Epstein-Barr virus (EBV)-lytic cross-reactive Influenza-A (IAV) memory CD8 T-cells in EBV sero-negative middle-aged adults
Rabinarayan Mishra¹, Levi Watkin¹, Nuray Aslan¹, Anna Gil¹, Katherine Luzuriaga², Liisa K. Selin¹
¹Department of Pathology, ²Department of Molecular Medicine, University of Massachusetts Medical School, Worcester

EBV is a common human pathogen, which infects ~90% of people and establishes a lifelong chronic infection. The clinical outcomes of acute infection can range from asymptomatic to severe immunopathology such as infectious mononucleosis (IM). However, for unknown reasons 5-10% of middle-aged adults (>35 years) remain EBV-seronegative (EBV-SN) when the virus infects the vast majority of people, and is actively shed at high titers during chronic infection. Here we show that EBV-SN (ASN) HLA-A2+ middle-aged adults possess a unique IAV-M1-GIL₅₈-₆₆ memory CD8 T-cell response that cross-reacts with EBV lytic epitopes that differs from teenage EBV-SN (TSN) (18-19 years) and EBV-seropositive (EBV-SP) adult donors. The five tested HLA-A2+ EBV-SN middle-aged adults had a significantly increased IAV-M1₅₈-₆₆-GIL tetramer+ CD8 frequency compared to EBV-SP donors. Upon exposure to EBV antigens in vitro both IAV-M1₅₈-₆₆GIL/EBV-BMLF1₂₈₀-₂₈₈-GLC and IAV-M1₅₈-₆₆-GIL/EBV-BRLF1₁₀₉-₁₁₇-YVL, functionally cross-reactive CD8+ responses could be detected in the peripheral blood of middle-aged EBV-SN donors, while only IAV-M1/EBV-YVL cross-reactive responses were detected in some teenage EBV-SN or EBV-seropositive people. Surprisingly, these IAV-M1-GIL-specific CD8 T-cells in middle-aged EBV-SN adults expanded dramatically to EBV lytic antigens and produced cytokines at high functional avidity. They lysed EBV-infected targets and showed potential (by CD103 expression) to enter mucosal epithelial tissue where infection initiates. Additionally, these cross-reactive cells had an oligo-clonal T-cell receptor repertoire different than EBV-SP donors. Taken together these data suggest that an altered cross-reactive T cell repertoire could mediate protective immunity against viral infection. Our results imply that sero-negative adults might have the ability to resist viral infection via heterologous immunity. (NIH-AI49320).

Contact: Rabinarayan.Mishra@umassmed.edu
Ph-508-856-6314