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Abstract  15 

The levels and distribution of standing genetic variation in a genome can provide a wealth of 16 

insights about the adaptive potential, demographic history, and genome structure of a population 17 

or species. As structural variants are increasingly associated with traits important for adaptation 18 

and speciation, investigating both sequence and structural variation is essential for wholly 19 

tapping this potential. Using a combination of shotgun sequencing, 10X Genomics linked reads 20 

and proximity-ligation data (Chicago and Hi-C), we produced and annotated a chromosome-level 21 

genome assembly for the Atlantic silverside (Menidia menidia) - an established ecological model 22 

for studying the phenotypic effects of natural and artificial selection - and examined patterns of 23 

genomic variation across two individuals sampled from different populations with divergent 24 

local adaptations. Levels of diversity varied substantially across each chromosome, consistently 25 

being highly elevated near the ends (presumably near telomeric regions) and dipping to near zero 26 

around putative centromeres. Overall, our estimate of the genome-wide average heterozygosity 27 

in the Atlantic silverside is the highest reported for a fish, or any vertebrate, to date (1.32-1.76% 28 

depending on inference method and sample). Furthermore, we also found extreme levels of 29 

structural variation, affecting ~23% of the total genome sequence, including multiple large 30 

inversions (> 1 Mb and up to 12.6 Mb) associated with previously identified haploblocks 31 

showing strong differentiation between locally adapted populations. These extreme levels of 32 

standing genetic variation are likely associated with large effective population sizes and may 33 

help explain the remarkable adaptive divergence among populations of the Atlantic silverside. 34 

 35 

 36 

  37 
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Introduction 38 

Standing genetic variation is widely recognized as the main source of adaptation (Barrett & 39 

Schluter 2008; Tigano & Friesen 2016) and is important for natural populations to maximize 40 

their potential to adapt to changes in their environment. As genetic diversity is the result of the 41 

interplay of mutation, selection, drift and gene flow, the levels and patterns of standing genetic 42 

variation found within a species can provide important insights not only about its adaptive 43 

potential but also about its demographic and evolutionary history. 44 

Traditionally, quantification of standing genetic variation has been based on sequence 45 

variation, often across a limited number of genetic markers, or small microsatellite repeats. As an 46 

increasing number of empirical studies shows the mosaic nature of the genome (Pääbo 2003) 47 

with different genomic regions showing vastly different levels of diversity and differentiation 48 

(e.g., Martinez Barrio et al. 2016; Campagna et al. 2017; Murray et al. 2017; Sardell et al. 2018), 49 

it is evident that small marker panels do not grant the resolution to describe variation in diversity 50 

across the genome (Dutoit et al. 2016). Furthermore, structural variation, including changes in 51 

the position, orientation, and number of copies of DNA sequence, is generally neglected as a 52 

type of standing genetic variation. Structural variation has been associated directly or indirectly 53 

with many traits involved in speciation and adaptation and is abundant in the few genomes in 54 

which they have been catalogued (Wellenreuther & Bernatchez 2018; Catanach et al. 2019; 55 

Lucek et al. 2019; Mérot et al. 2020; Tigano et al. 2020; Weissensteiner et al. 2020). Structural 56 

variants can directly affect phenotypic traits, such as the insertion of a repeated transposable 57 

element in the iconic case of industrial melanism in the peppered moth (Biston betularia; Van’t 58 

Hof et al. 2016), or may promote the maintenance of divergent haplotypes between locally 59 

adapted populations or groups (e.g. ecotypes or morphs) within single populations via 60 
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recombination suppression (e.g., Faria et al. 2019; Kess et al. 2020). Structural variation is 61 

therefore a key source of standing genetic variation, which can also play an important role in 62 

rapid evolutionary responses to environmental change (Reid et al. 2016). To better assess levels 63 

of standing variation and understand how demographic and evolutionary factors contribute to 64 

their distribution in the genome, we need to examine large proportions of the genome, preferably 65 

its entirety, and examine sequence and structural variation jointly. A high-quality reference 66 

genome for the species of interest is therefore fundamental as we need both broad coverage to 67 

accurately assess variation in levels of standing sequence variation across the genome, and high 68 

contiguity to investigate standing structural variation. 69 

The Atlantic silverside (Menidia menidia), a small coastal fish distributed along the 70 

Atlantic coast of North America, shows a remarkable degree of local adaptation in a suite of 71 

traits, including growth rate, number of vertebrae, and temperature-dependent sex determination 72 

(Hice et al. 2012), that are associated with strong environmental gradients across its wide 73 

latitudinal range. This species also provided the first discovery of temperature-dependent sex 74 

determination in fishes (Conover & Kynard 1981) and was one of the first species in which 75 

countergradient phenotypic variation was documented (Conover & Present 1990). Through 76 

extensive prior work, the Atlantic silverside has, in fact, become an important ecological model 77 

to study the phenotypic effects of selection, both natural and artificial, in the wild and under 78 

controlled conditions in the lab (Conover & Munch 2002; Conover et al. 2005; Hice et al. 2012). 79 

In one iconic experiment, wild-caught Atlantic silversides were subjected to different size-80 

selective regimes to investigate the potential of fisheries to induce evolutionary change in 81 

harvested species (Conover & Munch 2002). Seventeen years later, genomic analysis of fish 82 

from that experiment identified substantial allele frequency shifts associated with rapid 83 
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phenotypic shifts in growth rates (Therkildsen et al. 2019). In the absence of a reference genome, 84 

genomic reads were mapped to the silverside reference transcriptome, so only protein-coding 85 

regions of the genome were analyzed (‘in-silico’ exome capture). Yet, anchoring the 86 

transcriptome contigs to the medaka (Oryzias latipes) chromosome-level reference genome 87 

revealed that the most conspicuous allele frequency shifts clustered into a single block on 88 

chromosome 24, where more than 9,000 SNPs in strong linkage disequilibrium (LD) increased 89 

from low (< 0.05) to high frequency (~0.6) in only five generations. Additional data from natural 90 

populations across the geographical distribution of the species showed that this same block, 91 

likely spanning several Mb of the chromosome, was fixed for opposite haplotypes among wild 92 

silverside populations that naturally differ in growth rates (Conover & Present 1990; Conover & 93 

Munch 2002; Therkildsen et al. 2019). Moreover, three additional blocks comprising hundreds of 94 

genes in high linkage disequilibrium (LD) were found to be segregating among the natural 95 

populations, with each LD block (‘haploblocks’ hereafter) mapping predominantly to unique 96 

medaka chromosomes (Wilder et al. 2020). Similar to the haploblock on chromosome 24, 97 

opposite haplotypes in these haploblocks were nearly fixed between natural populations that 98 

otherwise showed low genome-wide pairwise differentiation. Furthermore, strong LD between 99 

genes in these blocks suggested that local recombination suppression, possibly due to inversions, 100 

and natural selection maintained these divergent haploblocks in the face of gene flow. It thus 101 

appears that large haploblocks play an important role in maintaining local adaptations in the 102 

