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Individual N-Glycans Added at Intervals along the Stalk of the Nipah
Virus G Protein Prevent Fusion but Do Not Block the Interaction
with the Homologous F Protein

Qiyun Zhu,a* Scott B. Biering,b,e Anne M. Mirza,a Brittany A. Grasseschi,a Paul J. Mahon,a Benhur Lee,c Hector C. Aguilar,b,e

Ronald M. Iorioa,d

Department of Microbiology and Physiological Systemsa and Program in Immunology and Virology,d University of Massachusetts Medical School, Worcester,
Massachusetts, USA; Paul G. Allen School for Global Animal Healthb and Department of Veterinary Microbiology and Pathology,e College of Veterinary Medicine,
Washington State University, Pullman, Washington, USAb; Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at
University of California—Los Angeles, Los Angeles, California, USAc

The promotion of membrane fusion by most paramyxoviruses requires an interaction between the viral attachment and fusion
(F) proteins to enable receptor binding by the former to trigger the activation of the latter for fusion. Numerous studies demon-
strate that the F-interactive sites on the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) and measles virus
(MV) hemagglutinin (H) proteins reside entirely within the stalk regions of those proteins. Indeed, stalk residues of NDV HN
and MV H that likely mediate the F interaction have been identified. However, despite extensive efforts, the F-interactive site(s)
on the Nipah virus (NiV) G attachment glycoprotein has not been identified. In this study, we have introduced individual
N-linked glycosylation sites at several positions spaced at intervals along the stalk of the NiV G protein. Five of the seven intro-
duced sites are utilized as established by a retardation of electrophoretic mobility. Despite surface expression, ephrinB2 binding,
and oligomerization comparable to those of the wild-type protein, four of the five added N-glycans completely eliminate the abil-
ity of the G protein to complement the homologous F protein in the promotion of fusion. The most membrane-proximal added N-
glycan reduces fusion by 80%. However, unlike similar NDV HN and MV H mutants, the NiV G glycosylation stalk mutants retain the
ability to bind F, indicating that the fusion deficiency of these mutants is not due to prevention of the G-F interaction. These findings
suggest that the G-F interaction is not mediated entirely by the stalk domain of G and may be more complex than that of HN/H-F.

The Paramyxoviridae are a family of enveloped, negative-
stranded RNA viruses that includes several important human

and animal pathogens, such as measles virus (MV), mumps virus,
Newcastle disease virus (NDV), human parainfluenza virus types
1 to 4 (hPIV1 to hPIV4), Sendai virus, parainfluenza virus 5
(PIV5), respiratory syncytial virus, and the emerging henipavi-
ruses, Nipah virus (NiV) and Hendra virus (HeV) (1). The last two
viruses are unique among paramyxoviruses in being able to cause
40 to 75% mortality rates in humans, mainly from encephalitis
(2–5). Both animal-to-human transmission and human-to-hu-
man transmission of NiV have been reported (6).

Paramyxoviruses enter and spread between cells by virus-cell
and cell-cell fusion, respectively. The paramyxovirus fusion (F)
protein has multiple canonical structural and functional features
characteristic of class I fusion proteins (1). As is the case for many
viruses in this class, receptor binding is the trigger for fusion. For
most of these viruses, with HIV-1 the best-characterized example,
receptor binding and membrane fusion are mediated by a single
glycoprotein (7). However, in the paramyxoviruses, receptor
binding and fusion promotion are contributed by separate glyco-
proteins, necessitating a mechanism to link the two events. This is
accomplished by a virus-specific interaction between the attach-
ment and F proteins (reviewed in references 1 and 8–12).

Paramyxoviruses can be divided into two groups according to
the type of receptor recognized by their attachment proteins. Vi-
ruses that have a hemagglutinin-neuraminidase (HN) attachment
protein, such as NDV and Sendai virus, bind to sialic acid-con-
taining proteins and lipids on the cell surface and possess neur-
aminidase (NA) activity (1). The attachment proteins of other

viruses in the family, including MV and the henipaviruses, recog-
nize distinct protein receptors. The henipavirus attachment gly-
coprotein (G) recognizes ephrinB2 and -B3 as receptors (13–16),
exhibits neither hemagglutinating nor NA activity, and shares lit-
tle amino acid homology with other paramyxovirus attachment
proteins (17, 18).

A great deal of evidence indicates the existence of a dichotomy
in the relationship between receptor binding and glycoprotein
complex formation for paramyxoviruses depending on the type of
receptor recognized by the attachment protein (9). For HN-con-
taining viruses, the interaction of HN and F is thought to be trig-
gered at the cell surface by receptor binding. However, for MV and
the henipaviruses, which recognize specific protein receptors, it is
thought that the respective hemagglutinin (H) and G complexes
with F are preformed and are dissociated upon receptor binding
(8–12).
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The paramyxovirus attachment protein ectodomain consists
of a stalk supporting a terminal globular head, in which resides the
receptor binding site. Evidence gathered from several studies
clearly demonstrates that the G/H/HN stalk domain is important
for F triggering. Studies of chimeras with stalks and heads from
different HN proteins have established that the stalk of HN com-
pletely determines specificity for the homologous F protein (19–
22). Indeed, we have identified NDV HN stalk residues 89, 90, and
94 as part of the F-interactive domain in that protein (23). This is
supported by the recent demonstration that they are located at the
surface of the four-helix bundle in the NDV HN stalk (24). Anal-
ogous F-interactive residues have also been identified in the stalk
of the MV H protein (25, 26).

