ± 0.15 (0.6081) 0.19 ± 0.13 (0.1608) 0.10 ± 0.13 (0.4772) -0.24 ± 0.12 

(0.0543)
Day level 0.02 ± 0.07 (0.8026) 0.01 ± 0.07 (0.8396) -0.001 ± 0.06 (0.9844) -0.06 ± 0.05 

(0.1999)
CV Person level -0.01 ± 0.12 (0.9568) 0.07 ± 0.11 (0.5547) 0.09 ± 0.10 (0.4151) -0.01 ± 0.10 

(0.9397)
Day level -0.04 ± 0.09 (0.6757) -0.05 ± 0.09 (0.5595) 0.001 ± 0.08 (0.9913) 0.07 ± 0.07 (0.2806)

Low blood glucose 
indexb

Person level -0.08 ± 0.15 (0.5969) -0.10 ± 0.14 (0.4979) 0.01 ± 0.13 (0.9278) 0.23 ± 0.12 (0.0744)
Day level -0.04 ± 0.07 (0.5646) -0.01 ± 0.06 (0.8399) 0.03 ± 0.06 (0.5522) 0.11 ± 0.05 (0.0416)

High blood glucose 
indexa

Person level 0.07 ± 0.15 (0.6222) 0.21 ± 0.13 (0.1312) 0.12 ± 0.13 (0.3662) -0.23 ± 0.12 
(0.0728)

Day level 0.01 ± 0.07 (0.8792) 0.01 ± 0.06 (0.8971) -0.004 ± 0.06 (0.9463) -0.08 ± 0.05 
(0.0899)

% Time in range 
70-180 mg/dL

Person level -0.05 ± 0.14 (0.7138) -0.20 ± 0.13 (0.1446) -0.16 ± 0.13 (0.2013) 0.10 ± 0.12 (0.4043)
Day level 0.03 ± 0.07 (0.7236) 0.02 ± 0.07 (0.8002) 0.02 ± 0.06 (0.7594) 0.11 ± 0.05 (0.0364)

% Hypoglycemia 
<70 mg/dLb

Person level -0.16 ± 0.19 (0.4010) -0.13 ± 0.18 (0.4898) 0.07 ± 0.17 (0.6716) 0.31 ± 0.16 (0.0578)
Day level  -0.09 ± 0.11 (0.4131) -0.07 ± 0.09 (0.4177) 0.01 ± 0.09 (0.9402) 0.16 ± 0.08 (0.0614)

% Hypoglycemia 
<54 mg/dLb

Person level -0.39 ± 0.41 (0.3488) 0.11 ± 0.38 (0.7778) 0.48 ± 0.36 (0.1838) -0.26 ± 0.34 
(0.4408)

Day level -0.03 ± 0.27 (0.9256) -0.27 ± 0.24 (0.2758) -0.19 ± 0.23 (0.4234) -0.97 ± 0.66 
(0.1473)

% Hyperglycemia 
>180 mg/dLb

Person level 0.09 ± 0.15 (0.5543) 0.23 ± 0.14 (0.1009) 0.16 ± 0.13 (0.2456) -0.20 ± 0.12 
(0.1106)

Day level -0.03 ± 0.07 (0.6412) -0.003 ± 0.06 (0.9573) 0.002 ± 0.06 (0.9781) -0.11 ± 0.05 
(0.0373)

% Hyperglycemia 
>250 mg/dLb

Person level 0.04 ± 0.21 (0.8670) 0.22 ± 0.20 (0.2687) 0.13 ± 0.19 (0.5170) -0.32 ± 0.18 
(0.0785)

Day level 0.09 ± 0.11 (0.4178) 0.08 ± 0.09 (0.3908) 0.01 ± 0.09 (0.9346) -0.09 ± 0.08 
(0.2564)

Note: β values are unstandardized coefficients in general linear mixed model of repeatedly measured sleep characteristic with glucose variability index as predictor. 
The person level represents how the sleep characteristic predicts each glucose variability index (between persons) and day level represents how each sleep charac-
teristic predicts the daily level of glucose variability (within-person). Bolded values are significant.
aVariables were square root transformed. 
bVariables were Tobit transformed.
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providing an opportunity for more sleep while more time 
spent in hyperglycemia delayed bedtime within-person. 
Poorer achievement of glucose targets led to poorer sleep 
within-person (eg, delayed bedtime, waketime, mid-sleep 
time, and lower sleep efficiency). In comparison, poorer 
achievement of glucose targets was associated with poorer 
sleep and more disruptions between persons (eg, lower ef-
ficiency, longer wake after sleep onset, and a higher sleep 
fragmentation index). Short sleep was not a predictor of 
glucose variability nor time in range, and glucose vari-
ability was not a predictor of short sleep within-person or 
between persons in the current study.