Atlantic silverside, although the exact extent of the genome spanned by these haploblocks and 103 

the genomic mechanism maintaining LD are unknown. 104 

 Given the wealth of ecological information available for the Atlantic silverside and its 105 

potential as an evolutionary model to study adaptation and fishery-induced evolutionary change, 106 
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developing genomic resources for this species is timely and holds great potential for addressing 107 

many pressing questions in evolutionary and conservation biology. Previous population genomic 108 

analyses based on the transcriptome reference anchored to the medaka genome were limited to 109 

the coding genes and, given the unknown degree of synteny conservation between the Atlantic 110 

silverside and the medaka, how variants relevant to adaptation and fishery-induced selection 111 

clustered in the genome was uncertain. To enable analysis of both coding and non-coding 112 

regions, to accurately estimate levels and the genomic distribution of standing genetic variation, 113 

both sequence and structural, and to reconstruct the specific genomic structure of the Atlantic 114 

silverside genome, we produced a chromosome-level genome assembly for the species using a 115 

combination of genomic approaches. Because of known geographic differentiation, we estimated 116 

levels of sequence variation within genomes from both the southern and northern parts of the 117 

distribution and characterized standing structural variation between these two genomes. Finally, 118 

we tested whether the haploblocks identified on four different chromosomes between southern 119 

and northern populations were associated with large inversions as the patterns of differentiation 120 

and LD suggested (Therkildsen et al. 2019). Our work illustrates the wealth of information that 121 

can be obtained from the analysis of one or two genomes in the presence of a high quality 122 

reference sequence, and shows that, to the best of our knowledge, the Atlantic silverside has the 123 

highest nucleotide diversity reported for a vertebrate to date, and extreme levels of structural 124 

variation between two locally adapted populations. The distribution of diversity across the 125 

genome is strongly affected by structural variants and, seemingly, by genome features such as 126 

centromeres and telomeres. These results taken together highlight the importance of high-quality 127 

genomic resources as they enable the joint analysis of sequence and structural variation at the 128 

whole-genome level.  129 
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Methods 130 

Reference genome assembly 131 

We built a reference genome for the Atlantic silverside through three steps: First, we created a 132 

draft assembly using 10X Genomics linked-reads technology (10X Genomics, Pleasanton, CA, 133 

USA); second, we used proximity ligation data - Chicago® (Putnam et al. 2016) and Dovetail™ 134 

Hi-C (Lieberman-Aiden et al. 2009) - from Dovetail Genomics to increase contiguity, break up 135 

mis-joins, and orient and join scaffolds into chromosomes; and finally, we used short-insert reads 136 

to close gaps in the scaffolded and error-corrected assembly. The data were generated from 137 

muscle tissue dissected from two lab-reared F1 offspring of Atlantic silversides collected from 138 

the wild on Jekyll Island, Georgia, USA (N 31.02, W 81.43; the southern end of the species 139 

distribution range) in May 2017. For 10X Genomics library preparation, we extracted DNA from 140 

fresh tissue from one individual using the MagAttract HMW DNA Kit (Qiagen). Prior to library 141 

preparation, we selected fragments longer than 30 kb using a BluePippin device (Sage Science). 142 

A 10X Genomics library was prepared following standard procedure and sequenced using two 143 

lanes of paired-end 150 bp reads on a HiSeq2500 (rapid run mode) at the Biotechnology 144 

Resource Center Genomics Facility at Cornell University. To assemble the linked reads, we ran 145 

the program Supernova (Weisenfeld et al. 2017) from 10X Genomics with varying numbers of 146 

reads and compared assembly statistics to identify the number of reads that resulted in the most 147 

contiguous assembly. Tissue from the second individual was flash-frozen in liquid nitrogen and 148 

shipped to Dovetail Genomics, where Chicago and Hi-C libraries were prepared for further 149 

scaffolding. These long-range libraries were sequenced in one lane of Illumina HiSeq X using 150 

paired-end 150 bp reads. Two rounds of scaffolding with HiRise™, a software pipeline 151 

developed specifically for genome scaffolding with Chicago and Hi-C data, were run to scaffold 152 
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and error-correct the best 10X Genomics draft assembly using Dovetail long-range data. Finally, 153 

the barcode-trimmed 10X Genomics reads were used to close gaps between contigs. 154 

 For each of the intermediate and the final assemblies we produced genome contiguity and 155 

other assembly statistics using the assemblathon_stats.pl script from the Korf Laboratory 156 

(https://github.com/KorfLab/Assemblathon/blob/master/assemblath on_stats.pl) and assessed 157 

assembly completeness with BUSCO v3 (Simão et al. 2015) using the Actinopterygii gene set 158 

(4584 genes). 159 

We estimated the genome size and heterozygosity (i.e. the nucleotide diversity π within a 160 

single individual) from the raw 10X Genomics data using a k-mer distribution approach. We 161 

removed barcodes with the program longranger basic, trimmed all reads to the same length of 162 

128 bp (as read length is in the equation to estimate genome size) with cutadapt (Martin 2011), 163 

and estimated the distribution of 25-mers using Jellyfish (Marçais & Kingsford 2011). Finally, 164 

we analyzed the 25-mers distribution with the web application of GenomeScope (Vurture et al. 165 

2017), which runs mixture models based on the binomial distributions of k-mer profiles to 166 

estimate genome size, heterozygosity and repeat content.  167 

  168 

Synteny with medaka 169 

The chromosome-level genome assembly of medaka (Oryzias latipes) was used by Therkildsen 170 

et al. (2019) to order and orient contigs of the Atlantic silverside transcriptome (Therkildsen & 171 

Baumann 2020). Although the two species carry the same number of chromosomes (Uwa & 172 

Ojima 1981; Warkentine et al. 1987) and few interchromosomal rearrangements have been 173 

observed between other species within the Atherinomorpha clade (Amores et al. 2014; Miller et 174 

al. 2019), the estimated divergence time between medaka and Atlantic silverside is 91 million 175 
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years (estimate based on 15 studies, timetree.org) and the degree of syntenic conservation 176 

between the two species was unknown. We assessed synteny between the two species using the 177 

newly assembled Atlantic silverside reference genome. We aligned the silverside genome to the 178 

medaka genome (GenBank assembly accession GCA_002234675.1) with the lastal program in 179 