A number of studies establish that the stalk of the henipavirus
G protein is critical for fusion. Mutation of the conserved isoleu-
cines (27) or cysteines (28) in the stalk of G abolishes fusion with-
out a decrease in F-interactive capability. Removal of the only
N-glycan in the stalk domain of NiV G at residue 159 also abol-
ished fusion without a significant effect on G oligomerization or
the G-F interaction (29). Similarly, a deletion of NiV G stalk res-
idues 146 to 182 also abolishes fusion without decreasing the in-
teraction with F (28). However, despite considerable effort, nei-
ther the exact role of the stalk of the G protein in fusion promotion
nor the F-interactive site(s) on the henipavirus G glycoprotein has
yet been identified.

One of the strategies instrumental in probing the role of the
paramyxovirus attachment protein stalk in mediating the interac-
tion with F was the determination of the effect of the addition of
supernumerary N-linked glycans at various positions along the
stalk on fusion and, where possible, on the interaction with the
homologous F protein (26, 30, 31). Indeed, it has been shown that
loss of the ability of NDV HN and MV H N-glycan stalk mutants
to trigger fusion correlates with a loss of the ability of each protein
to interact with its homologous F glycoprotein at the cell surface
(26, 31).

We have now applied this approach to begin to understand the
contribution of the NiV G stalk in mediating the interaction with
F. Individual potential N-linked glycosylation sites have been in-
troduced at intervals along the stalk of the G glycoprotein span-
ning the domain defined by residues 75 to 133. We were able to
rule out a role for more C-terminal stalk residues by virtue of the
retention of F-interactive capability by the �146-182 deletion mu-
tant (28). The five most membrane distal of the seven added sites
are utilized and, despite efficient surface expression, soluble
ephrinB2 binding, and oligomer formation, four of the five added
N-glycans completely eliminate fusion and the fifth reduces it by
80%. However, all of these fusion-deficient NiV G glycosylation
mutants retain the ability to interact with F in a coimmunopre-
cipitation assay. Thus, unlike for analogous NDV HN and MV H
mutants, we were unable to eliminate the G-F interaction by the
addition of N-linked glycans to the G stalk. These findings indicate
that the G-F interaction is most likely not determined entirely by
the stalk domain of G and may be more complex than that of
HN/H-F. We go on to show that the properties of a G-HN attach-
ment protein chimera are consistent with this conclusion.

MATERIALS AND METHODS
Cells. Vero and PK13 (ephrinB2- and -B3-deficient) cells were obtained
from the American Type Culture Collection (Manassas, VA). Vero and
BHK-21F cells (gift of Rebecca Dutch) were maintained in Dulbecco’s

modified Eagle medium (DMEM) with high glucose, supplemented with
5% fetal calf serum, 20 mM L-glutamine, 4 U/ml of penicillin, and 4 �g/ml
of streptomycin. PK13 cells were maintained in the same medium except
for the use of 10% fetal calf serum and 1 mM sodium pyruvate. 293T cells
(gift of Abraham Brass) were maintained in high-glucose DMEM supple-
mented with 10% fetal calf serum, 0.1 mM nonessential amino acids, 20
mM L-glutamine, 4 U/ml of penicillin, and 4 �g/ml of streptomycin.

Recombinant plasmids and site-directed mutagenesis. The prepara-
tion of pCAGGS expression vectors for the NiV G and F proteins has been
described previously (32). Mutations were introduced into the NiV G
gene in pBluescript SK(�) (Stratagene Cloning Systems, La Jolla, CA)
using the QuikChange site-directed mutagenesis kit (Stratagene), and
subsequently, the mutated genes were transferred into pCAGGS by blunt-
end ligation. The presence of the desired mutation was confirmed by
sequencing.

Construction of the 188G-HN124 chimeric attachment protein
gene. A chimeric attachment protein having an N-terminal segment com-
posed of 188 NiV G-derived residues and a C-terminal segment beginning
at NDV HN residue 124 (chimera 188G-HN124) was constructed in
pBluescript SK(�), facilitated by the introduction of HindIII sites at the
desired positions in both NDV HN and NiV G. The sequence was subse-
quently corrected such that the transition from G residue 188 to HN
residue 124 was seamless in the chimera.

Transfections and quantitation of cell surface expression. For most
experiments, cells were seeded in six-well plates at 2 � 105/well 1 day prior
to transfection. Wild-type (wt) and mutant proteins were expressed using
the Lipofectamine 2000 transfection reagent (Invitrogen Corp., Carlsbad,
CA) and 1 �g of each DNA per well according to protocols provided by
the company. All assays were performed at 48 h posttransfection except
staining for fusion by the chimera, which was also performed at 24 h. For
fusion staining at 24 h posttransfection, Vero and BHK-21F cells were
seeded at 3 � 105/well. For fusion staining at 24 h and 48 h posttransfec-
tion, 293T cells were seeded at 4 � 105/well and at 3 � 105/well, respec-
tively, using plates that were pretreated with 0.1 mM polylysine, rinsed
with water, and allowed to dry before plating.

Cell surface expression of wt and mutated G proteins in Vero cells was
quantified by flow cytometry (performed by the University of Massachu-
setts Medical School Flow Cytometry Core Laboratory), using a mixture
of conformation-dependent G-specific monoclonal antibodies (MAbs)
(33). A mixture of conformational HN-specific MAbs (34–37) was used
for the G-HN chimera. Secondary antibodies (Alexa Fluor) were obtained
from Invitrogen (Eugene, OR) or KPL (Gaithersburg, MD).

EphrinB2 binding assay. The ability of HN-G chimeras to bind
ephrinB2 was determined by a modification of the procedure de-
scribed by Negrete et al. (15). PK13 cells were transfected as described
above. The medium was removed, and the monolayers were incubated
for 1 h at room temperature with 2 �g of soluble ephrinB2-human Fc
protein (ephrinB2-Fc) (R&D Systems, Minneapolis, MN). Binding of
ephrinB2 was quantified by flow cytometry.

