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ABSTRACT  

Cells need to complete DNA replication in a timely and error-free manner.  

To ensure that replication is completed efficiently and in a finite amount of time, 

cells regulate origin firing. To prevent any errors from being transmitted to the 

next generation, cells have the checkpoint mechanism.  

The S-phase DNA damage slows replication to allow the cell to repair the 

damage. The mechanism of replication slowing by the checkpoint was not clear 

in fission yeast, Schizosaccharomyces pombe, at the start of my thesis. The 

downstream targets of the DNA damage checkpoint in fission yeast were also 

unclear. I worked on identifying the downstream targets for the checkpoint by 

studying if Cdc25, a phosphatase, is a target of the checkpoint. 

Work from our lab has shown that origin firing is stochastic in fission yeast. 

Origins are also known to be inefficient. Inefficient origins firing stochastically 

would lead to large stretches of chromosome where no origins may fire randomly 

leading to long replication times, an issue called the random gap problem. 

However, cells do not take a long time to complete replication and the process of 

replication itself is efficient. I focused on understanding the mechanism by which 

cells complete replication and avoid the random gap problem by attempting to 

measure the firing efficiency of late origins. 

Genome-wide origin studies in fission yeast have identified several 

hundred origins. However, the resolution of these studies can be improved upon. 
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I began a genome-wide origin mapping study using deep sequencing to identify 

origins at a greater resolution compared to the previous studies. We have 

extended our origin search to two other Schizosaccharomyces species- S. 

octosporus and S. japonicus. There have been no origin mapping studies on 

these fission yeasts and identifying origins in these species will advance the field 

of replication. 

My thesis research shows that Cdc25 is not a target of the S-phase DNA 

damage checkpoint. I showed that DNA damage checkpoint does not target 

Cdc2-Y15 to slow replication. Based on my preliminary observation, origin firing 

might be inhibited by the DNA damage checkpoint as a way to slow replication. 

My efforts to measure the firing efficiency of a late replicating sequence were 

hindered by potentially unidentified inefficient origins firing at a low rate and 

replicating the region being studied. Studying the origin efficiency was maybe 

further complicated by neighboring origins being able to passively replicate the 

region. To identify origins in recently sequenced Schizosaccharomyces species, 

we initiated the genome-wide origin mapping. The mapping was also done on S. 

pombe to identify inefficient origins not mapped by other mapping studies. My 

work shows that deep sequencing can be used to map origins in other species 

and provides a powerful tool for origin studies. 
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Chapter I                                                                                 

Introduction- DNA replication and origin efficiency 
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The process of DNA Replication 

 

DNA replication is a crucial step in the cell cycle of all organisms (Bell and 

Dutta 2002). High fidelity must be maintained during this process in order to 

maintain genomic integrity. In prokaryotes, replication initiates at a single locus or 

origin, while in eukaryotes, replication is initiated from multiple points along the 

genome (Dutta and Bell 1997; Gilbert 2001; Bell and Dutta 2002). Therefore, 

eukaryotic replication is highly complex process. Activation of origins and 

initiation of replication must be tightly regulated. 

The process of initiation requires the sequential and cell cycle dependent 

binding of proteins (Fangman and Brewer 1992; Kelly and Brown 2000). Several 

protein complexes are assembled at sites of replication initiation allowing these 

origins to fire. 

In the fission yeast Schizosaccharomyces pombe, the first complex 

formed is the pre-replicative complex (pre-RC) at the origin. This multiprotein 

complex consists of the origin recognition complex (ORC), Cdt1, Cdc6 and a 

hexameric complex of the minichromosomal maintenance proteins (Mcm 2-7) 

(Aparicio et al. 1997; Donovan et al. 1997; Tanaka et al. 1997; Nishitani et al. 

2000). The fission yeast homolog of Cdc6 is Cdc18. Formation of the pre-RC on 

the origin is referred to as origin licensing. Two protein kinases, the cyclin-

dependent kinase (CDK) Cdc2 and the Cdc7 homologue, Hsk1, phosphorylate 

pre-RC components, which lead to the activation of the pre-RC and loading of 
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replication protein Cdc45, a replication initiation protein essential for replication. 

Loading of Cdc45 is followed by the attachment of Replication protein A (RPA), 

polymerases, establishment of replication forks and the initiation of replication 

{Figure I.1}(Zou and Stillman 1998; Zou and Stillman 2000; Masai and Arai 

2002). 

Formation of Pre-RC complex 

The pre-RC is assembled during the G1 phase of the cell cycle. The origin 

recognition complex (ORC) is composed of six proteins Orc1-6. The ORC 

proteins are conserved from yeast to metazoans. ORC components display DNA 

binding activity and were originally identified in budding yeast (Bell and Stillman 

1992). The timing of ORC recruitment does not appear to be conserved between 

organisms (Gilbert 2001). In fission yeast, ORC associates with replication 

origins both in vivo and in vitro and is formed during the late M and G1 phase 

(Chuang et al. 2002; Kong and DePamphilis 2002; Takahashi et al. 2003). 

Human ORC is capable of binding to any primary DNA sequence. ORC binds to 

the DNA in an ATP dependent manner. Fission yeast Orc4p has multiple AT 

hook motifs present at N terminus, which are absent in other organisms (Chuang 

and Kelly 1999). This hook is essential for viability in fission yeast and is shown 

to prefer AT rich tracts of DNA. ORC remains bound to the DNA throughout the 

cell cycle in the case of budding and fission yeast (Santocanale and Diffley 1996; 

Aparicio et al. 1997; Tanaka et al. 1997; Ogawa et al. 1999). However, in 
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 Figure I.1 Formation of protein complexes leading to origin firing 

 

Origin recognition complex marks the origin sites. At the beginning of G1, 

MCM complex is recruited by Cdc18 and Cdt1 loading onto the chromatin and 

this complex is known as pre-replicative complex (pre-RC). The origin is now 

licensed to fire. G1-S transition marks the recruitment of more factors, shown in 

the figure, to the pre-RC forming the pre-initiation complex (pre-IC) and leading 

to the initiation of replication. Once the origins are fired, further licensing is 

prevented and the complexes are converted to post-replicative complex (post-

RC). 
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Figure I.1 Formation of protein complexes leading to origin firing 
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mammals, only the Orc2 subunit is continuously associated with the chromatin 

whereas Orc1 disassociates with the chromatin at the end of S phase and 

attaches again only at the beginning of G1 (Natale et al. 2000; Tatsumi et al. 

2000). This data is consistent with the observation that Orc1 chromatin 

association is diminished in mitosis. Similarly, in Xenopus ORC is cleared from 

chromatin during metaphase (Carpenter et al. 1996; Romanowski et al. 1996).  

ORC binding to the origin recruits the initiation proteins Cdc6 and Cdt1. 

ORC binding to the chromatin is essential for Cdc6 and Cdc6 in turn is required 

for Mcm2-7 association (Coleman et al. 1996; Aparicio et al. 1997). A direct 

association of the budding yeast protein with the origins has also been shown by 

ChIP (Tanaka et al. 1997). Cdc6 is an AAA+ ATPase and has been shown to 

increase the stability of ORC on chromatin while simultaneously inhibiting 

nonspecific ORC binding (Mizushima et al. 2000; Harvey and Newport 2003). 

Cdc6 is a cycling protein. In budding and fission yeast, after cells have entered S 

phase, Cdc6 is targeted for degradation by SCFCDC4 dependent ubiquitination 

and undergoes proteosome mediated degradation (Jallepalli et al. 1998; Wolf et 

al. 1999; Perkins et al. 2001). Degradation occurs after CDK dependent 

phosphorylation of the N terminus as shown by mutation studies (Jallepalli et al. 

1998; Perkins et al. 2001). In mammals, CDK dependent phosphorylation 

promotes the export of Cdc6 from the nucleus. Cdc6 is subsequently degraded 

by the anaphase promoting complex (APC) during metaphase (Petersen et al. 

2000). 
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In fission yeast, Cdt1 associates with the C terminus of Cdc6 and leads to 

the recruitment of MCM proteins to growing origin complex (Nishitani et al. 2000). 

Much like Cdc6, Cdt1 levels peak in G1 and as the cell progresses through S 

phase it declines. Crystal structure of the Cdc6 homolog Pyrobaculum 

aerophilium has shown that it is an AAA+ ATPase and is suspected to be a prime 

candidate to act as the clamp loader as a part of ORC (Perkins and Diffley 1998; 

Liu et al. 2000). Some of the proteins of the ORC- Orc1, 4 and 5- also belong to 

AAA+ ATPase family (Lee et al. 2000). It is highly likely that these proteins along 

with Cdc6 act as a clamp loader to load the replicative helicase MCM complex on 

the origins.  

After Cdt1 and Cdc6 loading, origin DNA must be unwound. This process 

requires the Mcm2-7 complex (Walter and Newport 2000). The MCM complex is 

a heterohexamer formed by six different Mcm proteins. Mcm2-7 are essential in 

both budding and fission yeast (Kelly and Brown 2000). ORC, Cdc6 and Cdt1 are 

all required for MCM origin recruitment. The recruitment of MCM requires ATP 

hydrolysis by both Cdc18 and ORC subunits (Randell et al. 2006). After the MCM 

complex has been loaded, ORC and Cdc6 are no longer required for origin firing 

indicating that these two proteins act primarily to load the MCM helicase (Rowles 

et al. 1999; Walter and Newport 2000). MCM proteins are the only components 

of the pre-RC known to associate with replication forks (Labib et al. 2000). 

Previous works using various techniques have suggested the Mcm complex to 

act as the replicative helicase during S phase (Labib and Diffley 2001; Forsburg 
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2004). MCM complex has only recently been shown to actually have the in vitro 

helicase activity (Bochman and Schwacha 2008). The subcomplex of Mcm2-7- 

Mcm4, 6 and 7- display limited in vitro helicase activity (Lee et al. 2001; You et 

al. 2002) suggesting that Mcm4/6/7 acts as the core helicase with Mcm2/3/5 

working as the regulatory subunits. All six proteins are required for ATPase 

activity (Schwacha and Bell 2001). The structure of the MCM complex as seen 

by EM studies shows the fission yeast MCM proteins forming a doughnut-like 

structure with a central cavity (Adachi et al. 1997). A similar toroidal structure 

with six lobes surrounding a central cavity has been observed by EM for human 

Mcm4/6/7 complex (Sato et al. 2000). Presumably DNA strand(s) occupy this 

central cavity. 

MCM proteins are present in the nucleus only during G1 and S phase in 

budding yeast and are actively exported to the cytoplasm during G2. Only an 

intact six-subunit complex is able to re-enter nucleus in both budding and fission 

yeast (Labib et al. 1999; Nguyen et al. 2000). Export of the unbound MCM 

proteins has been shown to be mediated by the Crm1 nuclear export factor in 

fission yeast (Pasion and Forsburg 1999). In fission yeast, the bulk of the MCM 

proteins are constitutively nuclear (Bell and Dutta 2002). Likewise, in metazoans, 

MCM proteins are present in the nucleus constitutively and their chromatin 

association weakens through the S phase (Lei and Tye 2001). 
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MCM recruitment completes the formation of the pre-RC. Origins bound 

by the pre-RC are licensed to fire or are capable of firing. However, only a 

fraction of licensed origins actually fire (Santocanale and Diffley 1996; Walter and 

Newport 1997; Okuno et al. 2001). If, for some reason, the origins that are 

licensed, fail to fire, then neighboring licensed dormant origins fire (Santocanale 

et al. 1999). 

In order for the origins to fire, the pre-RC must be converted to pre-

initiation complex (pre-IC) during the G1 to S transition. Not all pre-RC’s are 

converted to pre-IC. Cdc2 and Hsk1-dependent phosphorylation is required for 

initiating replication at the pre-RCs and ultimately, activation of the MCM 

helicase.  

Initiation of Replication 

 

Mcm10 is the earliest initiation factor that binds to the pre-RC. It is 

essential for the subsequent steps of the complex formation to take place. A role 

has been suggested for Mcm10 in the fork elongation and presumably travels 

along with the replication fork (Gregan et al. 2003). Mcm10 seems to have 

several critical functions while the replication fork is traveling and is needed for 

pre-RC formation only in budding yeast and not in fission yeast or Xenopus 

(Homesley et al. 2000). Mcm10 binds to the chromatin independently of Mcm2-7 

except in Xenopus where the MCM complex needs to be loaded first 
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(Wohlschlegel et al. 2002; Gregan et al. 2003). In mammals, MCM10 displays a 

cyclic chromatin association, which is highest during S phase, unlike budding 

yeast, which displays constitutive chromatin binding (Izumi et al. 2000; Izumi et 

al. 2001). 

Replication is triggered at the origins when the S phase cell cycle 

regulated kinases, Hsk1 (Cdc7 in budding yeast) and cyclin dependent kinase 

(CDK) Cdc2, are activated (Kelly and Brown 2000; Bell and Dutta 2002; Masai 

and Arai 2002; Kim et al. 2003). CDK and Dbf4-dependent kinase (DDK) modify 

the pre-RC and facilitate the loading of additional factors, which are required for 

the initiation of DNA synthesis (Jares and Blow 2000). 

Cyclin dependent kinases ensure the progression through various phases 

of the cell cycle including initiation of replication. In fission yeast, the CDK activity 

is low at the beginning of the S phase but the levels gradually increase through 

the S phase. It is presumed that CDK’s intermediate levels are sufficient to 

initiate replication but are below the threshold for its mitotic functions. However, 

CDK does play a major role during replication, phosphorylating many replication 

factors (Kelly and Brown 2000). Mammals have different CDKs for different 

stages of the cell cycle. Fission yeast however expresses a single CDK, Cdc2. 

The major cyclin Cdc2 associates with in fission yeast is Cdc13. There are three 

other cyclins Cig1, Cig2 and Puc1 which are also present and have overlapping 

functions (Fisher and Nurse 1996). 
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In addition to CDK Cdc2, the Cdc7 kinase is required. Cdc7 has a catalytic 

partner, Dbf4 and the heterodimer is known as Dbf4-dependent kinase (DDK). 

The fission yeast analog of budding yeast Dbf4 is Dfp1. Dfp1 expression is 

periodic with levels peaking at the beginning of S phase. DDK kinase activity is 

required for Cdc45 recruitment to the pre-RC (Walter and Newport 2000; Zou 

and Stillman 2000). DDK activates origins throughout S phase (Bousset and 

Diffley 1998; Patel et al. 2008). DDK phosphorylates MCM and Mcm10 is 

required for the interaction between DDK and MCM complex (Lee et al. 2003). 

The phosphorylation has been shown both in vivo and in vitro (Lei et al. 1997; 

Jares and Blow 2000; Jares et al. 2000). DDK preferentially phosphorylates 

chromatin bound MCM (Sheu and Stillman 2006). 

Recently the essential targets for phosphorylation by CDK have been 

identified as Sld2 and Sld3 (Tanaka et al. 2007; Zegerman and Diffley 2007). 

Phosphorylation allows them to bind to Dpb11. The fission yeast homolog of 

Dpb11 is Rad4. This in turn recruits Cdc45, Go, Ichi, Nii and San (GINS) and 

DNA polymerases to the origin DNA (Labib and Gambus 2007). 

Cdc45 is the initiation protein, which is required not only for initiating 

replication but also for maintaining replication. It has been suggested that Cdc45 

along with GINS are responsible for stimulating the helicase activity of MCM by 

forming the Cdc45/Mcm2-7/GINS (CMG) complex (Moyer et al. 2006).  
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It has also been suggested that CDK and DDK function in parallel and 

lead to the loading of Cdc45 onto the chromatin {Figure I.2} (Dolan et al. 2004). 

Cdc45 recruitment initiates replication, presumably by activating the MCM 

helicase unwinding origin DNA. DNA unwinding leads to the recruitment of the 

DNA polymerases- DNA pol α, δ and ε. The processivity factor, Proliferating Cell 

Nuclear Antigen (PCNA) then encircles the DNA and topologically links the 

polymerase to DNA (Jonsson and Hubscher 1997). This loading of PCNA is done 

by the clamp loader, replication factor C (RFC) (Ellison and Stillman 2001). 

Replication forks then travel in a bi-directional manner with MCM and Cdc4 

traveling with the forks {Figure I.3}. 

How is re-replication prevented? 