LAST (Kiełbasa et al. 2011; Frith & Kawaguchi 2015) using parameters optimized for distantly 180 

related species (-m100 -E0.05). Given the deep divergence between the two species, we kept 181 

low-confidence alignments (last-split -m1). We filtered alignments shorter than 500 bp and 182 

visualized syntenic relationships only for silverside scaffolds longer than 1 Mb (‘chromosome 183 

assembly’, see below) using the software CIRCA (omgenomics.com/circa). 184 

 185 

Repeat and gene annotation 186 

We annotated the Atlantic silverside genome using a combination of the BRAKER2 (Hoff et al. 187 

2019) and MAKER (Holt & Yandell 2011) pipelines, which combine repeat masking, ab initio 188 

gene predictor models and protein and transcript evidence for de novo identification and 189 

annotation of genes. To annotate repetitive elements, we first identified repeats de novo in the 190 

Atlantic silverside genome using Repeatmodeler (Smit & Hubley 2008) and NCBI as a search 191 

engine and combined the resulting species-specific library with a library of known repeats in 192 

teleosts (downloaded from the RepBase website (Bao et al. 2015) in July 2018). The merged 193 

libraries were then used to annotate repeats in the Atlantic silverside genome with Repeatmasker 194 

(Smit et al. 2015). We then filtered annotated repeats to only keep complex repeats for soft-195 

masking. Next, we used BRAKER2 to train AUGUSTUS (Stanke et al. 2006; Stanke et al. 2008; 196 

Buchfink et al. 2015) on the soft-masked genome with unpublished mRNA-seq evidence from 24 197 

Atlantic silverside individuals from different populations and developmental stages, along with 198 
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protein homology evidence from six different teleost species (medaka [Oryzias latipes], tilapia 199 

[Oreochromis aureus], platyfish [Xiphophorus maculatus], zebrafish [Danio rerio], stickleback 200 

[Gasterosteus aculeatus] and fugu [Takifugu rubripes]), which were downloaded from 201 

ensemble.org (Ensembl 98; Cunningham et al. 2019) and the UniProtKB (Swiss-Prot) protein 202 

database. Second, we ran five rounds of annotation in MAKER using different input datasets. The 203 

first round of MAKER was performed on the genome with only complex repeats masked using 204 

the non-redundant transcriptome of Atlantic silverside (Therkildsen and Palumbi 2017, 205 

Therkildsen and Baumann 2020) as mRNA-seq evidence, and the six protein sequence datasets 206 

from other species as protein homology evidence. We then trained SNAP (Korf 2004) on the 207 

output of the initial MAKER run for ab initio gene model prediction. We ran MAKER a second 208 

time adding the SNAP ab initio gene predictions. Using the MAKER output from this second 209 

round, we re-trained SNAP and ran MAKER three additional times (round 3 to 5) including the 210 

updated SNAP gene predictions, the AUGUSTUS gene predictions from BRAKER2 and the 211 

updated MAKER annotation. 212 

Lastly, we performed a functional annotation using Blast2GO in Omnibox v.1.2.4 (Götz 213 

et al. 2008) utilizing the UniProtKB (Swiss-Prot) database and InterProScan2 results. Annotated 214 

Atlantic silverside nucleotide sequences for all predicted genes were blasted against the 215 

UniProtKB database using DIAMOND v. 0.9.34 (Buchfink et al. 2015) with an e-value cutoff of 216 

10-5. InterProScan2 was used to annotate proteins with PFAM and Panther annotations and 217 

identify GO terms. Blast2GO default mapping and annotation steps were performed using both 218 

lines of evidence to create an integrated annotation file.  219 

  220 

 221 
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Comparison of sequence and structural standing genetic variation between populations 222 

As Atlantic silversides from Georgia show strong genomic differentiation from populations 223 

further north, primarily concentrated in large haploblocks on four chromosomes (Therkildsen et 224 

al. 2019; Wilder et al. 2020), we also sequenced the genome of a representative individual from 225 

Mumford Cove, Connecticut, USA (N 41.32°, W 72.02°) collected in June 2016 for comparison. 226 

Genomic DNA was extracted from muscle tissue using the DNeasy Blood and Tissue kit 227 

(Qiagen) and normalized to 40 ng/μl. We prepared a genomic DNA library using the TruSeq 228 

DNA PCR-free library kit (Illumina) following the manufacturer’s protocol for 550 bp insert 229 

libraries. The shotgun library was sequenced using paired-end 150 bp reads on an Illumina 230 

HiSeq4000. 231 

We estimated genome size and heterozygosity from the raw data from this shotgun 232 

library using the same k-mer approach as for the Georgia individual described above. To 233 

compare our heterozygosity estimates in Atlantic silversides from Connecticut and Georgia with 234 

other fish species, we searched the literature for heterozygosity estimates from Genomescope 235 

with the keywords “Genomescope heterozygosity fish”, or from variant calling methods in other 236 

fish genomes, using Google Scholar. We also estimated heterozygosity directly by calculating 237 

the proportion of heterozygous sites in each genome. For the Georgia individual we used the 238 

processed 10X data as above. For the Connecticut individual we trimmed adapters and low-239 

quality data from the raw shotgun data in Trimmomatic (Bolger et al. 2014). We mapped data 240 

from the two libraries to the chromosome assembly (only the largest 27 scaffolds - see Results) 241 

with bwa mem (Li & Durbin 2009) and removed duplicates with samblaster (Faust & Hall 2014). 242 

We called variants with bcftools mpileup and bcftools call (Danecek et al. 2014). As areas of the 243 

genome covered by more than twice the mean sequencing depth could represent repetitive areas 244 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.357293doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357293
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

or assembly artefact, we calculated genome coverage for each of the two libraries with 245 

genomeCoverageBed from BEDtools (Quinlan & Hall 2010) and identified the depth mode from 246 

the calculated distribution (95x for the southern genome and 74x for the northern genome). We 247 

then filtered variants that were flagged as low-quality, that had mapping quality below 20, 248 

sequencing depth below 20, and more than twice the mode sequencing depth for each of the two 249 

libraries using bcftools filter (Li et al. 2009). To accurately estimate the proportion of 250 

heterozygous sites in the genome, we subtracted the number of sites that had sequencing depth 251 

below 20 and above twice the mode sequencing depth from the total genome size (to get the sum 252 

of sites that could be identified as either homozygous or heterozygous based on our criteria). To 253 

visualize variation along the genome, we plotted estimates of heterozygosity in 50-kb sliding 254 

windows along the genome for each of the two individuals using the qqman package (Turner 255 

2014) in R (R Core Team 2019). To assess the reduction in diversity in protein-coding regions 256 

due to positive and purifying selection, we calculated heterozygosity in the regions annotated as 257 

coding sequences only and compared this to the genome-wide estimate.  258 

Finally, we identified structural variants (SVs) segregating between the Connecticut and 259 