Receptor binding enhancement (RBE) assay. The effect of receptor
binding on the recognition of the mutated G proteins by Mab45 was
determined by preincubating a monolayer of PK13 cells expressing the
chimeras with and without 10 nM soluble ephrinB2 and then quantifying
antibody binding by flow cytometry as described in reference 33.

Hemadsorption (HAd) and NA assays. The receptor binding activity
of the chimera was assayed by its ability to adsorb guinea pig erythrocytes
(Bio-Link Laboratories, Liverpool, NY) (23). The NA activity of the chi-
mera was determined with 2-(4-methylumbelliferyl)-�-D-N-acetyl-
neuraminic acid (MUN) as the substrate, as described by Tappert et al.
(38).

Staining for fusion. For pictures of fusion, transfected monolayers
were fixed with methanol and stained with Giemsa stain either 24 h or 48 h
posttransfection (Sigma Chemical Co., St. Louis, MO).

Content-mixing assay for fusion. The ability of the mutated G pro-
teins or the 188G-HN124 chimera to complement NiV F in the promo-
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tion of cell-cell fusion was quantified using a modification of a content-
mixing assay (32), which measures �-galactosidase activity in target cells
following fusion induced by the glycoprotein-expressing effector cells.
Effector Vero cells were transfected with 1 �g each of wt or mutant DNA
and the NiV F DNA, as well as 1 �g of pCAGT7 DNA (39). The following
day, another set of Vero cell monolayers (target) was infected with wt
vaccinia virus (multiplicity of infection [MOI] of 1) and transfected with
1 �g of pG1NT7�-gal (40). Five hours later, the cells were trypsinized, and
equal numbers of the two cell populations were combined and incubated
overnight. The next day, the extent of fusion was quantified colorimetri-
cally.

Immunoprecipitation. At 44 h posttransfection, transfected Vero cell
monolayers were starved for 1 h at 37°C in medium lacking cysteine and
methionine, radiolabeled for 3 h with 1 ml of medium containing 100 �Ci
of Express protein labeling mix ([35S]Cys-Met) (PerkinElmer, Boston,
MA) and chased for 90 min with medium (41). Cells were lysed and
proteins were immunoprecipitated as described previously (32), using a
G-specific polyclonal serum. Peptide-N-glycosidase F (PNGase F) diges-
tion was performed as described previously (31). Proteins were separated
by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) in the presence
or absence of �-mercaptoethanol (BME). Rainbow markers were ob-
tained from GE Healthcare Biosciences Corp. (Piscataway, NJ).

Coimmunoprecipitation of NiV G and F. The NiV F and wt or mu-
tant G proteins were pseudotyped onto a reporter vesicular stomatitis
virus (VSV) expressing the Renilla Luc gene as described previously (42,
43). NiV/VSV-rLuc virions containing wt NiV F and wt or mutant G were
lysed and subjected to immunoprecipitation, as previously described (43,
44), using a mixture of conformational G-specific antibodies. Coimmu-
noprecipitated proteins were analyzed by Western blotting and quantified
using a Li-cor Odyssey fluorimager (Li-cor Biosciences, Lincoln, NE).

RESULTS
Introduction of potential N-linked glycosyation sites in the NiV
G stalk. To probe the role of the stalk of the NiV G protein in
mediating the interaction with the homotypic F protein, we intro-
duced individual potential N-linked glycosylation sites at intervals
along the stalk (Fig. 1). The stalk of NiV G spans a total of 118
residues, encompassing residues 71 to 188. However, the F-inter-
active competence of the NiV G deletion mutant lacking stalk
residues 146 to 182 (28) enabled us to focus on the remaining,
N-terminal region.

N-linked carbohydrates are covalently attached to asparagines
on nascent polypeptides at the motif N-X-T/S, where X is any
amino acid except aspartic acid or proline. We have introduced
potential N-linked glycosylation sites at convenient intervals in
the segment spanning residues 75 to 133, using the mutagenesis
strategy shown in Table 1 and naming the mutant according to the
position that would potentially be glycosylated. This results in the

potential for the addition of an N-glycan at residue 75, 79, 85, 108,
115, 123, or 133, with only the N85 mutant requiring more than a
single point mutation. As it was subsequently demonstrated that
the site at residue 75 is not utilized, we also attempted to add a site
at the nearby residue 79 via an A81S mutation (mutant N79).

Cell surface expression of the mutated proteins and usage of
the added glycosylation sites. Prior to functional analysis of the
mutants, expression at the surface of Vero cells was quantified by
flow cytometry (Fig. 2). While two of the more N-terminal glyco-
sylation mutants, N75 and N85, exhibited reduced cell surface
expression levels of 57 and 63% of the wt, respectively, mutants
N79, N108, N115, N123, and N133 were all expressed at the sur-
face at levels comparable to that of wt G, ranging from 83 to 115%
of the wt (Fig. 2). This verifies that the potential N-linked glyco-
sylation mutants are expressed and likely properly folded.

To determine whether the potential glycosylation sites are ac-
tually utilized, the mutants were expressed at the surface of Vero
cells, radiolabeled, and immunoprecipitated with a G-specific
polyclonal serum followed by SDS-PAGE under reducing condi-
tions (Fig. 3A). All of the mutated G proteins, except the two most
N-terminal ones, N75 and N79, migrated at a lower rate in the gel
than did wt G, suggesting that the potential N-linked glycosylation
site in each of these mutants was, indeed, utilized. However, the
added sites in mutants N75 and N79 were apparently not glycosy-
lated, as their migration rates were indistinguishable from that of
wt G (Fig. 3A).

