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Abstract Alternative pre-mRNA splicing expands the complexity of the transcriptome and

controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic

regulation is largely unknown. Here we investigated the contribution of alternative splicing to the

development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene

expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this

alternative splicing program with sequence specific NOVA splicing factors. This conclusion was

confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the

NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved

glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue

thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level

resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose

tissue function and the maintenance of normal glycemia.

DOI: 10.7554/eLife.17672.001

Introduction
Alternative pre-mRNA splicing is an important mechanism that increases the complexity of the tran-

scriptome (Pan et al., 2008; Wang et al., 2008) and expands the diversity and function of the prote-

ome (Nilsen and Graveley, 2010; Yang et al., 2016). Indeed, differences in pre-mRNA splicing can

contribute to the specialization of different cell types within the body (Vaquero-Garcia et al., 2016).

The regulation of alternative pre-mRNA splicing is therefore an important aspect of cellular differen-

tiation. Indeed, processes that regulate pre-mRNA splicing represent potential mechanisms that can

control cell function. Recent studies have identified changes in pre-mRNA splicing associated with

autism (Irimia et al., 2014; Weyn-Vanhentenryck et al., 2014), cardiac hypertrophy

(Mirtschink et al., 2015), embryonic stem cell re-programming (Han et al., 2013a), tumorigenesis

(Oltean and Bates, 2014; Hsu et al., 2015; Koh et al., 2015), and the regulation of signal transduc-

tion pathways (Gupta et al., 1996; Tournier et al., 1999; Maimon et al., 2014; Martinez et al.,

2015). Moreover, alternative pre-mRNA splicing associated with pathogenesis represents a tractable

target for the development of new therapies (Daguenet et al., 2015).

The role of alternative pre-mRNA splicing in metabolism is unclear. We studied pre-mRNA splic-

ing in adipocytes to investigate whether adipocyte function may be regulated by changes in pre-

mRNA splicing. Adipose tissue is critically important for whole body metabolic regulation because it

acts as both an endocrine organ and as a storage depot for triglyceride (Rosen and Spiegelman,

2014). Interestingly, both adipose tissue deficiency (lipodystrophy) and adipose tissue accumulation

(obesity) are associated with the development of metabolic syndrome and pre-diabetes

(Grundy, 2015). Moreover, the widespread incidence of human obesity represents a major risk
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factor for the development of diabetes and mortality (Flegal et al., 2013). It is therefore important

that we obtain an understanding of the molecular mechanisms that control adipocyte function.

The purpose of this study was to examine alternative pre-mRNA splicing in adipocytes. We report

that the consumption of a high fat diet causes differential exon inclusion/exclusion in the transcrip-

tome. Bioinformatics analysis implicated a role for NOVA pre-mRNA splicing factors and this was

confirmed by studies of mice with adipocyte-specific NOVA deficiency. Functional studies demon-

strated that NOVA acts to suppress adipose tissue thermogenesis. Together, these data demon-

strate that alternative pre-mRNA splicing contributes to the regulation of adipocyte biology.

Results

Diet-induced obesity induces a program of alternative pre-mRNA
splicing
We examined gene expression in white epididymal adipocytes by RNA sequencing (Illumina Next-

Seq 500 machine, 150 bp paired-end format, approximately 400 million mean reads/sample, n=3)

(Table 1). Comparison of adipocyte mRNA isolated from mice fed (16 wk) a chow diet (CD) or a high

fat diet (HFD) demonstrated differential expression of 4941 genes (q<0.05; absolute log2-fold

change >0.75) and differential inclusion/exclusion of 1631 exons (FDR<0.05; absolute change in

exon inclusion (absolute DInc level) >0.1) (corresponding to 1249 genes) in the transcriptome

(Figure 1A and Figure 1—figure supplements 1 and 2). This differential exon inclusion/exclusion in

mRNA most likely represents alternative pre-mRNA splicing in adipocytes. However, it is possible

that some of the detected changes in pre-mRNA splicing reflect the differential presence of stromal

vascular cells (Figure 1—figure supplement 3). Only 6.4% of the differentially expressed genes

were alternatively spliced, but 25% of the alternatively spliced genes were differentially expressed

(Figure 1B). These data indicate that the genomic response to the consumption of a HFD causes

quantitative changes in both gene expression and alternative pre-mRNA splicing in adipocytes. Anal-

ysis of the co-regulated genes demonstrated enrichment for pathways including mRNA processing

eLife digest The process of building a protein from the information encoded in a gene begins

when the gene is copied to form a pre-messenger RNA molecule. This molecule is then edited to

produce a final messenger RNA that is “translated” to form the protein. Different segments of the

pre-messenger RNA molecule can be removed to create different messenger RNAs. This

“alternative splicing” enables a single gene to produce multiple protein variants, allowing a diverse

range of processes to be performed by cells.

Fat cells store energy in the form of fats and can release this energy as heat in a process called

thermogenesis. This helps to regulate the body’s metabolism and prevent obesity. Vernia et al. now

find that that feeding mice a high-fat diet causes widespread changes in alternative splicing in fat

cells. Further bioinformatics analysis revealed that the NOVA family of splicing factors – proteins

that bind to the pre-messenger RNAs to control alternative splicing – contribute to the alternative

splicing of around a quarter of the genes whose splicing changes in response to a fatty diet.

Mice whose fat cells were deficient in the NOVA splicing factors displayed increased

thermogenesis. As a consequence, when these animals were fed a high-fat diet, they gained less

weight than animals in which NOVA proteins were present. Their metabolic activity was also better,

meaning they were less likely to show the symptoms of pre-diabetes. Moreover, the activity of

certain genes that are known to promote thermogenesis was greater in the fat cells that were

deficient in NOVA proteins.

Overall, the results presented by Vernia et al. suggest that the normal role of NOVA proteins is

to carry out an alternative splicing program that suppresses thermogenesis, which in turn may

promote obesity. Drugs that are designed to target NOVA proteins and increase thermogenesis

may therefore help to treat metabolic diseases and obesity. The next step is to identify the protein

variants that are generated by NOVA proteins and work out how they contribute to thermogenesis.

DOI: 10.7554/eLife.17672.002
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and multiple signaling pathways (e.g. insulin signaling and MAPK signaling) that are known to regu-

late adipose tissue biology (Figure 1—figure supplement 4).

The most common form of HFD-induced alternative pre-mRNA splicing was exon skipping (1052

exons), but we also detected 144 mutually exclusive exon inclusions, 160 retained introns, 123 alter-

native 5’ splice sites, and 152 alternative 3’ splice sites (FDR<0.05; absolute DInc level >0.1)

(Figure 1C,D).

In contrast to the extensive changes in alternative pre-mRNA splicing in adipocytes caused by

diet-induced obesity (Figure 1A–C) few HFD-regulated alternative pre-mRNA splicing events were

detected in liver, although we did find 2 skipped exons, 0 mutually exclusive exon inclusions, 13

retained introns, 1 alternative 5’ splice site, and 1 alternative 3’ splice site (FDR<0.05; absolute DInc

level >0.1). This comparative analysis of gene expression indicates that widespread changes in pre-

mRNA splicing are not a general response to diet-induced obesity, but a selective response of white

adipocytes to the consumption of a HFD.

One example of altered splicing is the mutually exclusive inclusion of exons 7a or 7b in the tyro-

sine kinase FYN that changes the strength of SH3 domain-mediated autoinhibition (Brignatz et al.,

2009). Increased inclusion of Fyn exon 7b, compared with exon 7a, in response to the consumption

of an HFD (Figure 1—figure supplement 2B) is anticipated to increase FYN tyrosine kinase activity

(Brignatz et al., 2009) leading to suppression of fatty acid oxidation and promotion of insulin resis-

tance (Bastie et al., 2007). Together, these data indicate that alternative pre-mRNA splicing may

contribute to the adipocyte response to obesity.

