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in the Study of Drosophila O

ReviewShocking Revelations and Saccharin Sweetness
lfactory Memory
Emmanuel Perisse1, Christopher Burke2,Wolf Huetteroth1,
and Scott Waddell1,*

It is now almost forty years since the first description of
learning in the fruit fly Drosophila melanogaster. Various
incarnations of the classic mutagenesis approach envis-
aged in the early days have provided around one hundred
learning defective mutant fly strains. Recent technological
advances permit temporal control of neural function in the
behaving fly. These approaches have radically changed
experiments in the field and have provided a neural circuit
perspective of memory formation, consolidation and
retrieval. Combining neural perturbations with more clas-
sical mutant intervention allows investigators to interro-
gate the molecular and cellular processes of memory
within the defined neural circuits. Here, we summarize
some of the progress made in the last ten years that indi-
cates a remarkable conservation of the neural mecha-
nisms of memory formation between flies and mammals.
We emphasize that considering an ethologically-relevant
viewpoint might provide additional experimental power in
studies of Drosophila memory.

Introduction
Much of our cellular understanding of memory has come
from the study of relatively simple invertebrate preparations,
such as Aplysia [1], or from deciphering mechanisms of syn-
aptic plasticity in isolated mammalian brain slices [2]. Early
studies of olfactory memory initiated in the fruit fly
Drosophila melanogaster promised to harness the power
of classical genetics to uncover the mechanics of learning
in the fly brain [3]. The first mutants and transgenic studies
revealed an involvement of the cyclic adenosine monophos-
phate (cAMP) signaling pathway [4–10]. However, it was very
difficult to isolate the affected genes and thus to transition
from mutant fly to mechanistic insight. A variety of recent
technical advances have now enabled precise, temporally
controlled neural manipulations [11–16] and physiological
recordings [17,18]. These additional lines of investigation,
taken with the considerable recent advances in our under-
standing of the neural processing of olfaction, have invigo-
rated the field and provided some genuinely novel insight.
Drosophila now is a realistic model nervous system in which
to study how memories are acquired, stored and retrieved
within the context of functioning neural circuits.

Here, we summarize findings over the last 10 years from
studies of olfactorymemory that we find of particular interest
and that illustrate the changing approaches and the progress
made in defining the underlying neural mechanisms. In addi-
tion, we highlight the utility of considering an ethological
perspective when studying fly learning. Other, non-olfactory
fly memory paradigms were recently reviewed [19,20].
1Centre for Neural Circuits and Behaviour, The University of Oxford,

Tinsley Building, Mansfield Road, Oxford, OX1 3SR, United Kingdom.
2Department of Neurobiology, University of Massachusetts Medical

School, 364 Plantation Street, Worcester, MA 01605, USA.

*E-mail: scott.waddell@cncb.ox.ac.uk
Behavioral Assays
The first studies of olfactory learning inDrosophila employed
variants of an aversive paradigm pairing an odor with an
electric shock [3,21]. Thiswas soon followed by an appetitive
paradigm pairing odors with sugar rewards (Box 1) [22].
Regardless of the training procedure, groups of flies are
tested for memory using a binary odor choice in a T-maze.
It seems reasonable to consider how these laboratory par-

adigms relate to the behavior of flies in the wild. Electric
shock is believed to signal pain but is certainly not a natural
stimulus that flies routinely encounter. In contrast, the asso-
ciation between an odor and a source of food is likely to be
important for foraging behavior. However, it is harder to con-
trol ingestion of sugar than switching on shock delivery. For-
mation of aversive long-term memory (LTM) requires
multiple training trials with intervening rest intervals [23],
whereas appetitive LTM is rapidly formed in a single session.
This difference alone is likely to reflect the evolutionary
importance of food-seeking for the fly. Although the speed
of LTM formation was recently described in detail [24,25], it
was evident in the perdurance of memory in the first study
[22]. In fact, most of the underlying phenomena that drive
current investigation were noted decades ago in flies, or
other animals [26–28]. However, technical advances now
provide the opportunity to understand the phenomena, at
the level of detailed neural circuitry andmolecules mediating
functional connectivity.
The considerable progressmade using the current popula-

tion-based memory paradigms suggests that they are well
suited to answering many of the key questions in the field.
However, they are not infallible. Flies in thewild do not usually
march in swarms through plastic tubes and in most assays,
learning indices normalize differences in individual perfor-
mance. Normalization can be useful to iron out unexplained
variation but it is critical to know whether the flies behave
as individuals in thememory assay, or whether they influence
each other’s decisions. This was addressed in the very first
study of fly learning [3]. Two groups of flies that were trained
differently were mixed before testing and were shown to
independently choose the relevant odor of the two presented
[3]. Nevertheless, others have recently reported that inter-
actions between trained flies can occur in certain situations
[29,30] so it remains something important to consider.
Furthermore, there is no doubt in our minds that variation

between individual flies is real. Most fly behaviorists who
study individuals are aware of it and differences in olfac-
tory-driven behaviors are visible in data where individual flies
are analyzed. Furthermore, two recent studies detail plau-
sible contributing neural-based reasons for individual differ-
ences [31,32] — part of the olfactory system is randomly
wired [31] and stochastic transposition in neural genomes
[32] leads to genetic heterogeneity in the brain. Such vari-
abilitymay ultimately prove to be beyond investigator control
and a better understanding of the individual fly will therefore
be essential. Assays of olfactory choice in free-flying individ-
uals are feasible [33] but are not currently en vogue.

Monitoring and Manipulating Memory Circuits
Combined with robust learning assays, a primary strength of
Drosophila as a model comes from the ability to alter the

http://dx.doi.org/10.1016/j.cub.2013.07.060
http://dx.doi.org/10.1016/j.cub.2013.07.060
mailto:scott.waddell@cncb.ox.ac.uk
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cub.2013.07.060&domain=pdf
http://creativecommons.org/licenses/by/3.0/


Box 1

Glossary.

Anesthesia-resistant memory: a consolidated Drosophila memory developing after training that is resistant to anesthetic disruption and is

dependent on the radish gene.