Sleep quantity (total sleep time) and quality (sleep ef-
ficiency) are different dimensions of sleep health. Sleep 

efficiency is the ratio of time in bed to total time asleep 
and is an indicator of sleep quality. Therefore, sleep effi-
ciency < 90% or < 85% would indicate excessive time in 
bed and potential for clinically significant sleep disturbance 
(3, 6). Multiple dimensions of sleep health (eg, higher sleep 
efficiency and total sleep time within range) are associated 
with better physical and mental health outcomes in the lit-
erature (5, 25, 50). The association between sleep variables 
and glucose between persons is limited to the average of 
the variables across the monitoring period. On the other 
hand, at the individual level (within-person) a relationship 
would indicate existence of intraindividual variation within 
a person repeatedly over time with sleep variables and glu-
cose variability.

Table 3.  Person- and day-level effects of sleep-wake characteristics on glucose variability—multilevel models (N = 42)

Predictors Wake after sleep onset 
β±SE (P value)

Awakenings β±SE  
(P value)

Sleep fragmentation 
index β±SE (P value)

Mid-sleep time β±SE 
(P value)

Outcomes
J indexa Person 

level
0.31 ± 0.12 (0.0149) 0.28 ± 0.13 (0.0402) 0.23 ± 0.13 (0.0862) 0.13 ± 0.14 (0.3517)

Day level -0.01 ± 0.06 (0.8689) 0.001 ± 0.06 (0.9884) -0.01 ± 0.06 (0.9137) 0.07 ± 0.06 (0.2535)
CV Person 

level
0.04 ± 0.10 (0.7296) 0.14 ± 0.11 (0.2005) -0.02 ± 0.11 (0.8442) 0.06 ± 0.11 (0.6134)

Day level -0.07 ± 0.08 (0.4047) -0.02 ± 0.08 (0.7609) 0.03 ± 0.08 (0.6389) -0.06 ± 0.08 
(0.4539)

Low blood glucose indexb Person 
level

-0.16 ± 0.13 (0.2193) -0.08 ± 0.14 (0.5656) -0.09 ± 0.14 (0.5028) -0.09 ± 0.14 
(0.5236)

Day level -0.06 ± 0.07 (0.3913) 0.02 ± 0.06 (0.7143) -0.00 ± 0.06 (0.9648) -0.05 ± 0.06 
(0.4045)

High blood glucose indexa Person 
level

0.31 ± 0.12 (0.0149) 0.28 ± 0.13 (0.0363) 0.24 ± 0.13 (0.0824) 0.13 ± 0.14 (0.3459)

Day level -0.00 ± 0.06 (0.9556) 0.003 ± 0.06 (0.9527) -0.02 ± 0.06 (0.7664) 0.07 ± 0.06 (0.2544)
% Time in range 70-180 mg/

dL
Person 

level
-0.20 ± 0.12 (0.1001) -0.24 ± 0.13 (0.0597) -0.16 ± 0.13 (0.2084) -0.10 ± 0.14 

(0.4760)
Day level -0.05 ± 0.06 (0.3799) -0.02 ± 0.06 (0.7681) -0.03 ± 0.06 (0.6177) -0.05 ± 0.07 

(0.4521)
% Hypoglycemia <70 mg/dLb Person 

level
-0.24 ± 0.17 (0.1630) -0.14 ± 0.18 (0.4402) -0.14 ± 0.18 (0.4448) -0.13 ± 0.19 

(0.5002)
Day level -0.06 ± 0.10 (0.5552) 0.04 ± 0.09 (0.6247) 0.02 ± 0.09 (0.8717) -0.16 ± 0.10 

(0.1249)
% Hypoglycemia <54 mg/dLb Person 

level
-0.06 ± 0.35 (0.8553) 0.02 ± 0.36 (0.9456) 0.02 ± 0.36 (0.9483) -0.15 ± 0.40 

(0.7049)
Day level -0.23 ± 0.26 (0.3887) -0.05 ± 0.21 (0.8123) -0.20 ± 0.26 (0.4415) -0.25 ± 0.28 