Obesity suppresses expression of the NOVA group of pre-mRNA
splicing factors
To gain insight into the mechanism of HFD-induced pre-mRNA splicing, we examined exons (plus

500 bp of flanking intron sequence) to identify potential motifs that were significantly enriched for

alternatively spliced exons. This analysis led to the identification of potential binding sites (YCAY) for

NOVA alternative pre-mRNA splicing factors (Darnell, 2013). Indeed, we found significant

(p<2.2 � 10�16) enrichment of UV-mediated cross-linking and immunoprecipitation sequencing

(CLIP-seq) tags for NOVA proteins identified in brain tissue (Licatalosi et al., 2008) within the HFD-

induced group of alternatively spliced exons in adipocytes (Figure 1E). The NOVA CLIP-seq tags

intersected with 56% of the HFD-induced alternatively spliced exons (FDR<0.05; absolute DInc level

>0.1) (Figure 1E) and were associated with both HFD-induced exon inclusion (53% intersection) and

HFD-induced exon exclusion (62% intersection), consistent with the known role of NOVA proteins to

cause context-dependent exon inclusion/exclusion (Ule et al., 2006). This analysis implicates a role

for NOVA proteins in a sub-set of HFD-induced alternative splicing events.

NOVA proteins are expressed in several tissues, including neurons (Darnell, 2013), vascular endo-

thelial cells (Giampietro et al., 2015), and pancreatic b cells (Villate et al., 2014). Whether NOVA

Table 1. Summary of RNA-seq data.

GEO
Accession
Subseries/
Superseries

Biological
groups

Sample
number Platform

Mean read number /
sample
(after trimming, if
applicable)

Read length (after trimming, if
applicable)

Mean read alignment
rate

GSE76294/
GSE76134

FWT (3)
FDN1 (3)
FDN2 (3)

9 Illumina
HiSeq
2000/
2 x 100 bp

135,500,000 100 bp 89.4%

GSE76133/
GSE76134

CD (3)
HFD (3)

6 Illumina
NextSeq
500/
2 x 150 bp

406,200,000 90 bp 74.9%

GSE76317/
GSE76134

FWT (4)
FDN1,2 (4)

8 Illumina
NextSeq
500/
2 x 150 bp

319,700,000 130 bp 92.5%

DOI: 10.7554/eLife.17672.011
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Figure 1. Diet-induced obesity causes changes in alternative pre-mRNA splicing in adipose tissue. (A) RNA-seq analysis demonstrates that the

consumption (16 wk) of a HFD, compared with a CD, causes significant changes in mRNA expression genes (q<0.05; absolute log2-fold change >0.75)

and differential exon inclusion/exclusion (FDR<0.05; absolute DInc level >0.1) in the epididymal adipocyte transcriptome. (B) Genes that are significantly

differentially expressed and genes that are subjected to alternative pre-mRNA splicing are depicted using a Venn diagram. (C,D) Classification of HFD-

induced alternative splicing events (C) and selected examples (D) are presented. (E) Enrichment of NOVA CLIP-seq tags with significantly (FDR<0.05;

absolute DInc level >0.1) alternatively spliced exons (± 500 bp of intron/exon junctions) compared with non-alternatively spliced exons (FDR�0.05) and

random genomic sequences. (F) Immunoblot analysis of NOVA proteins in lysates prepared from hepatocytes and epididymal adipocytes. (G) Nova1

and Nova2 mRNA expression by epididymal adipocytes of wild-type and obese ob/ob mice (6 wk old) was examined by quantitative RT-PCR (mean ±

SEM; n=5; *p<0.05; ***p<0.001). The source data are included as Figure 1—source data 1. (H) Wild-type mice were fed a CD or an HFD (16 wk).

Nova1 and Nova2 mRNA expression by epididymal adipocytes was measured by quantitative RT-PCR analysis (mean ± SEM; n=7; *p<0.05). The

source data are included as Figure 1—source data 2.

DOI: 10.7554/eLife.17672.003

The following source data and figure supplements are available for figure 1:

Source data 1. Source data for Figure 1G.

DOI: 10.7554/eLife.17672.004

Source data 2. Source data for Figure 1H.

Figure 1 continued on next page
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proteins are expressed in peripheral metabolic tissues is unclear. Indeed, NOVA proteins were not

detected in liver, but both NOVA1 and NOVA2 proteins were found in white adipocytes

(Figure 1F). Interestingly, Nova gene expression in white adipocytes was partially reduced in obese

humans and mice (Figure 1G and Figure 1—figure supplement 5) and in mice fed a HFD

(Figure 1H). This decrease in NOVA expression may be relevant to obesity-regulated changes in

alternative pre-mRNA splicing in adipocytes. Moreover, the absence of NOVA expression in liver

(Figure 1F) may contribute to the minimal effect of HFD consumption on alternative splicing of pre-

mRNA in the liver.

NOVA contributes to the obesity-induced program of alternative pre-
mRNA splicing
Reduced expression of Nova1 or Nova2 in mice causes developmental defects and neonatal lethality

(Jensen et al., 2000; Ruggiu et al., 2009). We therefore established Nova1LoxP/LoxP and Nova2LoxP/

LoxP mice to study the role of NOVA proteins in adult mice with tissue-specific NOVA deficiency (Fig-

ure 2—figure supplement 1). Adipoq-Cre�/+ mice were used to selectively ablate Nova1 and

Nova2 genes in mature adipocytes. We initially compared control FWT mice (Adipoq-Cre�/+) with

compound mutant FDN1,2 mice (Adipoq-Cre�/+ Nova1LoxP/LoxP Nova2LoxP/LoxP).

RNA-seq analysis of white adipocytes from HFD-fed FWT and FDN1,2 mice (150 bp paired-end for-

mat, approximately 320 million mean reads/sample, n = 4) was performed (Table 1). Compound

NOVA1/2 deficiency caused only a small change in gene expression (55 genes; q<0.05; absolute

log2-fold change >0.75), but NOVA1/2 deficiency caused a large change in differential exon inclu-

sion/exclusion (1169 exons; FDR<0.05; absolute DInc level >0.1) in the adipocyte transcriptome

(Figure 2A and Figure 1—figure supplement 1). These data indicate that NOVA deficiency primar-

ily changes pre-mRNA splicing. The most common form of alternative pre-mRNA splicing caused by

NOVA deficiency was exon skipping (768 exons), but we also detected 128 mutually exclusive exon

inclusions, 99 intron retentions, 64 alternative 5’ splice sites, and 110 alternative 3’ splice sites

(Figure 2D,E). Analysis of white adipocytes with single gene ablations of Nova1 or Nova2 identified

fewer changes in alternative pre-mRNA splicing, including 10 & 7 skipped exons, 1 & 4 mutually

exclusive exon inclusions, 12 & 16 intron retentions, 1 & 0 alternative 5’ splice sites, and 2 & 4 alter-

native 3’ splice sites, respectively (FDR<0.05; absolute DInc level >0.1). These data indicate

that NOVA1 and NOVA2 can cause isoform-specific changes in adipocyte pre-mRNA alternative

splicing. However, the effect of compound NOVA1 plus NOVA2 deficiency to cause widespread

changes in alternative pre-mRNA splicing (Figure 2) indicates that these NOVA proteins exhibit

some functional redundancy in adipocytes.

Comparison of white adipocyte genes with differential alternative splicing (FDR<0.05; absolute

DInc level >0.1) caused by the consumption of a HFD (Figure 1A) or NOVA1/2 deficiency

(Figure 2B) demonstrated 323 co-regulated genes (Figure 2B). These co-regulated genes represent

26% of the 1249 HFD-regulated genes and 34% of the 950 NOVA-regulated genes. Analysis of the

co-regulated genes demonstrated enrichment for pathways including mRNA processing and multi-

ple signaling pathways (e.g. NF-kB signaling, MAPK signaling) that contribute to the physiological

regulation of adipose tissue (Figure 2C).

Figure 1 continued

DOI: 10.7554/eLife.17672.005

Figure supplement 1. Alternative pre-mRNA splicing in adipocytes.