Appetitive memory: a memory whose expression involves approach behavior. In the fly experiments discussed here, this involves training

flies by pairing one odorant with sucrose reward and another with nothing. When subsequently given the choice between the two odorants in

a T-maze, the flies preferentially approach the previously sugar-paired odorant. Appetitive learning and memory performance are facilitated

by hunger and suppressed by satiety and are therefore considered to be goal-directed actions.

Aversivememory: amemorywhose expression involves avoidance behavior. In the fly experiments discussed here this involves training flies

by pairing one odorant with electric shock and another with nothing. When subsequently given the choice between the two odorants in a

T-maze the flies preferentially avoid the previously shock-paired odorant. A new automated version of the assay also allows trial-and-error

learning where single flies sample two odor streams and learn to avoid the odor stream triggering punishment [91].

Binary transcription system: a genetic system for controlling the induction of gene expression. An activator line that expresses the

transcriptional activators GAL4 (from a yeast), LexA (from a bacterium) or QF (from a fungus) genes under the control of a tissue-specific

promoter is crossed to an effector line that carries the DNA-binding motif of GAL4/LexA/QF (upstream activating sequence, UAS/LexA

operator/QUAS) fused to the gene of interest. As a result, the progeny of this cross express the gene of interest in a cell-specific manner.

Calyx: a compartment of the mushroom bodies where the presynaptic projection neurons synapse with the dendrites of the Kenyon cells.

Consolidation:memory consolidation refers to the progressive post-acquisition stabilization of long-termmemory, as well as to thememory

phase(s) during which such presumed stabilization takes place.

Glomeruli: morphologically distinguishable areas in the antennal lobe that contain the presynaptic terminals of olfactory receptor neurons

that express the same olfactory receptor, local inhibitory and excitatory interneuron connections and dendrites of postsynaptic projection

neurons.

Kenyon cells: the intrinsic neurons comprising the mushroom bodies.

Lateral horn: an area defined by the terminal arborizations of projection neurons in the lateral protocerebrum.

Learning index or Performance index: a numerical index of memory performance in the T-maze assay. It is calculated as the number of flies

in the ‘correct’ arm of the maze minus those in the ‘wrong’ arm of the maze divided by the total number of flies in the experiment.

Long-term memory: consolidated memory that requires new protein synthesis after training.

Middle-term memory: a phase of fly memory that lasts a few hours, is sensitive to anesthetic disruption and is dependent on the amnesiac

gene.

Mushroom bodies: mushroom bodies, or Corpora pedunculata, are paired neural structures in the insect brain that morphologically

resemble mushrooms and are required for olfactory memory.

Reinforcement: depending on the context, reinforcement is either a rewarding or aversive stimulus or the neural representation of the

reinforcing stimulus.

Short-term memory: a phase of fly memory that lasts a few minutes and is sensitive to anesthetic disruption.
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activity of the nervous system with cellular precision. State-
of-the-art genetic tools provide fly trainers with an
impressive level of neural control. Key amongst those are
transgenic flies with gene expression limited to restricted
populations of neurons. There are now three independent
binary transcription systems — GAL4–UAS [34], LexA–lex-
Aop [35] andQF–QUAS [36]— that permit expression of a va-
riety of label and effector transgenes (see below). In
principle, by selecting the appropriate transgenic lines
from the very large publically accessible collections [37], it
is now possible to simultaneously control three distinct pop-
ulations of cells in the brain of an intact, freely moving fly.

A variety of effector transgenes serve to dissect the role of
the identified neurons. One of the earliest developed tools
that revolutionized the field was the dominant-negative tem-
perature-sensitive dynamin transgene cloned from the
paralytic Shibirets1 mutant fly [14]. Simply elevating the tem-
perature of flies >29�C reversibly blocks synaptic transmis-
sion from neurons expressing UAS-shibirets1 (UAS-shits1).
The acute requirement of output from these neurons can
then be investigated.

Optogenetic neural control with either the purinoreceptor
P2X2 [15] or Channelrhodopsin [38,39] can be used to acti-
vate specific neurons in a behaving fly through light
stimulation. Stimulating defined neurons in the brain allows
one to ask, without any prior knowledge of how the neurons
are activated, whether they have a causal role in the genera-
tion of specific behavioral patterns. This approach provides
reproducibility and cellular resolution to the age-old and his-
torically valuable technique of electrical brain stimulation
[40–42]. However, due to experimental ease and cost, most
fly memory investigators have stimulated neurons using
expression of the temperature-controlled Transient Recep-
tor Potential (TRP) channel dTrpA1 [16], and to a lesser
extent TRPM8 [43] transgenes. dTrpA1 conducts Ca2+ and
depolarizes neurons that express it, when flies are exposed
to temperatures >25�C [16]. Therefore, the same tempera-
ture regimes used to block transmission from specific neu-
rons with shibire [14] can be used to stimulate neurons
with UAS-dTrpA1 [16].
Ultimately, one needs to know how the identified neurons

connect to each other. Resolving the precise neural anatomy
of individual neurons can be difficult because even restricted
GAL4 lines often label neurons with intertwined processes.
Recent fly versions of the mouse Brainbow allow for a some-
what random labeling of neighboring neurons in unique
colors by using recombination to switch the fluorescent pro-
tein transgene that is available to be driven by GAL4 [44,45].
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Figure 1. The Drosophila olfactory pathway.

Olfactory receptor neurons (ORNs) in sensillae on the 3rd antennal seg-
ments and the maxillary palps project their axons bilaterally into indi-
vidual glomeruli in the antennal lobe (AL). In these glomeruli, ORN input
is integrated and processed by the action of mostly multiglomerular
excitatory and inhibitory local interneurons (LNs). Processed odor
information is then relayed to the calyx (CA) of the mushroom body
(MB) and the lateral horn (LH) by uniglomerular projection neurons
(PNs).
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Alternatively, single neurons within GAL4-expressing popu-
lations can be visualized in amore directed way using photo-
activatable/convertible variants of GFP [46,47]. Expressing
any combination of a number of neural compartment
markers fused to fluorescent proteins or epitope tags can
indicate neural polarity [48–52].

Knowing which branches of a particular neuron are poten-
tially transmitting or receiving signals allows one to use GFP
reconstituted across synaptic partners (GRASP) to assess
whether the putative pre- and post-synaptic compartments
of distinct neurons of interest are close enough to potentially
form functional synapses [53,54].