(0.3816)
% Hyperglycemia >180 mg/

dLb

Person 
level

0.28 ± 0.12 (0.0304) 0.25 ± 0.13 (0.0605) 0.20 ± 0.13 (0.1526) 0.14 ± 0.14 (0.3258)

Day level 0.05 ± 0.06 (0.4133) 0.03 ± 0.06 (0.6381) 0.02 ± 0.06 (0.7901) 0.05 ± 0.07 (0.4129)
% Hyperglycemia >250 mg/

dLb

Person 
level

0.52 ± 0.18 (0.0050) 0.40 ± 0.19 (0.0373) 0.36 ± 0.19 (0.0645) 0.13 ± 0.20 (0.5287)

Day level 0.00 ± 0.09 (0.9969) 0.00 ± 0.09 (0.9814) -0.04 ± 0.09 (0.6368) 0.17 ± 0.10 (0.0802)

Note: β values are standardized coefficients in general linear mixed models. The person level represents how sleep each characteristics predicts each glucose varia-
bility index (between persons) and day level represents (within-person). Bolded values are significant.
aVariables were square root transformed. 
bVariables were Tobit transformed.
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Shorter total sleep time was not associated with glucose 
variability within or between persons in the present study. 
Findings in the present study were consistent with some 
other studies of adults and adolescents with T1D (15, 51-53) 
and inconsistent with other studies of adults with T1D (26, 
27). The methods in previous adult studies were between-
person designs (15, 51, 52), with 1 study of adolescents 
with T1D also not finding a significant relationship between 
glucose variability and total sleep time within-person (53). 
Shorter total sleep time was associated between persons with 
poorer glycemic control in 2 previous studies of adults with 
T1D (26, 27). This may be partially explained due to the use 
of intermittent glucometer testing to determine glucose vari-
ability in 1 study (15), and researchers in other studies using 
self-reported sleep duration (51, 52).

Higher sleep efficiency predicted better achievement 
of glucose targets (eg, more time in range and less time 
in hyperglycemia within-person). More time spent asleep 
while in bed (eg, time in bed to total sleep time ratio) re-
flects a higher sleep efficiency. However, it should be noted 

that sleep efficiency should not be considered in isolation 
of total sleep time even though the relationship with total 
sleep time was not significant. For example, if a person 
were to only sleep 4 hours and spend all of those 4 hours 
asleep, they would have 100% sleep efficiency; however, 4 
hours is not an adequate sleep duration as indicated by sev-
eral studies where total or partial sleep deprivation led to 
impaired glucoregulation (15-19). Contrary to the hypoth-
esis, higher sleep efficiency predicted a higher low blood 
glucose index risk within-person. Spending more time in 
range increases the risk of hypoglycemia (54).

In the models with glucose indices as predictors, poorer 
achievement of glucose targets led to poorer sleep. Our 
findings were consistent with other studies of adolescents 
and adults with T1D (28, 36, 50). In line with our find-
ings, higher glucose variability was associated with a later 
chronotype (delayed mid-sleep time) between persons in 2 
studies of adults with T1D (28, 50). Also, higher glucose 
variability and less time in range predicted poorer sleep 
within-person in a study of adolescents with T1D (53).

Table 4.  Person- and day-level effects of glucose variability on sleep-wake characteristics—multilevel models (N = 42)

Outcomes Bedtime β±SE  
(P value)

Wake time β±SE  
(P value)

Total sleep time 
β±SE (P value)

Sleep efficiency 
β±SE (P value)

Predictors
J index Person level 0.02 ± 0.13 (0.878) 0.13 ± 0.13 (0.294) 0.08 ± 0.12 (0.472) -0.22 ± 0.11 

(0.041)
Day level 0.08 ± 0.06 (0.164) 0.05 ± 0.06 (0.432) -0.03 ± 0.07 (0.688) 0.05 ± 0.08 (0.547)

CV Person level -0.02 ± 0.12 (0.883) 0.06 ± 0.12 (0.618) 0.09 ± 0.10 (0.395) -0.02 ± 0.10 
(0.831)

Day level -0.09 ± 0.05 (0.047) -0.08 ± 0.05 (0.103) -0.01 ± 0.06 (0.878) 0.09 ± 0.07 (0.151)
Low blood glucose Indexa Person level -0.04 ± 0.12 (0.765) -0.15 ± 0.12 (0.214) -0.09 ± 0.11 (0.409) 0.12 ± 0.10 (0.234)