Georgia genomes using Delly2 v.0.8.1 (Rausch et al. 2012). For this analysis we used the 260 

shotgun library data (74x coverage) from Connecticut mapped to the Georgia reference genome 261 

as described above. We called SVs using the command delly call and default settings. As 262 

genotyping a single individual in Delly is prone to false positives we applied the following 263 

stringent filters: We retained only homozygous SVs (vac=2) that passed quality filters (PASS) 264 

and that had at least 20 reads supporting the variant calls, whether they came from paired-end 265 

clustering or split-read analysis or a combination of the two, but not more than 100 reads since 266 

these could be due to repetitive elements in the genome. As Delly2 outputted redundant 267 
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genotypes, e.g. inversions that had slightly different breakpoints were reported as independent 268 

variants, we used bedtools merge to merge these overlapping features. To validate duplication 269 

calls we also calculated coverage for each of these variants and retained only those putative 270 

duplications that had coverage more than 1.8-fold the whole genome sequencing depth (74x). 271 

To confirm the large SVs observed between the two genomes examined, we generated a 272 

second Hi-C library from an Atlantic silverside individual caught in Mumford Cove, Connecticut 273 

in June 2016 (different from the sample used for the shotgun assembly). Liver tissue was excised 274 

and digested for 2 hours in collagenase digestion buffer (perfusion buffer plus 12.5 μM CaCl2 275 

plus collagenases II and IV (5 mg/ml each)). The cell suspension was then strained through a 100 276 

μm cell strainer, washed with 1 ml cold PBS three times, resuspended in 45 ml PBS, and 277 

quantified in a hemocytometer. The cross-linking protocol was modified from Belton et al. 278 

(2012) as follows. 1.25 ml of 37% formaldehyde was added twice to the cell preparation, then 279 

incubated at room temperature for 10 minutes, inverting every 1-2 minutes. To quench the 280 

formaldehyde in the reaction, 2.5 ml of 2.5 M glycine was added three times. The sample was 281 

incubated at room temperature for 5 minutes, then on ice for 15 minutes to stop the cross-linking. 282 

The cells were pelleted by centrifugation (800g for 10 min), and the supernatant was removed. 283 

The sample thus obtained was flash frozen in liquid nitrogen and stored at -80℃. Hi-C library 284 

preparation was performed as described previously (Belaghzal et al. 2017), except that ligated 285 

DNA size selection was omitted. 50 million fish liver cells were digested with DpnII at 37℃ 286 

overnight. DNA ends were filled with biotin-14-dATP at 23℃ for 4 hours. DNA was then 287 

ligated with T4 DNA ligase at 16℃ overnight. Proteins were removed by treating ligated DNA 288 

with proteinase-K at 65℃ overnight. Purified, proximally ligated molecules were sonicated to 289 

obtain an average fragment size of 200 bp. After DNA end repair, dA-tailing and biotin pull 290 
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down, DNA molecules were ligated to Illumina TruSeq sequencing adapters at room temperature 291 

for 2 hours. Finally, the library was PCR-amplified and finalized following the Illumina TruSeq 292 

Nano DNA Sample Prep kit manual. Paired-end 50 bp sequencing was performed on a 293 

HiSeq4000. 294 

The two Hi-C libraries from Connecticut and Georgia (the latter prepared by Dovetail) 295 

were mapped to the Atlantic silverside chromosome assembly using the Distiller pipeline 296 

(github.com/mirnylab/distiller-nf). Interaction matrices were binned at 50 and 100 kb resolution 297 

and intrinsic biases were removed using the Iterative Correction and Eigenvector decomposition 298 

(ICE) method (Imakaev et al. 2012). Large inversions (> 1 Mb) were identified by visual 299 

inspection of Hi-C maps as discontinuities that would be resolved when the corresponding 300 

section of the chromosomes were to be inverted (Dixon et al. 2018; Corbett-Detig et al. 2019). 301 

These discontinuities generate a distinct “butterfly pattern” with signals of more frequent Hi-C 302 

interactions where the projected coordinates of the breakpoints meet. 303 

 304 

Results 305 

Genome assembly and assessment of completeness 306 

We obtained the best draft assembly (with the highest contiguity; N50 = 1.3 Mb) from the 10X 307 

data when we used 270 million reads as input to Supernova. Contiguity increased more than 2-308 

fold with Dovetail Chicago data (scaffold N50 = 2.9 Mb) and more than 10-fold with Dovetail 309 

Hi-C data (scaffold N50 = 18.2 Mb). Summary statistics for each of the intermediate genome 310 

assemblies (10X, Dovetail Chicago, and Dovetail Hi-C) are presented in Table 1. The final 311 

assembly – including scaffolds longer than 1 kb only – was 620 Mb in total length. Overall, this 312 

assembly showed high contiguity, high completeness and a low proportion of gaps (Table 1). 313 
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Analysis of the presence of BUSCO genes showed that only 5.9% of the Actinopterygii gene set 314 

were missing from the assembly. Although the number of missing genes did not decrease 315 

dramatically from the 10X assembly to the final assembly (from 6.6 to 5.9%), the addition of 316 

proximity ligation data (Chicago and Hi-C) increased the number of complete genes (from 88.1 317 

to 89.6%) and decreased the number of duplicated (from 4.1 to 2.9%) and fragmented genes 318 

(from 5.3 to 4.5%). Contiguity did not come at the cost of increased gappiness, as stretches of 319 

N’s made up only 3% of the final assembly. The reduction of the assembly to its longest 27 320 

scaffolds (‘chromosome assembly’- a 25% reduction in sequence) increased missing genes by 321 

only 3.1% and reduced duplicated genes to 1.9%. K-mer analyses based on raw data from the 322 

reference genome estimated a genome size of 554 Mb, 76 Mb shorter than the final assembly and 323 

88 Mb longer than the chromosome assembly. 324 

  325 

Synteny with Medaka 326 

The alignment of the 27 largest Atlantic silverside scaffolds to the medaka genome revealed a 327 

high degree of synteny conservation, especially considering the evolutionary distance between 328 

the two species. Each Atlantic silverside scaffold mapped mostly to only one medaka 329 

chromosome, and 22 of the 24 medaka chromosomes had matches with only one Atlantic 330 

silverside scaffold each (Fig. 1). Two medaka chromosomes, 1 and 24, had matches with three 331 

and two silverside scaffolds, respectively (Fig. 1). Based on these results, karyotype data 332 

confirming that the medaka and silverside have the same number of chromosomes (Uwa & 333 

Ojima 1981; Warkentine et al. 1987), and additional support from the Hi-C data from the 334 