Replication must be a highly coordinated and controlled process. Cells 

must ensure replication occurs only once during each round of the cell cycle. Re-

replication would lead to chromosomal breakage and genomic instability. To 

prevent re-replication, cells must ensure any origin will fire only once during S 

phase. Several studies have identified different mechanisms utilized to ensure 

fired origins cannot fire again. In budding yeast, origin firing leads to disassembly 

of the pre-RC, hence ensuring that origins fire only once during each cell cycle 

{Table I.1} (Diffley 1996). 
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Figure I.2 Hsk1 and Cdc2 regulate initiation of replication 

 

Hsk1-dfp1 kinase regulates the assembly of the replication complex on the 

origins.  It does so by phosphorylating MCM proteins to allow for the binding of 

Sld3. Rad4 and Drc1 on the other hand mediate the signal from CDK Cdc2 to 

initiate replication. Cdc2 phosphorylates Drc1. The regulation by both DDK and 

CDK is required to activate the preRC and initiate replication and disrupting 

either signals leads to the disruption of the origin firing. Adapted from Dolan and 

forsburg 2004 
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Figure I.2 Hsk1 and Cdc2 regulate initiation of replication 
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Figure I.3 Steps leading to the formation of Initiation complex  

The model is based on studies of the various replication factors. At the 

beginning of S phase, after the formation of pre-RC, Sld3 binds to the origins 

where the pre-RC is bound in a DDK dependent manner. CDK is then needed for 

the binding of GINS and Cut5. Cut5 and GINS are mutually dependent for 

binding. Cdc45 then binds to the origins only if these three factors have bound to 

the origin. Binding of cdc45 leads to the initiation of replication.  Adapted from 

Yabuuchi and Yamada 2006 
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Figure I.3 Steps leading to the formation of Initiation complex 

 

 

 

 

 

 

 

 



 
 
 

17 

Table I.1 Mechanisms for preventing pre-RC formation 

 

 S. cerevisiae S. pombe Xenopus Mammals 

ORC CDK 

phosphorylation 

on chromatin 

? Destabilization 

of ORC on 

chromatin 

Orc1 dissociation/ 

degradation 

Cdc6 Degradation Degradation Nuclear 

Export 

Nuclear Export 

CDK phosphorylation 

on chromatin 

Cdt1  Nuclear export  Degradation Degradation 

Geminin 

Degradation 

Geminin 

MCM Nuclear export ? Reduced 

affinity for 

chromatin 

Reduced affinity for 

chromatin    

 CDK inhibition of 

helicase activity 
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Cdc6, ORC and Cdt1 are the licensing factors that need to be regulated or 

prevented from reattaching to origin sites and licensing them. CDK is the primary 

regulator for preventing licensing once the S phase has begun, which it does by 

phosphorylating its targets. Intermediate levels of CDK are required for initiating 

S phase but also lead to prevention of pre-RC formation. Therefore pre-RC may 

only be formed when CDK levels are low at the M/G1 transition. Beginning with S 

phase initiation, CDK levels rise and thereby prevent pre-RC formation.  

CDK interacts and phosphorylates subunits of ORC, which is necessary to 

prevent further pre-RC formation (Nguyen et al. 2001; Vas et al. 2001). Studies 

have shown that replication may be initiated in G2 phase if CDK activity is 

inhibited (Itzhaki et al. 1997). In mammals, ORC affinity for chromatin decreases 

after origins fire. In fission yeast, CDK is recruited by ORC and disruption of this 

interaction allows re-replication (Wuarin et al. 2002). In eukaryotes, CDK activity 

results in reduction of Cdc6 activity. In budding yeast, beginning in S phase, CDK 

protein levels increase, phosphorylate Cdc6 and target it for SCF mediated 

ubiquitination and proteolytic degradation (Drury et al. 1997; Jallepalli et al. 

1997). In vertebrates, Cdc6 activity is prevented by its export from the nucleus 

upon CDK phosphorylation (Saha et al. 1998; Delmolino et al. 2001). Cdt1 on the 

other hand becomes ubiquitinated only after PCNA loading at fired origins in 

fission yeast (Arias and Walter 2006). In mammals, Cdt1 is phosphorylated by 

CDK and targeted for degradation (Liu et al. 2004). In budding yeast Cdt1 is 

exported away from the nucleus (Tanaka and Diffley 2002). 
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MCMs on the other hand, travel with the forks and hence are no longer 

present at the origins (Aparicio et al. 1997). The MCMs that are nuclear but not 

bound to the chromatin have a decreased affinity for chromatin due to 

phosphorylation by CDK (Coue et al. 1996; Fujita et al. 1998). In budding yeast, 

MCMs released from the forks are exported from the nucleus (Labib et al. 1999; 

Nguyen et al. 2000). 

Another mechanism for preventing re replication is seen in metazoans. 

Geminin forms a dimer with and prevents Cdt1 dependent origin licensing 

(McGarry and Kirschner 1998; Maiorano et al. 2004). Geminin prevents Cdt1 

dependent Mcm recruitment through steric hindrance of the Mcm-Cdt1 

interaction (Cook et al. 2004). 

Early studies on origin sites 

 

Replication is initiated at defined regions of the genome called origins. 

Origins are best characterized in budding yeast. Origins are defined sequences 

capable of initiating replication or autonomously replicating sequences (ARS). 

Origins were originally identified using plasmid stability studies in proliferating 

yeast. Two-dimensional gel electrophoresis has also been used to study origins 

in both plasmid and native chromosomal context (Brewer and Fangman 1987; 

Brewer and Fangman 1991). Budding yeast contains a 10-12bp ARS conserved 

signature sequence called the ARS consensus sequence (ACS). Budding yeast 
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origins are about 100-150 bp containing one ACS element and 2-3 additional 

origin B elements (Newlon and Theis 1993; Bell et al. 1995). Only 1 of these ACS 

elements is actually conserved between origins (Rao et al, 1994). Budding yeast 

origins fire with high efficiency at defined periods of the S phase (Kelly and 

Brown 2000; Gilbert 2001). Origins are defined as either early or late firing 

(Raghuraman et al. 2001; Yabuki et al. 2002). However, there is no clear 

demarcation between early and late firing origins. Rather, origins fire throughout 

S phase (Raghuraman et al. 2001). 

Due to a lack of well-defined difference between early and late firing 

origins it is very difficult to identify which origins fire early or which fire late. This 

problem can be circumvented by using the drug hydroxyurea. Origins firing in the 

presence of hydroxyurea are defined as early origins (Santocanale and Diffley 

1998; Kim and Huberman 2001; Lopes et al. 2001). Hydroxyurea is a 

ribonucleotide reductase inhibitor, which prevents deoxyribonucleotide synthesis. 

The inhibition leads to nucleotide depletion and because of this, replicating forks 

cannot incorporate nucleotides at the regions where replication is occurring and 

hence the forks stall. Hydroxyurea triggers the replication checkpoint that 

prevents origins from firing. Early origins are able to fire before the pools of 

nucleotides are depleted and before the checkpoint activity prevents firing, hence 

they fire during early S phase (Yabuki et al. 2002). Late origins do not fire in HU 

and are prevented from doing so by the replication checkpoint (Shirahige et al. 

1998). Genome-wide studies in yeast have identified and mapped many origins 
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(Raghuraman et al. 2001; Yabuki et al. 2002; Segurado et al. 2003; Feng et al. 

2006; Heichinger et al. 2006; Eshaghi et al. 2007; Hayashi et al. 2007).  

Unlike budding yeast origins, metazoan origins are not well defined and 

average origin firing efficiency is low. Several studies indicate that in Xenopus 

and Drosophila embryos any region is capable of acting as an origin and 

replication therefore may be initiated from anywhere in the genome (Hyrien and 

Mechali 1993; Shinomiya and Ina 1994). In mammals origins have been difficult 

to identify. Regions where ORC binds have not been identified and the origins 

that are known are highly inefficient with the best studied example, hamster 

DHFR locus firing only 20% of the time (Burhans and Huberman 1994; Gilbert 

2001; Dijkwel et al. 2002). 

Origins in fission yeast 

 

Fission yeast serves as an excellent model organism for origin studies 

related to higher eukaryotes. Unlike budding yeast origins, but like metazoans, 

fission yeast origins contain no consensus sequence. However, replication does 

initiate at defined regions in the genome in fission yeast (Dubey et al. 1994; 

Gomez and Antequera 1999). Fission yeast origins are large AT rich regions 

(Clyne and Kelly 1995; Dubey et al. 1996; Segurado et al. 2003; Dai et al. 2005). 

Similar to metazoans, fission yeast origins are inefficient with the average 

efficiency ranging between 25-40% (Dubey et al. 1994; Gomez and Antequera 
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1999; Kim and Huberman 2001; Segurado et al. 2002; Segurado et al. 2003; 

Patel et al. 2006). Lastly, fission yeast origins are not always interchangeable 

with the budding yeast origins (Clyne and Kelly 1995). Hence the mechanisms of 

origin regulation in fission yeast maybe more similar to metazoans {Figure I.4}. 

Genome-wide studies have been conducted recently in an effort to identify 

origins across the genome. One of the earliest efforts was done by bioinformatic 

analysis where AT rich sequences were the criteria used to select origins 

(Segurado et al. 2003). They looked for regions greater than 72% AT rich, and 

these AT rich segments should be present in 0.5-1 Kb windows. This method 

identified 384 AT rich islands, which could serve as origins and 20 of them tested 

for origin activity by 2-D gel electrophoresis. It was shown recently that fission 

yeast origins had properties similar to the inter-genic regions (Dai et al. 2005).  

Another genome-wide analysis is based upon mapping single stranded 

DNA on ORF microarrays in the presence of HU. The analysis in an S-phase 

checkpoint deficient strain identified 321 origins in fission yeast (Feng et al. 

2006). 61% of these origins function during a regular S-phase which suggests 

that S-phase checkpoint functions in suppressing many origins which will be 

discussed later. 
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Figure I.4 Origins in fission yeast and stochasticity of origin selection 

(A) Fission yeast origins are characterized by AT rich islands. These are 

regions of asymmetric stretches of adenine or thiamine. The origins are located 

in the inter-genic regions as identified by various studies. (B) Origins in fission 

yeast display stochasticity in firing. Different origins fire in each cell during cell 

cycle. Each origin fires only in a fraction of cells. Origins are marked by a red line 

and the corresponding efficiency is given above the origin location. (C) Temporal 

stochasticity is marked by origins firing throughout S phase. There are no clear 

demarcations as to when an origin fires early and when it fires late. Adapted from 

Legouras and Lygerou, 2006 
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Figure I.4 Origins in fission yeast and stochasticity of origin selection  
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Recently, Heichinger et al have identified more origins in fission yeast 

based on an increase in copy number with a resolution of about 6.5 Kb 

(Heichinger et al. 2006). DNA content was measured in the G2 phase and S 

phase of the cell cycle and the regions that had doubled their amount of DNA 

were the regions that had replicated. They identified 401 strong and 503 putative 

weak origins which seemed to be spaced on average every 14 kb throughout the 

genome (Heichinger et al. 2006). 

As part of this thesis, I have participated in a genome-wide study to find 

origins using a similar copy change number described in Heichinger et al, 2006. 

However, this study was done using deep sequencing the details of which will be 

described in Chapter IV. We have also done similar studies on two other 

Schizosaccharomyces species; S. octosporus and S. japonicus. 

Origin location influences timing of firing 

Origin location is important for its efficiency (Friedman et al. 1995).  

Inefficient origins can be made to fire if their passive replication is prevented by 

neighboring origins (Santocanale et al. 1999). Late firing origins located in a 

heterochromatic region may fire early if transferred to euchromatin (Stevenson 

and Gottschling 1999; Vogelauer et al. 2002). Also, early firing origins may be 

forced to fire late by placing them in heterochromatin (Friedman et al. 1996; 
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Zappulla et al. 2002). This data shows that origin location dictates whether that 

origin will fire early or late. 

What is Random gap problem? 

 

In contrast to budding yeast where efficient origins are spaced relatively 

evenly across the genome, only a few licensed origins actually fire in humans 

and fission yeast.  Origin firing in fission yeast is random in nature compounding 

potential problems completing replication. Random firing was determined by 

measuring the distance between origins that had fired. Patel et al found an 

exponential distribution of inter-origin distances which was interpreted as 

stochasticity of origin firing {Figure I.4} (Patel et al. 2006). Random and inefficient 

origin firing may lead to disastrous consequences. Large regions of the genome 

may have no origin firing due to the stochastic firing of origins, thereby leading to 

cells taking a long time to complete replication, a problem known as ‘random gap 

problem’ (Lucas et al. 2000; Herrick et al. 2002; Jun et al. 2004). In a recent 

paper on budding yeast, it was shown that although budding yeast seems to 

have a highly regulated temporal program, when looked at globally, at the 

individual cell level replication seems to be stochastic. This data argues that even 

in budding yeast there is a randomness at a local level instead of a regulated 

temporal program as shown previously (Czajkowsky et al. 2008). However, cells 

are able to finish replication in an efficient manner (Hyrien et al. 2003). Hence 
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there is no random gap problem and cells must employ a mechanism to regulate 

origin firing. Several models have been proposed to explain this discrepancy. 

How fission yeast reconciles random origin firing and inefficient origins 

with efficient replication is the focus of my studies. My hypothesis is that the 

origin efficiency increases as the cells progress through S phase. In order to test 

this, my thesis has focused on measuring the efficiency of an origin during the 

later part of S phase. Chapter III discusses the model that I believe explains this 

conundrum and my efforts to show this. 

In order to understand why origins are inefficient biochemically, we 

hypothesized that there is a rate-determining factor that is responsible for 

activating all the origins. This factor would have to be present in limited quantities 

and be physically present at each origin. Any of the factors that are responsible 

for activating the pre-RC would be good candidates. Studies in our lab have 

shown that this factor is Dfp1 which is the activating co-factor of Hsk1 Kinase 

(Patel et al. 2008). This work is presented in Appendix III.1. 

DNA damage checkpoints and origins 

 

Replication is far from perfect and its progress is hampered by damage 

both endogenous and spontaneous, to DNA. In order to ensure an error free 

transmission of genetic material, cells have devised elaborate mechanisms such 
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as various repair systems and cell cycle checkpoints to detect unreplicated DNA, 

DNA damage and repair aberrant DNA structures (Zhou and Elledge 2000). 

Checkpoints are molecular signaling cascades that delay or arrest the cell-

cycle in response to DNA damage, thereby providing sufficient time for repair. 

Checkpoint signaling consists of damage sensors, which sense the damage, 

transducers which relay these signals, and effectors which regulate the various 

targets of the checkpoint (Elledge 1996). The phase of the cell cycle where the 

damage occurs determines the specific response. Checkpoints ensure the 

accurate segregation of genetic material and repair of damage and ensure that       

cells meet the specific cell size, mass and nutrition requirements. The absence of 

checkpoints can be lethal to cells. DNA damage results in mutations, 

chromosomal rearrangements and aneuploidy which can lead to cancer (Hartwell 

et al. 1994). There are four different DNA damage checkpoints. The G1-S, S-M 

and G2-M checkpoints are responsible for arresting the cell cycle until the 

damage is repaired. The S-phase damage checkpoint slows replication till the 

damage is repaired. 

The G1-S checkpoint ensures that cells have reached a sufficient size 

before entering the S phase of the cell cycle and repair any damage during G1. 

G2-M checkpoint prevents mitosis in the presence of damage to ensure that 

damaged chromosomes do not undergo chromosomal segregation. The S-M 

checkpoint prevents mitosis till the entire DNA is replicated to ensure that cell 
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division does not take place with incomplete copies of the genome. The S-phase 

DNA damage checkpoint slows replication in the presence of damage to allow 

cells to repair the damage before completing replication. My work focuses on the 

S-phase DNA damage checkpoint. 

How does S-phase DNA damage checkpoint work? 

 

S-phase DNA damage checkpoint is activated and responds to DNA 

damage occurring in S phase. This checkpoint slows replication in contrast to the 

other checkpoints, which induce a complete cell cycle arrest (Painter and Young 

1980; Rowley et al. 1999). This checkpoint is conserved in eukaryotic organisms 

and requires the Ataxia-Telangectasia Mutated (ATM) family of protein kinases 

(Kastan and Lim 2000). There are two members of this family, Ataxia-

Telangectasia Related (ATR) and ATM in metazoans (Savitsky et al. 1995; 

Bentley et al. 1996), Mec1 & Tel1 in budding yeast, and Rad3 & Tel1 in fission 

yeast (Rhind and Russell 1998). In fission yeast Rad3 responds to all forms of 

DNA damage (Bentley et al. 1996). Effector proteins are also conserved and 

consist of Chk1 & Chk2 in vertebrates, Chk1 and Rad53 in budding yeast, and 

Chk1 & Cds1 in fission yeast {Table I.2} (Rhind and Russell 2000). DNA damage 

induced by methyl methane sulfonate (MMS) also slows fork progression 

(Tercero and Diffley 2001). Delay in S phase progression can be induced by the 

checkpoint either by inhibition of origin firing or by slowing fork progression. The 

presence of well defined origins in budding yeast has shown that late origins are 
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inhibited from firing and are Mec1 and Rad53 dependent (Shirahige et al. 1998; 

Tercero and Diffley 2001). However, the downstream targets of Rad3 have not 

been identified for slowing of replication. 

A well characterized target of the checkpoint effectors in metazoans is 

cyclin dependent Kinase, Cdk2 {Figure I.5} (Falck et al. 2001). The inhibition of 

origin firing is mediated mainly by the effector Chk2 targeting Cdk2 via Cdc25. 