Day level -0.16 ± 0.06 (0.006) -0.06 ± 0.06 (0.293) 0.08 ± 0.07 (0.279) 0.08 ± 0.08 (0.301)
High blood glucose index Person level -0.02 ± 0.12 (0.901) 0.12 ± 0.12 (0.358) 0.09 ± 0.11 (0.424) -0.21 ± 0.11 

(0.051)
Day level 0.12 ± 0.06 (0.040) 0.08 ± 0.06 (0.200) -0.02 ± 0.07 (0.753) 0.04 ± 0.08 (0.649)

%Time in range 70-180 mg/dL Person level 0.09 ± 0.12 (0.474) -0.08 ± 0.12 (0.534) -0.13 ± 0.11 (0.246) 0.14 ± 0.11 (0.202)
Day level -0.13 ± 0.06 (0.019) -0.12 ± 0.06 (0.048) -0.03 ± 0.07 (0.654) -0.05 ± 0.08 

(0.554)
% Hypoglycemia <70 mg/dLa Person level -0.16 ± 0.12 (0.177) -0.22 ± 0.12 (0.073) -0.06 ± 0.11 (0.585) 0.15 ± 0.10 (0.153)

Day level -0.10 ± 0.05 (0.054) -0.02 ± 0.05 (0.657) 0.07 ± 0.06 (0.261) -0.00 ± 0.07 
(0.951)

% Hypoglycemia <54 mg/dLa Person level -0.07 ± 0.12 (0.591) -0.04 ± 0.12 (0.752) 0.03 ± 0.11 (0.780) 0.10 ± 0.10 (0.322)
Day level -0.02 ± 0.05 (0.633) -0.03 ± 0.05 (0.545) -0.01 ± 0.06 (0.928) 0.01 ± 0.07 (0.891)

% Hyperglycemia >180 mg/dL Person level -0.07 ± 0.13 (0.576) 0.09 ± 0.12 (0.493) 0.12 ± 0.11 (0.310) -0.19 ± 0.11 
(0.076)

Day level 0.14 ± 0.06 (0.014) 0.123 ± 0.06 (0.040) 0.01 ± 0.07 (0.843) 0.04 ± 0.08 (0.604)
% Hyperglycemia >250 mg/dL Person level -0.01 ± 0.12 (0.955) 0.13 ± 0.12 (0.298) 0.09 ± 0.11 (0.417) -0.20 ± 0.10 

(0.046)
Day level 0.12 ± 0.05 (0.027) 0.04 ± 0.06 (0.523) -0.06 ± 0.07 (0.343) 0.04 ± 0.07 (0.559)

Note: β values are standardized coefficients in general linear mixed models. The person level represents how the sleep characteristic predicts each glucose varia-
bility index (between persons) and day level represents how each sleep characteristic predicts the daily level of glucose variability (within-person). Bolded values 
are significant.
aVariables were natural log transformed.
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A few limitations should be considered within the con-
text of interpreting these results. The causal mechanisms 
for the sleep components can only be speculative due to 
the observational nature of the study. The delayed sleep in 
the young adults with T1D in the current study may reflect 
social engagement or a need to self-manage high glucose 
levels. Alternatively, a shared risk factor (eg, diet, exercise, 
and other lifestyle behaviors) may increase the likelihood 
of higher glucose variability and delayed sleep timing. The 
lack of association between total sleep time and glucose 
variability may be due to a limited representation of short 
sleep in the sample. The study also had several strengths. 
We excluded those with a previous OSA diagnosis or 
with high risk for sleep apnea, reducing the risk for an 

independent impact of OSA on glycemic control. However, 
lab polysomnography was not used, so sleep apnea still may 
be a confounder in the sample. Despite not controlling for 
these factors in the current study, our findings are novel in 
demonstrating that these associations persist over a longer 
period of time at the individual level. Future studies where 
hormonal, dietary, and insulin treatment effects are con-
trolled in addition to what we controlled for (weekend and 
sex) capturing more than 1 or 2 weeks can provide further 
insight into our findings.

