Uniform nomenclature for the mitochondrial contact site and cristae organizing system

Nikolaus Pfanner,1,2 Martin van der Laan,1,2 Paolo Amati,3 Roderick A. Capaldi,4 Amy A. Caudy,5,6 Agnieszka Chacinska,7 Manjula Darshi,8 Markus Deckers,11 Suzanne Hoppins,12 Tateo Icho,13 Stefan Jakobs,14,15 Jianguo Ji,16 Vera Kožják-Pavlović,17 Chris Meisinger,1,2 Paul R. Odgren,18 Sang Ki Park,19 Peter Rehling,1,11 Andreas S. Reichert,20,21 M. Saeed Sheikh,22 Susan S. Taylor,8,9,10 Nobuo Tsuchida,23 Alexander M. van der Bliek,24 Ida J. van der Klei,25 Jonathan S. Weissman,26,27 Benedikt Westermann,28 Jiping Zha,29 Walter Neupert,30 and Jodi Nunnari31

1Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, and 2BIOS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
2Donnelly Centre for Cellular and Biomolecular Research and 3Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
3The International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
4Howard Hughes Medical Institute, 5Department of Pharmacology, and 6Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
5Max Planck Institute for Biophysical Chemistry, 6Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
6Department of Neurology, University Medical Center, 37075 Göttingen, Germany
7The Rockefeller University Press
8Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
9Metabolic Profiling, Inc., Eugene, OR 97401
10Department of Biochemistry, University of Washington, Seattle, WA 98195
11Department of Molecular and Cellular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
12Department of Biochemistry II, University of Göttingen, 37075 Göttingen, Germany
13Somechi Orchid Laboratory, Chofu, Tokyo 182-0023, Japan
14Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210
15Max Planck Institute for Biophysical Chemistry, 37075 Göttingen, Germany
16The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, P.R. China 100871
17Molecular Cell Biology, University of Groningen, 9700 CC Groningen, Netherlands
18Department of Molecular Cell Biology, University of Groningen, 9700 CC Groningen, Netherlands
19Program in Biomedical Sciences, University of California, San Diego, La Jolla, CA 92093
20Department of Pharmacology, and 21Centre for Molecular Medicine, Goethe University, 60438 Frankfurt am Main, Germany
21Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
22Department of Molecular and Cell Biology, University of California, Los Angeles, Los Angeles, CA 90095
23Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
24Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
25Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, and 2BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
26Howard Hughes Medical Institute, 9Department of Pharmacology, and 10Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
27Molecular Cell Biology, University of Groningen, 9700 CC Groningen, Netherlands
28Department of Molecular and Cellular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
29Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
30Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616

The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex “mitochondrial contact site and cristae organizing system” and its subunits Mic10 to Mic60.

Mitochondria possess two membranes of different architecture and function (Palade, 1952; Hackenbrock, 1968). Both membranes work together for essential shared functions, such as protein import (Schatz, 1996; Neupert and Herrmann, 2007; Chacinska et al., 2009). The outer membrane harbors machinery that controls the shape of the organelle and is crucial for the communication of mitochondria with the rest of the cell. The inner membrane harbors the complexes of the respiratory chain, the F1Fo-ATP synthase, numerous metabolite carriers, and enzymes of mitochondrial metabolism. It consists of two domains: the inner boundary membrane, which is adjacent to the outer membrane, and invaginations of different shape, termed cristae (Werner and Neupert, 1972; Frey and Mannella, 2000; Hoppins et al., 2007; Pellegrini and Scorrano, 2007; Zick et al., 2009; Davies et al., 2011). Tubular openings, termed crista junctions (Perkins et al., 1997), connect inner boundary membrane and cristae membranes (Fig. 1, A and B). Respiratory chain complexes and the F1Fo-ATP synthase are preferentially located in the cristae membranes, whereas preprotein translocases are enriched in the inner boundary membrane (Vogel et al., 2006; Wurm and Jakobs, 2006; Davies et al., 2011). Contact sites