DOI: 10.7554/eLife.17672.006

Figure supplement 2. Alternative pre-mRNA splicing in adipocytes.

DOI: 10.7554/eLife.17672.007

Figure supplement 3. Expression of adipocyte and stromal vascular fraction marker genes.

DOI: 10.7554/eLife.17672.008

Figure supplement 4. Biological pathway enrichment analysis of differential gene expression and alternative pre-mRNA splicing caused by feeding a

HFD.

DOI: 10.7554/eLife.17672.009

Figure supplement 5. NOVA expression in human subcutaneous adipose tissue.

DOI: 10.7554/eLife.17672.010
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NOVA-mediated alternative pre-mRNA splicing suppresses JNK
signaling in adipose tissue
To confirm the observation that NOVA proteins contribute to signaling mechanisms that can medi-

ate metabolic regulation, we examined the expression of the JNK group of MAPK in cells that

express NOVA proteins (white adipocytes) and cells that do not express NOVA proteins (hepato-

cytes) (Figure 3A). The genes Mapk8 (encodes the JNK1 protein kinase) and Mapk9 (encodes the

JNK2 protein kinase) express pre-mRNA are alternatively spliced by the mutually exclusive inclusion

of either exon 7a or 7b to yield the a and b isoforms of the JNK1 and JNK2 protein kinases

(Gupta et al., 1996). The sequences surrounding exons 7a and 7b contain consensus sites for NOVA

binding (YCAY) that are established to be NOVA binding sites by CLIP-seq analysis (Licatalosi et al.,

2008). We designed and validated a Taqman assay to quantitate the inclusion of exon 7a or 7b

sequences in Mapk8 mRNA (Mapk8a and Mapk8b) and Mapk9 mRNA (Mapk9a and Mapk9b)

Figure 2. NOVA proteins contribute to alternative pre-mRNA splicing associated with diet-induced obesity. (A) RNA-seq analysis of FWT and FDN1,2

mice fed an HFD (16 wk) identifies significant changes in gene expression (q<0.05; absolute log2-fold change >0.75) and differential exon inclusion/

exclusion (FDR<0.05; absolute DInc level >0.1) in the epididymal adipocyte transcriptome. (B) The number of genes with significant differential

alternative splicing (CD-fed vs HFD-fed WT mice and HFD-fed FWT mice vs HFD-fed FDN1,2 mice) are depicted using a Venn diagram. (C) Biological

pathway enrichment analysis of the 323 genes co-regulated by alternative pre-mRNA splicing following HFD consumption and NOVA deficiency. (D,E)

Classification of alternative splicing events caused by NOVA deficiency (D) and selected examples (E) are presented.

DOI: 10.7554/eLife.17672.012

The following figure supplement is available for figure 2:

Figure supplement 1. Establishment of Nova1LoxP/LoxP and Nova2LoxP/LoxP mice.

DOI: 10.7554/eLife.17672.013
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Figure 3. NOVA promotes signal transduction by JNK in adipose tissue. (A) The expression of Nova mRNA in adipocytes and hepatocytes was

measured by quantitative RT-PCR (mean ± SEM; n=7~8; **p<0.01; ***p<0.001). The source data are included as Figure 3—source data 1. (B) The a / b

expression ratios of Mapk8 and Mapk9 mRNA by hepatocytes was measured by quantitative RT-PCR (mean ± SEM; n=10; *p<0.05; **p<0.01). The

effect of hepatic expression of GFP (Control) or NOVA2 using adenoviral vectors was examined. The source data are included as Figure 3—source

data 2. (C) The expression ratio of the a and b isoforms of Mapk8 and Mapk9 mRNA by FWT and FDN1,2 adipocytes was measured by quantitative RT-

PCR (mean ± SEM; n=5~8; *p<0.05; **p<0.01). The source data are included as Figure 3—source data 3. (D) The mutually exclusive inclusion of exons

7a or 7b in Mapk8 and Mapk9 mRNA is illustrated. NOVA CLIP-seq tags are highlighted in red. (E) Mapk8D/D Mapk9-/- MEF transduced with retroviruses

expressing JNK1a, JNK1b, JNK2a, JNK2b or empty vector (-) were exposed without and with 60 J/m2 UV (60 min) and lysates were examined by

immunoblot analysis. (F) Adipocytes prepared from FWT and FDN1,2 mice were treated without and with 1 mg/ml anisomycin (10 min) and lysates were

examined by immunoblot analysis.

DOI: 10.7554/eLife.17672.014

The following source data and figure supplements are available for figure 3:

Source data 1. Source data for Figure 3A.

DOI: 10.7554/eLife.17672.015

Source data 2. Source data for Figure 3B.

DOI: 10.7554/eLife.17672.016

Source data 3. Source data for Figure 3C.

DOI: 10.7554/eLife.17672.017

Figure supplement 1. Design and validation of Taqman assays to detect inclusion of the mutually exclusive exons 7a and 7b in Mapk8 and Mapk9

mRNA.

DOI: 10.7554/eLife.17672.018

Figure supplement 2. Comparison of JNKa and JNKb protein kinase activity in vitro.

DOI: 10.7554/eLife.17672.019

Figure 3 continued on next page
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(Figure 3—figure supplement 1A,B). This analysis demonstrated that adipocytes and hepatocytes

express different alternatively spliced JNK isoforms (Figure 3—figure supplement 1C). These tis-

sue-specific differences in Mapk8/9 pre-mRNA splicing may be influenced by the selective expres-

sion of NOVA proteins in adipocytes, but not hepatocytes (Figures 1F and 3A), although NOVA-

independent mechanisms likely also contribute to the observed cell type-specific pattern of JNK iso-

form expression.

To test the role of NOVA proteins on JNK isoform expression, we examined the effect of

increased and decreased NOVA expression. We found that hepatic expression of NOVA2 caused a

decrease in the Mapk8a/b ratio and an increase in the Mapk9a/b ratio, indicating that NOVA can

promote the expression of the Mapk8b and Mapk9a alternatively spliced isoforms (Figure 3B). In

contrast, adipocyte-specific deficiency of NOVA1 plus NOVA2 caused an increase in the Mapk8a/b

ratio and a decrease in the Mapk9a/b ratio, indicating that NOVA-deficiency promotes the expres-

sion of the Mapk8a and Mapk9b alternatively spliced isoforms (Figure 3C). These observations are

consistent with the finding that HFD consumption causes both decreased NOVA expression

(Figure 1H) and significant changes in the mutually exclusive inclusion of Mapk8 exons 7a and 7b

(FDR=0.0066). Together, these data demonstrate that NOVA proteins can promote the expression

of the Mapk8b and Mapk9a isoforms.

The sequence differences between the a and b isoforms of JNK1 and JNK2 are located in the

substrate binding site (Figure 3D) and influence the interaction of JNK with protein substrates

(Davis, 2000). Studies using the substrate cJun demonstrate low activity (JNK1a and JNK2b) and

high activity (JNK1b and JNK2a) groups of JNK protein kinases in vitro (Figure 3—figure supple-

ment 2) and in vivo (Figure 3E). Since NOVA can promote the expression of Mapk8b and Mapk9a

mRNA that encode the high activity forms of JNK1 and JNK2, NOVA-deficiency can be predicted to

cause expression of the low activity forms JNK1a and JNK2b in adipocytes. To test this conclusion,

we prepared primary adipocytes from FWT and FDN1,2 mice and examined stress-induced JNK activa-

tion. No differences in JNK expression or stress-induced activating phosphorylation (pThr180-Pro-

pTyr182) of JNK between FWT and FDN1,2 adipocytes were detected by immunoblot analysis

(Figure 3F). However, stress-induced phosphorylation of the JNK substrate pSer63 cJun was

markedly suppressed in FDN1,2 adipocytes compared with FWT adipocytes (Figure 3F). Together,

these data confirm that NOVA proteins can regulate signaling mechanisms in adipocytes.