Another way to assess functional connectivity is to remove
the appropriate neurotransmitter receptors from presumed
postsynaptic partner neurons by transgenic RNAi [55]. If,
for example, one has identified an instructive octopamine-
releasing neuron, removing octopamine receptors from the
relevant downstream neurons should abolish the gain-of-
function effects of stimulating the octopaminergic neuron
[56]. This neural circuit epistasis approach permits one to
assemble functional neural circuits.

To fully understand circuit function, however, there is little
substitute for synaptic physiology. Genetically encoded
tools have also had a significant impact on this area. One
can stimulate presynaptic neurons with opto- or thermoge-
netic control while recording postsynaptically with the
fluorescent calcium indicator GCaMP [18,57] or using elec-
trophysiology. Although they lack the temporal resolution
and sensitivity of electrophysiology, the most recent and
highly sensitive versions of GCaMP [18] allow recording of
neural ensemble activity with relative ease. This enviable
collection of approaches means that Drosophila memory
experiments are mostly constrained by imagination and
creativity.

Olfactory Memory Acquisition
Representing Odors in the Brain
Flies detect air-borne odors using olfactory receptor neu-
rons (ORNs) housed in hair-like sensilla on their maxillary
palps and antennae. ORNs expressing the same odorant re-
ceptor genes project their axons to two bilateral symmetrical
glomeruli in the antennal lobes (Figure 1) [58]. This organiza-
tion suggests that odors are represented as combinatorial
patterns of activity in antennal lobe glomeruli. However, a
considerable number of studies have now demonstrated
that the initial odor code is richer than activation or inhibition
of ORNs. Electrophysiological recordings of ORNs reveal a
diverse range of odor-evoked temporal patterns [59,60]
and behavioral experiments suggest these temporal signals
provide ample information for the fly to discriminate odors
[61]. In addition, dendrites of ORNs are grouped in pairs, trip-
lets or quartets in sensilla and recent work has shown that
activation of one ORN can interfere with the activity of their
neighbors within the same sensillum via a process called
ephaptic signaling [62]. Therefore, each ORN is unlikely to
represent an isolated input and it may be more accurate to
think of sensillar ORN clusters as interactive groups.
In the antennal lobe, ORNs form synapses with projection

neurons, as well as local inhibitory and excitatory interneu-
rons (Figure 1) [63–66]. This elaborate network, which in-
cludes many gap junctions, provides a level of gain control,
maintaining odor representations consistent over a range
of odor concentrations [66–69]. The prevailing projection
neuron type has dendrites in a single glomerulus [70], sug-
gesting a faithful transmission of odor information from
ORNs to projection neurons. However, networks of local
interneurons in the antennal lobe transform incoming ORN
inputs into a more broad and temporally rich signal across
the projection neuron ensemble [64–66,71,72].
Odor information carried by projection neurons is deliv-

ered to the mushroom body calyx and the lateral horn
(Figure 1), as well as back into the antennal lobe. At present
it is largely believed that the w2000 neurons of the mush-
room body encode learned responses to odors [73] whereas
the lateral horn processes innate responses [74]. Projection-
neuron arbors in the lateral horn appear to at least be segre-
gated between projection neurons handling fruit odors and
those for pheromones [75].
Physiological recordings suggested that projection neu-

rons are randomly connected to mushroom body Kenyon
cells [76,77] and this has recently been confirmed using pho-
toconvertible GFP and electroporation to label 200 individual
Kenyon cells and their presynaptic projection neurons,
respectively [31]. Tracing each projection neuron back to
the antennal lobe glomerulus it innervates showed that
each subtype of Kenyon cell — ab, a0b0 and g (Figure 2A) —
integrates projection neuron input from different and
apparently random glomeruli (Figure 2B). Given this connec-
tivity, it seems likely that odors will be represented differently
in the mushroom body of each individual fly. Nevertheless, it
may not matter which particular projection neurons transmit
the odor information, or which particular Kenyon cells repre-
sent it, as long as each odor is represented as a sparse
pattern of activity across every functional subclass of Ken-
yon cell. Recent functional imaging using a more sensitive
GCaMP variant revealed a larger number of Kenyon cells
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Figure 2. Olfactory memories are formed in
mushroom body Kenyon cells.

(A) Illustration of four functional classes of
Kenyon cells in the mushroom body. Each
Kenyon cell has a dendrite in the calyx and
a long neurite that projects down the
peduncle and into the lobes. Kenyon cells
that contribute to the ab (purple/pink) or
a0b0 (cyan) division bifurcate and send one
axon branch into the vertical a or a0 lobe
and one to the horizontal b or b0 lobe,
respectively. In contrast g Kenyon cells
(yellow) send a single projection in the hori-
zontal g lobe. The w1000 ab neurons can
be further subdivided into the surface (abs,
purple) and core (abc, pink). There are
w400 a0b0 and w700 g neuron. At least 15
non-overlapping zones have been defined
along the lobes (a1-3, b1,2, a0

1-3, b0
1,2, and

g1-5) based on the innervation of input and
output neurons (Figures 3 and 5). (B) Basic
circuit model of olfactory memory. Odors are
represented as projection neuron driven acti-
vation (orange) of sparse populations of
mushroom body Kenyon cells in each func-
tional subdivision (black and grey cells).
Downstream neurons guiding conditioned
approach or avoidance pool Kenyon cell out-
puts. Food presentation during appetitive
conditioning potentiates the odor activated
Kenyon cell output synapses onto approach
relevant neurons. Sweetness of sugar rein-
forces memory via the action of octopamine
neurons working through rewarding dopa-
mine neurons that directly innervate specific
zones within the mushroom body lobes.
Nutrient content of sugar activates the
rewarding dopamine neurons via an unknown
pathway. Conversely, aversive conditioning strengthens odor activated Kenyon cell output synapses onto avoidance relevant neurons via the
action of other negative dopamine neurons that directly innervate distinct zones within the mushroom body lobes.
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that were odor-activated [78] than in previous studies [79].
However, responses to monomolecular and complex odors
remained consistently odor-specific and patterns were rela-
tively sparse within the overall population of Kenyon
cells [78].