Correspondence to Nikolaus Pfanner: nikolaus.pfanner@biochemie.uni-freiburg.de; Walter Neupert: neupert@biochem.mpg.de; or Jodi Nunnari: jmnunnari@ucdavis.edu

© 2014 Pfanner et al. This article is distributed under the terms of an Attribution-Noncommercial-Share Alike-No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution-Noncommercial-Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
lose cristae junctions and contain large internal membrane stacks, the respiratory activity is reduced, and mitochondrial DNA nucleoids are altered (Fig. 1 B; John et al., 2005; Hess et al., 2009; Rabl et al., 2009; Mun et al., 2010; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013). It has been reported that the complex interacts with a variety of outer membrane proteins, such as channel proteins and components of the protein translocases and mitochondrial fusion machines, and defects impair the biogenesis of mitochondrial proteins (Xie et al., 2007; Darshi et al., 2011; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Körner et al., 2012; Ott et al., 2012; Zerbes et al., 2012; Jans et al., 2013; Weber et al., 2013). The MICOS/MINOS/MitOS/Mitofilin/Fcj1 complex thus plays crucial roles in mitochondrial architecture, dynamics, and biogenesis. However, communication of results in this rapidly developing field has been complicated by several different nomenclatures used for the complex as well as for its subunits (Table 1).

To rectify this situation, all authors of this article have agreed on a new uniform nomenclature with the following guidelines. (a) The complex will be called “mitochondrial contact site and cristae organizing system” (MICOS). The protein subunits of MICOS are named Mic10 to Mic60 as listed in Table 1. (b) The names, including the numbers shown in Table 1, will be used in all organisms, e.g., Mitofilin/Fcj1 will be named Mic60 in any organism. In case the name MicX has been given to another gene/protein in an organism or a database requires a longer name, the

Figure 1. **MICOS complex.** (A) The MICOS complex (hypothetical model), previously also termed MINOS, MitOS, or Mitofilin/Fcj1 complex, is required for maintenance of the characteristic architecture of the mitochondrial inner membrane (IM) and forms contact sites with the outer membrane (OM). In budding yeast, six subunits of MICOS have been identified. All subunits are exposed to the intermembrane space (IMS), five are integral inner membrane proteins (Mic10, Mic12, Mic26, Mic27, and Mic60), and one is a peripheral inner membrane protein (Mic19). Mic26 is related to Mic27; however, mic26Δ yeast cells show considerably less severe defects of mitochondrial inner membrane architecture than mic27Δ cells (Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011). The MICOS complex of metazoa additionally contains Mic25, which is related to Mic19; yet subunits corresponding to Mic12 and Mic26 have not been identified so far. MICOS subunits that have been conserved in most organisms analyzed are indicated by bold boundary lines. (B, top) Wild-type architecture of the mitochondrial inner membrane with cristae junctions and cristae. (bottom) This architecture is considerably altered in micos mutant mitochondria: most cristae membranes are detached from the inner boundary membrane and form internal membrane stacks. In some micos mutants (deficiency of mammalian Mic19 or Mic25), a loss of cristae membranes was observed (Darshi et al., 2011; An et al., 2012). Figure by M. Bohnert (Institute of Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany).
name MiccX will be used in this organism, but the number will not be changed. The use of capital and small letters as well as of italics will follow species-specific conventions, e.g., in budding yeast (*Saccharomyces cerevisiae*), Mic60 will be used for the protein, and *MIC60* will be used for the gene. (c) The current names of MICOS genes and proteins in databases will be renamed according to the uniform nomenclature. This includes the names of mutants when they contain the name of a MICOS gene or protein, e.g., *fcj1Δ* mutant cells will be renamed to *mic60Δ* mutant cells. (d) In case several isoforms of a MICOS subunit are present in an organism, this will usually be indicated by -1, -2, etc. (e.g., Mic60-1 and Mic60-2 or *MICC60-1* and *MICC60-2*). When species-specific conventions strictly require the use of A, B, or I, II, etc. for designation of isoforms, these additions will be used. (e) In case new subunits of MICOS will be identified, they will be named MicY. The number Y will be the molecular mass of the identified mature protein in kilodaltons. The same number will be used for orthologues in other organisms, i.e., these orthologues are also named MicY and thus retain the initially assigned Mic number in- dependent of their exact molecular mass. In case a number has already been used for another Mic protein, the closest next available number will be used. The name Mic will only be given to genuine new subunits of the MICOS complex, not to interaction partners or assembly factors that are not a steady-state component of the MICOS complex. (f) The names Mic14, Mic17, and Mic23 (mitochondrial intermembrane space cysteine motif proteins) that are currently used for three non-MICOS yeast proteins (Gabriel et al., 2007; Vögtle et al., 2012) will be changed to Mic14, Mix17, and Mix23 (mitochondrial intermembrane space CX3C motif proteins) in the *Saccharomyces* Genome Database, and the new nomenclature will be used for orthologues identified in other organisms.