Cdk2 is inactivated when phosphorylation at Tyrosine-15 (Tyr-15) occurs and this 

inhibitory phosphate must be removed to activate Cdk2. The Cdk2-cyclin E 

complex, which facilitates loading of Cdc45 onto chromatin, is activated by 

Cdc25 phosphatase that removes the inhibitory phosphate from Cdk2. Chk2 

phosphorylates Cdc25 thereby targeting it for degradation (Mailand et al. 2000; 

Falck et al. 2001; Sorensen et al. 2003; Xiao et al. 2003). However, in yeasts 

Cdc25 inactivation by the checkpoint has not been shown and the regulation of 

Cdc2 via this pathway has not been demonstrated. 

A parallel pathway in the S-phase DNA damage checkpoint has been 

shown to exist in vertebrates and fission yeast which appears to act through a 

heterotrimeric complex consisting of Mre11, Rad50 and Nbs1 (MRN) (Costanzo 

et al. 2001; Falck et al. 2002). Mutations in one of the pathways show only a 

partial loss of the checkpoint and a loss of both the pathways is required for a 

complete loss of slowing {Figure I.5} (Falck et al. 2002). 
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Table I.2 Checkpoint components across the species 

 

 

Protein functions S. cerevisiae  S. pombe Mammals  

ATM/ATR-like 

kinases 

Mec1p 

Tel1p 

Rad3 

Tel1 

ATR 

ATM 

ATR-interacting 

proteins 

Ddc2p  Rad26  ATRIP 

RFC-like proteins Rad24p 

Rfc2-5p 

Rad17 

Rfc2-5 

Rad17 

Rfc2-5 

Mediators Rad9p 

Mrc1p 

Crb2 

Mrc1 

BRCA1 

Claspin 

Replication fork 

stabilizers 

Tof1p Swi1 Timeless 

DSB recognition 

processing 

Mre11p 

Rad50p 

Xrs2p 

Rad32 

Rad50 

Nbs1 

Mre11 

Rad50 

Nbs1 

Effector kinases Rad53p 

Chk1p 

Cds1 

Chk1 

Chk2 

Chk1 
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Figure I.5 Model for the S phase DNA damage checkpoint in Mammals 

Ionizing radiation induces double stranded breaks (DSB). IR activates the 

checkpoint where ATM triggers the two parallel pathways, which work together to 

inhibit DNA replication. ATM phosphorylates Chk2, which in turn induces the 

destruction of Cdc25A phosphatase. The destruction of Cdc25A prevents the 

activation of the S phase cyclin E/Cdk2 complex by dephosphorylation, and does 

not allow the binding Cdc45 onto the origins. This inhibits the firing of origins and 

slows replication. ATM also initiates the second pathway by phosphorylating 

Nbs1, required for activating Nbs10-Mre11-Rad50 complex. The mechanism of 

replication slowing by this pathway is unknown. Adapted from Falck and Petrini, 

2002 
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Figure I.5 Model for the S phase DNA damage checkpoint in Mammals 
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Similar to vertebrates, MRN mutants in fission yeast display a partial 

defect in S phase slowing implying the existence of a parallel pathway similar to 

mammals (Willis and Rhind 2009). The MRN independent pathway of the 

checkpoint has been shown to be dependent upon Rad3 and Cds1 (Marchetti et 

al. 2002). Although the downstream targets of this pathway are not known, recent 

studies have identified Cdc25 a possible candidate (Kumar and Huberman 

2004). However, this seems unlikely in the case of fission yeast as the 

dephosphorylation of Cdc2 (fission yeast Cdk2) would lead to cells undergoing 

premature mitosis (Moser et al. 2000). It has always been assumed that Cdc2 

remains phosphorylated during S phase in fission yeast. Therefore the role of 

Cdc25 in the checkpoint needs to be studied to remove the ambiguity in 

the field. I have shown that Cdc25 is not the target of the intra S-DNA damage 

checkpoint in chapter II of my thesis (Kommajosyula and Rhind 2006). This 

shows that although the inhibition of origin firing is conserved between 

vertebrates and yeast; the mechanism is different (Shirahige et al. 1998; 

Kommajosyula and Rhind 2006; Kumar and Huberman 2009). 

A key regulator required for origins to fire in S phase is the Hsk1/Dfp1 

kinase. Hsk1 is a serine/threonine kinase that becomes activated after binding to 

its regulatory subunit Dfp1 (Jackson et al. 1993; Johnston et al. 1999). The 

activated Hsk1 then phosphorylates Mcm proteins at the origins (Lei et al. 1997). 

Budding yeast homologue Cdc7 has been shown to be necessary for initiation of 
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early and late firing origins (Bousset and Diffley 1998; Donaldson et al. 1998). 

Cdc7 has been implicated in the checkpoint as a potential downstream target 

(Jares and Blow 2000). Hsk1 has been shown to be phosphorylated by Cds1 

(Chk2 homolog) upon treatment with Hydroxyurea (HU) making Hsk1 a potential 

target for the checkpoint (Snaith et al. 2000). Thus, the DNA damage checkpoint 

can target Hsk1 through Cds1 and inhibit origin firing and slowing replication. 

Origin regulation by checkpoints 

 

A recent genome-wide study in fission yeast to identify origins was 

conducted in a checkpoint deficient strain. In this study the origins that were 

identified had a 61% overlap with origins firing in a regular S-phase. This showed 

that checkpoints also play a role in regular S phase (Feng et al. 2006). Various 

studies have shown that damage during S phase activates the S-phase DNA 

damage checkpoint, which inhibits origin firing (Shirahige et al. 1998; Kelly and 

Brown 2000). In mammals the lack of well defined origins has hampered the 

study of the checkpoint mechanisms. A few studies have shown that upon 

damage origin firing is inhibited by the checkpoint (Larner et al. 1999). Inhibition 

of origin firing has been supported by 2D gel analysis on replication of rDNA 

locus. rDNA is one of the few loci in mammals showing well defined early or late 

origins (Larner et al. 1999). The presence of well defined origins in mammals 

being an exception rather than a rule makes it harder to extrapolate the results 

from these studies to the whole genome. These studies have all been carried out 
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on a population level and not on individual origins. A recent study using DNA 

fiber labeling technique has shown that different DNA damaging agents slow 

replication by different mechanisms including inhibition of origin firing and slowing 

of fork progression (Merrick et al. 2004). It is however not clear as to how fork 

progression is slowed and what molecules are playing a role in it. Since fission 

yeast have a similar origin setup, identification of the targets and mechanism of 

the checkpoint in them will help in understanding the human checkpoint due to 

the conserved nature of the checkpoints.  

Work in my thesis has shown that Cdc25 is not a target of the intra-S DNA 

damage checkpoint. I have attempted to measure the efficiency of a late 

replicating sequence to fire. We have also shown that deep sequencing is a 

powerful tool for the identification of new origins in the Schizosaccharomyces 

species and further analysis will continue on this project. 
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Chapter II                                                                                        

Cdc2 tyrosine phosphorylation is not required for the S-phase 

DNA damage checkpoint in fission yeast 
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ABSTRACT 

 

The S-phase DNA damage checkpoint slows replication when damage 

occurs during S phase.  Cdc25, which activates Cdc2 by dephosphorylating 

tyrosine-15, has been shown to be a downstream target of the checkpoint in 

metazoans, but its role is not clear in fission yeast.  The dephosphorylation of 

Cdc2 has been assumed not to play a role in S-phase regulation because cells 

replicate in the absence of Cdc25, demonstrating that tyrosine-15 

phosphorylated Cdc2 is sufficient for S phase.  However, it has been reported 

recently that Cdc25 is required for the slowing of S phase in response to damage 

in fission yeast, suggesting a modulatory role for Cdc2 dephosphorylation in S 

phase.  We have investigated the role of Cdc25 and the tyrosine phosphorylation 

of Cdc2 in the S-phase damage checkpoint, and our results show that Cdc2 

phosphorylation is not a target of the checkpoint.  The checkpoint was not 

compromised in a Cdc25 overexpressing strain, a strain carrying non-

phosphorylatable form of Cdc2, or in a strain lacking Cdc25.  Our results are 

consistent with a strictly Cdc2-Y15 phosphorylation-independent mechanism of 

the fission yeast S-phase DNA damage checkpoint. 
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INTRODUCTION 

Cells slow replication in response to DNA damage during S phase (Bartek 

et al. 2004).  This S-phase DNA damage checkpoint, also know as the intra-S 

checkpoint, does not completely block replication.  Instead, it reduces the rate of 

bulk replication, about 50% in human cells, presumably allowing cells to 

coordinate replication with repair or bypass of the damage (Painter and Young 

1980; Bartek et al. 2004).  Although this checkpoint has been proposed to allow 

for the repair of damage during S phase, there is not a strong correlation 

between checkpoint proficiency and damage tolerance.  Furthermore, DNA 

damage induced before or during S phase can persist through the checkpoint 

and be repaired in G2 (Orren et al. 1997; Rhind and Russell 1998). Nonetheless, 

loss of the checkpoint leads to increased chromosomal rearrangements and 

profound cancer predisposition in humans (Petrini 2000; Myung et al. 2001). 

 The checkpoint pathway regulating replication in response to DNA 

damage is conserved amongst eukaryotes (Bartek et al. 2004). Members of the 

ATM-family of protein kinases form the center of the checkpoint pathway, serving 

to recognize DNA damage and initiate checkpoint signaling.  ATM itself appears 

to be the major kinase in the vertebrate S-phase DNA damage checkpoint; the 

related kinases, Mec1 and Rad3, are required for the checkpoint in budding and 

fission yeast, respectively.  When activated, these kinases phosphorylate a 

number of downstream effectors including the FHA-containing effector kinases – 
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Rad53 in budding yeast, Cds1 in fission yeast and Chk2/Cds1 in vertebrates. In 

addition to these checkpoint kinases, an array of accessory damage recognition 

and checkpoint mediator proteins are also conserved.  Although this signaling 

pathway is well conserved, it is less clear if its targets are also conserved. 

A priori, there are two ways that the checkpoint could slow replication.  It 

could reduce the number of replication forks by inhibiting origin firing or arresting 

a subset of active forks, or it could slow the rate of progression of a majority of 

forks.  Origin firing is inhibited by the checkpoint in vertebrates and in budding 

yeast (Santocanale and Diffley 1998; Shirahige et al. 1998; Larner et al. 1999; 

Costanzo et al. 2000). In vertebrates, Chk2 regulates origin firing by targeting 

Cdc25A for proteolysis, thus preventing the dephosphorylation and activation of 

S-phase cyclin-dependent kinases such as Cdk2/Cyclin E, which are required for 

origin firing throughout S phase (Costanzo et al. 2000; Falck et al. 2001). 

In addition to the Cdc25-dependent regulation of origin firing, there is a 

parallel, Cdc25-independent checkpoint mechanism in mammals (Falck et al. 

2002; Henry-Mowatt et al. 2003). Although the mechanism of this branch of the 

checkpoint is not well understood, it is known to require ATM phosphorylation of 

MRN, a heterotrimeric recombinational repair complex consisting of Mre11, 

Rad50 and Nbs1.  MRN is involved in homologous and non-homologous 

recombinational repair, as well as meiotic recombination, DNA damage signaling 

and telomere maintenance. The fact that MRN is required only for the Cdc25-
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independent branch of the checkpoint suggests that it acts downstream in the 

checkpoint pathway, rather than as an upstream signaling factor (Falck et al. 

2002).  The regulation of fork progression has also been shown to require the 

XRCC3 recombination protein (Henry-Mowatt et al. 2003). The role of MRN in 

the regulation of recombination, and the role of XRCC3 in regulating fork 

progression, has lead to the speculation that the checkpoint may slow replication 

fork progression through induction of replication-coupled recombinational repair 

(Rhind and Russell 2000; Henry-Mowatt et al. 2003).  

The targets of the S-phase DNA damage checkpoint in fission yeast are 

less well defined. The role of the tyrosine-15 phosphorylation of Cdc2 (the only 

cyclin-dependent kinase in fission yeast) as a checkpoint target has been well 

established. In response to DNA damage in G2 or replication blocks during S 

phase, Cdc25 is inhibited, preventing the dephosphorylation of Cdc2 tyrosine-15 

and arresting cells before mitosis (Rhind et al. 1997; Rhind and Russell 1998). It 

has also been reported that inhibition of Cdc25 and phosphorylation of Cdc2 

tyrosine-15 are required to slow replication in response to DNA damage (Kumar 

and Huberman 2004). 

The published work notwithstanding, there is reason to suspect that Cdc2 

tyrosine phosphorylation is not the target of the S-phase DNA damage 

checkpoint. Since Cdc2 is the only cyclin-dependent kinase in fission yeast, and 

since it is required for both replication and mitosis, it has been assumed that 
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there must be different mechanisms of Cdc2 regulation that independently 

regulate these two events. The model with the most experimental support 

proposes that different levels of Cdc2 activity trigger the different events: 

replication is triggered by moderate level of Cdc2 activity, comprised of tyrosine 

phosphorylated Cdc2/cyclin complexes, and mitosis is triggered by the high level 

Cdc2 activity achieved when Cdc2/cyclin complexes are dephosphorylated 

(Stern and Nurse 1996). Consistent with this model, tyrosine-15 kinase activity of 

the Mik1 tyrosine kinase is high in S-phase, while Cdc25 levels are low, favoring 

Cdc2 tyrosine phosphorylation during S-phase (Moreno et al. 1990; Christensen 

et al. 2000). Consequently, Cdc2 remains largely phosphorylated during S-phase 

(Gould and Nurse 1989). Furthermore, it is clear that the bulk of Cdc2 cannot be 

dephosphorylated during S-phase, because such premature dephosphorylation 

leads to immediate and catastrophic mitosis (Lundgren et al. 1991). These 

observations are inconsistent with general activation of Cdc25 during S-phase. 

Yet, for inhibition of Cdc25 to be an important target of the S-phase DNA damage 

target, Cdc25 would have to be active during S-phase, and required for timely 

replication. Therefore, its activity would have to be limited, either in extent or 

location, to prevent premature mitosis. Such a subtle regulatory role for Cdc25 

seems unlikely, because Cdc25 can be replaced by unrelated tyrosine 

phosphatases, either human T-cell protein tyrosine phosphatase or over-

expression of fission yeast Pyp3 (Gould et al. 1990; Millar et al. 1992). In both 

cases, replication appears normal (our unpublished result). This line of reasoning 
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argues against a role for Cdc25 in the S-phase DNA damage checkpoint. 

Therefore we have revisited the question of whether Cdc25 or the tyrosine 

phosphorylation of Cdc2 is required for the S-phase DNA damage checkpoint in 

fission yeast. 
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MATERIALS AND METHODS 

Yeast methods 

Yeast were grown in YES at 30°C and manipulated by standard methods 

(Forsburg and Rhind 2006). Temperature-sensitive (ts) cells were grown at 25°C 

unless otherwise stated.  Strains used for this study are listed in Table 1. 

Flow cytometry methods 

Isolated nuclei were prepared for flow cytometry by an adaptation of the 

protocol of Carlson el al (Carlson et al. 1997; Forsburg and Rhind 2006). 1.0 OD 

of cells was fixed in 70% EtOH, washed in 1 ml 0.6M KCl, resuspended in 1 ml 

0.6 M KCl, 1 mg/ml Novozym 234 (Sigma L1412), 0.3 mg/ml Zymolyase 20T and 

incubated for 30 min at 37°C.  The cells were pelleted, resuspended in 1 ml 0.1 

M KCl 0.1% triton-X100 and incubated for 5 minutes at room temperature.  The 

cells were washed and resuspended in 1 ml 20 mM Tris-HCl, 5 mM EDTA pH 

8.0.  10 µl 20 mg/ml RNase A was added and the cells were incubated overnight 

at 37°C.  The spheroplasted cells were disrupted, and isolated nuclei released, 

by sonication with a Branson Sonifier using a microtip at 0.7 power for 5 

seconds.  300 µl of disrupted cells were added to 300 µl of 2 mM Sytox Green 

(Molecular Probes) in PBS and analyzed on a Becton-Dickinson FACScan flow 

cytometer.  G1 synchronized experiments were quantitated in CellQuest (Becton-  
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Table II.1 - Strain list 

Strain Genotype Source 

yFS104 h+ leu1-32 ura4-D18 Lab Stock 

yFS189 h- leu1-32 ura4-D18 ade6-704 rad3::ura4 Lab Stock 

yFS260 h- leu1-32 ura4-D18 cdc10-M17 

rad3::ura4 

Lab Stock 

yFS280 h+ leu1-32 ura4-D18 ade6-210 cdc10-

M17 

Lab Stock 

yFS357 h+ leu1-32 ura4-D18 his3-237 ura4 

adh1:cdc25 

Russell Lab (Russell 

and Nurse 1986) 

KGY14 h- leu1-32 ura4-D18 cdc2::ura4 cdc2-

Y15F LEU2 

Gould Lab (Gould and 

Nurse 1989) 

yFS430 h- leu1-32 ura4-D18 ade6-210 his3-237 

cdc10-M17 ura4 adh1:cdc25 

This study 

yFS445 h- leu1-32 ura4-D18 cdc2::ura4 cdc2-

Y15F LEU2 cdc25::ura4 

This study 

yFS437 h+ leu1-32 ura4-D18 cdc2::ura4 cdc2-

Y15F LEU2  cdc10-M17 

This study 
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Dickinson) by measuring the mean of the S-phase peak as a percentage of the 

position of between the means of the 1C and 2C controls. 