To confirm that the lower migration rate of the putative glyco-
sylation mutants was, in fact, due to the addition of an N-glycan,
the immunoprecipitated proteins were treated with PNGase F,
which cleaves the N-glycan linkage between the asparagine side
group and the carbohydrate (45). After digestion with the enzyme,

TABLE 1 Introduction of additional potential N-linked glycosylation
sites in the stalk of the NiV G proteina

Mutant name Mutation(s) Motif of glycosylation site

N75 R75N 75-NST-77
N79 A81S 79-NQS-81
N85 D85N � L87S 85-NAS-87
N108 K108N 108-NVS-110
N115 S115N 115-NSS-117
N123 G125S 123-NIS-125
N133 Q133N 133-NST-135
a Point mutations introduced in the stalk of NiV G to add potential N-linked
glycosylation sites.

FIG 1 Schematic of N-linked glycosylation sites added, as well as those already present, in the stalk of the NiV G protein. Residues 146 to 182 can be eliminated
from taking part in the interaction with F based on the findings of Maar et al. (28). The G1 site at position 72 is not used, while the G2 site at position 159 is used.
CT, cytoplasmic tail; TM, transmembrane.
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all the slower-migrating mutants comigrated with wt G treated in
the same way, confirming that the lower migration rate of these
mutants was due to a difference in N-linked glycosylation (Fig.
3B). Thus, we have successfully added N-glycans at positions 85,
108, 115, 123, and 133 along the stalk of NiV G.

Some of the added N-glycans compromise fusion promotion
without affecting receptor-binding activity. The effects of the
added N-glycans on the ability of NiV G to complement F in the

promotion of fusion were examined by a content-mixing assay
following coexpression with NiV F in Vero cells (Fig. 4). Four of
the mutants, N108, N115, N123, and N133, were unable to pro-
mote a detectable level of fusion. Actually, of the five overglycosy-
lated mutants, only N85 promoted detectable fusion, at approxi-
mately 20% of the wt level (Fig. 4). This is analogous to previous
findings with NDV and PIV5 HN, which showed that addition of
an N-glycan at any of several positions along the stalks of those
proteins eliminated fusion-promoting activity (30, 31). Not sur-
prisingly, mutants N75 and N79, in which the added glycosylation
site was not utilized, promoted fusion quite efficiently, at 75 and
78% of the wt level, respectively (Fig. 4). This suggests that the
introduced point mutations themselves, R75N and A81S, affect
fusion only minimally.

To be certain that the overglycosylated mutants were truly
nonfusogenic, we compared their fusion-promoting activities to
that of the wt G protein at a later time posttransfection. As shown
in Fig. 5, at 48 h posttransfection, the wt G-promoted fusion is so
extensive that the monolayer is almost destroyed. Similar results
are obtained with the unglycosylated N75 and N79 mutants. Small
syncytia are seen with the N85 mutant, consistent with the low
level of fusion detected in the content-mixing assay (Fig. 4). How-
ever, even at this late time point, no syncytia are visible for either
the N108, N115, N123, or N133 mutant.

Since the initial event in the fusion-triggering cascade in NiV G
is thought to be binding to receptors, the possibility exists that the
fusion deficiency of the glycosylation mutants could be the result
of an effect on this function of G. To examine this possibility, we
expressed the mutated proteins in PK13 cells, which are devoid of
NiV receptors, and quantified the ability of the proteins expressed
at the cell surface to bind soluble ephrinB2. As shown in Fig. 4, all

FIG 2 Cell surface expression of the mutated G protein carrying potential
N-linked glycosylation sites. Expression at the surface of Vero cells was quan-
tified by flow cytometry using a polyclonal antiserum specific for NiV G. Data
are corrected for background obtained with vector alone and normalized to
the value obtained with NiV G, which is set at 100%. Averages � standard
deviations are shown for three independent experiments, each performed in
duplicate.

FIG 3 Usage of the potential N-linked glycosylation sites. The wt or mutated
G proteins were expressed in Vero cells, radiolabeled, and chased to the sur-
face. The G proteins were immunoprecipitated using a polyclonal serum spe-
cific for the G protein, and the immunoprecipitates were divided into two
equal aliquots and either left untreated (A) or treated with 200 mU of PNGase
F (B) prior to electrophoresis under reducing conditions. The numbers in the
lanes marked “M” indicate the migration rates of markers in kilodaltons.

FIG 4 Addition of an N-linked glycan at any of several positions along the
stalk of the NiV G glycoprotein severely compromises or eliminates fusion
while retaining significant receptor binding activity. To evaluate the ability of
the mutated G protein to bind NiV receptors, the wt and mutated proteins
were expressed at the surface of PK13 cells, and at 48 h posttransfection, the
monolayers were incubated at room temperature with 2 �g of ephrinB2-Fc.
After washing, binding was detected by flow cytometry and corrected for back-
ground obtained with vector alone. Data are expressed relative to the binding
obtained with NiV G, which is set at 100%. Averages � standard deviations are
shown for three independent experiments, each performed in duplicate. To
quantify the ability of the mutated G proteins to complement NiV F in the
promotion of fusion, Vero cells coexpressing NiV F and either a mutated or wt
G were mixed with target cells overnight at 37°C. The extent of fusion was then
quantified in the content-mixing assay, with data obtained with cells express-
ing the vector and NiV F as background. Data are expressed relative to that
obtained with wt NiV G and F, which is set at 100%. Averages � standard
deviations are shown for three independent experiments; n � 5 for each ex-
periment.
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of the mutants retain at least 90% of the ephrinB2-binding activity
of the wt G protein, with the exception of the unglycosylated N79
mutant, which still exhibits 71% of wt activity. Indeed, some mu-
tants, e.g., N108 and N123, exhibit more than a 20% increase in
binding activity relative to that of the wt protein. Thus, the fusion
deficiency of the glycosylation mutants is not the result of a defect
in receptor binding.