Broadly tuned projection neuron activity is converted into
sparse Kenyon cell responses. In the locust (Schistocerca
americana), this is achieved by a combination of mecha-
nisms: Kenyon cells detect coincidence of projection neuron
inputs, Kenyon cells display a sub-threshold oscillatory
activity and broadly innervating neurons provide inhibitory
feedback [80,81]. Oscillations have not yet been observed
in Drosophila Kenyon cells. However, Kenyon cell anatomy
suggests that coincidence detection is likely. An individual
Kenyon cell has an average of seven dendritic claws, with
each claw receiving one projection neuron synapse
[31,76,77,82]. Therefore, each Kenyon cell could integrate in-
puts from seven or more projection neurons. In the locust,
giant GABA-ergic neurons densely innervate the calyx, prox-
imal peduncle and the a-lobe of the mushroom body and
refine odor signals in Kenyon cells [81,83]. The giant
GABA-ergic neurons are non-spiking and are thus likely to
provide local microcircuit inhibition. The Drosophila equiva-
lent of the giant GABA-ergic neurons are believed to be the
GABA-ergic Anterior Paired Lateral (APL) neurons [83] which
ramify throughout the entire mushroom body neuropil
[84,85], including the calyx where they could interact with
Kenyon cell dendrites and projection neurons. The APL
neurons (Figure 4A) have recently been shown to limit
odor-evoked activity in Kenyon cells [86]. Furthermore, the
observation that blocking APLs’ inhibitory influence en-
hances learning [85,87] could reflect a broader activation of
Kenyon cells by odor. Dendrites of ab and g but not a0b0 Ken-
yon cells in the mushroom body calyx also have presynaptic
compartments [88]. It is not yet clear what these putative
recurrent connections do, but they could potentially amplify
odor-evoked Kenyon cell responses and/or recruit lateral
inhibition.

Reinforcement
Reinforcement pathways add value to odor-activated Ken-
yon cell synapses. For several years the dogma was that
the aversive value of electric shock was assigned to odor-
activated Kenyon cell synapses by dopamine, whereas
octopamine (the invertebrate equivalent of noradrenaline)
signaled reward [73,89]. However, recent work has demon-
strated that for 10 years the field was misled by the limited
expression of a tyrosine hydroxylase (TH) promoter fragment
GAL4 line used to manipulate dopamine neurons [56,90]. It
is now apparent that octopamine, dopamine and serotonin
all shape the reinforcement signals and that distinct popula-
tions of mushroom body-innervating dopamine neurons ulti-
mately provide both aversive and appetitive reinforcement
for olfactory memory (Figure 2B) [56,90–95].
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Figure 3. The dopaminergic reinforcement
system.

(A) Aversive reinforcing dopamine neurons
(red) reside in the PPL1 cluster lateral to the
calyx and the PAM cluster in front of the hor-
izontal lobes. The PPL1 neurons MP1 and
MV1 innervate the g1 (heel) and the distal
ab surface of the peduncle, or the g2 (junc-
tion) and a0

1 regions, respectively. Both
MP1 and MV1 receive input in the anterior
superior median protocerebrum. The PAM
cluster cell types M2 and M3 also convey
aversive reinforcement. M2 innervates g3

and g4, whereas M3 innervates the b2 sur-
face. They receive input in the crepine region
near the horizontal MB lobes. (B) Rewarding
dopamine neurons (green) are located in the
PAM cluster. PAM contains w140 dopamine
neurons that ramify throughout the horizontal
mushroom body lobes but the full extent of
the rewarding dopamine cells is unclear.
Separate input regions in the posterior supe-
rior lateral protocerebrum and crepine imply
functional subdivision. Octopamine delivers
the reinforcing effects of sweet taste through
the OAMB receptor expressed in a subset of
PAM dopamine cells (black outline). OA
simultaneously exerts an essential modula-
tory effect through OCTb2R in the aversive
reinforcing MP1 neurons. In (A) and (B) each
panel emphasizes innervation of the relevant
dopaminergic neurons within the ab, a0b0 or g
lobe.
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Negative Reinforcement
The first study to establish a role for dopaminergic neuro-
transmission during memory acquisition concluded a spe-
cific effect for aversive learning [89]. Blocking TH–GAL4
expressing neurons with UAS-shits1 [14] impaired electric-
shock reinforced olfactory learning but left sucrose rein-
forced memory [89]. The dopamine neurons responsible for
aversive reinforcement were mapped using artificial activa-
tion. Optogenetic activation of TH–GAL4 neurons expressing
P2X2 during odor presentation formed aversive memory in
single flies [91]. Aversive memories were formed when acti-
vating TH–GAL4 neurons but not with a GAL4 line that lacked
expression in a cluster of dopaminergic neurons called Pro-
tocerebral Posterior Lateral 1 (PPL1). Photo-activatable GFP
demonstrated that mushroom body-innervating dopami-
nergic neurons in the PPL1 cluster innervate the vertical
mushroom body lobe (Figure 3A).

Studies using dTrpA1-mediated activation established
that two classes of PPL1 dopamine neurons and two from
another cluster, called Protocerebral Anterior Medial
(PAM), can convey negative reinforcement [93]. These nega-
tively reinforcing dopamine neurons project to discrete and
non-overlapping regions of the ab, a0b0 and g lobes of the
mushroom body, suggesting that aversive reinforcement
might be distributed across the major mushroom body sub-
divisions [91–93]. Furthermore, experiments with shock-
reinforcement indicated these dopamine neurons reinforce
memories of differing strength and persistence, implying a
plausible combinatorial effect of dopamine neurons in the
formation of aversive memory [92,93]. However, genetic
restoration of the dDA1 dopamine receptor exclusively in
the g neurons was sufficient to reinforce short- and long-
term aversive memory, suggesting that the most critical
aversive signals are mediated through the Kenyon cells in
the g lobe [96]. It will be important to test this model with
other negative reinforcing stimuli, such as bad taste or
nausea [97]. Although shock plausibly activates nociceptors
in the fly, the relevant neural pathways linking shock sensa-
tion to dopamine neuron activation are not known.