Asynchronous Experiments 

Asynchronous experiments were carried out as described (Kumar and 

Huberman 2004), except that flow cytometry was carried out using the isolated 

nuclei protocol described above.  Briefly, cells were grown to an O.D. of 1.0, 

diluted to an O.D. 0.1 and allowed to recover for 1 hour.  At this time, the culture 

was divided and treated as described.  Samples were collected after every hour, 

fixed by 70% ethanol and processed for flow cytometry.  

Synchronous Experiments 

We used centrifugal elutriation to synchronize cells either in G1 or G2.  

Since fission yeast spends a short time in G1, experiments were conducted in 

cdc10-M17 background to synchronize cells in G1.  Cultures were grown to O.D. 

0.5 arrested at 35°C for 1.5 hours and then synchronized by elutriation.  The 

culture was divided and treated with 0.03% MMS, 10 mM hydroxyurea (HU) or 

mock treated.  The cells were kept at 25°C and samples collected after every 20 

minutes for 3 hours. 

For G2 synchronization, cultures were grown to O.D. 1.0 and elutriated.  

The synchronized samples were divided and treated with 0.015% MMS, 10 mM 

hydroxyurea (HU) or mock treated.  Cells were collected after every 20 minutes 

and processed for flow cytometry. 
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RESULTS 

We employed flow cytometry to assay the S-phase checkpoint response 

of fission yeast to DNA damage. To reduce cytoplasmic background and thus 

increase sensitivity, we performed our analyses on isolated nuclei (Carlson et al. 

1997). Initially, we examined the response of asynchronous cultures (Kumar and 

Huberman 2004). Fission yeast spend most of their cell cycle in G2, therefore the 

cytometry profile of an asynchronous culture is largely 2C, with a small 1C and S-

phase population (Figure II.1A). The alkylating agent methyl methane sulfonate 

(MMS), which produces DNA damage in the form of base adducts, was used to 

induce DNA damage and activate the checkpoint.  MMS damage is most 

efficiently recognized during replication, and therefore preferentially activates the 

S-phase checkpoint, rather than the G2 checkpoint. However, at 0.03% MMS, 

the standard concentration used in previous synchronous checkpoint 

experiments (Lindsay et al. 1998), a significant fraction of cells in an 

asynchronous culture arrest in G2 (our unpublished observation). Therefore, for 

these experiments we used 0.015% MMS, a concentration used in previous 

asynchronous experiments (Kumar and Huberman 2004). Hydroxyurea (HU), a    

ribonucleotide reductase inhibitor which arrests cells in the early S-phase by 

depleting deoxynucleotides, was used as a control for cells containing close to 

1C DNA content. As previously reported, wild type cells respond to MMS 

treatment by accumulating as sub-2C cells, presumably due to slowing of bulk 

replication (Figure II.1A) (Lindsay et al. 1998; Kumar and Huberman 2004). In  
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Figure II.1 S-phase DNA damage checkpoint analysis in asynchronous cells 

(A). A mid-log, asynchronous cultures wild type culture (yFS104) was split 

three ways and incubated in the presence or absence of 0.015% MMS or 10 mM 

HU; samples were taken for flow cytometry every hour. 

(B) Asynchronous cultures of wild type (yFS104), rad3∆ (yFS189), 

adh1:cdc25 (yFS357) and cdc2-Y15F (KGY14) were treated and collected for 

flow cytometry as in panel A; for clarity, only the MMS treated samples are 

shown.  
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Figure II.1A S-phase DNA damage checkpoint analysis in asynchronous 
wild type cells 
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Figure II.1B S-phase DNA damage checkpoint analysis in asynchronous 
mutant cells 

 

 



 
 
 

51 

contrast, the rad3∆ strain, which is DNA damage checkpoint defective, showed 

no significant accumulation of sub-2C cells (Figure II.1B). 

Although the asynchronous experiments show a robust checkpoint-

dependent accumulation of sub-2C cells, it is difficult to infer cell-cycle kinetics 

from asynchronous experiments. To more carefully examine the effect of DNA 

damage on replication, we used synchronous cultures to analyze the progression 

of cells through S phase in the presence and absence of MMS. We synchronized 

cells by centrifugal elutriation, which isolates the smallest cells in a culture. Since 

in fission yeast cytokinesis is coincident with S phase, the smallest, newborn 

cells are in early G2. Thus, after elutriation we can follow a synchronous G2 

population through mitosis into G1 and through S phase back to G2. As in the 

asynchronous experiment, we used 0.015% MMS because 0.03% MMS causes 

a significant fraction of the culture to arrest in G2 (our unpublished observation). 

Most untreated cells replicated between 80 and 120 minutes post elutriation 

(Figure II.2A). The MMS-treated cells begin replicating about the same time as 

untreated cells but do not complete replication by 180 minutes. This MMS- 

induced slowing is abrogated in rad3∆, confirming that it is a checkpoint 

response (Figure II.2B). 

As a third approach, we synchronized cells in G1. G1 synchronization has 

two advantages: the cells are past the G2/M transition, allowing us to use 0.03% 

MMS without evoking the G2 checkpoint, and the cultures are more  



 
 
 

52 

Figure II.2 S-phase DNA damage checkpoint analysis in G2 synchronized 
cells. 

  (A) Wild-type cells (yFS104) were synchronized in G2 by centrifugal 

elutriation, 0.015% MMS or 10 mM HU were added immediately and samples 

were collected every 20 minutes for flow cytometry. (B) G2 synchronized cultures 

of wild type (yFS104), rad3∆ (yFS189), adh1:cdc25 (yFS357) and cdc2-Y15F 

(KGY14) were treated and collected for flow cytometry as in panel A; for clarity, 

only the MMS treated samples are shown. (C) cdc25∆ cdc2-Y15F (yFS445) cells 

synchronized in G2, 0.015% or 0.03% MMS or 10 mM HU was added 

immediately and samples were collected every 20 minutes for flow cytometry.  
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Figure II.2A S-phase DNA damage checkpoint analysis in G2 synchronized 
wild type cells. 
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Figure II.2B S-phase DNA damage checkpoint analysis in G2 synchronized 
mutant cells. 
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Figure II.2C S-phase DNA damage checkpoint analysis in G2 synchronized 
cdc25∆ cdc2-Y15F cells. 
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synchronous, allowing for meaningful quantitation (Figure II.3C). We employed a 

cdc10-M17ts temperature sensitive allele, which at 35˚C inactivates the fission 

yeast S-phase transcription factor, to block cells in G1.  To avoid prolonged G1 

arrest, we incubated asynchronous cdc10-M17ts cells at 35˚C for 90 minutes, 

and selected the smallest cells by elutriation. These cells will have just divided, 

and thus only recently entered G1. We estimate that the cells we isolate spend 

about 30 minutes arrested in G1 before they are released at the beginning of the 

time course. After elutriation, we observed a 1C peak showing that cells were 

arrested in G1. Cells were then released into the cell cycle and S-phase 

progression was assayed by flow cytometry (Figure II.3A). Untreated cells 

replicated between 40 and 80 minutes after release. MMS-treated cells did not 

complete replication by 180 minutes, and this slowing was dependent on Rad3 

(Figure II.3B, C). 

Over-expressing Cdc25 fails to override the S-phase DNA damage 
checkpoint 

As an initial test of the role of Cdc25 in the S-phase DNA damage 

checkpoint, we examined if we could override the checkpoint by over-expressing 

Cdc25. Such over-expression efficiently overrides the Cdc25-dependent 

replication checkpoint arrest in G2 (Enoch and Nurse 1990). We used a strain in 

which Cdc25 was over-expressed from the strong, constitutive adh1 promoter 

(Russell and Nurse 1986). If no difference in the cytometry profiles of cells with or 

without damage was seen, it would indicate that over-expressing Cdc25 had 
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overcome the S phase DNA damage checkpoint. However, in asynchronous 

culture, we observed sub-2C DNA content in the presence of damage, indicating 

that the checkpoint was still active (Figure II.1B). In fact, adh1:cdc25 cells 

accumulate in a sub-2C population to a greater extent than wild-type cells, 

presumably because some of the wild-type cells arrest in G2, while the 

adh1:cdc25 cells, lacking the G2 checkpoint, do not. 

We also observed an MMS-induced delay of S-phase progression in 

synchronized adh1:cdc25 cells. In both G2 and G1 synchronous experiments, 

the wild-type and adh1:cdc25 strains demonstrated a similar degree of MMS-

induced slowing of replication (Figures II.2B, 3B and 3C). Results from these 

experiments indicate that Cdc25 over-expression is not sufficient to override the 

S-phase damage checkpoint. 

 

Inhibitory phosphorylation of Cdc2 is not required for the S-phase DNA 
damage checkpoint 

Although the Cdc25 over-expression results suggest Cdc25 inhibition is 

not the mechanism for slowing of S phase, it is possible that the S-phase DNA 

damage checkpoint is able to inhibit even the over-expressed Cdc25. To directly 

test the role of Cdc2 tyrosine-15 phosphorylation in the checkpoint, we used an 

allele of cdc2, cdc2-Y15F, in which tyrosine-15 is mutated to phenylalanine, 

preventing its phosphorylation.  Because Cdc2-Y15F cannot be inhibited by 
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tyrosine phosphorylation, it should bypass any Cdc25-dependent S-phase 

checkpoint, in the same manner that it overrides the G2 checkpoints (Rhind et al. 

1997; Rhind and Russell 1998). Contrary to that prediction, asynchronous cdc2-

Y15F cells treated with 0.015% MMS accumulated in a sub-2C peak, showing no 

defect in the checkpoint. As with the adh1:cdc25 cells, cdc2-Y15F cells actually 

accumulate as sub-2C cells to a greater extent than wild-type cells, presumably 

due to the lack of a G2 checkpoint (Figure II.1B). 

Synchronous experiments using the cdc2-Y15F strain also showed no 

defect in S-phase slowing in response to DNA damage. Because the Cdc2-Y15F 

cannot be inhibited by tyrosine phosphorylation, cdc2-Y15F cells go very quickly 

through G2.  They compensate for this short G2 by expanding G1; this effect can 

be seen in the large G1 peak in asynchronous cdc2-Y15F cells. Thus cdc2-Y15F 

cells begin replication later than wild-type cells. Untreated G2 synchronized cdc2-

Y15F cells began replicated around 100 minutes and completed replication by 

160 minutes (data not shown). In the presence of MMS, cells started replicating 

at the same time as untreated samples but did not complete replication by 180 

minutes (Figure II.2B). 

G1 synchronized cdc2-Y15F cells begin replication at the same time as 

wild-type cells, because the arrest is at the end of G1. The MMS induced S-

phase slowing is comparable between cdc2-Y15F and wild-type cells, beginning 

at around 60 minutes and not finishing by 180 minutes (Figures II.3B and 3C).  
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Figure II.3 S-phase DNA damage checkpoint analysis in G1 synchronized 
cells 

  (A) Flow cytometric analysis of S-phase DNA damage checkpoint in G1 

synchronized cdc10-M17ts cells (yFS280). 0.03% MMS or 10 mM HU were 

added immediately after elutriation and samples collected after every 20 minutes. 

(B) G1 synchronized cultures of cdc10-M17ts (yFS280), cdc10-M17ts rad3∆ 

(yFS260), cdc10-M17ts adh1:cdc25 (yFS430) and cdc10-M17ts cdc2-Y15F 

(yFS437) were treated and collected as in panel A; for clarity, only the MMS 

treated samples are shown 

(C) Quantification of the data of A and B. The previously reported minor, 

checkpoint independent slowing is evident in the rad3∆ culture (Rhind and 

Russell 1998). Each point is the average of two experiments; the error bars 

represent the range of the data.  
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Figure II.3A S-phase DNA damage checkpoint analysis in G1 synchronized 
wild type cells 
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Figure II.3B S-phase DNA damage checkpoint analysis in G1 synchronized 
mutant cells 
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Figure II.3C Quantification of slowing in G1 synchronized cells 
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These results show that Cdc2 tyrosine-15 phosphorylation is not required 

for cells to slow replication in response to MMS-induced DNA damage. 

Cdc25 is not required for the checkpoint 

The previous results show that Cdc2 tyrosine-15 phosphorylation is not 

required for the S-phase DNA damage checkpoint, but they leave open the 

possibility that Cdc25 is required to regulate another target besides Cdc2.  To 

test this possibility directly, we wanted to study the S-phase progression in the 

absence of Cdc25.  Since Cdc25 is an essential gene, we created a strain in 

which the essential function of Cdc25 - the dephosphorylation of Cdc2 - is 

bypassed by Cdc2-Y15F.  cdc25∆ cdc2-Y15F cells were synchronized in the G2 

phase by elutriation and their progress through S-phase in the presence or 

absence of MMS was monitored.  Since these cells lack a G2 checkpoint, we 

were able to use 0.03% MMS without arresting the cells in G2; we also used 

0.015% for comparison with the other G2 synchronization experiments.  

 

As for cdc2-Y15F cells, untreated cdc25∆ cdc2-Y15F cells replicate later 

than wild-type, in this case between about 80 and 140 minutes (Figure 2C).  

cdc25∆ cdc2-Y15F cells treated with 0.015% MMS did not complete replication 

by 180 minutes; cells treated with 0.03% MMS replicated even more slowly.  

cdc25∆ cdc2-Y15F cdc10-M17 cells are inviable, precluding G1 synchronization.  

These results show that S-phase damage checkpoint operates normally in the 

absence of Cdc25. 
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Cdc25∆ nmt1:Pyp3 cells have a partial slowing in the presence of damage 

To study the effect of cdc25∆ we also used a phosphatase 

overexpression, which has been shown to rescue cdc25∆ lethality. Cdc2 is 

dephosphorylated by Pyp3 as well as Cdc25 (Millar et al. 1992). Pyp3 is a 

tyrosine phosphatase and plays a minor role in mitotic control. Pyp3 is not 

regulated by the G2 DNA damage checkpoint (Rhind and Russell 2001). Pyp3 

overexpression rescues cdc25∆ lethality. In our studies pyp3 was overexpressed 

by using the strong nmt1 promoter for continuous expression of Pyp3. 

Asynchronous experiments were performed for Pyp3 overexpression 

strain with or without Cdc25. Pyp3 overexpression cells, where cdc25 has not 

been deleted, slowed S phase in the presence of damage similar to wild type 

fission yeast. However, DNA damage had only a slight slowing of S phase in a 

cdc25∆ background (Figure II.4). G2 synchronized cells slowed replication in the 

presence of damage even when cdc25 was deleted. The slowing seems to be 

partial compared to wild type and similar to the asynchronous data (Figure II.5).   

Our results are consistent with a strictly Cdc2-Y15 phosphorylation 

independent mechanism for the S-phase DNA damage checkpoint. However, 

results from the pyp3 studies are not consistent with our conclusions about 

Cdc25 is not the target of the S phase DNA damage checkpoint. We talk about 

the possible explanations for this result is the discussion. 
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Figure II.4 S-phase DNA damage checkpoint analysis in asynchronous 
Pyp3 cells.  

Flow cytometric analysis of S-phase DNA damage checkpoint in 

asynchronous nmt1:pyp3 cells (yNR248), nmt1:pyp3 cdc25∆ (yNR253). A mid-

log, asynchronous culture was split three ways and incubated in the presence or 

absence of 0.015% MMS; samples were taken for flow cytometry every hour. For 

clarity, only the MMS treated samples are shown. The data shows that 

nmt1:pyp3 slow in the presence of 0.015% MMS whereas nmt1:pyp3 cdc25∆ 

slows only partially. 
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Figure II.4 S-phase DNA damage checkpoint analysis in asynchronous 
Pyp3 cells.  
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Figure II.5 S-phase DNA damage checkpoint analysis in G2 synchronized 
Pyp3 cells  

Flow cytometric analysis of S-phase DNA damage checkpoint in G2 

synchronized nmt1:pyp3 cells (yNR248), nmt1:pyp3 cdc25∆ (yNR253). Data is 

shown for cells in the absence and presence of 0.015% MMS panel. MMS was 

added immediately after elutriation and samples collected after every 20 minutes. 