The NiV G stalk N-glycan mutants oligomerize at an effi-
ciency comparable to that of the wt protein. The oligomeric
structure of the stalk glycosylation mutants was examined by im-
munoprecipitation of the radiolabeled G protein that had been
chased to the cell surface, using a G-specific polyclonal antiserum
followed by SDS-PAGE under nonreducing conditions. The NiV
G protein migrates in the gel predominantly as a mixture of dis-
ulfide-linked dimers and tetramers, with a smaller amount of
monomer (Fig. 6). The intermolecular disulfide bonds responsi-
ble for these oligomers are mediated by cysteines at positions 146,
158, and 162 in the stalk region of NiV G (28).

As shown in Fig. 6, all of the mutants, including those with
added N-glycans, are capable of forming both dimers and tetram-
ers at the cell surface to an extent comparable to that of the wt G
protein, although the N85 and N133 mutants appear to exhibit

FIG 5 Syncytium formation in monolayers coexpressing wt or glycosylation site mutants of NiV G with the NiV F protein. The extent of syncytium formation
is shown in monolayers expressing wt F with the following: a vector control (vec), wt G, N75, N79, N85, N108, N115, N123, and N133. At 48 h posttransfection,
the monolayers were fixed with methanol and stained with Giemsa.

FIG 6 Each of the glycosylation mutants oligomerizes similarly to the wt G
protein. The wt and mutated NiV G proteins were expressed in Vero cells,
radiolabeled, and chased to the surface by incubation with medium for 90 min.
Cells were lysed and the G proteins were immunoprecipitated with NiV G-spe-
cific antiserum. Proteins were resolved by SDS-PAGE in the absence of BME.
The numbers in the lanes marked “M” indicate the migration rates of markers
in kilodaltons. vec, vector; Tet, tetramers; Di, dimers; Mono, monomers.
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slightly reduced amounts of tetramers. Nonetheless, these data
indicate that the fusion deficiency exhibited by the stalk N-glycan
mutants is not the result of altered oligomerization. It is also note-
worthy that unlike wt G and the other mutants, the N133 mutant
fails to exhibit a doublet monomer band (Fig. 6). The significance
of this is unclear.

The fusion-deficient G stalk glycosylation mutants retain the
ability to interact with the F protein. It has previously been dem-
onstrated that the fusion deficiencies of both NDV HN (31) and
MV H (26) stalk N-glycan mutants correlate with an interference
with the ability of the protein to interact with its cognate F protein.
This is even true for NDV HN N-glycans added at sites in the stalk
that are distant from the putative F-interactive site (23, 31).

To determine whether the fusion-deficient phenotypes of the
NiV G stalk glycosylation mutants similarly correlate with a block
in the interaction with the homologous F protein, we have deter-
mined the ability of the NiV G mutants to interact with F in VSV
virions pseudotyped with wt NiV F and either wt or mutant NiV G
(43). We coimmunoprecipitated NiV Fo and F1 from viral lysates
using anti-G antibodies (Fig. 7). As an additional control, we in-
cluded the N75 mutant, in which the added glycosylation site is
not utilized. As expected from the flow cytometric data (Fig. 2)
and the SDS-PAGE analyses (Fig. 3 and 6), each of the G mutants
was immunoprecipitated at an efficiency comparable to that of the
wt protein (G IP [Fig. 7]). Also, the efficiencies of MAb-mediated
immunoprecipitation of the wt F protein from the respective vi-
rions were comparable whether they were coexpressed with wt G,
the unglycosylated mutant, or the glycosylated mutants (F IP [Fig.
7]). Interestingly, all the G proteins retained the ability to interact
with F (F co-IP [Fig. 7]). This includes all mutants, including N85,
N108, N115, N123, and N133, that exhibited severely compro-
mised or undetectable fusion. Indeed, only the N85 mutant
seemed to exhibit a discernible slight reduction in the level of
coimmunoprecipitation. The lack of F in the F-only coimmuno-
precipitation (Fig. 7, last lane) indicates that the coimmunopre-
cipitation of the F proteins through their interaction with G is
specific. Thus, these data indicate that there is no correlation be-
tween the fusion deficiency of an overglycosylated G stalk mutant
and an effect on the ability of the protein to interact with the F
protein.

The fusion deficiency of the G stalk N-glycan mutants corre-
lates with a loss of the RBE phenotype of an MAb that appears to
detect a step in the triggering cascade in NiV G. Mab45 is a con-
formational, anti-G MAb whose binding inhibits virus entry and
is enhanced upon receptor engagement (33). The receptor bind-
ing enhancement (RBE) for this MAb is predicted to reflect a
required step in the fusion-triggering cascade in NiV G. Based on
a deletion mutant analysis, the epitope recognized is thought to
reside near the base of the globular domain quite distant from the
receptor binding site (33).

To determine whether the Mab45 RBE is affected by the over-
glycosylation of the stalk of G, we used flow cytometry to compare
the extents of antibody binding to wt or mutated G expressed
at the surface of PK13 cells in the presence of 10 nM soluble
ephrinB2 to that in the absence of receptor (Fig. 8). As expected,
the wt G protein (190% RBE) as well as the unglycosylated N75
(177% RBE) and N79 (173% RBE) mutants exhibited a nearly
2-fold enhancement of Mab45 binding in the presence of receptor
relative to that in its absence. Indeed, even the N85 mutant, which
is only relatively weakly fusogenic (19% of the value for wt G),
retained the Mab45 RBE (177% of the value for the wt). These values
approach the 2.5-fold RBE originally reported for NiV G (33).