Positive Reinforcement
Sucrose has historically been used as the unconditioned
stimulus inDrosophila appetitive conditioning [22]. However,
using sugars of differing dietary utility revealed that sweet
taste and nutritional value contribute differently to appetitive
memory formation [98,99]. Sweet sugars with no nutritional
value, such as arabinose, reinforced robust short-termmem-
ory (STM) whereas sweet nutritious sugars, such as sucrose
and fructose, formed robust appetitive LTM [98]. Surpris-
ingly, nutrient reward is processed quickly. Flies taught to
discriminate between an odor paired with a sweet and nutri-
tious compound and an odor paired with a sugar that is just
sweet prefer the nutrient-coupled odor within twominutes of
training [98]. This makes some sense, because foraging flies
feed on rotting fruits rich in nutritious sucrose and fructose. It
seems logical for a foraging animal to be able to rapidly
assign nutrient information to a food source and to
remember it.
Importantly, these studies with different naturally occur-

ring sugars suggested that parallel pathways reinforce appe-
titive memory and that a post-ingestive nutrient signal
provides input to the long-term reinforcement circuitry [98].
Octopamine neurons represent the reinforcing effects
of sweet taste. Blocking them using Tdc2–GAL4 (Tdc2
encodes tyrosine decarboxylase, an enzyme required for
octopamine production) and UAS-shits1 impaired condition-
ing with sweet non-nutritious arabinose but did not disrupt
learning with sweet and nutritious sucrose. Furthermore,
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dTrpA1-mediated stimulation of octopamine neurons
formed memory that did not persist, like that formed with
an only sweet sugar [56]. Therefore, nutrient signals required
for LTM reinforcement are independent of octopamine neu-
rons. Analyzing subsets of octopamine neurons that inner-
vate the mushroom body revealed that a more distributed
octopamine signal was required for appetitive memory for-
mation. But which circuits does octopamine control?

A study of flies mutant for the dopamine receptor dDA1
revealed a defect in aversive and appetitive olfactory
learning [100]. Subsequently, the PAM cluster of dopamine
neurons that is not labeled in TH-GAL4 flies was found to
contain a population of rewarding neurons. dTrpA1-medi-
ated stimulation of PAM dopamine neurons while presenting
odor forms appetitive olfactory memory [56,90] that requires
the dDA1 receptor expressed in the mushroom body [90].
Furthermore, blocking PAM dopamine neurons during
training with UAS-shits1 impaired formation of both sweet-
ness and nutrient-reinforced memory [56,90]. Reward-
encoding PAM dopamine neurons project exclusively to
the horizontal mushroom body lobes (Figure 3B) [56,90].
Lastly, in vivo Ca2+ imaging in PAM dopamine neurons
revealed that rewarding dopamine neurons respond when
flies are fed sucrose [90].

Octopamine provides key input to the rewarding dopa-
mine neurons [56]. Octopamine neuron activation paired
with odor could not form appetitive memory in flies that
were mutant for the dDA1 receptor. In contrast, stimulating
PAM dopamine neurons formed robust appetitive memory
in Tbh mutant flies that lack octopamine, demonstrating
that rewarding dopamine neurons are functionally down-
stream of octopamine [56].

Octopamine-dependent memory requires the a-adren-
ergic like receptor OAMB in rewarding dopamine neurons
(Figure 3B). Reducing oamb expression with transgenic
RNAi impaired arabinose-reinforced but not sucrose-rein-
forced learning, consistent with the model that octopamine
mediates sweet taste but not nutrient reinforcement [56].
The direct octopamine-dopamine neuron link was further
strengthened with GRASP and GCaMP live-imaging of an in-
crease in intracellular Ca2+ in rewarding dopamine neurons
when octopamine was applied to the exposed brain [56].

Octopamine-dependent memory also requires the
b-adrenergic-like receptor OCTb2R. Surprisingly, octb2R
was only required to implant memory in satiated but not hun-
gry flies, indicating an interaction between octopamine and
neurons representing motivational control [56]. Further
experiments demonstrated that expression of octb2R in,
and transmission from, the aversiveMB-MP1 dopamine neu-
rons is required for octopamine-implanted memory [56].

Unlike blocking octopamine neurons, blocking the
rewarding dopamine neurons during training also impaired
nutritious sucrose-conditioned appetitive memory [56,90].
It is not clear which dopamine neurons provide the essential
reward signals and where they project to within the mush-
room bodies. The PAM cluster has more than 120 neurons
and those that are able to reinforce appetitive memory inner-
vate multiple non-overlapping zones on the b, b0 and g lobes
[56,90] (Figure 3B). This organization suggests a very
different process from those orchestrated by the ca. three
aversive-reinforcing neurons in the PPL1 cluster. It will be
interesting to understand what the increased numerical
complexity provides. Manipulating the activity of subsets
of rewarding PAM dopamine neurons and restoring dDA1
expression to subsets ofmushroom body neurons [96] might
help in this regard.
It is currently unclear how a nutrient signal is conveyed to

rewarding dopamine neurons. It could in principle involve
identified neural circuits and receptors that regulate sugar
feeding behavior [101,102]. Nevertheless, the available data
[56,90] support a new model for rewarding reinforcement in
Drosophila. The sweet taste of sugar engages a distributed
octopamine signal that activates rewarding dopamine neu-
rons through OAMB while simultaneously modulating MB-
MP1 dopamine neurons (Figure 3A) through OCTb2R. In
addition rewarding dopamine neurons integrate post-inges-
tive nutrient signals, if present, to reinforce appetitive LTM.
These rewarding dopamine neurons drive synaptic plasticity
at odor-activated Kenyon cell synapses and engage the
consolidation process.