The MICOS complex is of central importance for the maintenance of mitochondrial inner membrane architecture and the formation of contact sites between outer and inner membranes and thus is involved in the regulation of mitochondrial dynamics, biogenesis, and inheritance. We expect that the uniform nomenclature will facilitate future studies on mitochondrial membrane architecture and dynamics.

Submitted: 2 January 2014
Accepted: 6 March 2014

References

Table 1. New nomenclature of MICOS

<table>
<thead>
<tr>
<th>Standard name</th>
<th>Former names</th>
<th>Yeast ORF</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex</td>
<td>MINOS, MiOS, MIB, Mitofilin complex, and Fcj1 complex</td>
<td></td>
<td>Xie et al., 2007; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Ott et al., 2012; Jans et al., 2013; Weber et al., 2013</td>
</tr>
<tr>
<td>Subunits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mic10</td>
<td>Msc10, Mio10, Mso1, and MINOS1</td>
<td>YCL057C-A</td>
<td>Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013; Jans et al., 2013; Varabyova et al., 2013</td>
</tr>
<tr>
<td>Mic12</td>
<td>Aim5, Fmp51, and Msc12</td>
<td>YBR262C</td>
<td>Hess et al., 2009; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Varabyova et al., 2013</td>
</tr>
<tr>
<td>Mic19</td>
<td>Aim13, Msc19, CHCH3, CHCHD3, and MINOS3</td>
<td>YFR011C</td>
<td>Xie et al., 2007; Hess et al., 2009; Harner et al., 2011; Head et al., 2011; Alkhaja et al., 2012; Ott et al., 2012; Jans et al., 2013; Varabyova et al., 2013</td>
</tr>
<tr>
<td>Mic25</td>
<td>CHCHD6 and CHCM1</td>
<td></td>
<td>Xie et al., 2007; An et al., 2012</td>
</tr>
<tr>
<td>Mic26</td>
<td>Msc29, Mio27, and Msc2</td>
<td>YGR235C</td>
<td>Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011</td>
</tr>
<tr>
<td>Mic27</td>
<td>Aim37, Msc27, APOOL, and MOMA-1</td>
<td>YNL100W</td>
<td>Hess et al., 2009; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Weber et al., 2013</td>
</tr>
<tr>
<td>Mic60</td>
<td>Fcj1, Aim28, Fmp13, Mitofilin, HMP, IMMAT, and MINOS2</td>
<td>YKR016W</td>
<td>Itoh et al., 1994; Odgren et al., 1996; Gieffers et al., 1997; John et al., 2005; Wang et al., 2008; Rabl et al., 2009; Rossi et al., 2009; Mun et al., 2010; Park et al., 2010; Körner et al., 2012; Zerbes et al., 2012; Itoh et al., 2013; Varabyova et al., 2013</td>
</tr>
</tbody>
</table>

APOOL, apolipoprotein O-like; HMP, heart muscle protein; IMMT, inner mitochondrial membrane protein; MIB, mitochondrial intermembrane space bridging.