To examine the consequences of reduced JNK signaling in adipocytes, we established FDJ1,2 mice

with adipocyte-specific JNK-deficiency (Adipoq-Cre�/+ Mapk8LoxP/LoxP Mapk9LoxP/LoxP). These mice

exhibited increased core body temperature and increased expression of genes that mediate sympa-

thetic activation (Adr3b) and thermogenesis (Ucp1) in adipocytes (Figure 3—figure supplement 3).

We therefore considered the possibility that NOVA-deficiency in adipocytes might also cause

increased adipose tissue thermogenesis.

NOVA-mediated alternative pre-mRNA splicing in adipose tissue
regulates energy expenditure
To test the physiological role of NOVA proteins in adipocytes, we examined the effect of feeding a

CD or a HFD to control FWT and FDN1,2 mice. We found that CD-fed FWT and FDN1,2 mice gained sim-

ilar body mass, but HFD-fed FDN1,2 mice gained significantly less mass than HFD-fed FWT mice

(Figure 4A and Figure 4—figure supplement 1A). Proton magnetic resonance imaging demon-

strated that the decreased body mass was caused by reduced fat mass (Figure 4B). Analysis of

organs at necropsy demonstrated a reduction in mass of the liver and adipose tissue in HFD-fed

FDN1,2 mice compared with HFD-fed FWT mice (Figure 4—figure supplement 1B) and analysis of tis-

sue sections demonstrated reduced adipocyte hypertrophy, reduced hepatic steatosis, and reduced

hypertrophy of pancreatic islets in the NOVA-deficient mice (Figure 4—figure supplement 2).

The reduced obesity of HFD-fed FDN1,2 mice compared with FWT mice suggested that NOVA-defi-

ciency may suppress HFD-induced metabolic syndrome. Indeed, hyperinsulinemia and

Figure 3 continued

Figure supplement 3. Effect of adipocyte-specific JNK-deficiency on thermogenic gene expression.

DOI: 10.7554/eLife.17672.020
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Figure 4. NOVA promotes the development of diet-induced obesity. (A) The change in body mass of FWT and FDN1,2 mice fed a CD or a HFD is

presented (mean ± SEM; n=8~ 30; *p<0.05). (B) Body composition was examined by proton magnetic resonance spectroscopy (mean ± SEM; n=8~ 22;

*p<0.05; **p<0.01). The source data are included as Figure 4—source data 1. (C) Blood insulin, leptin, resistin, and glucose in overnight starved CD-

fed and HFD-fed (12 wks) FWT and FDN1,2 mice were measured (mean ± SEM; n=8~ 16; *p<0.05; ***p<0.001). The source data are included as

Figure 4—source data 2. (D) CD-fed and HFD-fed (12 wks) FWT and FDN1,2 mice were examined by glucose tolerance tests (mean ± SEM; n=8~ 26;

*p<0.05; ***p<0.001). The source data are included as Figure 4—source data 3. (E) Energy expenditure (EE) by HFD-fed (4 wks) FWT mice (n = 9) and

FDN1,2 mice (n = 8) was examined using metabolic cages over 3 days (12 hr light; 12 hr dark). The source data are included as Figure 4—source data 4.

DOI: 10.7554/eLife.17672.021

The following source data and figure supplements are available for figure 4:

Source data 1. Source data for Figure 4B.

DOI: 10.7554/eLife.17672.022

Source data 2. Source data for Figure 4C.

DOI: 10.7554/eLife.17672.023

Source data 3. Source data for Figure 4D.

DOI: 10.7554/eLife.17672.024

Source data 4. Source data for Figure 4E.

DOI: 10.7554/eLife.17672.025

Figure 4 continued on next page
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hyperleptinemia were reduced in FDN1,2 mice compared with FWT mice (Figure 4C). Moreover, HFD-

fed FWT mice were found to be more glucose intolerant than FDN1,2 mice (Figure 4D) and the HFD-

induced hyperglycemia observed in FWT mice was suppressed in FDN1,2 mice (Figure 4C). Similar

(although smaller) phenotypes were detected in mice with adipocyte-specific single gene ablation of

Nova1 or Nova2 (Figure 4—figure supplement 3).

Metabolic cage analysis demonstrated that food/water consumption and physical activity of FWT

and FDN1,2 mice were similar (Figure 4—figure supplement 4), but FDN1,2 mice exhibited greatly

increased energy expenditure compared with FWT mice (Figure 4E and Figure 4—figure supple-

ment 5). This increase in energy expenditure may account for the suppression of HFD-induced obe-

sity caused by NOVA deficiency in adipocytes. These data demonstrate that NOVA proteins in

adipocytes suppress energy expenditure and promote obesity-associated metabolic syndrome.

NOVA-mediated alternative pre-mRNA splicing regulates adipose
tissue thermogenesis
We measured core body temperature by telemetry using an implanted probe in mice housed at the

ambient temperature of the vivarium (21˚C) and following a cold challenge (4˚C). This analysis dem-

onstrated that the core body temperature of FDN1,2 mice was significantly higher than FWT mice dur-

ing the course of this study (Figure 5A). This was associated with increased expression of genes in

sub-cutaneous adipocytes of FDN1,2 mice that are associated with a ’browning’ (beige/brite) pheno-

type (Cidea, Dio2, Ppargc1a, Ppargc1b, and Ucp1) compared with FWT mice (Figure 5B). Together,

these data indicate that NOVA proteins in adipocytes can suppress adipose tissue thermogenesis.

To test whether NOVA proteins act by a cell autonomous mechanism to regulate the beige/brite

phenotype, we established primary adipocytes in culture. Sympathetic stimulation of adipose tissue

increases cAMP and promotes the browning of white adipocytes (Rosen and Spiegelman, 2014).

This process can be studied in vitro by treating adipocytes with drugs that raise intracellular cAMP.

Indeed, treatment of primary adipocytes with the drug forskolin increases cAMP concentration and

promotes the beige/brite phenotype (Rosen and Spiegelman, 2014), and causes increased expres-

sion of the Adrb3, Dio2, Fgf21, Ppargc1a, and Ucp1 genes (Figure 5—figure supplement 1A). This

treatment also causes decreased Nova gene expression and promotes expression of the alternatively

spliced isoform Mapk9b (Figure 5—figure supplement 1A). To examine whether NOVA proteins

contribute to the beige/brite phenotype, we compared the effects of increased cAMP on FWT and

FDN1,2 primary adipocytes. This analysis demonstrated that NOVA-deficiency caused increased

expression of genes in adipocytes that mediate sympathetic activation (Adrb3) and thermogenesis

(Ucp1) (Figure 5—figure supplement 1B).

To further test the cell autonomous role of NOVA proteins on the beige/brite phenotype, we

examined 3T3L1 adipocytes that are normally resistant to the effects of cAMP to promote browning.

These cells express NOVA1, but NOVA2 was not detected. Nova1 knock-down using shRNA was

associated with increased expression of the beige/brite phenotype genes Prdm16 and Ucp1 (Fig-

ure 5—figure supplement 2A). Similarly, knock-down of Mapk8b mRNA plus Mapk9a mRNA using

Figure 4 continued

Figure supplement 1. Effect of adipose tissue-specific NOVA1/2-deficiency on organ mass.

DOI: 10.7554/eLife.17672.026

Figure supplement 2. Comparison of adipose tissue, liver, and pancreas in FWT and FDN1,2 mice.

DOI: 10.7554/eLife.17672.027

Figure supplement 3. Effect of adipose tissue-specific ablation of the Nova1 or Nova2 genes.

DOI: 10.7554/eLife.17672.028

Figure supplement 4. Metabolic cage analysis of physical activity and the consumption of food and water.

DOI: 10.7554/eLife.17672.029

Figure supplement 4—source data 1. Source data for Figure 4—figure supplement 4.

DOI: 10.7554/eLife.17672.030

Figure supplement 5. Metabolic cage analysis of gas exchange and energy expenditure.