Overall, the findings in this study support the need to 
assess sleep components as a part of routine care of young 
adults with T1D. Optimizing sleep health and targeting a 
euglycemic range overnight is important, given the nature 

Table 5.  Person- and day-level effects of glucose variability indices on sleep-wake characteristics—multilevel models (N = 42)

Outcomes Wake after sleep onset 
β ± SE (P value)

Sleep fragmentation 
index β ± SE (P value)

Awakenings β ± SE 
(P value)

Mid-sleep time 
β ± SE (P value)

Predictors
J index Person 

level
0.22 ± 0.12 (0.069) 0.15 ± 0.12 (0.227) 0.16 ± 0.11 (0.169) 0.07 ± 0.12 (0.582)

Day level 0.01 ± 0.07 (0.921) 0.04 ± 0.07 (0.609) 0.03 ± 0.07 (0.644) 0.11 ± 0.07 (0.105)
CV Person 

level
0.01 ± 0.12 (0.936) 0.00 ± 0.12 (0.984) 0.13 ± 0.10 (0.211) 0.01 ± 0.11 (0.942)

Day level 0.02 ± 0.06 (0.685) 0.01 ± 0.06 (0.877) -0.01 ± 0.06 (0.926) -0.04 ± 0.05 
(0.401)

Low blood glucose indexa Person 
level

-0.21 ± 0.12 (0.084) -0.05 ± 0.12 (0.679) -0.07 ± 0.11 (0.547) -0.10 ± 0.12 
(0.376)

Day level 0.04 ± 0.07 (0.575) -0.04 ± 0.07 (0.593) -0.01 ± 0.07 (0.922) -0.10 ± 0.06 
(0.091)

High blood glucose index Person 
level

0.25 ± 0.12 (0.044) 0.18 ± 0.12 (0.152) 0.17 ± 0.11 (0.142) 0.05 ± 0.12 (0.698)

Day level -0.02 ± 0.07 (0.732) 0.01 ± 0.07 (0.855) 0.02 ± 0.07 (0.728) 0.13 ± 0.06 (0.041)
% Time in range 70-180 mg/dL Person 

level
-0.20 ± 0.12 (0.108) -0.14 ± 0.12 (0.242) -0.19 ± 0.11 (0.083) -0.01 ± 0.12 

(0.958)
Day level 0.04 ± 0.07 (0.574) 0.01 ± 0.07 (0.848) 0.01 ± 0.07 (0.928) -0.14 ± 0.06 

(0.022)
% Hypoglycemia <70 mg/dLa Person 

level
-0.16 ± 0.12 (0.198) -0.05 ± 0.01 (0.710) -0.10 ± 0.11 (0.350) -0.22 ± 0.11 

(0.064)
Day level 0.01 ± 0.06 (0.870) -0.03 ± 0.06 (0.659) 0.03 ± 0.06 (0.670) -0.04 ± 0.05 

(0.439)
% Hypoglycemia <54 mg/dLa Person 

level
-0.04 ± 0.12 (0.721) -0.09 ± 0.12 (0.456) -0.03 ± 0.11 (0.766) -0.07 ± 0.12 

(0.577)
Day level -0.04 ± 0.06 (0.532) 0.00 ± 0.06 (0.946) -0.07 ± 0.06 (0.237) -0.04 ± 0.06 

(0.471)
% Hyperglycemia >180 mg/dL Person 

level
0.24 ± 0.12 (0.056) 0.16 ± 0.12 (0.211) 0.19 ± 0.11 (0.094) 0.02 ± 0.12 (0.877)

Day level -0.03 ± 0.07 (0.660) 0.00 ± 0.07 (0.979) 0.01 ± 0.07 (0.904) 0.15 ± 0.06 (0.016)
% Hyperglycemia >250 mg/dL Person 

level
0.27 ± 0.12 (0.021) 0.25 ± 0.12 (0.039) 0.20 ± 0.11 (0.072) 0.05 ± 0.12 (0.706)

Day level -0.06 ± 0.07 (0.327) -0.04 ± 0.06 (0.543) -0.01 ± 0.06 (0.815) 0.12 ± 0.06 (0.033)

Note: β values are standardized coefficients in general linear mixed models. The person level represents how the sleep characteristic predicts each glucose varia-
bility index (between persons) and day level represents how each sleep characteristic predicts the daily level of glucose variability (within-person). Bolded values 
are significant.
aVariables were natural log transformed.
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of their reciprocal relationships. Addressing barriers to bed-
time, time in bed, sleep regularity, and sleep efficiency may 
improve diabetes self-management, achievement of glucose 
targets, waketime alertness, and quality of life outcomes 
in this population. Keeping glucose values higher than the 
target range at night in this population may be the result of 
fear of hypoglycemia (7-9) but may be detrimental to sleep 
health and daytime function. These findings provide insight 
into the design of experimental studies to evaluate causal 
relationships among sleep profiles and diabetes outcomes 
among young adults with T1D.
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