The data shows that cdc25 deletion leads to a partial slowing in the presence of 

0.015% MMS. 
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Figure II.5 S-phase DNA damage checkpoint analysis in G2 synchronized 
Pyp3 cells 
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DISCUSSION 

We have investigated the role of inhibitory tyrosine-15 phosphorylation of 

Cdc2 and of the Cdc2 tyrosine-15 phosphatase, Cdc25, in the S-phase DNA 

damage checkpoint.  Inhibition of Cdc25, and thus inhibition of Cdc2 tyrosine-15 

dephosphorylation, is the mechanism by which fission yeast arrest in G2 in 

response to DNA damage or replication blocks (Rhind et al. 1997; Rhind and 

Russell 1998).  Recent work has suggested that a similar mechanism may also 

slow replication in response to DNA damage (Kumar and Huberman 2004). We 

have tested this idea and the bulk of our results indicate no involvement of Cdc25 

or Cdc2 tyrosine phosphorylation in the fission yeast S-phase DNA damage 

checkpoint.   

 

Neither the overexpression of Cdc25, nor the mutation of tyrosine-15 to an 

unphosphorylatable phenylalanine, impairs the S-phase checkpoint; yet both 

override the G2 checkpoint (Enoch and Nurse 1990; Rhind et al. 1997; Rhind 

and Russell 1998). Furthermore, cells lacking both Cdc25 and tyrosine-15 of 

Cdc2 slow replication normally in response to MMS-induced DNA damage.  This 

result rules out checkpoint mechanisms that involve Cdc2-independent targets of 

Cdc25, and Cdc25-independent regulation of Cdc2 tyrosine-15 phosphorylation. 

Although the above cited results support our conclusion, cells lacking 

Cdc25 in a Pyp3 background seem to have only a partial slowing of replication in 

the presence of DNA damage. This result is not consistent with our observation 
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that deleting cdc25 does not have an effect on the slowing of replication. There 

are a couple of possibilities that can explain the contradictory results seen for 

cdc25 deletion in a cdc2-Y15F and the Pyp3 overexpression background.   

First, there can be something wrong with the genotype in nmt1: pyp3 

cdc25∆ strain which is having an effect on the results. There can be a mutation in 

one of the upstream checkpoints leading to a lack of slowing in the presence of 

damage. Second, data from the nmt1: pyp3 cdc25∆ suggests that there is a 

Cdc25 dependent target which is independent of Pyp3. It is possible that Cdc25 

has a role in S-phase slowing in a Cdc2-Y15 independent manner. However, 

replication slowing in the cdc25∆ Cdc2-Y15F strain rules out such a possibility. 

Slowing of replication in the presence of damage when Cdc25 is overexpressed 

is also contradictory to this theory. Third, slowing of replication in the Cdc2-Y15F 

background can be due to some background mutations. Mutating Cdc2 maybe 

having an effect on the S phase progression of the cells. However normal 

progression through S phase in unperturbed cells is inconsistent with such a 

possibility. To completely rule out this possibility, other Cdc2 mutants can be 

used for looking at the effect of inducing DNA damage. 

Finally, Cdc2 may also be slowing replication at the site of DNA damage in 

a checkpoint independent manner. To show that the slowing of replication in the 

mutant strains is checkpoint dependent, these experiments can be done in rad3Δ 

and cds1Δ cells. Majority of our data shows that Cdc25 is not the target of the 

checkpoint and it is hard to reconcile the Pyp3 data with the other experiments. 
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We have drawn our conclusions based on the known literature and the majority 

of the data showing that Cdc25 is not the target of the checkpoint. It is possible 

that a more complicated model may exist.  

These results contradict those of Kumar and Huberman, who, using 

similar approaches, concluded that adh1:cdc25 and cdc2-Y15F cells lack the S-

phase DNA damage checkpoint.  There is technical difference between the two 

studies that may explain the discrepancy.  Kumar and Huberman used a whole-

cell flow cytometry protocol, in which cytoplasmic background contributes 

significantly to the total signal, reducing the sensitivity of the assay.  We used an 

isolated-nuclei protocol, which removes the cytoplasm before analysis.  This 

approach greatly increases the resolution of the assay and allows for quantitation 

of the data.  In addition, for their G1 synchrony experiments, cells were arrested 

in G1 for up to 4 hours, which allows the cells to elongate, further reducing the 

sensitivity of the whole-cell assay.  We find that the combination of the four hour 

arrest and the whole cell flow-cytometry analysis compromises detection of the 

checkpoint delay (Nick willis, unpublished results).  We used centrifugal 

elutriation to isolate cells that had been arrested for only 30 minutes, allowing for 

a more sensitive analysis of the checkpoint.  We believe that these technical 

differences are responsible for the different conclusion drawn. 

 

Recently, another paper from the same lab gave a number of reasons for 

the discrepancy between the two datasets (Kumar and Huberman 2009). Use of 



 
 
 

72 

a higher concentration of MMS (0.03%) in some of our experiments was cited as 

a reason for slowing of S phase in the mutant strains. Figure II.6 shows that even 

at 0.0075% MMS concentration the level of slowing is similar in the mutant 

strains compared to the wild type. The data from the G2 elutriation experiments 

at the lower concentration also show a similar effect of slowing in the mutant 

strains (Kommajosyula and Rhind 2006). Hence, using 0.03% for a subset of the 

experiments does not effect our conclusions. The data for 0.015% was not 

presented in our paper, since the cells have a shorter time for entering S phase 

from G1 synchrony, making the response to damage subtle as opposed to a 

more pronounced effect at a higher concentration. Indeed, previous work from 

our lab has checked the effect of different concentrations of MMS for inducing 

checkpoint effects and we find that 0.03%MMS works best for studying 

checkpoints in our hands. Nonetheless, as shown in figure II.1.1 all doses of 

MMS have the same pattern of slowing. 

Batch to batch variation in effective concentrations of MMS was also cited 

as a reason for the results. However, we have used the same absolute 

concentration of 0.03% MMS in our lab over the last several years and have 

observed no such variations. The fact that Kumar et al. have to use varying 

concentrations to observe a slowing of S-phase seems to suggest an issue with 

their FACS preparation, an observation that we elaborated upon in the 

discussion of our paper. 
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Figure II.6 S-phase DNA damage checkpoint analysis in asynchronous cells 
using low MMS  

Flow cytometric analysis of S-phase DNA damage checkpoint in 

asynchronous wild type (yFS104), rad3∆ (yFS189), adh1:cdc25 (yFS357) and 

cdc2-Y15F (KGY14). The 0.0075% MMS panel is from the same experiments 

shown in Figure II.1. A mid-log, asynchronous culture was split three ways and 

incubated in the presence or absence of 0.0075% MMS; samples were taken for 

flow cytometry every hour. For clarity, only the MMS treated samples are shown. 

The data shows that adh1:cdc25 and cdc2-Y15F slow in the presence of 

0.0075% MMS. 
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Figure II.6 S-phase DNA damage checkpoint analysis in asynchronous cells 
using low MMS  
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Another objection made in the paper was our observation that MRN is a 

target of S-phase damage checkpoint. Work from the Huberman lab suggests 

that MRN does not play a role in the damage checkpoint (Marchetti et al. 2002). 

The explanation given was that a higher concentration of MMS would lead to 

such an effect. However, in our opinion such a opposite result for the same 

strains between our labs can be explained by the technical difference in flow 

cytometry described in the discussion section of chapter II. 

The Huberman lab claimed that the magnitude of inhibition of progression 

in our work was consistently higher for the same concentration of MMS used by 

both labs. These differences can be explained by a higher resolution of our 

FACS protocols. We were also able to observe significant slowing in our 

asynchronous and G2 synchronized populations showing that the results we 

observed were not due to high MMS concentration (Kommajosyula and Rhind 

2006). 

The paper also argues that cds1 deletion should have been tested for an 

effect on MMS induced checkpoints instead of rad3 deletion, which we used. 

Studies from our lab show that cds1∆ has the same effect as a rad3∆ and there 

is a complete absence of S phase slowing in the presence of MMS (Nick Willis, 

unpublished data). 

Our results implicate a Cdc2 tyrosine phosphorylation independent target 

of the S-phase DNA damage checkpoint in fission yeast.  Precedent for such a 
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target exists. In mammals, the S-phase checkpoint appears to have two 

branches: one which acts through inhibition of Cdc25A to inhibit origin firing, and 

one which is Cdc25-independent and requires the MRN complex and XRCC3 

(Falck et al. 2002; Henry-Mowatt et al. 2003).  Since the fission yeast checkpoint 

requires MRN, it may be mechanistically similar to the MRN-dependent branch of 

the mammalian checkpoint (Chahwan et al. 2003). Little is known about the 

mechanism or purpose of the MRN-dependent branch of the pathway, except 

that its loss leads to severe cancer-predisposition in humans (Petrini 2000). The 

possible role of MRN and XRCC3 in slowing replication fork progression through 

induction of replication-coupled recombinational repair provides a model that can 

be tested in fission yeast (Rhind and Russell 2000). Whatever the case, fission 

yeast provides an tractable system for the study of this checkpoint mechanism. 
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Chapter III                                                                                  

Measure if origin efficiency increases during S phase  
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INTRODUCTION  

Replication needs to be completed with high fidelity and in a finite amount 

of time to ensure a faithful transmission of genetic material to the next generation 

and to avoid genomic instability. Eukaryotes initiate replication from multiple sites 

known as origins (Dutta and Bell 1997; Gilbert 2001; Bell and Dutta 2002). Many 

origins are licensed but only a few fire. It is unclear how only a fraction of 

licensed origins are allowed to fire. Specific origins that fire during any one cell 

cycle do not necessarily fire during the subsequent round. Any origin that fires 

during a specific cell cycle does so in only a fraction of the total population. 

Fission yeast origins don’t fire at the beginning of the S phase concurrently but 

rather fire throughout the S phase (Patel et al. 2006). Xenopus and Drosophila 

embryos are able to initiate replication on any DNA sequence (Hyrien and 

Méchali 1993; Shinomiya and Ina 1994).  Similarly, in humans large regions 

appear to sustain replication initiation at random sites inside the sequence 

(Krysan and Calos 1991). Budding yeast have well defined origins that fire at 

particular times during the cell cycle and hence are defined as early or late firing 

origins (Kelly and Brown 2000; Gilbert 2001). 

Genome-wide analysis of fission yeast origins was initially done 

bioinformatically (Segurado et al. 2003). Origins were found to contain AT rich 

tracts. However, unlike budding yeast, which has a well defined ARS consensus 

sequence (ACS), no consensus sequence was identified for fission yeast. Fission 

yeast origins are inefficient as shown in work from various labs including ours. 
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Studies from our lab have shown that origins fire in a stochastic manner in fission 

yeast (Patel et al. 2006). The efficiency of fission yeast origins averages about 

30%. The origins are present in the intergenic region in general and they are 

about 1kb in length. 

Random gap problem 

Inefficient origins and random firing of origins will increase the time taken 

by cells to complete replication in metazoans and fission yeast. Theoretically, 

random firing may lead to long inter-origin gaps. These gaps may be too long to 

be passively replicated by replication forks traveling from neighboring origins in a 

timely manner. Such gaps would prevent cells from completing replication within 

the defined and short time of S phase. This phenomenon has been described as 

the random gap problem (Lucas et al. 2000; Herrick et al. 2002; Jun et al. 2004). 

Cells must overcome this potentially serious problem since replication is 

completed in a finite amount of time (Hyrien et al. 2003).  However the 

mechanism by which cells overcome this potential problem is unclear.  

Several models have been proposed to explain how cells complete 

replication (Legouras et al. 2006). The origin redundancy model suggests that 

there is an excess of origins distributed throughout the genome (Chapter I Figure 

I.4) (Legouras et al. 2006). These origins are closely spaced. Random origin 

firing would lead to some origins firing early and most being passively replicated 

and not firing. The origins that are not passively replicated would have the 
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potential to fire and thus solve the random gap problem. Using this model it is 

hard to explain efficient replication in fission yeast and mammals due to several 

restrictions including intergenic location of origins in fission yeast to chromatin 

structure and ongoing transcription in mammals. 

The coordinated model describes a defined distance between origins that 

fire and prevent large unreplicated sequences from causing random gap problem 

during S phase (Hyrien and Méchali 1993; Blow et al. 2001). This model is based 

on plasmid studies in various organisms. An exponential distribution of inter-

origin distances, where a majority of the fired origins are spaced close together 

but some are very large distances apart, shown by our lab disproves this model 

in fission yeast (Patel et al. 2006). Data from Xenopus embryos also prove that 

this model is incorrect (Herrick et al. 2000). 

The increasing origin efficiency/Redistribution model describes an 

increase in the firing efficiency of origins as cells progress through S phase 

(Lucas et al. 2000). Thus, the efficiency of origins that have not fired or been 

passively replicated increases. Thus, origins present in regions in which no 

origins have fired are more likely to fire allowing the cell to overcome the random 

gap problem. We propose a mechanism to explain this model involves a rate-

limiting factor, which allows only a subset of origins to fire at any given time. 

Since this rate-limiting factor is limited in quantity, it will only be able to activate a 

few origins at any given moment. Once these origins have fired, this factor freely 



 
 
 

81 

diffuses to provide firing elsewhere. We have shown recently that Dfp1, the 

catalytic subunit of Hsk1, is the rate-limiting factor which determines as to which 

origin fires during the S phase (Patel et al. 2008). The study to identify the rate-

limiting step is shown in Appendix III.1. 

The increasing origin efficiency model seems the most plausible 

mechanism by which fission yeast overcomes the random gap problem. An 

increase in origin firing through S phase is seen in budding yeast and Xenopus 

embryo extracts (Herrick et al. 2000; Lucas et al. 2000; Raghuraman et al. 2001; 

Yabuki et al. 2002; Goldar et al. 2009). Identifying Dfp1 as the rate-limiting factor 

responsible for determining which origins fire strongly supports this model. A 

similar model has been proposed to explain the efficiency of origins in Xenopus 

embryos (Lucas et al. 2000). 

Although studies from our lab support the redistribution model, we need to 

measure if there is an increase in efficiency of a late firing origin in S phase to 

test our hypothesis. However, no late firing origins have been identified in fission 

yeast making it hard to look at a specific origin throughout our studies. Late 

replicating sequences have been identified (Kim and Huberman 2001). These 

late replicating sequences are passively replicated by replication forks traveling 

from distant early firing origins or by unidentified late firing origins. Due to these 

reasons, the chances of any one particular origin firing during late S phase are 

very low since it will be replicated before it gets a chance to fire. 
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To measure if the efficiency of an origin increases during the S phase we 

blocked passive replication of a late replicating sequence from neighboring 

origins, and forced that region to be replicated by a late/inefficient internal origin, 

which allowed us to test the efficiency of that origin. To block passive replication 

we used the replication termination sequence 1 (RTS1), a unidirectional fork-

blocking sequence originally identified in the mating-type locus (Dalgaard and 

Klar 2001). RTS1 arrests forks coming from the proximal side. The fork arrest is 

replication termination factor 1(Rtf1) dependent and studies show that RTS1 

arrests at the Mat locus and at other regions of the genome (Eydmann et al. 

2008). RTS1 is 859bp in length with a 60bp partially conserved sequence motif 

(Codlin and Dalgaard 2003). 

AT2062 is a late replicating sequence present on chromosome II and has 

a firing efficiency of about 10%. In this study we used RTS1 on either side of 

AT2062 to prevent passive replication from neighboring origins and allow us to 

measure the firing efficiency of the origin. We are also integrating RTS1 to 

prevent passive replication of an early firing origin, AT3003. Various methods 

have been used to look at the firing efficiency of the origin. 

Our studies show that there are a number of small very inefficient origins 

that seem to fire to ensure the replication of the region flanked by RTS1. We 

were unable to see origin firing at AT2062. The possible reasons for this are 

discussed later. 
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MATERIALS AND METHODS 

All strains were grown in yeast extract with supplements (YES) at 25°C or 

30°C and manipulated using standard methods (Forsburg and Rhind 2006).  

Table III.1 - Strain list 

Strain Genotype Source 

yPP113 h+ leu1-32 ura4-D18 rts1(R):hph AT2062 

rts1(L):kanMX 

This study 

yFS105 h- leu1-32 ura4-D18 Lab stock 

yKN18 h+ ura4-D18 ade6-M210 rts1(R):hph 

rts1(L):kanMX cdc25-22 

This study 

yFS128 h- leu1-32 ura4-D18 cdc25-22 Lab stock 

yNW239 h- smt0 leu1-32 ura4-D18 his3-D1 cdc10-M17 

sfr1::ura4 swi5::ura4 

From Nick Willis 

yKN20 h- ura4-D18 ade6-M210 rts1(R):hph 

rts1(L):kanMX rad51::nat 

This study 

yKN22 h+ leu1-32 ura4-D18 his7-366 AT3003 

rts1(L):kanMX leu1 adh1 :hENT1 his7 adh1 :tk 

This study 

yKN23 h- leu1-32 ura4-D18  AT3003 rts1(R):hph leu1 This study 
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adh1 :hENT1 his7 adh1 :tk 

 

Strain construction 

RTS1 was integrated on the left side of AT2062 using PP192 

(GTTTTAACTGTCAGCAATACTACACTACGCTATGATACTCCACGTTGCATAT

CACTATATGTCACATGTTCACAATGTCGATGAATTCGAGCTCGTTTA) and 

PP193 

(CTTATAACTGAACTGAGGGACGAGGTTCAGTTGTTCTCAATTTATAATATTT

GAAGTAGTAAGAATTATATCTGATAGAACGCGGCCGCCAGCTGAAGC). 