However, each of the overglycosylated, fusion-deficient stalk
mutants failed to exhibit the Mab45 RBE. Indeed, the N-glycans at
positions 108 and 123 actually result in a significant receptor-
induced decrease in the binding of Mab45, with antibody binding
reduced to 49 and 64%, respectively, in the presence of ephrinB2
compared to that in its absence (Fig. 8). Even the N115 and N133
glycosylation mutants exhibit no significant Mab45 RBE (99 and
87% of binding, respectively, with receptor relative to that in its
absence) (Fig. 8). Thus, the fusion deficiency of all of the glycosy-
lation mutants correlates completely with a loss of the Mab45 RBE
phenotype.

A chimeric attachment protein with a complete NiV G stalk
and intact NDV HN head triggers NiV F for fusion only mini-
mally. The properties of the NiV G N-glycan stalk mutants are

FIG 7 Each of the glycosylation mutants retains the ability to interact with the
homologous F protein. wt NiV F (AU1 tagged) and wt or mutant G (and F only
as a control [last lane]) were pseudotyped onto Renilla luciferase VSV virions
as previously described (42, 43). Virions were lysed and subjected to immuno-
precipitation (IP), basically as previously described (43, 44). Coimmunopre-
cipitated (co-IP) proteins were analyzed by Western blotting using a poly-
clonal G-specific antiserum to detect G and anti-AU1 serum to detect F and
visualized and quantified using a Li-cor Odyssey fluorimager. Three indepen-
dent experiments were conducted, and a representative experiment is shown.
vec, vector.

FIG 8 The fusion-null phenotype of stalk glycosylation mutants correlates
with an inability to exhibit the enhanced binding of Mab45 in the presence of
soluble ephrinB2 that is exhibited by the wt NiV G protein. The wt and mu-
tated G proteins were expressed at the surface of PK13 cells and either left
untreated or treated with 10 nM soluble ephrinB2 at room temperature for 1 h.
Binding of Mab45 was then quantified by flow cytometry, using polyclonal
G-specific antiserum. Data for each protein are expressed relative to that of the
protein expressed in the absence of the receptor, which is set at 100%. Aver-
ages � standard deviations are shown for three independent experiments, each
performed in duplicate.
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consistent with our previous characterization of chimeras having
NiV G-derived stalks and NDV HN-derived heads (G-HN chime-
ras) (32). Whereas several chimeras having NDV HN-derived
stalks and NiV G-derived heads (HN-G chimeras) are capable of
efficiently complementing the NDV F protein for fusion promo-
tion (32), the reciprocal was not true. Attachment proteins having
NiV G-derived N-terminal segments of 144 and 166 amino acids
and a complete, functional HN-derived head were expressed and
bound receptor, but they did not trigger NiV F to a detectable
extent in a content-mixing assay (32). This lack of fusion was
observed in BHK-21F, Vero, and 293T cells. We concluded from
this that the G triggering cascade may be more complex than that
of HN (32).

Subsequently, it was reported by another group that a chimera
with a 188-amino-acid G-derived N-terminal segment and a com-
plete HN head beginning at HN residue 124 (chimera 188G-
HN124, using our nomenclature) could trigger NiV F-mediated
fusion of erythrocytes, but only if the NA activity of the chimera
was inhibited with zanamivir (46). It was concluded that the in-
hibitor was required to enable the protein to stay attached to re-
ceptors for a longer period. This finding also raised the possibility
that NiV G residues 183 to 188 might somehow be critical for
fusion triggering (46).

To address these findings, we prepared the 188G-HN124 chi-
mera and evaluated its functional properties. The chimera exhibits
HAd activity (38% � 9% of wt HN) commensurate with its cell
surface expression (42% � 5% of wt HN), indicating that receptor
binding activity is unaffected. However, in the reporter gene con-
tent-mixing assay, it did not trigger a detectable level of NiV F-
mediated fusion of BHK-21F cells either with or without treat-
ment with 5 mM zanamivir (Fig. 9). In Vero cells, only extremely
weak triggering of NiV F was detected with this assay (4% � 2% of
wt G), and it was actually decreased even further with zanamivir
treatment (1% � 1% of wt G) (Fig. 9). Thus, in our hands, the
188G-HN124 chimera was not capable of triggering NiV F-in-
duced fusion of either BHK-21F or Vero cells to a significant ex-
tent in a quantitative content-mixing assay, even with zanamivir
treatment.

The lack of an effect of zanamivir in two cell types is consistent
with the demonstration that the chimera has only 2% � 1% of the

NA activity of wt NDV HN. Thus, even after correcting for some-
what reduced cell surface expression, the chimera has 	10% of wt
NA activity. This is somewhat expected because the NA activity of
NDV HN is known to be hypersensitive to even point mutations
in the stalk (23, 47, 48), which may be related to the cooperative
substrate saturation kinetics exhibited by the NA of this strain of
NDV (49). Given this hypersensitivity, it is not surprising that
replacement of the entire stalk would modulate NA activity.

Since the same group subsequently reported that a 186G-
HN124 chimera is capable of triggering NiV F for fusion about 1/3
as effectively as wt G, with no mention of the need for zanamivir
treatment (50), we wondered whether the promotion of fusion by
the 188G-HN124 chimera could be detected at later times post-
transfection. Thus, the extents of syncytium formation induced
by the chimera and by wt G were compared at 24 h and 48 h
posttransfection by visualization of stained monolayers. Consis-
tent with the content-mixing assay data, syncytia were not visible
at 24 h posttransfection in Vero cell monolayers coexpressing the
188G-HN124 chimera and NiV F (Fig. 10A), while robust fusion
was obtained with wt G and F, as well as with NDV HN and F, but
not with NDV HN and NiV F. At 48 h posttransfection, some
chimera-triggered, NiV F-induced syncytium formation was de-
tected. However, at this time, fusion promotion by NiV G and F
(as well as NDV HN and F) was far more robust. Indeed, the
fusion in NiV G-F-expressing Vero cells after 48 h was so extensive
that the monolayer was almost completely destroyed (Fig. 10A).
Similar results were obtained in BHK-21F cells (data not shown).
We also obtained weak fusion at 48 h posttransfection in both
Vero and BHK-21F cells with a chimera (182G-HN124) (31) hav-
ing a shorter N-terminal, G-derived segment (data not shown).
Thus, the weak syncytium formation in Vero and BHK-21F
monolayers coexpressing the G-HN chimera and NiV F is visible
only at times when fusion promotion induced by wt NiV G and F
is so extensive that the monolayer is essentially destroyed.