DOI: 10.7554/eLife.17672.031

Figure supplement 5—source data 1. Source data for Figure 4—figure supplement 5.

DOI: 10.7554/eLife.17672.032
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Figure 5. NOVA regulates a thermogenic program in adipose tissue. (A) FWT and FDN1,2 mice were subject to cold challenge (4˚C). Core body

temperature was measured by telemetry using an implanted probe (mean ± SEM; n=8; *p<0.05; **p<0.01). The source data are included as Figure 5—

source data 1. (B) The effect of cold challenge (4˚C, 6 hr) on gene expression by inguinal adipocytes (iWAT) of FWT and FDN1,2 mice was examined by

quantitative RT-PCR (mean ± SEM; n=6~ 8; *p<0.05; **p<0.01). The source data are included as Figure 5—source data 2. (C) FWT and FDN1,2 mice were

housed under thermal neutral conditions (30˚C). The change in body mass of CD and HFD-fed mice is presented (mean ± SEM; n=7~ 18). (D) Glucose

tolerance tests were performed on FWT and FDN1,2 mice housed under thermoneutral conditions (30˚C). The effect of feeding a CD or a HFD (16 wk) is

presented (mean ± SEM; n=8). The source data are included as Figure 5—source data 3. (E) Sections of brown adipose tissue (BAT) and iWAT of HFD-

fed (16 wk) mice housed at 21˚C and 30˚C were stained with hematoxylin & eosin. The data shown are representative of 6 mice per group. (F) FWT and

FDN1,2 mice housed at 21˚C and 30˚C were fed a HFD (16 wk). Gene expression by adipocytes of iWAT and retroperitoneal adipose tissue (rWAT) was

examined by quantitative RT-PCR (mean, n=8). The data are presented as a heat map.

DOI: 10.7554/eLife.17672.033

The following source data and figure supplements are available for figure 5:

Figure 5 continued on next page
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shRNA caused increased expression of the Prdm16 and Ucp1 genes (Figure 5—figure supplement

2B). Together, these data confirm that NOVA-mediated alternative splicing in adipocytes contrib-

utes to adipose tissue thermogenesis.

NOVA-mediated adipose tissue thermogenesis contributes to the
development of metabolic syndrome
To test the role of adipose tissue thermogenesis in the metabolic phenotype of FDN1,2 mice (Fig-

ure 4), we examined the effect of housing mice under thermoneutral conditions (30˚C). We found

that FDN1,2 mice and FWT mice gained equal body mass at thermoneutrality (Figure 5C). Moreover,

the increased glucose tolerance of FDN1,2 mice compared with FWT mice at 21˚C was not observed at

30˚C (Figure 5D). These data indicate that the improved glycemic regulation exhibited by FDN1,2

mice compared with FWT mice at 21˚C was caused by increased thermogenesis. Consistent with this

conclusion, we found that the reduced adipocyte hypertrophy observed in HFD-fed FDN1,2 mice com-

pared with FWT mice at 21˚C was not observed at 30˚C (Figure 5E). Similarly, the increased expres-

sion of thermogenesis-related genes (Adrb3, Cidea, Dio2, Ppargc1a/b Prdm16, and Ucp1) by

adipocytes in HFD-fed FDN1,2 mice compared with FWT mice at 21˚C was not found at 30˚C
(Figure 5F). Together, these data demonstrate that adipose tissue thermogenesis contributes to the

improved glycemia of mice with NOVA-deficiency in adipocytes.

Discussion
The browning of white adipose tissue is associated with the appearance of beige/brite adipocytes,

increased energy expenditure, and improved obesity-induced metabolic syndrome (Rosen and Spie-

gelman, 2014). An understanding of molecular mechanisms that account for browning is therefore

important for the development of potential therapies for the treatment of metabolic syndrome

based on increasing adipose tissue energy expenditure. It is established that beige/brite adipocytes

in white adipose tissue depots can arise from specialized progenitor cells (Wang et al., 2013b).

Beige/brite adipocytes may also arise from inactive cells present within white adipose tissue

(Rosenwald et al., 2013). These two mechanisms may contribute to functional beige/brite cell

development (Rosen and Spiegelman, 2014).

The increased adipose tissue browning detected in mice with adipocyte-specific NOVA deficiency

was observed using floxed Nova alleles and a Cre driver (Adipoq-Cre) that is expressed in mature

adipocytes. It is therefore likely that the increased white adipose tissue browning caused by NOVA

deficiency does not reflect a change in adipocyte differentiation from specialized progenitor cells,

but rather a change in mature adipocyte function. Whether these mature adipocytes represent white

adipocytes or inactive beige/brite adipocytes is unclear. However, the observation that housing mice

at thermoneutrality prevents the effect of NOVA deficiency to cause ’browning’ suggests that

NOVA deficiency may act by promoting the activation of inactive beige/brite adipocytes.

Our analysis demonstrates that NOVA expression in white adipocytes is reduced in obese humans

and mice (Figure 1). These changes in NOVA expression may cause changes in adipose tissue physi-

ology. Gene knockout studies demonstrate that compound NOVA-deficiency in adipocytes caused

increased adipose tissue thermogenesis and improved whole body glycemia in HFD-fed mice (Fig-

ure 4). However, partial NOVA-deficiency in adipocytes (potentially modeling the changes in NOVA

Figure 5 continued

Source data 1. Source data for Figure 5A.

DOI: 10.7554/eLife.17672.034

Source data 2. Source data for Figure 5B.

DOI: 10.7554/eLife.17672.035

Source data 3. Source data for Figure 5D.

DOI: 10.7554/eLife.17672.036

Figure supplement 1. Thermogenic gene expression by primary adipocytes.

DOI: 10.7554/eLife.17672.037

Figure supplement 2. Thermogenic gene expression is increased by shRNA-mediated suppression of Nova1 or Mapk8b/Mapk9a.

DOI: 10.7554/eLife.17672.038
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expression caused by feeding a HFD) caused modest changes in adipocyte physiology (Figure 4—

figure supplement 3). The significance of the decrease in adipocyte NOVA expression in HFD-fed

mice is therefore unclear. Nevertheless, our data establish that NOVA proteins in adipocytes func-

tion to suppress adipose tissue thermogenesis. The mechanism appears to be mediated by NOVA-

regulated changes in pre-mRNA splicing that promote adipocyte thermogenic gene expression (Fig-

ure 5), but we cannot exclude additional contributions caused by other biochemical actions of

NOVA proteins, including alternative mRNA polyadenylation (Licatalosi et al., 2008) and functional

regulation of Argonaute/microRNA complexes (Storchel et al., 2015). Further studies will be

required to examine the relative contributions of NOVA-regulated pre-mRNA splicing, alternative

polyadenylation, and microRNA function. However, our analysis demonstrates that NOVA proteins

do function as alternative pre-mRNA splicing factors in adipocytes (Figure 2).

The changes in pre-mRNA splicing caused by NOVA proteins include both increased and

decreased exon inclusion, consistent with the known context-dependent role of NOVA proteins to

promote both exon inclusion and exclusion (Ule et al., 2006). Importantly, there are significant gaps

in our knowledge concerning mechanisms of alternative pre-mRNA splicing in adipocytes. First,

NOVA proteins may act in a combinatorial manner with other splicing factors (Zhang et al., 2010),

but roles for such factors in adipocytes have not been established. Second, our analysis of mice with

NOVA-deficiency in adipocytes implicates a role for NOVA proteins in the alternative splicing of

26% of the genes that are regulated by HFD consumption (Figure 2B). Consequently, NOVA pro-

teins do not contribute to 74% of the genes that exhibit HFD-regulated pre-mRNA splicing and

mechanisms that contribute to the regulation of these genes have not been established. Further

studies will be required to achieve an understanding of these processes.