RTS1 was integrated on the right side of AT2062 using PP196 

(ATAACAGCGTTTAAGAATTAGTTACTTATAAAGACCGAAGCGATCTTCCAGA

TAATGAATAGCAATACATTAGATGTGAACGCGGCCGCCAGCTGAAGC) and 

PP197 

(TATACCGTTGTAACAGCAAGAGCTTAATTGTTTCAACAATCCAACTTACGCG

TTAGGCGGAGTCAGTAAGTCACCTAACGATGAATTCGAGCTCGTTTA). The 

two resulting constructs were mated to get yPP113. RTS1 has been integrated 

on the left side of AT3003 using NK53 

(ATTTACAGCCGCCAAACGTGGCTTATTCAAAGCCCCACTTGAGAACCAATG

CGAGCGCATCTGGAAAAAGGGCTATCGGTGAATTCGAGCTCGTTTAAAC) 

and NK54 

(GCCATGGCAGCTAGGTAACAACCACGAGGCCGATCGCTGCTTCGGCGGAT
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TTAGGCTGACGTAAGATGAGACTGTTTGTTTTAGGTGACACTATAGAACG). 

RTS1 has been integrated on the right side of AT3003 using NK55 

(TTTGCGAATCCAAAGTCTGCCAATGGATATACGCTCTACTTTCGACCACTGA

TTGTTTCCTGCATTTCTCAAATAATAGGTTAGGTGACACTATAGAACG) and 

NK56 

(AAACCAACACCACTGCACATACGACCGATAAGAATTAAATACAGCCATTGT

GCACGGTACGCTAGTGAATACAGTAAATGGAATTCGAGCTCGTTTAAAC) 

Synchronization experiments  

For two-dimensional gels, cells were grown to an OD600 0.5. 10 mM HU 

was added to the culture and a quarter of cells harvested and frozen at 1.5 hours 

and 3 hours. The remaining culture was pelleted, HU washed, and the pellet 

resuspended in a HU free media. Half the culture was collected after 30 minutes 

post release from HU arrest and the rest collected 90 minutes post release.  

For the microarray HU experiment, cells were grown to an OD600 0.5 and 

collected for G2 phase sample. 10 mM HU was added to the culture and the cells 

were collected after 3 hours for the S phase sample.  

For the microarray time course experiments, cells were synchronized by 

centrifugal elutriation and then kept at the restrictive temperature of 35°C to 

synchronize cells in G2 using cdc25-22 mutation for 3.5 hours. The cells are then 

shifted to the permissive temperature of 25°C. Samples were collected at the 

indicated times.  
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Two-dimensional gel electrophoresis 

Genomic DNA was isolated using cesium chloride gradients and two-

dimensional gel electrophoresis performed as described (Noguchi et al. 2003). 

To study replication at AT2062, genomic DNA was digested with BamHI and 

XhoI. For analysis at the RTS1 integration site, DNA was digested with KpnI and 

SacI. Southern blotting was performed as described (Noguchi et al. 2003).  

Micro-array design 

Probes were designed to cover 128 kb region with AT2062 in the middle 

using the Arraydesigner 4.2. The average distance between the probes was 250 

bp and 448 probes were designed with an average length of 60 bp. The slides for 

microarrays were printed in the Rando lab and the slides were post-processed 

using the protocols followed in their lab. 

DNA preparation and microarray experiment 

Genomic DNA was isolated using cesium chloride gradients as described 

(Noguchi et al. 2003). DNA was indirectly labeled with Cy3 and Cy5 dyes using 

the Amino-allyl labeling protocol from the DeRisi lab with a few modifications 

used in our lab (http://derisilab.ucsf.edu/data/microarray/protocols.html) (Dutta et 

al. 2008). Experimental DNA was mixed with the reference DNA, which was the 

G2 samples for all our experiments, for differential hybridization. The sample was 

hybridized onto the microarray slides for 16 hours at 65°C. Slides were scanned 
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using Genepix5000b scanner and the data was acquired using Genepix pro 6.0 

software. The data was normalized and replication profiles created using excel.  

Deep sequencing experiments 

Cells were synchronized using centrifugal elutriation. One half of the 

culture was collected immediately after elutriation as the G2 sample for 

sequencing. To the other half 10 mM HU was added and cells kept at 25 °C for 

four hours and the cells collected as the S phase sample for sequencing. 1 OD 

was also collected every 20 minutes, pelleted and resuspended in 70% ethanol, 

and processed for flow cytometry. Genomic DNA was isolated using cesium 

chloride gradients as described (Noguchi et al. 2003). DNA samples were sent to 

Helicos Biosciences and the data collected analyzed by the Weng lab using Igor 

software. 

Flow cytometry: 

Cells were collected for flow cytometry and processed as described 

previously (Forsburg and Rhind 2006). 
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RESULTS AND DISCUSSION 

Origin efficiency at AT2062 

To measure the efficiency of a late firing origin we chose AT2062, a late 

replicating sequence present on chromosome II in fission yeast. AT2062 was 

chosen because known adjacent neighboring origins are present very far away. 

Recent study from Nurse lab shows that AT2062 fires with about 10% efficiency 

(Wu and Nurse 2009). We integrated RTS1 sites on either side 40Kb apart. The 

schematic representation is shown in Figure III.1.  

To measure origin efficiency of AT2062, two-dimensional gel 

electrophoresis was employed. 2-D gels are a common method of distinguishing 

if a stretch of DNA being studied is getting passively replicated or is actively firing 

(Brewer and Fangman 1987) (Figure III.2). Signal from the 2-D gels may be 

quantified to determine the firing efficiency of an origin. Using 2-D gels we 

wanted to compare the origin firing efficiency of AT2062 in a wild type strain and 

a strain containing AT2062 flanked by RTS1 on either side. DNA was isolated 

and from culture arrested and released from HU.  

There are three different possibilities that can come as a consequence of 

using RTS1 to block passive replication. First, we may see an increase in the 

origin firing efficiency at AT2062. Second, the firing efficiency of the origin does 

not increase. This would indicate that either the increase in origin efficiency 

model is incorrect or there is passive replication occurring at that region. 
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Figure III.1 Schematic representation of RTS1 integration 

The regions where RTS1 was integrated are shown: AT2062, the late 

replicating sequence present on chromosome II and AT3003, an origin present in 

the ura locus. The RTS1 sites are 40 kb on either side of AT2062 and 7 kb on 

either side of AT3003. 

Figure III.2 A general description of two-Dimensional gel electrophoresis 

DNA is digested with specific restriction enzymes and run in two 

dimensions with different conditions. In the first dimension, DNA is separated by 

size and in the second by shape. The common replication intermediates seen are 

described in the right-handed panel. If the region of interest has an active origin 

then we see a bubble arc whereas Y-arc is seen when replication forks from 

neighboring origins passively replicate the region. X-shaped intermediates are 

the recombination intermediates. Linear DNA is the majority of DNA containing 

no shape. 
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Figure III.1 Schematic representation of RTS1 integration 

 

 

Figure III.2 A general description of 2-Dimensional gel electrophoresis 
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The final possibility is that cells will be unable to replicate the region 

between RTS1 due to the failure of AT2062 to fire and hence it may lead to 

genomic instability and lethality. The result will show that our model is incorrect 

and the region can replicate only by passive replication. The increase in firing 

efficiency can be measured on the 2-D gels by measuring the percentage of 

bubble arcs, the shape that appears on the blots when the origin fires and 

comparing it between the wild type and the RTS1 strain. 

HU arrest experiments were performed for 2-D gels. We observed no 

difference in the replication pattern between the wild type and the RTS1 strain. 

Passive replication seems to be occurring in both the strains at AT2062 as 

indicated by the Y-arc (Figure III.3). We were unable to observe any bubble arcs 

in either strain. This passive replication indicates that AT2062 is not firing during 

the S phase or it is firing at a low rate, which cannot be detected due to 

limitations of 2-D gels. To ensure that RTS1 sequences were blocking the forks, 

HU arrest and release was performed and 2-D gels were run to check for fork 

blockage at the termination site upstream of AT2062 in Figure III.4. The spot on 

the 2-D gel shown on the Y-arc indicates fork arrest. These results demonstrate 

that forks appear to be blocked at the RTS1 sites.   

The spots seen on 2-D gels at the RTS1 sites seem to be very weak 

which means that the block might not be very strong and would allow for forks to 

bypass it.  Studies have shown that replication forks can bypass RTS1 blockage 
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in a recombination dependent manner.  Passive replication observed at AT2062 

could be due to forks bypassing the RTS1 sites and replicating AT2062 before it 

fires. rad51∆ prevents recombination-mediated fork bypass of RTS1 allowing us 

to observe if passive replication occurs at AT2062. Origin efficiency studies at 

any origin using RTS1 sites need to be done in a rad51∆ background to ensure 

that the neighboring forks are getting blocked. 

Passive replication observed at AT2062 may also be due to inefficient 

origins firing which have not been identified in the various genomic studies. 

Inserting RTS1 sites on either side of AT2062 may force a number of these 

inefficient origins to fire, replicating the 80 kb region efficiently. We used two 

approaches to identify new origins in this region. First, we used microarray 

analysis and secondly deep sequencing. 

Oligonucleotide arrays at AT2062 

Micro-array analysis has been used in previous studies to look at origin 

firing (Raghuraman et al. 2001; Yabuki et al. 2002; MacAlpine et al. 2004; 

Woodfine et al. 2004). We used micro-arrays to measure changes in the copy 

number of the AT2062 region during S phase. We designed oligos ~250bp apart 

spanning that 128 kb region on chromosome II. This 128 kb region contains the 

80 kb region flanked by RTS1. Replication profiles were generated for the array 

experiments by fluorescently labeling S phase DNA and hybridizing it to the 

oligonucleotide arrays. The DNA copy number was measured by normalizing the  
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Figure III.3 AT2062 replicates passively with or without RTS1 

A) Passive replication is observed in wild type cells (yFS105) when cells are 

arrested in the beginning of S phase using 10 mM HU. The arrest was for 

either 1.5 hours or 3 hours and the cells released into a HU free media. The 

release was for 30 or 90 minutes. To study replication at AT2062, genomic 

DNA was digested with BamHI and XhoI. Southern blotting was performed as 

described (Noguchi et al. 2003). 

B) Passive replication was also observed in RTS1 flanking AT2062 (yPP113). 

There seems to be no difference in the Y-arc, which represents passive 

replication, between wild type and the RTS1 flanked strain indicating a failure 

of AT2062 to fire. 
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Figure III.3 AT2062 replicates passively with or without RTS1 
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Figure III.4 Forks are getting blocked at RTS1 sites 

 Passive replication is observed in RTS1 cells (yPP113) when cells are 

arrested in the beginning of S phase using 10 mM HU. The arrest was for either 

1.5 hours or 3 hours and the cells released into a HU free media. The release 

was for 30 or 90 minutes. DNA was prepared using cscl gradient method. For 

analysis at the RTS1 integration site, DNA was digested with KpnI and SacI. 

Southern blotting was performed as described (Noguchi et al. 2003). Fork 

blockage appears as a blob or big spot in the place where Y-arc is expected. The 

block does not seem to be very strong but appears in all the four conditions 

tested. 
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Figure III.4 Forks are getting blocked at RTS1 sites 
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data to G2 DNA. The array was designed to give us a resolution of 1 kb. Figure 

III.5 shows the replication profile generated during the arrest, effectively the 

beginning of S phase. Replication does not occur at AT2062 consistent with 

previous studies showing that AT2062 gets replicated later in S phase 

(Heichinger et al. 2006; Wu and Nurse 2009). 

To study the increase in origin efficiency at AT2062, we looked at 

replication profiles as cells progressed through S phase in wild type cells by 

performing a microarray time course experiment. Samples collected every five 

minutes from 80-95 minutes show that the region has been mostly replicated by 

two or three potentially inefficient origins (Figure III.6). The timing of when cells 

enter S phase varies between elutriation and we were unable to capture the 

transition from a non-replicated locus to completely replicated locus in a strain 

lacking RTS1 sites. This limited our S phase progression experiments. We 

looked at origin efficiency in the RTS1 strain by collecting cells at two points- 95 

and 105 minutes after release and saw similar replication profiles (Figure III.7) 

indicating that we are unable to study replication kinetics using microarrays. A 

higher resolution or more sensitive technique is required to understand the origin 

pattern in the 80 kb region. 

Using deep sequencing to look at AT2062 region 

Data from micro-array analysis suggests that inefficient origins maybe 

present in the 80 kb region including AT2062. To confirm the presence of  
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Figure III.5 AT2062 does not fire in early S phase 

Cells were arrested in early S phase using HU in the strain flanking 

AT2062, yPP113. DNA was prepared and hybridized against G2 DNA. 

Replication profile was made as described in materials and methods. Known 

origins are represented with  and there are only two known origins in the 

region on our microarray. AT2062 is the origin in between the RTS1 represented 

by . As expected in HU, only early/efficient origins fire and we do not detect 

any signal from within the RTS1 region. 
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Figure III.5 AT2062 does not fire in early S phase 
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inefficient origins, we used deep sequencing to identify origins in this region. We 

used Helicos single molecule sequencing technology. In this approach, genomic 

DNA is randomly fragmented to 100-200 bp and poly-A tail attached to the 

fragments with a fluorescently labeled A at the end of the tail. The poly-A tail 

attached fragments are hybridized to flowcell, a platform coated with immobilized 

poly-T oligomers. Sequencing consists of numerous cycles of replication.  During 

each cycle, polymerase and a single labeled nucleotide which has a reversible 

fluorescence terminator attached to it is flowed in. The flow cell is imaged to 

locate the position and therefore identify fragments to which this nucleotide has 

attached. The fluorescent label is then cleaved and released and the cycle of 

polymerase and nucleotide is repeated for the remaining three nucleotides. This 

sequential cycle using reversible fluorescent labeling followed by imaging is 

repeated 200-250 times.  

Similar to the micro-array analysis, we measured the copy number of S 

phase DNA and normalized it to G2 phase of the DNA. Sequencing was done on 

a strain without the RTS1 inserts. Cells were synchronized by centrifugal 

elutriation in G2 phase and released in a HU media for four hours. Figure III.8 

shows the replication profile of the same 128 kb region. The replication profile at 

AT2062 indicates that there is a presence of small inefficient origins in the 80 kb 

region flanked by RTS1. The inefficient origins can potentially fire and passively 

replicate the AT2062 locus. We conclude that AT2062 is not a particularly useful 

region for studying late origin efficiency. 
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Figure III.6 Replication profile during S phase at AT2062 in wild type cells  

cdc25-22 (yFS128) cells were synchronized in G2 by centrifugal elutriation 

and then synchronized a second time due to the cdc25-22 arresting cells in G2 

when kept at the restrictive temperature (35°C) for 3.5 hours. Cells were allowed 

to go through the cell cycle by switching back to the permissive temperature 

(25°C). Samples were collected for 80, 85, 90 and 95 minutes to look at the 

replication progression though late S phase as followed by flow cytometry. 

Known origins are represented with  and there are only two known origins in 

the region on our microarray. AT2062 is the origin in between the RTS1 

represented by . The replication profile shows no progression through time. 

However, the array suggests that there may be atleast two more inefficient 

origins present between RTS1. 
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Figure III.6 Replication profile during S phase at AT2062 in wild type cells  
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Figure III.7 Replication profile during S phase at AT2062 in RTS1 strain  

RTS1 flanking strain with a cdc25-22 background (yKN18) cells were 

synchronized in G2 by centrifugal elutriation and then synchronized a second 

time due to the cdc25-22 arresting cells in G2 when kept at the restrictive 

temperature (35°C) for 3.5 hours. Cells were allowed to go through the cell cycle 

by switching back to the permissive temperature (25°C). Samples were collected 

for 95 and 105 minutes to look at the replication progression though late S phase 

as followed by flow cytometry. Known origins are represented with  and there 

are only two known origins in the region on our microarray. AT2062 is the origin 

in between the RTS1 represented by . The replication profile shows no 

progression through time. However, the array suggests that there may be atleast 

two more inefficient origins present between RTS1. 
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Figure III.7 Replication profile during S phase at AT2062 in RTS1 strain 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

105 

Origin efficiency at AT3003 

AT3003 is one of the well-defined origins in the ura4 locus on 

chromosome III in fission yeast (Kim and Huberman 1999). AT3003 fires early 

during the S phase and the efficiency of the origin is about 30% (Patel et al. 