Finally, since 293T cells are inherently more susceptible to syn-
cytium formation and these cells were used by the other group
(50), we also tested the 188G-HN124 chimera for its ability to
trigger NiV F-mediated fusion in these cells. In 293T monolayers,
NiV G and F gave extremely robust fusion after only 24 h (Fig.
10B). In these cells, NDV HN and F gave weaker, but clearly visi-
ble, syncytium formation at 24 h and much more robust fusion
after 48 h (Fig. 10B). However, no syncytium formation was visi-
ble in 293T cell monolayers coexpressing the 188G-HN124 chi-
mera and NiV F, even at 48 h posttransfection. They are indistin-
guishable from cells expressing only NiV F. Thus, we were unable
to demonstrate the triggering of NiV F by the 188G-HN124 chi-
mera in three different mammalian cell lines.

DISCUSSION

N-glycan shielding has been used effectively to probe the role of
the stalk region of both NDV HN (31) and MV H (26) in mediat-
ing the interaction with the cognate F protein. Inhibition of PIV5
fusion by the addition of an N-glycan at any of several positions
along the stalk of HN has also been reported, though the effect on
HN-F complex formation could not be determined (30). We have
even used this approach (31) to rule out a role for a domain in the
head of NDV HN previously predicted to be involved in mediating
the interaction with the F protein (51). All of these findings con-
firm that N-glycan addition can be used as a tool to probe the role

FIG 9 Chimera 188G-HN 124 does not trigger NiV F for fusion to a significant
extent, as detected in a reporter gene content-mixing assay. Cells were trans-
fected and the content-mixing assay was performed as described in the text
except that in some cases, upon mixing of the two cell populations, 5 mM
zanamivir (zana) was also added and left on the cells overnight until the assay
was performed. The data are expressed relative to those of wt NiV G and F.
Averages � standard deviations are shown for a minimum of six determina-
tions.
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of specific domains in the interaction between the paramyxovirus
attachment and fusion proteins.

In this study, we have used this approach to probe the role of
the stalk of NiV G in mediating the interaction with its cognate F
protein. Though the stalk spans residues 71 to 188, we could ex-
clude a significant portion of the membrane-distal part of the stalk
of G from playing a role in the F interaction based on the demon-
stration that a NiV G deletion mutant lacking stalk residues 146 to
182 retains the ability to interact with the homotypic F protein
(28). This enabled us to focus our analysis on the membrane-
proximal part of the stalk.

There are two preexisting N-linked glycosylation sites in the
NiV G stalk. One, just outside the membrane at position 72, is not
utilized (29). The second site, at position 159, is utilized, and its
deletion severely decreases fusion (29). To try to probe the role of
the base of the stalk in the F interaction, we attempted to introduce
glycosylation sites very close to the membrane at positions 75 and
79. However, similar to the nearby site at position 72, neither of
these sites was utilized for N-glycosylation. This may be related to
the proximity of the domain to the membrane.

However, all five of the potential N-linked sites introduced at
positions progressively more distal to the membrane were uti-
lized, resulting in N-glycan addition at position 85, 108, 115, 123,
or 133. Remarkably, all five overglycosylated proteins were ex-
pressed at levels comparable to that of wt NiV G with the lone
exception of N85 (62.6% of the wt level), and all exhibited recep-
tor binding activity comparable to that of the wt protein. Anal-
ogous to the studies with NDV and PIV5 HN, all five added
N-glycans severely impaired or completely eliminated fusion
promotion, with only the most membrane-proximal N85 mutant
promoting a detectable level of fusion, approximately 20% of that
of wt G.

Surprisingly, despite their defects in fusion promotion, all five
overglycosylated mutants retained the ability to interact with the
homologous F protein in coimmunoprecipitation assays, indicat-
ing that the loss of fusion for these mutants is not the result of a
block in G-F complex formation. This is in direct contrast to the
findings obtained with NDV HN in which N-glycan addition,
even quite distant from the putative F-interactive residues 89, 90,
and 94, blocks both fusion and HN-F complex formation (31).

FIG 10 Ability of the 188G-HN124 chimera to trigger NiV-F-mediated fusion of Vero and 293T cells. Shown are the extents of syncytium formation at 24 h and
48 h in Vero cells (A) and 293T cells (B) after transfection with NiV F plus either a vector (vec), wt G, chimera 188G-HN124, or NDV HN or with wt NDV HN
and F. The monolayers were fixed with methanol and stained with Giemsa stain at the indicated times posttransfection.
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Since the added N-glycans in the NiV G stalk are spaced at inter-
vals along the stalk, this suggests that the role of the stalk of NiV G
in its interaction with F is likely different from that of the stalk of
HN with NDV F. NiV G also likely differs from MV H in this
regard, as N-glycan addition near F-interactive residues 110, 114,
and 118 in the stalk of MV H blocks H-F complex formation (26).