Memory Storage
Once formed, memories are either consolidated and remem-
bered for the long-term, or forgotten. Both of these pro-
cesses appear to involve active neural processes after
training in the fly. The consolidation process was first
revealed as a time-dependent disruption of memory with
cold-anesthesia delivered after training [103]. Cold-anes-
thesia renders the animals inactive, and it is therefore
assumed that it disrupts neural signaling. In addition, exper-
iments using other disruptive agents suggest the existence
of two forms of consolidated memory [23,104]. These forms
have been confusingly named anesthesia-resistant memory
(ARM) and long-termmemory (LTM). The features that distin-
guish ARM from LTM are only evident with aversive memory
— sequential trials without intervening rest (massed training)
can lead to ARMwhereas multiple trials with intervening rest
(spaced training) lead to LTM [23]. Furthermore, LTM
requires new protein synthesis after training and is conse-
quently sensitive to cycloheximide feeding, whereas ARM
is less sensitive to blockers of protein synthesis [23]. Exper-
iments with appetitive conditioning suggest a different rela-
tionship and less clear distinction between ARM and LTM
[24]. Nevertheless, the difference between massed and
spaced trained aversive memory formation [23] inspires
many investigations in the field and is often of considerable
interest from the perspective of psychology and learning
theory [105].
Some of the neural circuitry that maintains labile

memory and consolidates longer-lasting forms of memory
is known. Analysis of the forgetful amnesiac mutant flies un-
covered the importance of the Dorsal Paired Medial (DPM)
neurons [106]. Expressing UAS-shits1 in DPM neurons
revealed that transmission from DPM neurons is dis-
pensable during training but is essential after training to
consolidate aversive and appetitive memory [24,107–109].
Although the amnesiac gene was originally reported to
encode a putative neuropeptide [110], and several studies
indicate the importance of amnesiac expression in DPM
neurons [106,108,109,111,112], the function of the encoded
peptide remains unclear. A recent report suggests that
DPM neurons release serotonin (5-HT) and that 5-HT is
required for ARM formation [113].
Each DPM neuron innervates all the lobes and the base of

the peduncle of the ipsilateral mushroom body [106]
(Figure 4A). Functional imaging of odor-evoked activity in
DPM neurons, and the localization of neural compartment
markers, suggests that the DPM neurons are pre- and
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Figure 4. Circuitry of consolidation.

(A) Output from DPM neurons after training is required for memory
consolidation. DPM neurons ramify throughout the mushroom body,
except the calyx. Innervation of the a0b0 and g lobe appears more
dense than in the ab lobe, and the abc in particular, but the functional
significance is not known. Expression of the GFP-tagged presynaptic
marker protein bruchpilot predominantly localized to the ab lobes,
implying plausible functional directionality of DPM from the a0b0 and
g lobes to the ab lobe. (B) Output from APL neurons is required after
training to maintain labile memory. Inhibitory APL neurons innervate
the entiremushroombody neuropil and show no obvious regional pref-
erence. APL neurons are gap junction-coupled to DPM neurons.
(C) Model for memory consolidation. Cholinergic (ACh) projection neu-
rons transfer olfactory information to ab, a0b0 and g Kenyon cell den-
drites in the mushroom body calyx (1). Within microcircuit domains
(shaded yellow) the odor-activated and learning-potentiated Kenyon
cells activate the APL neuron (2). The APL depolarizes the DPM neuron
through gap junctions mainly in the a0b0 lobes (3). The serotonergic
(5-HT) DPM closes a reverberant circuit loop by releasing transmitter
onto Kenyon cells (4). APL neurons provide lateral inhibition within
the mushroom body lobes and calyx, maintaining signal specificity
within the recurrent network (5). Over time, DPM-released 5-HT consol-
idates memory in the abKenyon cells through the d5HT1A receptor (6).
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postsynaptic to mushroom body neurons [108,114]. In addi-
tion, odor-evoked DPM neuron activity has been useful to
report on memory processing in the mushroom body.
Odor-evoked signals are increased in DPM neurons
following presentation of odor and electric-shock under the
microscope [108]. Interestingly, this elevated signal is
evident 30 min after odor-shock pairing and persists for at
least 1 hour, a time window during which DPM transmission
is required for memory consolidation [107,108].

Imaging odor-evoked DPM responses after appetitive
conditioning [112] revealed a temporal dynamic that nicely
reflects the unique nature of appetitive memory reinforce-
ment [56,98] and the established role for DPM neurons in
appetitive memory consolidation [24]. The conditioned
odor evoked an elevated response in DPM neurons for
more than twice as long (2.5 h) following training with nutri-
tious substances than with non-nutritive sugar (about 1 h)
[112]. Furthermore, whereas the non-nutritive or shock rein-
forced traces were only evident in the vertical branch of the
DPM neuron projections into the mushroom body, the
nutrient-prolonged trace was observable in both the vertical
and horizontal DPM projections [112]. The persistent appeti-
tive trace in the horizontal DPM branch/lobes coincides with
the innervation of the positively reinforcing dopamine neu-
rons [56,90] and it is plausible that these and other dopamine
neurons control the consolidation process [115,116]. How-
ever, it is not clear why the non-nutritive sugar memory,
which also requires rewarding dopamine neurons, would
form a trace in the vertical DPM branch.
Transmission from the a0b0 neurons, but not from ab or g,

is required at a similar time as the activity of DPM neurons
[24,117], which suggests a recurrent a0b0-DPM circuit loop
that maintains activity and drives appetitive and aversive
memory consolidation after training [118]. Modeled recur-
rent networks are intrinsically unstable without an inhibitory
component [119]. Remarkably, dye injection into DPM
neurons revealed that DPM neurons are gap junction-
coupled to the GABA-ergic APL neurons (Figure 4A) [120].
APL neurons are, therefore, an integral part of the DPM-
a0b0 circuit and are likely to be concurrently activated with
DPM neurons, although the gap junctions may be direc-
tional or rectified. Blocking APL neurons with UAS-shits1

after appetitive conditioning revealed that their trans-
mission is required for early memory but not for LTM
consolidation [114]. In addition, compromising expression
of the relevant gap junction-forming innexins in either
DPM or APL disrupted non-consolidated aversive memory
[120]. Whereas GRASP suggests DPM contacts mushroom
body neurons in all of the lobes, APL appears to contact
mushroom body neurons in the a0b0 lobes, but makes little
direct contact with those in the distal a lobe [114]. It was
proposed that the APL neurons provide widespread inhibi-
tion to stabilize labile memory traces held in a recurrent
DPM-a0b0-APL network while memory consolidation pro-
ceeds in the ab neurons driven by DPM processes
(Figure 4B) [114].
The involvement of the mushroom body neurons in

memory processing may be more complex than the estab-
lished ab, a0b0 and g, subdivision. Blocking the output of all
of the ab neurons, or subdivisions within ab, for extended
periods after training disrupted appetitive and aversive
LTM [121].