2006). RTS1 sites were integrated on either side of AT3003 in opposite 

directions thereby preventing the passive replication of the region. RTS1 sites 

are about 7.5 kb on either side of AT3003. Since there are no inefficient origins 

present in the region flanked by RTS1, AT3003 must fire during every cell cycle 

for the region to replicate. Fork directional studies next to the origin within the 

RTS1 region will allow us to identify the direction in which the forks are traveling 

and determine if the efficiency of AT3003 increases during S phase (Dalgaard 

and Klar 2001). 

Fork bypass in a recombination dependent manner 

Rad51 is the central mitotic recombination protein essential for 

homologous recombination in budding yeast. rad51∆ prevents recombination-

mediated fork bypass of RTS1 allowing us to observe if passive replication 

occurs at AT2062. Studies show that a strain having rad51∆ background with a 

non origin stretch of DNA flanked by RTS1 on either side is lethal (Lambert et al. 

2005). AT3003 flanked by RTS1 in rad51∆ background will be lethal unless 

AT3003 fires everytime. If forks bypass replication blocks in a recombination 

dependent manner, then deleting rad51 will prevent the bypass. In the future, we 

will compare the efficiency of the origin in the presence or absence of rad51.  
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Figure III.8 Replication profile at AT2062 in HU arrest using deep 
sequencing 

S.pombe (yNW239) was synchronized in G2 by centrifugal elutriation. 10 

mM HU was added and cells kept at 25°C for four hours. HU arrested sample 

was collected after four hours. G2 sample was collected after elutriation. Raw 

data from sequencing was taken for the G2 and S phase samples and 

normalized. The G2 peaks were subtracted from the S phase and the resulting 

data was smoothed to give the replication profile for the region on our microarray. 

X-axis is the window index of 200 bp. Y-axis is the height of the peak and gives 

the number of reads at each chromosomal position. Known origins are 

represented with  and there are only two known origins in the region on our 

microarray. AT2062 is the origin in between the RTS1 represented by . There 

seem to be about four more inefficient origins present within the RTS1 and these 

inefficient origins may be responsible for passively replicating AT2062 
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Figure III.8 Replication profile at AT2062 in HU arrest using deep 
sequencing 
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CONCLUSION 

Origin efficiency at AT2062 was studied using 2-D gels, microarrays and 

deep sequencing. We were unable to force AT2062 to fire using RTS1 sites. 

However, as shown above the passive replication observed at the origin was due 

to the presence of a few inefficient origins within the 80 kb region flanked by 

RTS1. This rendered AT2062 unsuitable for testing our hypothesis of an increase 

in origin firing efficiency through S phase progression.  

We have started to study the origin firing efficiency of AT3003. AT3003 

has the RTS1 sites close enough to make sure that there is no origins present in 

the region which can passively replicate AT3003 region. We plan to study this 

origin in detail using the various methods used in the study at AT2062. All the 

studies at AT3003 will be done in rad51∆ background to prevent the forks from 

bypassing the RTS1 block sites. Viability of this strain will show that the AT3003 

region flanked by RTS1 is only replicated by AT3003. We are also planning to 

study the origin efficiency using a rad51 shutoff strain, which allows us to shut off 

rad51 during the course of our experiment.  
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Chapter IV                                                                                   

Genome-wide analysis of origins in Schizosaccharomyces 

group 
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INTRODUCTION  

Origin studies using a variety of model organisms have been ongoing for 

the last three decades. However these studies have been primarily limited to the 

study of a few well defined origins or a low resolution search for new origins. 

Only recently have genome-wide analysis experiments been feasible for global 

origin identification and characterization. These studies have been helpful not 

only in defining origin location but also in defining replication timing of origins. 

These origin studies also allow for the identification of common origin features. 

These features may then be used to identify putative origins in additional 

organisms in which these origin studies have not been performed. 

Different origin identification methods 

A number of methods have been employed to identify origins in fission yeast 

and other organisms. Hydroxyurea arrest has been used to identify origins that 

fire early in S phase for some of the genome-wide studies.These methods 

include: 

1) Plasmid stability assays: Plasmid stability assays identified genomic 

regions capable of maintaining plasmid copy numbers termed as 

autonomous replication sequences (ARS) (Clyne and Kelly 1995). These 

regions capable of maintaining this activity, ranged in size from 100-150 

bp for budding yeast, to 1 kb fission yeast, and to more than 10 kb for 

human cells. 
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2) Two-dimensional gel electrophoresis: Two-dimensional gel 

electrophoresis was also used early for identification of origins. Origins 

located on the smallest budding yeast chromosome III, were originally 

identified using 2-D gels (Reynolds et al. 1989). 

3) Density transfer experiments: Density transfer approach using heavy 

isotope labeling of newly replicated DNA was the first genome-wide 

method used to identify origins in budding yeast. Heavy isotope labeling 

was followed by hybridization to microarrays to identify origins firing 

throughout S phase (Raghuraman et al. 2001).  

4)  Copy number change: Measuring copy number (replicated versus 

unreplicated DNA) using microarrays has been used in the recent past to 

identify the regions where origins are present (Yabuki et al. 2002; 

Heichinger et al. 2006).  

5) ChIP-microarrays: Chromatin immunoprecipation followed by hybridization 

to microarrays can be used to map the binding sites of various pre-

replicative complex (pre-RC) components. The binding sites are the 

origins where the pre-RC is formed (Wyrick et al. 2001). 

6) BrdU pulse-microarray: Asynchronous or synchronized cells are pulsed 

with BrdU and flow cytometry is used to isolate BrdU labeled cells. BrdU 

labeling represents cells present in the S phase. DNA is then isolated from 

the samples, enriched by immunoprecipitation using BrdU specific 
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antibodies and hybridized to microarrays (Schubeler et al. 2002; Woodfine 

et al. 2004). 

7) Single stranded DNA microarrays: Single stranded DNA produced upon 

HU arrest is hybridized on open reading frame (ORF) microarrays in the 

presence of HU have been used to map origins in fission yeast (Feng et 

al. 2006). The resolution for this study was about 12 kb. 

8) Bioinformatic analysis: Bioinformatic analysis has also been used to 

propose putative origins based on AT rich islands in fission yeast 

(Segurado et al. 2003). The putative origins were validated using 2-D gels. 

Studies in fission yeast and other organisms have identified origins at the 

genome-wide level (Raghuraman et al. 2001; Yabuki et al. 2002; MacAlpine et al. 

2004; Jeon et al. 2005; Feng et al. 2006; Heichinger et al. 2006). However, the 

resolution of these studies is not very high. Budding yeast ARS consensus 

sequences (ACS) is very generic and cannot be used to actually map origins. On 

the other hand, no such motifs have been identified in any other organism and 

known origins have not given enough information to identify additional origins 

based on sequence homology. Therefore, precise identification of origin 

sequences on a genome-wide scale still needs to be done (MacAlpine and Bell 

2005).  

Origin sites are not conserved across species. Sequences important for origin 

activity are conserved across the Saccharomyces genus (Nieduszynski et al. 

2006). Identifying origins across the Schizosaccharomyces genus will help 
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identify essential sequence or regions, which will in turn allow the identification of 

additional putative origins across the genome.  Due to similar nature of origins in 

metazoans and fission yeast, identification of essential or signature sequences of 

origins may also allow identification of origins in metazoans with greater 

accuracy. In this chapter, we discuss our efforts at using a new technique of 

single molecule sequencing for identifying origins. 

Sequencing to identify origins 

Recent advances in sequencing technology have lead to improvements in 

the time taken to sequence DNA and also the cost of sequencing. There are 

various methods by which high throughput sequencing is done (Shendure and Ji 

2008). One of the sequencing methods developed recently is the single molecule 

sequencing technique developed by Helicos Biosciences.  

Single molecule sequencing does not use an amplification step like other 

sequencing methods, such as Solexa. DNA from the samples to be sequenced is 

randomly fragmented into 200 bp fragments. Fragmented DNA is then labeled at 

the 3’ end with a poly-A tail. This library of the fragmented poly-adenylated DNA 

is tethered to a surface coated with poly-T oligomers known as flow cell 

producing a disordered array of primed sequencing templates. The flow cell is 

imaged to identify the position of each tethered DNA strand. Sequencing consists 

of numerous cycles of strand replication, which allows for the sequence 

identification of the DNA strand. At each cycle, polymerase and a single labeled 
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nucleotide is added which has a reversible fluorescence terminator attached to it. 

Flow cell is again imaged to locate the position and therefore identify fragments 

to which the nucleotide has attached. The fluorescent label is then cleaved and 

released and the cycle of polymerase and a nucleotide is repeated for all four 

nucleotides. This sequential cycle using reversible fluorescent labeling followed 

by imaging is repeated 200-250 times. The average read length is about 25 bp 

since four cycles are needed for each and every base pair sequenced.  

We show that deep sequencing may be used to identify origins in various 

organisms. Cells can be synchronized and samples collected during S phase. 

Samples are also collected from G2 phase and the DNA is sequenced. Regions 

that have replicated will have twice the amount of reads compared to regions that 

have not. Replication profiles can be created based on the number of reads.  

We use deep sequencing to identify origins in three fission yeast- S. 

pombe, S. octosporus and S. japonicus. Although origins have been identified in 

S. pombe, no origins are yet to be identified in the other fission yeasts like S. 

octosporus and S. japonicus. The aim of this project is to identify the inefficient 

origins that have not shown up in the previous studies and to map the already 

known origins more precisely. This study shows that single molecule sequencing 

can be used to identify origins. In collaboration with the Weng lab, bioinformatic 

analysis is currently underway to identify signature sequences defining origins 

across the Schizosaccharomyces genus. 
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MATERIALS AND METHODS 

Strain maintenance 

All strains were grown in yeast extract with supplements (YES) at 25°C or 

30°C and manipulated using standard methods (Forsburg and Rhind 2006).  

Table IV.1 - Strain list 

Strain Genotype Source 

yFS101 h- Lab stock 

yNW239 h- smt0 leu1-32 ura4-D18 his3-D1 cdc10-M17 

sfr1::ura4 swi5::ura4 

From Nick Willis 

yFS128 h- leu1-32 ura4-D18 cdc25-22 Lab stock 

yFS275 Wild type Schizosaccharomyces japonicus Lab stock 

yFS286 Wild type Schizosaccharomyces octosporus Lab stock 

 

G2 synchronization 

For the first dataset, the cells were grown at 25°C. S.octosporus and 

S.japonicus were grown at 30°C. Cells were grown to OD600 1.4 for S. pombe 

and 0.8 for S. octosporus and S. japonicus. Cells were synchronized in G2 using 

centrifugal elutriation. A fraction of the cells were collected for the G2 sample and 

the rest incubated at 25°C for four hours in the presence of 10 mM hydroxyurea 
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(HU). 1 OD was also collected every 20 minutes, pelleted and resuspended in 

70% ethanol, and processed for flow cytometry. Cells were also collected and 

DNA prepared for sequencing by cesium chloride gradient centrifugation. DNA 

samples were sent to Helicos Biosciences and the data collected analyzed by the 

Weng lab using Igor software. 

Time-course experiment 

Cells were synchronized in G2 using a cdc25-22 temperature sensitive 

mutant. The culture was grown to an OD600 0.5 and the culture shifted to the 

restrictive temperature of 35°C for 3.5 hours. A fraction of the cells were collected 

as G2 sample control for sequencing. Cells were then shifted to 25°C and 

samples collected every five minutes for flow cytometry. For sequencing samples 

were collected at time points 65, 75, 85, 95, 105, 115 and 125 minutes. DNA was 

prepared for sequencing using Qiagen G/20 columns as previously described 

(Wu and Gilbert 1995). 

Flow cytometry: 

Cells were collected for flow cytometry and processed as described 

previously (Forsburg and Rhind 2006). 

Deep sequencing experiments 

Cells were synchronized using centrifugal elutriation or using cdc25-22 ts 

strain. One half of the culture was collected immediately after elutriation as the 

G2 sample for sequencing. To the other half 10 mM HU was added and kept at 
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permissive temperature for different times and the cells collected as the S phase 

sample for sequencing. 1 OD was also collected every 20 minutes, pelleted and 

resuspended in 70% ethanol, and processed for flow cytometry. Genomic DNA 

was isolated using cesium chloride gradients as described (Noguchi et al. 2003). 

DNA samples were sent to Helicos Biosciences and the data collected analyzed 

by the Weng lab using Igor software. 

Alignments  

To align the reads that we get, an alignment strategy is employed where 

the read (from sequencing) is aligned using the genomic sequence as a 

reference. Only uniquely mapped reads are used for the mapping study to 

eliminate repeat sequences in the genome. For each alignment all putative 

alignments to the reference genome are considered and alignments are 

considered unique if the best alignment has a normalized score greater than 4.2 

(out of 5) and the next best alignment is at least .5 worse. Normalized Alignment 

scores are calculated as follows: sum (5*matches - 4*mismatches) / ReadLength. 

The reads are assembled into contigs or chromosomes at Helicos. The number 

of hits at each nucleotide in the genome is counted, histograms made and 

normalized for S and G2 samples. Normalized G2 hits for each nucleotide are 

subtracted from S phase hits and the frequency at each nucleotide is plotted 

giving us the replication profile for each chromosome. 
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RESULTS AND DISCUSSION 

 Various labs have done genome-wide analysis of origins in fission yeast 

(Segurado et al. 2003; Feng et al. 2006; Heichinger et al. 2006; Mickle et al. 

2007). However, there have been no reports of genome-wide search for origins 

in either S. japonicus or S. octosporus. We have used deep sequencing to not 

only identify number of origins in the three Schizosaccharomyces species but 

also identify efficient and inefficient origins. The difference in efficiency can be 

measured by building replication profiles made by plotting the number of hits at 

each nucleotide across the genome against the nucleotide position. The height of 

the peaks at each origin gives us the efficiency of each origin. 

Identifying Schizosaccharomyces pombe origins 

To identify origins in S. pombe we used HU to arrest cells at the beginning 

of S phase. For the first experiment, we synchronized an S. pombe strain in G2 

phase of the cell cycle by centrifugal elutriation. The synchronized cells were 

then arrested in HU for four hours. HU arrest in early S phase was monitored by 

flow cytometry and S phase progression plotted {figure IV.1}. Flow cytometry 

shows that the forks have traveled about 15% in S phase. In the presence of HU 

the forks have not traveled far from the origins. Deep sequencing generated 

about 12 million reads for both G2 and S phase samples and the aligned reads 

were about 6 million. The number of reads for each point in the genome were 

measured and normalized to aligned G2 counts allowing us to generate high 

resolution replication profiles for early S phase. These profiles were smoothed  
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Figure IV.1 Replication arrest in the presence of HU for S.pombe 

S.pombe (yNW239) was synchronized in G2 by centrifugal elutriation. 10 

mM HU was added and cells kept at 25°C for four hours. HU arrested sample 

was collected after four hours. G2 sample was collected after elutriation. Cells 

were fixed every 20 minutes and nuclear DNA content measured by flow 

cytometry. A) S-phase flow cytometry histogram stacks shows that at the end of 

the time course cells are arrested in the beginning of S phase. B) S-phase 

progression is plotted over time by measuring the shifting of the mean of S-phase 

peaks from unreplicated 1C towards fully replicated 2C values. S-phase 

progression curve shows that cells have replicated about 15% showing that HU 

has arrested cells in the beginning of S phase. 
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Figure IV.1 Replication arrest in the presence of HU for S.pombe 
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and a peak finding algorithm used to identify the origins in the dataset. Figure 

IV.2 shows the process of identifying origins from the raw sequence reads. 

Figure IV.3 shows the data for all the three chromosomes of S. pombe. Using a 

peak finding model we identified origins. To verify the peaks we identified were 

origins, we compared this sequencing data with our microarray data for ura4 

gene cluster located on chromosome III. As seen in figure IV.4, the sequencing 

data correlates very well with our microarray data. Resolution of the origins using 

sequencing is greater than our array data and work from other labs (Heichinger 

et al. 2006). Origins identified in the previous studies were also identified in this 

study indicating that our technique is capable of identifying previously 

characterized origins as seen in figure IV.5. Rigorous analysis has been carried 

out by Weng lab to ensure that peaks identified in our studies are not random 

noise. There are peaks that have not been identified as origins in the previous 

studies due to the low resolution of those studies and these peaks are the ones 

that we are interested in exploring further to understand the complex nature of 

origin efficiency and location. 