Connecticut individual, we ordered and renamed the Atlantic silverside scaffolds according to 335 

the orthologous medaka chromosomes. We grouped the three and two scaffolds that mapped to 336 
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medaka chromosomes 1 and 24, respectively, into one pseudo-chromosome each and renamed 337 

them accordingly. Although we did not observe large interchromosomal rearrangements in the 338 

alignment of the silverside and medaka genomes (Fig. 1), intrachromosomal rearrangements 339 

were common (Fig. 1; Fig. S1). The most conspicuous chromosomal rearrangements were large 340 

inversions, intrachromosomal translocations and duplications (Fig. 1; Fig. S1). On chromosomes 341 

8, 11, 18 and 24, where large geographically differentiated haploblocks were identified among 342 

natural silverside populations, several translocations and inversions were evident, indicating poor 343 

intrachromosomal synteny (Fig. 1). This was also the case for most of the other chromosomes 344 

(Fig. S1). 345 

  346 

Repeat and gene annotation 347 

The identified repetitive elements made up 17.73% of the Atlantic silverside genome, in line 348 

with expectations based on fish species with similar genome sizes (Yuan et al. 2018). The 349 

biggest proportion of these repeats was made up of interspersed repeats (15.34% of the genome), 350 

while transposable elements constituted 8.83% of the genome overall (0.90% of SINEs, 2.79% 351 

of LINEs, 1.54% of LTR elements, and 3.60% of DNA elements). Our gene prediction pipeline 352 

identified a total of 21,644 protein coding genes, a number consistent with annotated gene counts 353 

in other fish species (Lehmann et al. 2019; Ozerov et al. 2018). Analysis in Blast2GO based on 354 

homology and InterProScan2 resulted in functional annotation of 17,602 out of the 21,644 355 

protein coding genes (81.3%; https://github.com/atigano/Menidia_menidia_genome/annotation/). 356 

Further, InterProScan2 detected annotations (Panther or PFAM) for an additional 1,511 genes, 357 

for which no BLAST results were obtained. 358 

 359 
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Sequence and structural standing variation 360 

K-mer analyses based on raw data resulted in similar estimates of genome sizes and levels of 361 

heterozygosity in the two samples from Georgia and Connecticut: genome size estimates differed 362 

by 20 Mb (554 Mb and 535 Mb in the Georgia and Connecticut individual, respectively) and 363 

heterozygosity estimates differed by 0.09% (1.76% and 1.67% in Georgia and Connecticut, 364 

respectively). Direct estimates of heterozygosity, i.e. based on the number of called heterozygous 365 

sites in the genome, were slightly lower and differed by 0.14% between individuals (1.32% and 366 

1.46% in Georgia and Connecticut, respectively). Together, these estimates concordantly 367 

indicate that standing sequence variation in this species is very high (Kajitani et al. 2014), with 1 368 

in every ~66 bp being heterozygous within each individual. These heterozygosity estimates are 369 

higher than all comparable estimates reported for other fish species, though of similar magnitude 370 

to the European sardine and two eel species (Table 2). Heterozygosity varied substantially across 371 

the genome. Within each chromosome, heterozygosity was highest toward the edges of each 372 

chromosome, presumably in areas corresponding to telomeres, decreased towards the center in a 373 

U-shape fashion, and showed a deep dip in which the number of heterozygous sites approached 374 

zero, consistent with the location of putative centromeres (Fig. 2b). Additionally, the proportions 375 

of variable sites in coding regions was ~50% of whole genome level estimates (0.68% and 376 

0.70% in Georgia and Connecticut, respectively). Swaths of low heterozygosity were particularly 377 

evident on chromosomes 18 and 24, two of four chromosomes with highly differentiated 378 

haploblocks (Fig. 2a,b). 379 

We identified a total of 4,900 SVs - including insertions, deletions, duplications and 380 

inversions (Supplementary File) - between the reference genome generated from Georgia 381 

samples and the re-sequenced individual from Connecticut. Delly2 indicated that insertions were 382 
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small (42-83 bp) and affected a negligible proportion of the genome, while deletions were larger 383 

and more abundant, covering 15% of the genome sequence. As an insertion in one genome 384 

corresponds to a deletion in the other genome depending on which individual is used as 385 

reference, the discrepancy between insertions and deletions is an artefact of mapping short-read 386 

sequences to a single reference, i.e. inserted sequences found only in Connecticut are not present 387 

in the reference and thus are not mapped. These results highlight the difficulties in identifying 388 

insertions and estimating their sizes from short reads. Our analysis detected a small number of 389 

duplications, covering only 0.1% of the genome. In contrast, we identified 662 inversions 390 

ranging from 203 bp to 12.6 Mb in size. In total, inversions affected 109 Mb, or 23%, of the 391 

reference genome sequence. Twenty-nine inversions were larger than 1 Mb, and five larger than 392 

5 Mb (genomic locations in Fig. 2a and in Supplementary File). Delly2 identified large 393 

inversions (> 1 Mb) on all four chromosomes with previously identified haploblocks  . The 394 

largest inversion (~12 Mb) was identified on chromosome 8; chromosome 11 had two 1.2-Mb 395 

inversions that were 7 Mb apart; chromosome 18 had a 7.4 Mb inversion and chromosome 24 396 

had two inversions, the first one spanning 9.4 Mb and followed by another one at a distance of 397 

76 kb, spanning 2.3 Mb (Fig. 2a).  398 

  The independent Hi-C data from Connecticut (which was not used for genome 399 

scaffolding) supported a high degree of accuracy in the overall assembly into chromosomes, as 400 

indicated by the strong concentration of data points along the diagonal rather than elsewhere in 401 

the contact maps (Fig. 3). The contact maps also readily detected large-scale inversions (> 1 Mb) 402 

between the individual from Connecticut and the reference assembly from Georgia in three of the 403 

four chromosomes with haploblocks, i.e. 8, 18, and 24 (Fig. 3, Supplementary File). The missed 404 

detection of the inversions on chromosome 11 could either be due to their relatively smaller 405 
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sizes, barely exceeding the detection threshold from Hi-C data, or because both inversion 406 

orientations segregate where the Connecticut individual used for Hi-C was sampled (Wilder et al. 407 

2020). The breakpoints of the 12.6 and 9.4 Mb inversions on chromosomes 8 and 24, 408 

respectively, matched very closely those identified by Delly2, although the second 2.3 Mb 409 

inversion on chromosome 24 was not supported by Hi-C data (Figs. 2a, 3, Supplementary File). 410 

On chromosome 18, Hi-C data showed a complex series of nested and/or adjacent inversions 411 

spanning ~8.8 Mb in total, in contrast with the single inversion, and ~1.3 Mb shorter, identified 412 

by Delly2 (Figs. 2a, 3, Supplementary File). Additional large inversions were detected from the 413 

Hi-C data on chromosomes 4, 7 and 19. Of these, the inversion on chromosome 19 was not 414 

identified from the analysis of shotgun data with Delly2, while those on chromosome 4 and 7 415 

were, although with only one matching breakpoint for the inversion on chromosome 4 (Figs. 2a, 416 