Forgetting
In principle, memories can be eliminated or disrupted by
simple decay, by reversal of consolidation, or by interference
with memories of opposing experience. Recent studies in
Drosophila suggest that the processes of consolidation
and forgetting may be functionally interwoven. Using
GCaMP imaging, reinforcing dopamine neurons were found
to exhibit rhythmic oscillatory activity after aversive training
and this persistent network activity appears to inhibit ARM
and promote LTM formation [115]. Importantly, blocking
aversive reinforcing dopamine neurons enhanced ARM.
Another study [116] confirmed that aversive dopamine neu-
rons oscillate after training but concluded that dopamine
neuron activity is required to forget labile appetitive and
aversive memories. In this study, blocking aversive
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(A) Aversive and appetitive memories are driven by different popula-
tions of mushroom body Kenyon cells. Aversive memory requires
output from abs but not abc neurons. In contrast, appetitive memory
requires output from abs and abc neurons. This distinct requirement
implies differential pooling of ab outputs by relevant output neurons
(represented in the insets and in Figure 2B). (B) V2 and V3 output neu-
rons are required for aversive memory retrieval. The approximately
seventy V2 neurons fall into at least two morphological categories.
V2a and V2a0 neurons have dendrites in the a lobe surface and a0

lobe, respectively. Dendrites of the V3 neurons innervate the tip of
the a lobe. V2a, V2a0 and V3 neurons all project outputs to the superior
intermediate protocerebrum (sipr) and the lateral horn (LH).
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reinforcing dopamine neurons after training enhanced the
persistence of labile non-consolidated memory. In addition,
flies mutant for the DAMB dopamine receptor showed
enhanced memory stability, suggesting that signals through
this receptor after training may regulate an active forgetting
process. Consistent with such a model, both studies found
that stimulating reinforcing dopamine neurons (perhaps
akin to unpaired reinforcement delivery [122]) after training
weakened memory [115,116].

The Rac1 GTPase pathway is also involved in fly for-
getting. Inhibiting Rac1 activity throughout the nervous
system slowedmemory decay and converted aversivemem-
ories usually lasting a few hours into those persisting for a
day. Furthermore, elevating Rac1 expression in the mush-
room body accelerated aversive memory decay [123].
Although it is currently unclear which signals regulate the
Rac1 pathway to promote forgetting, Rac1 apparently inter-
acts with radish [124,125], which is critical for aversive ARM
[124] and appetitive LTM [24]. As appetitivememories can be
intrinsically more stable than aversive memories [22], it will
be interesting to test the role of rewarding dopamine neurons
after training and DAMB and Rac1 manipulations in appeti-
tive conditioning.

Memory Retrieval
Memories must be available for recall at any time. Reminis-
cent of mammals, several studies have now shown that in
Drosophila there is a time-dependent reorganization of the
circuits driving memory-guided behavior after training
[24,96,117,121,126,127]. The shits1 transgene [14] has been
the tool of choice in most of these studies and for good
reason. It seems reasonable that a requirement for synaptic
output is a prerequisite for claiming a role of particular neu-
rons in retrieval. However, as blocking transmission any-
where along the odor-activated pathway from olfactory
sensory neurons to motor output could in principle result in
a retrieval effect, care is required. One needs to know that
the flies still recognize the odors, can discriminate between
the odors, and can move appropriately. In addition, one
might imagine that Drosophila has several circuits that
when acutely altered might distract from the intended task.

Before summarizing the findings it is worth noting that
investigators frequently use different assays, GAL4 drivers
and unique time points and temporal manipulations. We
are therefore piecing this together with these inconsistencies
in mind. Furthermore, it should by this point in the review be
apparent that there are many differences between shock-
reinforced aversive memory and appetitive memory rein-
forced with sugar. Therefore, although both memories are
olfactory, one should not assume that the underlying neural
and molecular mechanisms of memory will be identical be-
tween the two paradigms.

STM is usually measured minutes to an hour after training
and the current consensus is that it relies on the mushroom
body g neurons. Restoring DopR or the rutabaga-encoded
Type I adenylate cyclase to mushroom body g neurons of
DopR or rut mutant flies, respectively, rescued aversive
STM [11,96,126,128]. Therefore, key reinforcement signals
for aversive STM are likely to be delivered to the g neurons.
However, a strong requirement for g neuron output during
STM retrieval is not evident [129,130].

Appetitive memory exhibits a more definitive role for
neurotransmission from g neurons [127]. Restoring rutabaga
expression to mushroom body ab or g neurons of rutmutant
flies rescued 2h memory. In addition, temporal block with
UAS-shits1 or constitutive block with tetanus toxin of g

neurons impaired immediate and 2h appetitive memory,
whereas similar block of ab neurons lacked consequence.
The authors concluded that parallel memories are formed
in ab and g but that the g trace dictates early behavioral
performance [127].
As stated above, output from thea0b0 mushroombodyneu-

rons is required after training to consolidate memory
[24,117]. The field typically refers to the three hour time point
asmiddle-termmemory (MTM). However, it is not totally clear
if this point reflects a unique phase or a transition between
STM and LTM. Notably, output is required from the ab neu-
rons at this time [117,129,131,132]. For aversive and appeti-
tive memory retrieval work suggests that the ab neurons
are of particular importance for LTM.Output from theab neu-
rons but not the g neurons is required for aversive [132] and
appetitive LTM [127] and an aversive LTM memory trace
can be detected from 9–24 h in ab neurons [133,134]. Output
from the ab posterior [135] but not from the ab core neurons
[121] is required for an aversive LTM retrieval, suggesting a
role for ab subdivision. In fact, recent work has shown that
ab core neuron output is specifically required for the retrieval
of consolidated appetitive memory [136] (Figure 5A).
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Olfactory memories of differing value are therefore repre-
sented in distinct ab neuron populations. This differential
arrangement seems to be generated by stratified innervation
of aversive and rewarding dopaminergic neurons within the
ab lobes (Figure 3). Although no requirement has been
demonstrated for g neuron output in LTM retrieval, a later
aversive LTM trace has been reported in g neurons from 18
to 48 h after training [134]. Therefore, distinct populations
of mushroom body neurons contribute to memory retrieval,
with the role for ab neurons becoming more critical as time
progresses after training.

