ASSESSING SEDENTARY BEHAVIOR AND PHYSICAL ACTIVITY WITH WEARABLE SENSORS

UMMC Research Retreat
May 20, 2014

Patty Freedson, Ph.D.
Co-Chair, Organizing Committee, Center for Personalized Health Monitoring
Department of Kinesiology
School of Public Health and Health Sciences
University of Massachusetts Amherst
NIH Recommendations

- Conduct experiments to explore physical activity intensity-time relationships for design of activity programs

- Determine optimal physical activity with regard to intensity, frequency, and duration

- Develop better methods of analysis and quantification of physical activity

Physical Activity and Health: NIH National Consensus Conference, 1997
Limitations in physical activity measurement

- ‘The ability of the Physical Activity Guidelines Committee to draw strong conclusions for various outcomes was limited by the wide variety of questionnaires used to assess physical activity and numerous different approaches to data analysis and presentation.’
SETTING THE STAGE
Absolute intensity of physical activity and sedentary behavior

<table>
<thead>
<tr>
<th>Human Movement Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vigorous Intensity Activity</td>
</tr>
<tr>
<td>≥6.0 METS</td>
</tr>
<tr>
<td>Moderate Intensity Activity</td>
</tr>
<tr>
<td>3.0-5.9 METS</td>
</tr>
<tr>
<td>Light Intensity Activity</td>
</tr>
<tr>
<td>1.5-2.9 METS</td>
</tr>
<tr>
<td>Very Low Intensity, Non-Sitting (e.g. Standing) at <1.5 METS</td>
</tr>
<tr>
<td>Sitting or Lying Down at <1.5 METS</td>
</tr>
<tr>
<td>Sleep</td>
</tr>
</tbody>
</table>

B. Intensity + Posture Definition

Gibbs et al, MSSE, In Press
Advantages in assessment of physical activity and sedentary behavior using wearable monitors

- Errors reduced in comparison to self-report measures
- Continuous assessment over long period of time (e.g. days, weeks, mos)
- Can be used in variety of research applications:
 - Surveillance research
 - Intervention studies
 - Determinants studies
 - Self-management of activity and sedentary behavior in intervention studies
- Assessment of exposure dose in dose-response studies
- Used to assess activity and sedentary behavior in children, adults, elderly and.....
....ANIMALS

Pics and data, provided by Actigraph
Validation of Accelerometer in Differentiating Activity Intensity in Dogs

- N = 30 dogs
- Directly observed activity level vs accelerometer counts per minute

Yam et al., J Small An Prac., 2011
THE ORIGINS OF WEARABLE SENSORS TO DETECT MOVEMENT BEHAVIOR
HISTORY OF OBJECTIVE MONITORING OF PHYSICAL ACTIVITY

• Vitruvius, Roman writer, architect and engineer from 1st C, BC

• Designed the first hodometer

• Leonardo da Vinci designed first pedometer
Health, physical activity, fitness, and sedentary behavior

SEDENTARY BEHAVIOR
Associated with health

PHYSICAL ACTIVITY

EXERCISE

INCREASED ENERGY EXPENDITURE
Associated with health

FITNESS
activPal™ wearable sensor

- Only sensor designed specifically to quantify posture
- Designed by physical therapist/engineer to objectively assess sitting time for evaluating effects of rehabilitation for stroke patients
 - Objective tool to assess patient centered outcomes
- Currently being used by the physical activity/sedentary behavior assessment community
activPal™ Features

- Small (53 x 35 x 7 mm), light weight (20 g) accelerometer that attaches to the skin on the mid-thigh

- Estimates posture allocation (time spent sitting, standing) and stepping based on acceleration and position of the thigh

- Collects data continuously over several days
Descriptive activPAL data

n = 1

taxi driver

n = 29

in-patient (stroke)

n = 13

hip replacement

n = 8

retired
activPAL™ and Actigraph™ detection of breaks and break-rate

\[n = 13 \]

Directly observed for 10 hrs

\[\text{Actigraph}™ \text{ sedentary time} = < 100 \text{ and } 150 \text{ cts/min} \]

Lyden et al., MSSE, 2012
Detection of sedentary time and changes in sedentary time using the activPal™ and Actigraph™ wearable sensors

Methods
- 20 inactive, overweight office workers
- Direct observation for 6 hrs (2 conditions)
 - Baseline
 - Reduced of sedentary time
- Participants wore the activPal™ and Actigraph™ wearable sensors

Aims
- To determine accuracy of wearable sensors in estimating sedentary time
- To determine sensitivity of devices in estimating reduction in sedentary time
Detection of sedentary time and changes in sedentary time using the activPal™ and Actigraph™ wearable sensors

- **activPal (AP)** worn on thigh
- **Actigraph™ (AG)** worn on hip
- Count cutpoints:
 - 100 cts/min
 - 150 cts/min
 - 200 cts/min
 - 250 cts/min

Kozey-Keadle et al., MSSE 2011
Use of activPal™ in patients with intermittent claudication

- Derived output from activPal™ in individuals with intermittent claudication
- Event-based claudication index
 - number of walking events per upright event

Clarke et al., Europ J Vasc Endovasc Surg, 2013
Why use the activPal™ in patients with hip and/or knee osteoarthritis?

- Objective measure of sedentary behavior
 - Hard to detect changes in physical activity which is comprised of a small portion of daily behavior which may not change much with an intervention
- Accurately estimates sedentary behavior
- Can quantify such metrics as breaks from sedentary behavior and walking events per upright event
 - May be linked to pain and function
- Currently limited research on sedentary behavior in patients with osteoarthritis
Thank-you