3, Supplementary File). Note that the identification of SVs from shotgun and Hi-C data were 417 

carried out by two different authors, and blindly from each other. 418 

 419 

Discussion 420 

We generated a chromosome-level assembly of the Atlantic silverside genome by integrating 421 

long-range information from synthetic long reads from 10X Genomics, in vitro proximity 422 

ligation data from Chicago libraries, and Hi-C proximity ligation data from whole cells. The 423 

resulting assembly had high contiguity and completeness. Based on karyotype information (Uwa 424 

& Ojima 1981; Warkentine et al. 1987), chromosome-level synteny with medaka, and Hi-C maps 425 

we reduced the 27 largest scaffolds to 24 putative chromosomes. This chromosome assembly is 426 

88 Mb shorter than the genome size estimated through k-mer analysis, but has a lower number of 427 

duplicated genes, and only slightly fewer missing genes than the full assembly despite a 428 
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substantial reduction in total sequence. If the proportion of complete genes in the chromosome 429 

assembly is, in fact, a good proxy for genome completeness, then the scaffolds that are not 430 

placed in chromosomes are mostly sequences that are repetitive, redundant, or that should fill 431 

gaps in the assembled chromosomes.  432 

Heterozygosity within a sequenced individual can result in alternative alleles getting 433 

assembled into distinct scaffolds, even in genomes much less heterozygous than the Atlantic 434 

silverside (Kajitani et al. 2014; Tigano et al. 2018), so we expect some redundancy in our 435 

assembly. Considering the abundance of SVs between the two sequenced individuals, structural 436 

variation also may have contributed to the high number of smaller scaffolds not included in the 437 

chromosome assembly, as heterozygous SVs are notoriously hard to assemble (Huddleston et al. 438 

2017). Nonetheless, the Atlantic silverside genome adds to the increasing number of high-quality 439 

fish reference genome assemblies, with the sixth highest contig N50 (202.88 kb) and the sixth 440 

highest proportion of the genome contained in chromosomes (84%, based on the genome size 441 

estimate from the k-mer analysis) compared to 27 other chromosome-level fish genome 442 

assemblies (Lehmann et al. 2019). 443 

Patterns of synteny between the Atlantic silverside and the relatively distantly related 444 

medaka are consistent with comparisons among other teleost genomes up to hundreds of millions 445 

of years diverged: rearrangements are rare among chromosomes but common within (Amores et 446 

al. 2014; Rondeau et al. 2014; Miller et al. 2019; Pettersson et al. 2019). Consistent with this, 447 

anchoring Atlantic silverside transcriptome contigs on to medaka genome enabled the 448 

identification of four large haploblocks associated with fishery-induced selection in the lab 449 

and/or putative adaptive differences in the wild (Therkildsen et al. 2019; Wilder et al. 2020). 450 

However, the high degree of intrachromosomal rearrangements between the two species, and 451 
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generally among teleosts, prevented an accurate characterization of the extent of these 452 

haploblocks and the analysis of structural variation. Differentiation between the northern and 453 

southern haplotypes seemed to extend across almost the entire length of three of the four 454 

chromosomes with haploblocks when data were oriented to medaka (Therkildsen et al. 2019; 455 

Wilder et al. 2020). However, the abundant intrachromosomal rearrangements between medaka 456 

and Atlantic silverside chromosomes (Fig. 1; Fig. S1), and the detection of large inversions in 457 

each of these four chromosomes (Figs. 2a,3) suggest that differentiation is concentrated in, and 458 

possibly maintained by, these inversions, which, albeit large, do not span whole chromosomes. 459 

Our analysis of two genomes sequenced at high coverage suggested that levels of 460 

standing genetic variation, both sequence and structural, are extremely high in the Atlantic 461 

silverside. To our knowledge, our estimates of heterozygosity in a single individual are the 462 

highest reported for any fish species to date, including those with large census population sizes 463 

(Table 2). For example, heterozygosity, which is equivalent to nucleotide diversity (π) in one 464 

individual, in one single Atlantic silverside genome was higher than, or on par with, π estimates 465 

based on 43-50 individuals of Atlantic killifish, a species considered to have ‘extreme’ levels of 466 

genomic variation with π ranging from 0.011 to 0.016 (Reid et al. 2017, 2016). Compared to 467 

other vertebrates, genome heterozygosity in the Atlantic silverside was more than double the 468 

highest estimate reported for birds (0.7% in the thick-billed murre Uria lomvia; Tigano et al. 469 

2018) and higher than the population-based 0.6-0.9% estimates in the rabbit (Oryctolagus 470 

cuniculus), one of the mammals with the highest genetic diversity (Carneiro et al. 2014). Among 471 

a collection of genome-wide π estimates - mostly population-based - across 103 animal, plant 472 

and fungal populations or species, only three insects and one sponge had π estimates higher than 473 

the Atlantic silverside (Robinson et al. 2016 and references therein). This unusually high level of 474 
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standing sequence diversity is likely due to huge population sizes with estimated Ne exceeding 475 

100 million individuals (Lou et al. 2018), and may underpin the remarkable degree of adaptive 476 

divergence and rapid responses to selection documented for the species. 477 

Variation in π across the genome has been associated with variation in recombination 478 

rates, with higher diversity and recombination rates in smaller chromosomes and in proximity of 479 

telomeres in fish, mammals and birds (Ellegren 2010; Murray et al. 2017; Sardell et al. 2018; 480 

Tigano et al. 2020). In the Atlantic silverside, the decrease of heterozygosity from the ends 481 

towards the center of each chromosome is consistent with decreasing recombination rates as 482 

distance from the telomeres increases (Haenel et al. 2018; Sardell et al. 2018). However, in 483 

addition to this U-shape pattern, heterozygosity shows a dramatic, narrow dip in each 484 

chromosome far from the center of chromosomes, suggesting a strong centromere effect. 485 