Whereas the stalks of NDV HN and MV H entirely mediate the
interaction with F, this appears not to be the case for NiV. If a
domain in the NiV G stalk did entirely mediate the F interaction,
it seems reasonable to expect that at least one of the N-glycans
introduced at intervals along the stalk of G would eliminate this
interaction. We can speculate that the head region of G may also
be involved in making contact with the F protein. However, based
on the ability of the NiV G deletion mutant lacking stalk residues
146 to 182 to interact with F (28), it is unlikely that the head alone
entirely mediates G-F complex formation. A deletion of 37 resi-
dues in the stalk would be expected to result in a misalignment of
an F-interactive site in the globular domain of G with the comple-
mentary domain in F. If such a domain did entirely mediate the
interaction with F, glycoprotein complex formation would be
eliminated by the stalk deletion.

These findings are consistent with our inability to identify a
chimera having a NiV G-derived stalk and NDV HN-derived head
that can effectively complement NiV F for fusion and are in sharp
contrast to the demonstration that the head of NDV HN can be
replaced by that of hPIV3 HN (20) or even NiV G (32) and still
effectively trigger NDV F for fusion. This suggests that the trigger-
ing of NiV F by the G protein may involve a secondary contribu-
tion from the globular head of G in addition to its receptor bind-
ing activity. It even seems plausible that the G-F interaction may
be bidentate, involving domains in both the stalk and head of G,
accounting for our inability to eliminate complex formation by
interfering only with the stalk-mediated arm of the interaction.

Our findings with chimera 188G-HN124 are consistent with
this conclusion but stand in contrast to the report that zanamivir
treatment of glycoprotein-expressing 293T cells rendered this chi-
mera capable of triggering NiV F-mediated fusion of erythrocytes
(46). This treatment was ostensibly required to inhibit the NA
activity of the chimera, enabling it to stay attached to the target
membrane for an extended period. However, we were unable to
repeat this finding; chimera 188G-HN124 did not promote fusion
of either Vero or BHK-21F cells in a simple content-mixing assay
either with or without zanamivir treatment.

The lack of an effect of zanamivir is consistent with the mini-
mal NA activity of the chimera. It is not clear why zanamivir treat-
ment would be required to inhibit the NA activity of the chimera,
when it is not required for NDV HN-F-mediated fusion, despite
the more than 10-fold-greater NA activity of wt NDV HN. We did
go on to show that very weak syncytium formation could be de-
tected in Vero cell monolayers at a later time posttransfection.
However, at the same time point, monolayers expressing wt G and
F had essentially been obliterated. Thus, we have established that
the G-HN chimera triggers NiV F only very minimally compared
to the wt G protein. Again, this is in sharp contrast to the extensive
triggering of NDV F by chimeras having HN-derived heads that
bind sialic acid receptors (32). We propose that this points to a
secondary role for the head of G in fusion promotion in addition
to its receptor binding function.

This idea is made more tenable when one considers that the
NiV G ephrinB2 and -B3 and NDV HN sialic acid binding sites

colocalize at the center of the �-sheet propeller in the head of each
monomer (52). Apparently, an aspect of the triggering cascade in
HN by its binding to sialic acid receptors must be conserved in
NiV G’s binding to ephrinB2 and -B3, as evidenced by the ability
of HN-G chimeras to trigger robust NDV F-induced fusion. Thus,
it was reasonable to expect the reciprocal switch in receptors to
result in the efficient triggering of NiV F. But, we have shown that
it does not, indicating that binding to NiV receptors results in
aspects of the fusion-triggering cascade that are not a part of the
cascade induced by binding to sialic acid receptors. In other
words, the NiV fusion-triggering cascade is more complex than
that of NDV. We contend that the difference in NiV F-induced
fusion by wt G and the G-HN chimera is due to a deficiency in a
specific, yet-unidentified contribution from the head of G in the
chimeras, possibly even involving the interaction with F.

If the fusion deficiency of the NiV G stalk N-glycan mutants
cannot be accounted for by an interference with the interaction
with F, what, then, is responsible for the fusion-deficient pheno-
type of these mutants? This may be explained by the failure of all
four of the fusion-null glycosylation mutants to exhibit the Mab45
RBE characteristic of the wt G protein. NiV G and both of the
unglycosylated N75 and N79 mutants all exhibit nearly 2-fold
Mab45 RBE. Even the poorly fusogenic N85 mutant retains the
Mab45 RBE phenotype. However, none of the fusion-null mu-
tants with N-glycans added at more membrane-distal positions
exhibits Mab45 RBE. Indeed, in some cases, most notably those of
mutants N108 and N123, the binding of the antibody is actually
reduced in the presence of soluble receptor. This suggests that the
added N-glycans in the stalk may convert the protein to a post-
receptor-bound conformation even in the absence of receptor,
thus accounting for their defect in triggering. In this regard, these
stalk glycosylation mutants are similar to the I-to-A HeV stalk
mutants described by Bishop et al. (27). Mab45 likely binds to the
base of the NiV G head. Congruent with our findings, Aguilar et al.
reported that a receptor-induced conformational change in NiV G
depended on the presence of the stalk, suggesting a strong com-
munication between the head and stalk of NiV G (33). Our find-
ings confirm that the stalk can influence whether the head remains
in a pre-receptor-bound conformation or converts to a post-re-
ceptor-bound conformation.

In summary, we have shown that similar to the case with other
paramyxovirus attachment proteins, the addition of individual
N-glycans at several positions along the stalk of NiV G prevents
fusion promotion. However, in contrast to NDV HN and MV H,
this fusion deficiency does not correlate with the prevention of the
interaction with the homologous F protein. These data strongly
suggest that the contact(s) between NiV G and F in the fusion-
relevant complex are different, and possibly more complex, than
those between either NDV HN or MV H and the respective ho-
motypic F protein.
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