Mushroom Body Output Pathways
Odor memories are believed to be represented as modifica-
tions in synaptic weights between Kenyon cells and mush-
room body output neurons [73,137]. Hence, defining the
neural pathways that are postsynaptic to Kenyon cells is a
major area of interest so that one can measure potential
learning-related changes in synaptic efficacy. In addition,
one might expect that a time-dependent alteration in the
mushroom body neurons that drive learned behavior will
be observable as a time-dependent requirement for different
output neurons that are postsynaptic to the relevant mush-
room body neuron subtypes.

The MB-V2 output neurons (Figure 5B) are required for
aversive STM and LTM retrieval [138], suggesting they pro-
vide necessary drive for conditioned avoidance. In addition,
odor-evoked responses observed in MB-V2 neurons are
reduced after aversive conditioning, which indicates that
the connection between the mushroom body Kenyon cells
and MB-V2 neurons may be modified by learning. Interest-
ingly, output from MB-V2 neurons is dispensable for appeti-
tive STM retrieval [138]. This makes some sense because
MB-V2a neurons have dendrites that are restricted to the
periphery of the a-lobe stalk where the ab surface neurons
reside (Figure 5B) [136,138]. It therefore appears that MB-
V2a neurons do not pool the ab core neuron outputs that
are critical for appetitive memory retrieval [136]. The MB-
V2a0 neurons have dendrites in the tip of the a0 lobe [138]
but their function in retrieval has not been clearly
demonstrated.

A requirement for output from MB-V3 neurons has also
been reported for aversive LTM retrieval (Figure 5) [135].
MB-V3 neuron dendrites innervate the tip of the a-lobe.
Blocking protein synthesis in the MB-V3 neurons impaired
LTM [135]. Since MB-V3 are postsynaptic to Kenyon cells,
this could reflect a postsynaptic component of LTM. Aver-
sive LTM formation can proceed when dopamine receptors
are only provided in themushroom body [96], so presynaptic
dopamine receptor activation is able to drive the necessary
plasticity. A role for MB-V3 neurons in appetitive memory
has not been reported.

A role for newprotein synthesis was also suggested for the
Dorsal Anterior Lateral (DAL) neurons and blocking output
from DAL neurons disrupted aversive LTM retrieval [139].
However, the anatomical relationship of DAL neuron connec-
tivity to mushroom body neurons makes a role for DAL less
easy to comprehend than for the MB-V3 neurons [135].
DAL neurons are putatively connected to heat-sensitive neu-
rons [140] and the dendritic region of the ab posterior Ken-
yon cells in the accessory calyx [139]. DAL may therefore
be presynaptic to ab posterior Kenyon cells that do not
receive direct olfactory input from projection neurons.
Without an obvious link to odor-activated Kenyon cells, it is
currently unclear how odor-specific consolidated memory
could be represented, or influenced, by the DAL neurons.
Interestingly, appetitive LTM does not rely on the DAL
neurons [141].
Retrieved memories need to be able to guide behavioral

choices at the appropriate time. Sugar-reinforced appetitive
memory formation and expression exhibits a clear depen-
dence on the satiation state of the fly. Memories are only
formed and robustly expressed if the fly is hungry
[22,24,142]. The motivational state dependence of memory
formation may simply reflect the need to ingest reinforcing
sucrose, since appetitive memories can be formed indepen-
dent of state by stimulating the relevant rewarding octop-
amine or dopamine neurons [56,90]. However, expression
of learned behavior is acutely controlled by a hierarchical
inhibitory mechanism. Experiments suggest that in hungry
flies Neuropeptide F (dNPF), the fly ortholog of mammalian
NPY, disinhibits the MB-MP1 dopamine neurons to permit
appetitive memory retrieval [142]. Interestingly, these dopa-
mine neurons are those that have also been implicated in
aversive reinforcement and memory consolidation/forget-
ting [93,115,116]. It will, therefore, be critical to understand
how these potential functions relate. Live-imaging the MB-
MP1 neurons suggests their oscillatory activity is sup-
pressed by hunger [143] consistent with their proposed
role in motivational control of appetitive memory retrieval
[142]. It will be important to understand the physiological
mechanism through which MB-MP1 neurons gate appetitive
memory retrieval.

Outlook
The future is bright for the budding fly memory researcher. A
great deal of hard work has been done to establish assays,
isolate a considerable number of memory-defective mutant
flies, devise sophisticated genetic approaches and a neural
circuit framework. Most of the mutants have only been
superficially studied. Therefore, the time has now come to
put some of these gene products into the neural circuit
perspective and to understand why each mutant fly is
‘dumb’. It will be of similar interest to understand how rein-
forcement signals, neural networks and intracellular
signaling cascades contribute to the generation of physio-
logical memory traces and how each trace and signaling
pathway relates to the next.
Finding that both aversive and rewarding reinforcement

and motivation is mediated by dopamine brings the known
functions of the fly dopamine systemcloser to those ofmam-
mals [94]. This indicates a profound conservation of neural
mechanism but there are still several interesting differences.
For example, studies in mammals [144], and in the pond snail
[145], suggest an exclusive role for dopamine in the consol-
idation of appetitive memory and for noradrenaline, or
octopamine, in the consolidation of aversive memory. It
would be worthwhile to test whether the adrenergic modula-
tion of dopaminergic neurons that was revealed in appetitive
learning in the fly [56] is a conserved feature, and also
whether octopamine through dopamine plays a role in fly
aversive memory consolidation.
Understanding how the same dopamine signal generates

memories of opposite value [56,90–93], regulates consolida-
tion [115] and forgetting [116] and providesmotivational con-
trol [142] is another key question. Part of that explanation
appears to be due to downstream signaling [116]. The rest
could be anatomical with distinct dopamine neurons



Special Issue
R761
conveying different meaning to unique zones of the same
mushroom body neurons [94]. The elaborate organization
of dopaminergic neurons and that of the neural circuits of
memory consolidation brings a pressing need for synaptic
physiology at defined junctions. In addition, it will be critical
to investigate signal transduction cascades with the resolu-
tion of cellular compartments.
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