Although striking differences exist between sexes and across taxa, recombination is generally 486 

reduced or suppressed around centromeres (Sardell & Kirkpatrick 2020). The Atlantic silverside 487 

karyotype, with only four metacentric and 20 non-metacentric chromosomes (i.e. submetacentric, 488 

subacrocentric, and acrocentric; Warkentine et al. 1987), further supports that these dips in 489 

heterozygosity are associated with centromeres, as the non-metacentric chromosomes enable the 490 

distinction between the effect of centromeres from the effect of distance from telomeres. In 491 

forthcoming work, linkage mapping will allow us to quantify the relative effects of centromeres 492 

and telomeres on local recombination rates and ascertain whether the recombination landscape is 493 

different between sexes.  494 

We report a 50% reduction in heterozygosity in coding sequences compared to whole 495 

genome estimates, confirming the expectation that estimates based on exome data are not 496 

representative of whole-genome levels of standing variation. Even though the magnitude of the 497 
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reduction in π within coding regions is similar to levels reported in the Atlantic killifish (Reid et 498 

al. 2017) and in the butterfly Heliconius melpomene (Martin et al. 2016), a substantially greater 499 

reduction is seen in the collared flycatcher (86%; Dutoit et al. 2017), suggesting that the 500 

distribution of diversity in a genome, including the difference between coding and non-coding 501 

sequence, is likely idiosyncratic to the population or species examined. Once again, a paucity of 502 

data from other species prevents us from making generalizations or identifying differences on the 503 

expected reduction in diversity in coding compared to non-coding regions across taxa, while at 504 

the same time it highlights the importance of estimating and reporting basic diversity statistics 505 

for whole genome assemblies. 506 

We identified 4,900 structural variants that survived the stringent filters applied to 507 

maximize confidence in the identified SVs and to minimize the number of false positives due to 508 

genotyping one individual only. Our estimates are likely conservative when we consider that we 509 

filtered out all heterozygous SVs, that many SVs, particularly complex ones, are hard to identify 510 

or characterize (Chaisson et al. 2019), and that we analyzed only two genomes. Nonetheless, our 511 

analyses based on shotgun data show that SVs are abundant, affect a large proportion of the 512 

genome, with inversions covering up to 23% of the genome sequence, and range in size from 513 

small (< 50 bp) to longer than 10 Mb, with many of the largest inversions further supported by 514 

independent Hi-C data. Sunflower species of the genus Helianthus show a similar proportion of 515 

sequence covered by inversions (22%; Barb et al. 2014), although these were detected in 516 

comparisons between species (1.5 million years diverged) rather than within species. The few 517 

studies available on other species show that structural variation tends to affect a larger portion of 518 

the genome than single nucleotide polymorphisms (SNPs), but in proportions far lower than what 519 

we report here for the Atlantic silverside. For example, structural variation, including indels, 520 
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duplication and inversions, covered three times more bases than SNPs did across six individuals 521 

of Australian snapper (Chrysophrys auratus; Catanach et al. 2019); short indels alone affected 522 

4% of the genome of two individuals from the same population in the cactus mouse (Peromyscus 523 

eremicus; Tigano et al. 2020); inversions, duplications and deletions combined affected 3.6% of 524 

the genome across 20 individuals of Tinema stick insects (Lucek et al. 2019); and in cod (Gadus 525 

morhua) inversions covered ~7.7% of the genome (Wellenreuther & Bernatchez 2018 and 526 

references therein). Although levels of structural variation in the Atlantic silverside are extreme 527 

in comparison to these studies, a direct comparison with these and other species is hampered by a 528 

paucity of data and lack of common best practices for SVs genotyping (Mérot et al. 2020): 529 

differences in sampling, approaches, data types and filtering prevent comparisons similar to 530 

those made for standing sequence variation here and in other studies (Corbett-Detig et al. 2015; 531 

Robinson et al. 2016). Given the fast rate at which high-quality reference genomes are now 532 

generated, this will hopefully start to change.  533 

The simple and affordable strategy we adopted only requires sequencing of a single 534 

additional shotgun library prepared from a second individual - possibly from a differentiated 535 

population to capture a broader representation of intraspecific variation - and could be easily 536 

applied in other studies to start describing variation in the prevalence and genome coverage of 537 

SVs across taxa. Here, an additional Hi-C library then allowed us to discover that the putative 538 

inversion on chromosome 18 was larger than indicated by the analysis of shotgun data and was 539 

actually constituted by a combination of two or more nested inversions. The apparent 540 

discrepancy between the breakpoints of the largest inversions identified using the two data types 541 

could reflect biological variation between the individuals analyzed. Alternatively, they may be 542 

caused by the different strengths and limitations of the underlying analytical approaches, 543 
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including the fact that the identification of SVs was computational from shotgun data, while it 544 

was manually curated from Hi-C data. Although the analysis of only two individuals does not 545 

capture the full spectrum of intra- and inter-population variation, integrating different approaches 546 

has allowed us to identify a set of high-confidence SVs to be validated and genotyped in a larger 547 

number of individuals with lower coverage data (Mérot et al. 2020). 548 

The joint analysis of sequence and structural variation reveals interesting features of the 549 

previously identified haploblocks. The chromosome-level assembly of the Atlantic silverside 550 

genome a) confirms that previously identified large haploblocks (Wilder et al. 2020) are 551 

associated with inversions and allows to measure their real extent ; and b) highlights how 552 

genomic heterogeneity is multidimensional by revealing that even haploblocks showing similar 553 

patterns of differentiation can show vastly different patterns of genetic diversity. On 554 

chromosomes 18 and 24, large swaths of reduced heterozygosity (Fig. 2b) are associated with an 555 

inversion affecting the same area, which strongly indicates that the inversion promotes 556 

differentiation between genomes from Connecticut and Georgia in this region, likely through 557 

suppressed recombination. Of note, however, the segment of chromosome 24 preceding the 558 

inversion (0-722 kb) shows an even stronger reduction in heterozygosity than the adjacent 559 

inversion. While this additional reduction may be due to stronger recombination suppression in 560 

this area, the mechanism explaining this pattern remains to be investigated. In contrast, no 561 

reduction in diversity is associated with the inversion on chromosome 8 - the largest of them all 562 

(12.6 Mb) - or with the smaller inversions on chromosome 11.  Such differences among 563 

haploblocks likely reflect idiosyncratic evolutionary histories and adaptive significance of the 564 

underlying inversions, whose investigation is now enabled by the chromosome-level genome 565 

assembly that we presented here. Hence, our analyses provide an empirical example of the 566 
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importance of analyzing both sequence and structural variation to understand the mechanism 567 

underpinning the heterogeneous landscape of genomic diversity and differentiation.  568 

Building on prior analysis based on in silico exome capture (Therkildsen & Palumbi 569 

2017; Therkildsen et al. 2019; Therkildsen & Baumann 2020), this newly assembled reference 570 

genome provides an important resource for using the Atlantic silverside as a powerful model for 571 

investigating many outstanding questions in adaptation genomics, for example related to the 572 

abundance, distribution and adaptive value of structural variants; the relative role of coding and 573 

non-coding regions; the importance of sequence variation vs. structural variation in both human-574 

induced evolution and local adaptation; and the demographic and evolutionary factors generating 575 

the genomic landscape of diversity and differentiation in this and other species. 576 
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Tables and Figures 602 

Table 1. Summary statistics for each of the intermediate and final assemblies produced.  603 

 10X Dovetail Chicago Dovetail Hi-C Final assembly Chromosome 
assembly* 

Total length 645.45 Mb 647.32 Mb 647.39 Mb 620.04 Mb 465.69 Mb 

Longest Scaffold 12,248,921 bp 12,871,938 bp 26,678,928 bp 26,678,928 bp 26,678,928 bp 