The regulation of adipose tissue thermogenesis by NOVA proteins may not be entirely depen-

dent upon the classical UCP1 pathway (Kozak, 2010) because of the existence of alternative ther-

mogenic mechanisms (Kazak et al., 2015). Nevertheless, our data demonstrate that NOVA proteins

can suppress adipocyte thermogenesis. Reduced NOVA expression in adipocytes causes thermo-

genesis (Figure 5) and may potentially be achieved by drugs targeting NOVA-mediated pre-mRNA

splicing. This role of NOVA proteins is most likely mediated by a network response to a pre-mRNA

splicing program that collectively regulates adipocyte thermogenesis.

In conclusion, we describe a NOVA-dependent alternative pre-mRNA splicing program in white

adipocytes that regulates browning of white adipose tissue. These data identify alternative pre-

mRNA splicing as a biological process that may be targeted by drugs designed to increase adipo-

cyte thermogenesis and improve metabolic syndrome caused by obesity.

Materials and methods

Mice
C57BL/6J mice (RRID:IMSR_JAX:000664), B6.Cg-Lepob/J (RRID:IMSR_JAX:000632), B6;FVB-Tg(Adi-

poq-Cre)1Evdr (RRID:IMSR_JAX:010803) (Eguchi et al., 2011), B6;129-Gt(ROSA)26Sortm1(cre/ERT)Nat/

J mice (RRID:IMSR_JAX:004847) (Badea et al., 2003), and B6.129S4-Gt(ROSA)26Sortm1(FLP1)Dym/

RainJ mice (RRID:IMSR_JAX:009086) (Farley et al., 2000) were obtained from The Jackson Labora-

tory. We have previously reported Mapk8LoxP/LoxP (Das et al., 2007), Mapk9LoxP/LoxP mice

(Han et al., 2013b), and Mapk9-/- mice (RRID:IMSR_JAX:004321) (Yang et al., 1998).

We generated Nova1 and Nova2 conditional mice using ES cells targeted by homologous recom-

bination (Nova1tm1a(EUCOMM)Hmgu and Nova2tm1a(KOMP)Wtsi), the preparation of chimeric mice, and

breeding to obtain germ-line transmission of the disrupted Nova1 and Nova2 genes using standard

methods. The Frt-NeoR-Frt cassette was excised by crossing with FLPeR mice to obtain mice with

the Nova1LoxP and Nova2LoxP alleles. Mice were genotyped by PCR analysis of genomic DNA using

the primers 10F (5’-GTCCGTAAGGCATGTC-3’) and 2R (5’-AGCAAAAAGCCATCCATG-3’) to detect

the Nova1+ (894 bp), Nova1LoxP (1,101 bp), and Nova1D (281 bp) alleles, the primers 1F (5’-CAGAA-

GAACTGGAGAC-3’) and N2-2R (5’- GGTTGGGCTGTCAGTG-3’) to detect the Nova2+ (149 bp) and

Nova2LoxP (127 bp) alleles, or with the primers N2delF1 (5’-CAGGCTGGCGCCGGAAC-3’) and N2-

2R (5’-GGTTGGGCTGTCAGTG-3’) to detect the Nova2LoxP (970 bp) and Nova2D (153 bp) alleles.
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All mice were studied on the C57BL/6J strain background. Male mice (8 wks old) were fed a chow

diet (Iso Pro 3000, Purina) or a HFD (S3282, Bioserve). Body weight was measured with a scale.

Whole body fat and lean mass were non-invasively measured using 1H-MRS (Echo Medical Systems).

The mice were housed at 21˚C (alternatively at 4˚C or 30˚C, where indicated) in a specific patho-

gen-free facility accredited by the American Association for Laboratory Animal Care (AALAC). The

Institutional Animal Care and Use Committee (IACUC) of the University of Massachusetts Medical

School approved all studies using animals.

Metabolic cages
The analysis was performed by the Mouse Metabolic Phenotyping Center at the University of Massa-

chusetts Medical School. The mice were housed under controlled temperature and lighting with free

access to food and water. The food/water intake, energy expenditure, respiratory exchange ratio,

and physical activity were measured using metabolic cages (TSE Systems).

Body temperature
Biocompatible and sterile microchip transponders (IPTT-300 Extended Accuracy Calibration; Bio

Medic Data Systems) were implanted subcutaneously. Cold tolerance tests (4˚C) were performed

using mice fed a chow diet ad-libitum.

Blood analysis
Blood glucose was measured with an Ascensia Breeze 2 glucometer (Bayer). Adipokines and insulin

in plasma were measured by multiplexed ELISA using a Luminex 200 machine (Millipore).

Glucose and insulin tolerance tests
Glucose and insulin tolerance tests were performed by intraperitoneal injection of mice with glucose

(1 g/kg) or insulin (1.5 U/kg) using methods described previously (Sabio et al., 2008).

Hepatic expression of NOVA
Mice (8 wks) were fed a HFD. At 12 wks, the mice treated with 5 � 109 pfu/mouse Adenovirus-

NOVA2 or Adenovirus-GFP (Applied Biological Materials Inc.) by tail vein injection. The mice were

euthanized at 2 wks post-injection.

Plasmids
Human Flag-tagged Mapk8a1, Mapk8b1, Mapk9a2, and Mapk9b2 cDNA cloned in the expression

vector pCDNA3 have been described previously (Gupta et al., 1996). Murine Mapk8a1, Mapk8b1,

Mapk9a2, and Mapk9b2 cDNA were isolated by RT-PCR and cloned by blunt-end ligation in the

SnaB1 site of the retroviral expression vector pBABE-puro (Addgene plasmid #1764)

(Morgenstern and Land, 1990). Retroviral stocks were prepared by transfection of Phoenix-ECO

cells (American Type-Culture Collection, ATCC CRL-3214) (Lamb et al., 2003).

The DNA sequences used to generate shRNA vectors were Nova1 (5’-CCGGGCTGCTCAGTA

TTTAATTACTCGAGTAATTAAATACTGAGCAGCTTTTTG-3’), Mapk8b (5’-CCGGTCATGGGAGAAA

TGATCAAAGCTCGAGCTTTGATCATTTCTCCCATGATTTTTG-3’), Mapk9a (5’-CCGGGTGAAAGG

TTGTGTGATATTCCTCGAGGAATATCACACAACCTTTCACTTTTTG-3’). These sequences were

cloned in the Age1/EcoR1 sites of the lentiviral vector pLKO.1-puro (Addgene #8453;

[Stewart et al., 2003]). Lentiviral stocks were prepared by transfection of 293T cells with the indi-

cated replication-incompetent lentiviral vector (pLKO1-shRNA) together with the packaging plasmid

psPAX2 and the envelope plasmid pMD2.G (Addgene #12259 and #12260; [Naldini et al., 1996]).

Adipocyte tissue culture
Primary inguinal adipocytes were prepared from male mice (8 wk old). The fat pads were minced

with a razor blade and incubated (40 min, 37˚C) in 12.5 mM Hepes pH 7.4, 120 mM NaCl, 6 mM

KCl, 1.2 mM MgSO4, 1 mM CaCl2, 2%BSA, 2.5 mM glucose, 1 mg/ml collagenase II (Sigma) and

0.2 mg/ml DNAse I (Sigma). The digested tissue was filtered through a 100 mm nylon strainer and

centrifuged (8 min at 250 g). The pellet was suspended in Dulbecco’s modified Eagle’s medium

(DMEM):Ham’s F12 (1:1) medium with 8%FBS, 1x Antibiotic-Antimycotic, 2 mM glutamine (Life
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Technologies). 100,000 cells/well were seeded in 12 well plates. The medium was refreshed every 2

days. On day 6, differentiation was induced using medium further supplemented with 0.5 mM IBMX

(Sigma), 5 mg/ml insulin (Sigma), 1 mM Troglitazone (TZD; Calbiochem), and 2.5 mM dexamethasone

(Sigma). On day 8, the medium was refreshed using medium supplemented with insulin and troglita-

zone only. On day 11, the medium was refreshed using medium supplemented with insulin only.

Mature adipocytes were observed on day 14.

