Responses to Discussion Questions
For Breakout Sessions

Table 1: Data - Has your institution been addressing data management and data-sharing issues? Is your library involved? How are other universities dealing with digital storage of various electronic data formats?
- Who is generating data?
- What types of data are generating and how much data?
- What are they doing with it now?

- Data
 Library/IT-IS relationship
 How does library get in thought process?
 Repositories – data + publication
 Selectivity – who is? Do we need to be?
 Bioinformaticist on staff (grants)
 Different attitudes regarding sharing
 - Differences by discipline
 - Changing trends (generational?)
- Who is generating data?
 Everyone
- What
 Spectral Data
 GIS
 Chemistry – biology
 Core samples
 Images
- Where
 IRS
 Other purchased tools
- When
 Time
 - One more task
 - One more topic

Tables 2 & 7: Web Portal – What components should a web portal for e-science include?

Table 2:
- Resources
 - Library resources
 - Data
 - Repository (if available)
- Instruction
 - Tutorials
 - Simulation
 - Classes
- Collaborative tools/data sharing
- Services
- Document delivery
- Publication support

- Grid
- Links
- News
- Audience?
 - Used
- Subject
 - Specific or e-science in general

Table 7:
- Infrastructure
 Technology
 Champion(s)
 Budget
 Flexibility of content, management system
 Mobile
 Feedback mechanisms
 RSS feeds
- Scope
 Who is audience?
 Librarians = Us } faculty/researchers
 Wiki space? } students
 Institutions } staff
 Region/state
 Disciplinary
- Content
 Freely available resources/tools
 Licensed resources (trickier outside your own institution)
 Educational tools/tutorials
 Expertise profiles/databases
 Digital repository content
 Compilation of core facilities/data services that exist
- News

Table 3: Delivery - What organizational structure would facilitate regional delivery of e-science resources and services? What are essential components of regional delivery of e-science resources and services?

- Regional delivery - E-science – what is it?
- Cloud computing
 Data sharing
 Reuse
- Virtual Organization – ARL? NERL?
 Borrow-direct
 Keep copyright
- Archive presentations
 Research trends
 Documentation
Table 4 & 5: Staffing/Building New Roles - How can our current library staff obtain the training and credentials necessary to support e-science resources and services? How interested/comfortable/knowledgeable/expert are your library’s staff in understanding or contributing to the data landscape and challenges at your institution?

Table 4:

- **Training and Credentials**
 - Sit in on classes taught at institutions – NN/LM, Science boot camp
 - Online tutorials – MIT, NCBI website (medical librarian course), HEAL, MERLOT, MedEdPortal, AMIA
 - NCBI pulled funding for outreach and education
 - Collaborate/partner with researchers
 - Team teaching – PubMed and bibliographic databases as part of bioinformatics course
 - Library schools ??
 - Get foot in door
 - Liaison program CSTA
 - Events – advertising expertise
 - NIH mandate support
 - IR
 - Survey researchers on their needs
 - How to apply things librarians already know really well to support e-science?
 - Expert searcher
 - Entrez architecture based on MEDLINE
 - Connecting
 - Another model: hire PhDs in subject areas – must be service oriented

- **Comfort**
 - Not a lot!
 - Research vs. clinical info

Table 5:

- **Identify**
- **Organize**
- **Archive**
- **Share**

- **Content knowledge (MS/Phd)**
- **Collaboration skills**
- **Bioinformatic tools – NCRI, etc.**
- **Invest money and time in education and training**
- **Specialized programs**
- Pressure library schools

Table 6 & 9: Regional - How can we find out about e-science initiatives in the region & facilitate collaboration among libraries/librarians and their researchers?

Table 6:

- **E-science initiatives in region**
 - Find out
 - Facilitate collaboration amongst librarians with researchers in your institution
- **What do we want to share?**
Build a collaborative tool/web based, wiki, blog

- Database with structured records
 - Repository of
 - People - librarians
 - Projects
 - Tools – programs, languages
 - tag clouds
 - taxonomies

- Discussion area
 - Trends
 - Experiences
 - Bibliographies
 - Primers
 - Learning applies

- Community of interest within BLC
 - Librarians finding others
 - Librarians doing e-science
 - Librarians finding researchers doing e-science
 - First step – understanding our own idea of e-science

- Is it:
 - A systematic way of inventorying e-science initiatives
 - Or:
 - Footwork within our own institution to generate interest
 - Lunch time topics (brown bag) on data management for research assistants
 - Discussion with faculty armed with a demonstration project of successful librarian intervention, i.e., the portal

Table 9:
- Identify e-science initiatives
 - Word-of-mouth/networking
 - Conferences
 - Literature
 - Surveys
 - Consortia
 - Listservs
 - Cruising the web
 - Ask faculty
 - Liaison activities
 - Campus funded grants
 - Mining network (university websites)
 - Mining IRS

- Collaborating among librarians and researchers
 - Sharing knowledge of info resources
 - Networking with other libraries
 - Networking with other faculty worldwide
 - Creating online/physical space for Data and e-science and promoting
 - Providing staff to create metadata
 - Using standards
 - provide guidelines or recommendations
 - Single interface or meta-search of collections
 - From high level at institution
 - Panels of science scholars on e-science
 - Developing open access journals
Open access discussions/policies
e-Sciences global initiative portal
Working with Office of Research
Co-teach (GIS, Bioinfo…etc.)
Consult with faculty and grad about data
Software support/installation?
Outreach: emails, scheduled workshops
Education: how users to find data
Professional development: educate staff on e-science and data issues
Best practices: share with faculty

Table 8: Given today’s presentations, what roles do you see for libraries in e-science initiatives & potential strategies? What are practical approaches for understanding the scope of this issue at your institution?
- Bioinformatics and E-Science: Are they the same thing? Where are the overlaps?
 What are the differences?

- Roles of librarians in e-science
 Bring scientists into the library/share expertise – bring them early – listen to what they need
 Informationist needs to expand
 Patient ed – CTSA
 Help organize data
 Database design role
 Copyright/licensing/scho/pub – NIH mandate, journal publishing
 Helping manage large complex bibliographies
 “Linking” specialists to resources
 Attend – be visible in scientific/disciplinary conferences
 Deliver info in other formats

- Definition – Bioinformatics vs. E-science
 They are different
 Bioinformatics – computational
 E-science – broader, general
 - collaborates
 - getting people to work together for collaboration in science
 Cyber infrastructure – building large
 Datasets and sharing

- Regional roles
 Joint development of online tutorials to help educate ourselves
 Joint development of web resource – pulling variety of biotools together in one place