Number of 
scaffolds 99,541 80,990 80,312 42,220 27 

Number of 
scaffolds > 1kb 61,451 42,898 42,220 42,220 27 

Contig N50 39.55 kb 39.51 kb 39.51 kb 105.76 kb 202.88 kb 

Scaffold 
L50/N50 83/1.328 Mb 42/2.936 Mb 16/18.159 Mb 15/18.199 Mb 11/19.68 Mb 

% gaps 2.69% 2.97% 2.98% 3.08% 3.00% 

BUSCOs** 
(n=4584) 

C:88.1%, 
F:5.3%, M:6.6% 

C:89.5%, 
F:4.6%, M:5.9% 

C:89.6%, 
F:4.8%, M:5.6% 

C:89.6%, 
F:4.5%, M:5.9% 

C:88.3%, 
F:2.7%, M:9.0% 

* The ‘chromosome assembly’ is the subset of scaffolds > 1 Mb from the ‘Final assembly’  604 
** [C=complete, F=fragmented, M=missing] 605 
 606 

  607 
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Table 2. Examples of heterozygosity levels in single fish genomes, estimated either with 608 

GenomeScope from raw sequencing data or through direct calling of heterozygous sites. 609 

Common name Scientific name Heterozygosity Method Reference 

Atlantic silverside Menidia menidia 1.67-1.76% GenomeScope This study 

European sardine Sardina pilchardus 1.60–1.75% GenomeScope Machado et al. 2018 

American eel Anguilla rostrata 1.5-1.6% GenomeScope Jansen et al. 2017 

European eel Anguilla anguilla 1.48-1.59% GenomeScope Jansen et al. 2017 

Pearlscale pygmy angelfish Centropyge vrolikii 1.36% GenomeScope 
Fernandez-Silva et al. 
2018 

Marine medaka Oryzias melastigma 1.19% GenomeScope Kim et al. 2018 

Large yellow croaker Larimichthys crocea 1.06% GenomeScope Mu et al. 2018 

Javafish medaka Oryzias javanicus 0.96% GenomeScope Takehana et al. 2020 

Greater amberjack Seriola dumerili 0.65% GenomeScope Sarropoulou et al. 2017 

Clownfish Amphiprion ocellaris 0.60% GenomeScope Tan et al. 2018 

Hilsa shad Tenualosa ilisha 0.58-0.66% GenomeScope Mollah et al. 2019 

Whitefish 
Coregonus sp. 
“Balchen” 0.44% GenomeScope De-Kayne et al. 2020 

Corkwing wrasse Symphodus melops 0.40% GenomeScope Mattingsdal et al. 2018 

Herring Clupea harengus 0.32% Variant calling 
Martinez Barrio et al. 
2016 

Golden pompano Trachinotus ovatus 0.31% GenomeScope Zhang et al. 2019 

Coelacanth Latimeria chalumnae 0.28% Variant calling Amemiya et al. 2013 

NA Lucifuga gibarensis 0.26% GenomeScope Policarpo et al. 2020 

Eurasian perch Perca fluviatilis 0.24–0.28% GenomeScope Ozerov et al. 2018 

Atlantic cod Gadus morhua 0.20% Variant calling Star et al. 2011 

Big-eye mandarin Fish Siniperca knerii 0.16% GenomeScope Lu et al. 2020 

Threespine stickleback Gasteosteus aculeatus 0.14% Variant calling Jones et al. 2012 

Pikeperch Sander lucioperca 0.14% GenomeScope Nguinkal et al. 2019 

African arowana Heterotis niloticus 0.13% GenomeScope Hao et al. 2020 

Orange clownfish Amphiprion percula 0.12% GenomeScope Lehmann et al. 2019 

Murray cod Maccullochella peelii 0.10% GenomeScope Austin et al. 2017 

Toothed Cuban cusk-eel Lucifuga dentata 0.10% GenomeScope Policarpo et al. 2020 
  610 
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 611 

Table 3. Summary of intraspecific structural variants identified in the Atlantic silverside, and 612 

their features. 613 

SV type Number of variants Size range (bp) Sequence affected (kb) % genome affected 

Insertions 299 42-83 18 <0.01% 

Deletions 3905 38-9,740,501 71,754  15% 

Duplications 34 110-150,263 479 0.1% 

Inversions 662 203-12,585,625 109,201 23% 

 614 

  615 
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Figure 1. Circos plots showing synteny between the Atlantic silverside and medaka across all 616 

chromosomes in the middle and in the four chromosomes with large haploblocks on the sides. 617 

Chromosomes are color-coded consistently among plots and the colored portion of the smaller 618 

plots refer to the medaka sequences, while the grey portion to the Atlantic silverside sequences. 619 

Alignments shorter than 500 bp were excluded. Fig. S1 shows plots for the remaining 620 

chromosomes. Note that the consistently shorter length of the Atlantic silverside genome is 621 

consistent with a lower overall estimate of genome size (554 Mb based on k-mer analysis 622 

compared to the 700 Mb of the assembled medaka genome). The three and two scaffolds making 623 

up chromosomes 1 and 24, respectively, are represented separately here and denoted by small 624 

letters. 625 

 626 

 627 

 628 
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Figure 2. The genomic landscape of structural and sequence variation in Connecticut and 630 

Georgia. a) Panel showing large inversions (> 1 Mb) as identified from shotgun and Hi-C data 631 

from an individual from Connecticut mapped to the reference genome from Georgia. b) 632 

Manhattan plots showing the genomic landscape of variation in heterozygosity in 50 kb moving 633 

windows across single genomes from Connecticut and Georgia. The three and two scaffolds 634 

making up chromosomes 1 and 24, respectively, are represented separately here and denoted by 635 

small letters (e.g., 1a and 24a). 636 

 637 

 638 

 639 

 640 

 641 
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Figure 3. Hi-C contact maps of data mapped to the chromosome assembly from Georgia. Maps 644 

on the left show Hi-C data obtained from the same Georgia individual used to generate the 645 

reference assembly (mapped to self), maps on the right show data obtained from a Connecticut 646 

individual. Maps in the top panel show data for all the chromosomes binned in 100 kb sections. 647 

The three lower panels show data binned in 50 kb sections from each of the three chromosomes 648 

showing both large haploblocks in Wilder et al. (2020) and evidence for the presence of 649 

inversions from Hi-C data. Dark shades on the diagonal are indicative of high structural 650 

similarity between the reference and the Hi-C library analyzed. Dashed lines represent putative 651 

inversion breakpoints. The “butterfly pattern” of contacts observed at the point when the dashed 652 

lines meet is diagnostic of inversions. 653 
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