3T3-L1 MBX cells (American Type-Culture Collection, ATCC CRL-3242) were cultured in high glu-

cose DMEM supplemented with 10% fetal bovine serum (FBS), sodium pyruvate (1 mM), glutamine

(2 mM), and 100 units/ml penicillin, and 100 mg/ml streptomycin (Life Technologies). Transduction

assays were performed using pLKO1 lentiviruses and selection with 2 mg/ml puromycin. The cells

were differentiated to adipocytes by growing to confluence for 48–72 hr. On day 0, the media were

changed to media supplemented with 0.5 mM IBMX (Sigma), 5 mg/ml insulin (Sigma), 1 mM Troglita-

zone (TZD; Calbiochem), and 1 mM dexamethasone (Sigma)). This medium was refreshed every 2

days. On day 4, the medium was refreshed using medium supplemented with insulin and TZD only.

On day 6, the medium was refreshed using medium supplemented with 0.5 mg/ml insulin only.

Mature adipocytes were observed on day 8.

Murine embryo fibroblasts
E13.5 primary murine fibroblasts (MEF) obtained from mice that express 4-hydroxytamoxifen-induc-

ible Cre were established in culture (Das et al., 2007). CreERT2-/+ Mapk8+/+ Mapk9+/+ MEF and

CreERT2-/+ Mapk8LoxP/LoxP Mapk9-/- MEF (Das et al., 2007) were cultured in DMEM supplemented

with 10% fetal bovine serum, 100 units/ml penicillin, 100 mg/ml streptomycin, 0.1 mM 2-mercaptoe-

thanol, and 2 mM L-glutamine (Life Technologies). Transduction assays were performed using

pBABE-puro retroviruses and selection with 2 mg/ml puromycin (Lamb et al., 2003). Cells were

treated with 1 mM 4-hydroxytamoxifen (24h) and subsequently cultured (5 days). The cells were

exposed without or with 60 J/m2 UV-C and incubated (60 mins) prior to harvesting.

Protein kinase assays
Lysates were prepared from TNFa-treated (10 ng/ml, 10 mins) and non-treated transfected HEK

293T/17 cells (American Type-Culture Collection, ATCC CRL-11268) expressing Flag-tagged JNK

proteins (Gupta et al., 1996). JNK proteins were isolated by immunoprecipitation using agarose-

bound Flag M2 antibody (Sigma-Aldrich Cat# A2220, RRID:AB_10063035) (Gupta et al., 1996). JNK

activity was measured using an in vitro protein kinase assay with the substrates cJun and [g-32P]ATP

as substrates (Whitmarsh and Davis, 2001).

Immunoblot analysis
Tissue extracts were prepared using Triton lysis buffer (20 mM Tris-pH 7.4, 1% Triton-X100, 10%

glycerol, 137 mM NaCl, 2 mM EDTA, 25 mM b-glycerophosphate, 1 mM sodium orthovanadate,

1 mM PMSF and 10 mg/mL leupeptin plus aprotinin). Extracts (30–50 mg of protein) were examined

by immunoblot analysis by probing with antibodies to cJUN (Cell Signaling Technology Cat# 9165L,

RRID:AB_2129578), pSer63-cJUN (Cell Signaling Technology Cat# 9261S, RRID:AB_2130162), Flag

M2 (Sigma-Aldrich Cat# F1804, RRID:AB_262044), GAPDH (Santa Cruz Biotechnology Cat# sc-

365062, RRID:AB_10847862), JNK1/2 (BD Biosciences Cat# 554285, RRID:AB_395344), pThr180-Pro-

pTyr182-JNK (pJNK) (Cell Signaling Technology Cat# 4668P, RRID:AB_10831195), NOVA1 (Abcam

Cat# ab97368, RRID:AB_10680798), NOVA2 (Sigma-Aldrich Cat# AV40400, RRID:AB_1854572), and

bTubulin (BioLegend Cat# 903401, RRID:AB_2565030). Immunocomplexes were detected by fluores-

cence using anti-mouse and anti-rabbit secondary IRDye antibodies (Li-Cor) and quantitated using

the Li-Cor Imaging system

Analysis of tissue sections
Histology was performed using tissue fixed in 10% formalin for 24 hr, dehydrated, and embedded in

paraffin. Sections (7 mm) were cut and stained using hematoxylin & eosin (American Master Tech Sci-

entific). Paraffin sections were stained with an antibody to insulin (Dako Cat# A0564, RRID:AB_

10013624) that was detected by incubation with anti-Ig conjugated to Alexa Fluor 488 (Life
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Technologies). DNA was detected by staining with DAPI (Life Technologies). Fluorescence was visu-

alized using a Leica TCS SP2 confocal microscope equipped with a 405-nm diode laser.

Adipocyte isolation
Inguinal, retroperitoneal, and epididymal fat pads were surgically removed at necropsy. Adipocytes

were isolated after incubation (40 min at 37˚C with shaking) of adipose tissue in 12.5 mM Hepes pH

7.4, 120 mM NaCl, 6 mM KCl, 1.2 mM MgSO4, 1 mM CaCl2, 2% BSA, 2.5 mM glucose, 1 mg/ml col-

lagenase II (Sigma #C6885) and 0.2 mg/ml DNAse I (Sigma #DN25)). Larger particles were removed

using a 100 mm nylon sieve and the filtrates were centrifuged at 1000 rpm (3 min). Floating adipo-

cytes were washed twice with 1x PBS and subsequently centrifuged at 1000 rpm (3 min) prior to

RNA isolation. The stromal vascular fraction (SVF) was collected after centrifugation at 3000 rpm

(5 min) prior to RNA isolation. The expression of adipocyte marker genes (Adipoq & Leptin), SVF

marker genes (Emr1 (F4/80), Itgam (Cd11b), Cd68) in adipocytes and the SVF was measured by

quantitative RT-PCR analysis (Figure 1—figure supplement 3). The expression of a gene (Fabp4)

that is expressed by both adipocytes and SVF was also examined.

RNA sequencing
RNA was isolated using the RNeasy kit (Qiagen). RNA quality (RIN > 9) was verified using a Bioana-

lyzer 2100 System (Agilent Technologies). Total RNA (10 mg) was used for the preparation of each

RNA-seq library by following the manufacturer’s instructions (Illumina). Three or four independent

libraries prepared from different mice were sequenced (Illumina) for each condition. Table 1

presents a summary of the adipocyte RNA-seq data and associated GEO accession numbers. The

liver RNA-seq data (CD vs HFD (n=3)) were previously reported (Vernia et al., 2014) (GEO accession

number GSE55190).

Quantitative RT-PCR analysis of gene expression
The expression of mRNA was examined by quantitative PCR analysis using a Quantstudio PCR sys-

tem (Life Technologies). Taqman assays were used to quantitate Adipoq (Mm00456425_m1), Adrb3

(Mm02601819_g1), Cd68 (Mm03047340_m1), Dio2 (Mm00515664_m1), Emr1 (F4/80)

(Mm00802530_m1), Fabp4 (Mm00445880_m1), Itgam (Cd11b) (Mm00434455_m1), Leptin

(Mm00434759_m1), Mapk8 (Mm00489514_m1), Mapk9 (Mm00444231_m1), Nova1

(Mm01289097_m1), Nova2 (Mm01324153_m1), Ppargc1a (Mm00447183_m1), Ppargc1b

(Mm00504720_m1), Prdm16 (Mm00712556_m1), Ucp1 (Mm01244861_m1) mRNA and 18S RNA

(4308329) (Applied Biosystems). Standard curves were constructed using the threshold cycle (Ct) val-

ues for each template dilution plotted as a function of the logarithm of the amount of input tem-

plate. The number of mRNA copies for each gene-sample combination was calculated using the

slope of the standard curve. To obtain a normalized abundance, copy numbers were corrected for

the amount of 18S RNA in each sample.

Quantitative RT-PCR analysis of alternative splicing
The inclusion of exons 7a and 7b in Mapk8 and Mapk9 mRNA was examined by quantitative PCR

using the Quantifast probe PCR kit (Qiagen) and the following combination of primers and Taqman

probes (Applied Biosystems): Mapk8a: Fwd, GGAGAACGTGGACTTATGGTCTGT; Probe: 6FAM-

TGCCACAAAATCCT-MGBNFQ; Rev, TGATCAATATAGTCCCTTCCTGGAA. Mapk8b: Fwd, GAACG

TTGACATTTGGTCAGTTG; Probe, 6FAM-AGAAATGATCAAAGGTGGTGTT-MGBNFQ; Rev, TCAA

TATGATCTGTACCTGGGAACA. Mapk9a: Fwd, GGTCAGTGGGTTGCATCATG; Probe, 6FAM-AGC

TGGTGAAAGGTT-MGBNFQ; Rev, TGATCAATATGGTCAGTACCTTGGA. Mapk9b: Fwd, ATCTGG

TCTGTCGGGTGCAT; Probe: 6FAM-AAATGGTCCTCCATAAAG-MGBNFQ; Rev, GATCAATATAG

TCTCTTCCTGGGAACA. Mapk8 and Mapk9 spliced variants were quantitated using the relative

quantification method. The alternative splicing is represented as the ratio Mapk8a/Mapk8b and

Mapk9a/Mapk9b.

Semi-quantitative RT-PCR analysis of alternative splicing
RT-PCR analysis was performed using amplimers based on the sequences of Adam15 exons 19 and

21 (svADAM15F1: 5’-GCGGGCACAGCAGATGAC-3’ and svADAM15R1: 5’- GGGTTGGCAGGCAG
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TGGC-3’) and Yap1 exons 5 and 7 (svYap1F1: 5-GGAGAAGGAGAGACTG-3’ and svYap1R2: 5’-G

TCCCTCCATCCTGCTC-3’). The PCR products were examined by agarose gel electrophoresis and

staining with ethidium bromide. Adam15 mRNA and exon 20-skipped Adam15 mRNA were

detected as 277 bp and 78 bp DNA fragments. Yap1 mRNA and exon 6-skipped Yap1 mRNA were

detected as 144 bp and 96 bp DNA fragments.

Bioinformatics analysis
Fastqc v0.10.1 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and cutadapt (v1.7)

(https://pypi.python.org/pypi/cutadapt/1.7.1) were used to generate sequence quality reports and

trim/filter the sequences respectively. Reads below a minimum quality PHRED score of 30 at the 3’

end were trimmed (Table 1). The filtered reads were aligned to the mouse reference genome

(Ensembl GRCm38). Alignments were carried out using Bowtie2 (v2.2.1.0) (Langmead and Salzberg,

2012) and Tophat2 (v2.0.9) (Kim et al., 2013). Samtools (v0.0.19) (Li et al., 2009) and IGV (v2.3.60)

(Thorvaldsdottir et al., 2013) were used for indexing the alignment files and viewing the aligned

reads respectively. Gene expression was quantitated as fragments per kilobase of exon model per

million mapped fragments (FPKM) using Cufflinks (v2.2.0) (Trapnell et al., 2010). Differentially

expressed genes were identified using Cufflinks tools (Cuffmerge and Cuffdiff). CummeRbund

(v2.4.1) (Trapnell et al., 2012) was used to assess biological replicate concordance. Significant

changes in gene expression were defined as q<0.05 and absolute log2 fold change >0.75. Gene

sets were examined using Wikipathways in Webgestalt (Wang et al., 2013a). Alternative splicing

was examined using rMATS software (v3.0.9) (Shen et al., 2014). rMATS was run using default set-

tings to compute p-values and FDRs of splicing events. Significant changes in alternative splicing

were defined as FDR<0.05 and absolute DInc level >0.1. Rmats2sashimiplot (https://github.com/Xin-

glab/rmats2sashimiplot) and Sashimiplot (Katz et al., 2015) were used for quantitative visualization

of alternative exon expression from rMATS.

The microarray analysis of human adipose tissue mRNA expression data (GEO GSE25402)

(Arner et al., 2012) was performed using Genespring. The summarization method was based on

RMA16, the normalization method was based on the median approach on log2 scale, and the fold

change was computed from average signal intensity values.

NOVA interactions with pre-mRNA were examined using CLIP-seq data obtained from murine

brain (Licatalosi et al., 2008) provided (in BED format) by Dr. R. B. Darnell (Rockefeller University).

The coordinates were based on the mm9 assembly. The UCSC liftOver utility was used to convert

the NOVA CLIP-seq tag coordinates from the mm9-based assembly to the mm10/GRCm38 assem-

bly. The coordinates for the NOVA CLIP-seq tags were sorted based on chromosome and start posi-

tion. Custom PERL scripts (Source code 1 and 2) were used to extract three groups of genomic

regions: (1) statistically significant differentially expressed alternatively spliced exons (FDR<0.05 and

the absolute inclusion level difference >0.1) (n = 1631); (2) exons not meeting statistical significance

(FDR�0.05) (n = 11,490); and (3) randomly selected regions of the mouse genome comprising

100 bp (n = 10,000). The coordinates for each genomic region were expanded to include an addi-

tional 500 bp of sequence flanking the 5’ and 3’ ends of the genomic region. If an exon belongs to a

gene comprising one or more alternatively spliced exons with FDR<0.5 and one or more alterna-

tively spliced exons with FDR�0.05, the exon was excluded from the second group. In each group,

the regions were sorted based on the chromosome and the start position. Duplicated regions were

removed. The BEDtools (2.22.0) intersect command (Quinlan, 2014) was used to determine the

intersection between the regions in each group and the NOVA-CLIP-seq tags. The number of inter-

secting regions between a group and the NOVA binding sites were tallied. For each group, the num-

ber and the percentage of regions with and without NOVA binding sites were calculated

(Figure 1E). Thus, NOVA CLIP-tags intersecting with the following groups were examined: (1) statis-

tically significant differentially spliced exons plus 500 bp of flanking sequence both upstream and

downstream; (2) non-alternatively spliced exons plus 500 bp of flanking sequence both upstream

and downstream; (3) random genomic sequences of similar fragment size (Figure 1E). Statistical sig-

nificance between two groups was determined by the Pearson’s Chi-squared test.
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Statistical analysis of experimental data
Values are given as means ± SEM of at least three independent experiments. Sample sizes were

determined by prior experimentation. Differences between groups were examined for statistical sig-

nificance using the Student´s test or analysis of variance (ANOVA) with the Fisher’s test (*p<0.05,

**p<0.01 and ***p<0.001).
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Arner E, Mejhert N, Kulyté A, Balwierz PJ, Pachkov M, Cormont M, Lorente-Cebrián S, Ehrlund A, Laurencikiene
J, Hedén P, Dahlman-Wright K, Tanti JF, Hayashizaki Y, Rydén M, Dahlman I, van Nimwegen E, Daub CO,
Arner P. 2012. Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 61:
1986–1993. doi: 10.2337/db11-1508

Badea TC, Wang Y, Nathans J. 2003. A noninvasive genetic/pharmacologic strategy for visualizing cell
morphology and clonal relationships in the mouse. Journal of Neuroscience 23:2314–2322.

Bastie CC, Zong H, Xu J, Busa B, Judex S, Kurland IJ, Pessin JE. 2007. Integrative metabolic regulation of
peripheral tissue fatty acid oxidation by the SRC kinase family member Fyn. Cell Metabolism 5:371–381. doi:
10.1016/j.cmet.2007.04.005

Brignatz C, Paronetto MP, Opi S, Cappellari M, Audebert S, Feuillet V, Bismuth G, Roche S, Arold ST, Sette C,
Collette Y. 2009. Alternative splicing modulates autoinhibition and SH3 accessibility in the Src kinase Fyn.
Molecular and Cellular Biology 29:6438–6448. doi: 10.1128/MCB.00398-09
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