We were able to see peaks on chromosome III but on chromosome I and 

II the peaks seemed to be in regions near the centromere. Recent work shows 

that the region near the centromeric region seem to replicate early in a swi6 and 

dfp1 dependent manner (Hayashi et al. 2009). To see if the peak effect that we 

observed is due to the pericentromeric effect, we have done a similar experiment 

on a dfp1-3A mutant, which does not allow dfp1 to localize in the pericentromeric  
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Figure IV.2 Process of identifying origins on Chromosome I 

yNW239 cells were synchronized using elutriation and cells collected for 

G2 phase and after 4hours in HU. Samples were sent for sequencing and the 

reads aligned to the three chromosomes using the known genomic sequence of 

S.pombe as the reference. A) The Raw data from sequencing the G2 and S 

samples of yNW239 are represented here for chromosome I. X-axis is the 

chromosomal location. Y-axis is the height of the peak and gives the number of 

reads at each chromosomal position. B) The reads for the G2 and S phase 

samples are then normalized. C) The G2 reads are subtracted from the S phase 

reads. D) The resulting data is smoothed to give us the potential origins. E) Peak 

finding algorithm is used in the Igor software and identifies the peaks. 
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Figure IV.2 Process of identifying origins on Chromosome I 
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Figure IV.3 Replication profiles of S. pombe chromosomes 

Raw data from sequencing of yNW239 was taken for the G2 and S phase 

samples and normalized. The G2 peaks were subtracted from the S phase and 

the resulting data was smoothed to give the replication profile for S. pombe 

chromosomes. X-axis is the window index of 200 bp. Y-axis is the height of the 

peak and gives the number of reads at each chromosomal position. 

Chromosome III shows lots of peaks representing origins. Chromosome I and II 

have only few peaks in regions centered around the centromere. Centromere is 

represented with . 
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Figure IV.3 Replication profiles of S. pombe chromosomes 
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Figure IV.4 comparison of ura4 locus between array and sequencing data 

To analyze the difference in resolution between the microarray method 

and the deep sequencing method we compared the ura4 region. A) Microarray 

data for the ura4 region from HU arrest experiment in yFS240 B) Deep 

sequencing data for the same region from yNW239 cells arrested in HU. 

The greater resolution of the sequencing data can be seen by the 

separation of AT3004 and AT3005 which in the microarray data appear as one 

origin. AT3004 and AT3005 are identified as separate peaks by the peak finding 

program establishing deep sequencing as a higher resolution method. There also 

seems to be the presence of some inefficient origins not yet identified in other 

studies.  
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Figure IV.4 comparison of ura4 locus between array and sequencing data 
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Figure IV.5 Comparison of origins identified with previous studies 

To analyze the difference in resolution between previous studies that used 

different methods from the deep sequencing method we compared all the three 

chromosomes with origins identified from Nurse lab. Origins identified at a lower 

stringency on chromsome III are shown as a representation of the origins 

identified. X-axis is the window index of 200 bp. Y-axis is the height of the peak 

and gives the number of reads at each chromosomal position. The figure shows 

that we are able to not only identify majority of the origins identified in the Nurse 

paper but also a few more. Detailed bioinformatics analysis is still ongoing on 

these origins 
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Figure IV.5 Comparison of origins identified with previous studies 
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region. The DNA is presently being sequenced. 

To overcome the centromeric effect observed in the first experiment we 

did another experiment where the forks had traveled 30% in another S.pombe 

strain, measured by flow cytometry, at the time of collection for sequencing 

(figure IV.6).  Figure IV.7 shows the replication profiles for the three S. pombe 

chromosomes. Compared to the previous dataset, peaks were broader and 

interpreted as forks progressing further. Direct comparison between the two 

datasets for chromosome III is shown in figure IV.8. This is a result of the cells 

starting to leak through from the HU arrest.  To look at the noise between two 

independent experiments we subtracted the G1 reads, obtained from the two 

experiments, from each other and observed a noise level of about 10%. 

The microarray data from Nurse lab did not show a pericentromeric effect 

and to compare and measure the differences in resolution between deep 

sequencing and the microarray data, we synchronized the cells using the 

temperature sensitive cdc25-22 for 3.5 hours and released to arrest cells in HU. 

Cells were collected after 90 minutes in HU, and this served as the S phase 

sample. The G2 sample was collected at the end of the synchronization with 

cdc25-22. These samples are presently being sequenced and the replication 

profile expected from this dataset should show us the sensitivity of our origin 

identification strategy since the experiment is similar to previous studies allowing 

us to directly compare the origins identified (Heichinger et al. 2006). 
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Figure IV.6 Replication arrest in the presence of HU in wild type S. pombe 

yFS101 was synchronized in G2 by centrifugal elutriation. 10 mM HU was 

added and cells kept at 30°C for four hours. HU arrested sample was collected 

after four hours. G2 sample was collected after elutriation. Cells were fixed every 

20 minutes and nuclear DNA content measured by flow cytometry. A) S-phase 

flow cytometry histogram stacks shows that at the end of the time course cells 

are arrested in the beginning of S phase. B) S-phase progression is plotted over 

time by measuring the shifting of the mean of S-phase peaks from unreplicated 

1C towards fully replicated 2C values. S-phase progression curve shows that 

cells have replicated about 30% showing that HU has arrested cells in the 

beginning of S phase. The % replicated was twice when compared to the 

previously sequenced strain. The difference in % replicated could be due to the 

difference in the strain genotype where yFS101 is completely wild type but 

yNW239 has sfr1 and swi5 deletion, which might effect the ability of the forks to 

travel and replicate DNA. 

 

 

 

 



 
 
 

132 

Figure IV.6 Replication arrest in the presence of HU in wild type S. pombe 
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Figure IV.7 Forks progress slowly during HU arrest in S. pombe 

Raw data from sequencing of yFS101 was taken for the G2 and S phase 

samples and normalized. The G2 peaks were subtracted from the S phase and 

the resulting data was smoothed to give the replication profile for S. pombe 

chromosomes. X-axis is the window index of 200 bp. Y-axis is the height of the 

peak and gives the number of reads at each chromosomal position. The peaks 

are broader in all the three chromosomes owing to a 30% replication seen by S-

phase progression. Chromosome III shows lots of broad peaks, which can be 

one origin having traveled far or two origins firing close by and merging. 

Chromosome I and II have only few peaks in regions centered around the 

centromere.  Centromere is represented with . 
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Figure IV.7 Forks progress slowly during HU arrest in S. pombe 
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Figure IV.8 Comparison between two independent S. pombe datasets 

A) Raw data from sequencing was taken for the G2 and S phase samples 

and normalized. The G2 peaks were subtracted from the S phase and the 

resulting data was smoothed to give the replication profile for S. pombe 

chromosomes. X-axis is the window index of 200 bp. Y-axis is the height of the 

peak and gives the number of reads at each chromosomal position. Replication 

profile from Chromosome III for both the S. pombe experiments was overlayed. 

The peaks from the second dataset  are broader and flatter due to several forks 

merging together. 

B) The G2 sequence reads for the two wild type replicates were subtracted 

from each other, normalized and then smoothed. The G2-G2 control was done 

for chromosome III. The data shows that there is very little noise.  
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Figure IV.8 Comparison between two independent S. pombe datasets 
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The experiments performed till now were done by synchronizing cells in 

early S phase using HU. This prevents us from identifying origins that will fire 

during late S-phase. Also, HU activates the replication checkpoint. The activation 

of checkpoints can itself have an effect on the genomic replication profile. It is 

imperative to perform experiments in the absence of HU to compare the results 

and identify if HU is having an effect on the replication profile. We have 

performed an S-phase time course experiment to understand the kinetics of 

replication timing in S. pombe. The cells progressed through S phase without HU  

which allows us to look at the replication profiles without the activation of any 

checkpoint. We can compare the origins identified in the time-course with those 

identified in our previous experiments. cdc25-22 mutant strain was synchronized 

by incubating cells at restrictive temperature (35°C) for 3.5 hours. Cells were 

then released at the permissive temperature (25°C) and samples collected every 

10 minutes to measure the progression of replication throughout the S phase. 

These timepoints will be assembled into a kinetic profile which will allow us to 

observe the replication kinetics of all the origins in the genome over time. This 

dataset will allow us to compare the origin efficiency between sequencing and 

microarray analysis. 

Identifying Schizosaccharomyces octosporus origins 

S. octosporus is a fission yeast similar to S. pombe except for having 

eight-spored ascii. S.octosporus genome has recently been sequenced in 

collaboration with the Broad Institute. No information is available regarding 
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origins in this fission yeast species. Origin identification will contribute greatly to 

understanding how replication occurs in S. octosporus and whether there are any 

similarities between the species. Origin identification in these different species 

will also be helpful in identifying the signature motifs, which could be employed to 

identify origins de novo. To collect samples for sequencing, cells were 

synchronized in G2 by centrifugal elutriation and a fraction was collected as the 

G2 sample. The culture was arrested in HU for four hours to synchronize cells in 

early S phase {figure IV.9A}. Replication profiles were made for S. octosporus 

chromosomes in the same way as for S. pombe. Using sequencing we were able 

to identify origins. Figure IV.9B shows the profiles for the three chromosomes.   

Identifying Schizosaccharomyces japonicus origins 

Rounding out the three fission yeast investigated, S. japonicus is different 

from both S. octosporus and S. pombe displaying invasive hyphal growth form. 

Hyphal growth is a virulence trait of pathogenic fungi. Those interested in 

understanding fungal diseases can take advantage of S. japonicus as a model 

organism. Similar to S. octosporus, no origin information is available for S. 

japonicus and we wished to address this point by identifying origins using deep 

sequencing. The HU experiment used for S. japonicus was similar to the ones 

used for S. pombe and S. octosporus. However, we observed that HU treated 

cells did not arrest in early S phase. Samples were still sequenced and we 

observed some peaks, which could be potential origins {figure IV.10}. This 

approach needs to be repeated using enough HU to efficiently arrest these cells  
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Figure IV.9 Replication profiles of S. octosporus chromosomes 

A) S-phase flow cytometry histogram stacks shows that at the end of the 

time course cells are arrested in the beginning of S phase. B) Raw data from 

sequencing of yFS286 was taken for the G2 and S phase samples and 

normalized. The G2 peaks were subtracted from the S phase and the resulting 

data was smoothed to give the replication profile for S. pombe chromosomes. X-

axis is the window index of 200 bp. Y-axis is the height of the peak and gives the 

number of reads at each chromosomal position. The three chromosomes have 

plenty of peaks, which are potential origins. There does not seem to be any 

centromeric effect on any of the chromosomes.  The potential origins do not have 

AT rich islands. The peaks identified as origins in this study are currently being 

experimentally verified using 2-D gels. 
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Figure IV.9A HU arrest of S. octosporus  
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Figure IV.9B Replication profiles of S. octosporus chromosomes 

 

 



 
 
 

142 

Figure IV.10 Replication profiles of S. japonicus scaffolds 

Raw data from sequencing of yFS275 was taken for the G2 and S phase 

samples and normalized. The G2 peaks were subtracted from the S phase and 

the resulting data was smoothed to give the replication profile for S. pombe 

chromosomes. X-axis is the window index of 200 bp. Y-axis is the height of the 

peak and gives the number of reads at each scaffold position. The number of 

chromosomes in S. japonicus is not known and the data shown is from two of the 

contigs. Due to a lack of S phase arrest in HU, the number of S phase peaks 

after removing the G2 peaks is low. There are potential peaks identified by the 

peak finding software but the amplitude is low. 
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Figure IV.10 Replication profiles of S. japonicus scaffolds 

 

 



 
 
 

144 

S phase. It appears S. japonicus yeast requires a greater HU concentration (100 

mM) for efficient arrest in S phase. We repeated the experiment with the HU 

arrest for only one hour to prevent cells from leaking through. We have also used 

an asynchronous culture using higher dose of HU and collected cells after 3 

hours. Sequencing of the samples is currently going on. 

 

 

CONCLUSIONS  

Initial bioinformatic analysis shows that the AT rich islands prevalent in S. 

pombe origins do not seem to be determinants of origins in the other two fission 

yeast (Segurado et al. 2003). There seem to be no similarities between the 

origins identified on the different chromosomes of S. pombe and S. octosporus 

on which initial analysis has been performed. Further analysis is going on to 

identify the characteristics of origins to be able to identify them de novo across 

the genome.  

We have shown that single molecule sequencing is an effective way of 

identifying origins across the genome and to make replication profiles, which can 

help in measuring the efficiency of an origin. 
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Table IV.2 – List of experiments performed for deep sequencing 

Experiment  Strain  Origins Species  Method  

1) G2 Synchronized 
+ 2)HU arrest 4 
hours 

yNW239 

 

Sharp peaks 
identified as 
origins 

S.pombe Deep 
sequencing 

1) G2 Synchronized 
+ 2)HU arrest 4 
hours 

yFS101 Peaks are fewer, 
broad, flat  

S.pombe Deep 
sequencing 

1) G2 Synchronized 
+ 2)HU arrest 2 
hours 

yFS718 Sequence 
awaited 

S.pombe Deep 
sequencing 

1) Cdc25-22 arrest 
35C-3.5hrs + 2) 90’ 
HU arrest 

yFS128 Sequence 
awaited 

S.pombe Deep 
sequencing 

1) Cdc25-22 arrest 
35C-3.5hrs. 2-8) 
timecourse through 
S phase 

yFS128 Sequence 
awaited 

S.pombe Deep 
sequencing 

1) G2 Synchronized 
+ 2) HU arrest 4 
hours 

yFS286 

 

Sharp peaks-
peaks being 
verified as origins 
experimentally 

S.octosporus Deep 
sequencing 

1) G2 Synchronized 
+ 2) HU arrest 4 
hours 

yFS275 

 

Not many peaks 
due to lack of HU 
arrest 

S.japonicus Deep 
sequencing 

HU arrest 2 hours yFS275 

 

Sequence 
awaited 

S.japonicus Deep 
sequencing 

 



 
 
 

146 

Chapter V                                                                              

Unpublished data 
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APPENDIX V.1. ORIGIN INHIBITION BY DNA DAMAGE CHECKPOINT 

 

INTRODUCTION  

 

DNA damage during S phase leads to a slowing of replication. Studies in 

mammals have shown that slowing occurs by inhibition of origin firing and a 

slowing of fork progression (Falck et al. 2002). However, it is unclear as to how 

the DNA damage checkpoint slows replication in fission yeast. Recent work by 

Nick Willis in our lab shows that in the presence of DNA damage, replication 

forks are slowed and hence S-phase progression is slowed. This result does not 

rule out the possibility that replication origins are also prevented from firing once 

the cells encounter damage. Recent work has suggested that a combination of 

replication fork slowing and inhibition of origin firing is the mechanism by which 

DNA damage checkpoint slows replication (Kumar and Huberman 2009). I 

performed an experiment to look at ars3001, known efficient origin present in 

multiple copies in the rDNA loci, in the presence or absence of damage (0.03% 

MMS) using two-dimensional gel electrophoresis. In the presence of DNA 

damage ars3001 stopped firing as observed by the absence of bubble arcs, 

which are present when there is no damage.  
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MATERIALS AND METHODS 

yFS128, a cdc25-22 mutant was grown to an OD600 0.6 and kept at the 

restrictive temperature of 35°C for four hours which arrests and synchronizes 

cells in G2. The cells were then shifted to the permissive temperature of 25°C in 

the presence of HU for two hours to synchronize and arrest cells at the beginning 

of S phase. The first time point was collected at the end of the HU arrest. The 

remaining culture was pelleted, HU washed, and the pellet resuspended in a HU 

free media. The culture was divided into two and 0.03% MMS was added to one 

of the cultures. The cells were kept at 25°C to allow for progression through S 

phase and samples were collected at 30 and 60 minutes from + or – MMS 

cultures. Cells were also fixed every 20 minutes and nuclear DNA content 

measured by flow cytometry.  

Two-Dimensional gel electrophoresis 

Genomic DNA was isolated using cesium chloride gradients and two-

Dimensional gel electrophoresis performed as described (Noguchi et al. 2003). 

To study origin firing at ars3001, genomic DNA was digested with KpnI and 

HindIII. Southern blotting was performed as described (Noguchi et al. 2003).  
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RESULTS  

 

Figure V.1 shows the 2-D gels for the ars3001 origin in the presence or 

absence of MMS. ars3001 is an efficient origin and fires early represented by the 

presence of bubble arcs on the 2-D gel. In the absence of any insult, when cells 

are released from HU arrest, replication is still on going at 30 minutes evident by 

the presence of the bubble arc at the 30’ –MMS 2-D gel. However, in the 

presence of MMS, origin firing is inhibited inferred from a loss of bubble arc on 

the 30’ + MMS 2-D gel. Replication is still continuing because Y-arcs can be seen 

which implies that the forks that have already fired are passively replicating the 

genome but no further origins are being fired.  

 

CONCLUSIONS   

 

The data shown here suggests that origins are inhibited from firing in the 

presence of DNA damage. Origin inhibition might not be responsible for bulk 

slowing but it certainly may play a role in slowing DNA replication. Further 

experiments involving different drugs and ionizing radiation (IR) can be done 

using 2-D gels allowing us to understand the mechanism of replication slowing.  
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Figure V.1 Origin inhibition in the presence of damage 
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APPENDIX V.2 USING MICROARRAYS TO MEASURE REPLICATION 
ORIGIN FIRING EFFICIENCY 

 

INTRODUCTION  

Studies from our lab showed that Hsk1-Dfp1 kinase regulates origin efficiency 

(Patel et al. 2008). Hsk1-Dfp1 is rate limiting and is required at each origin to fire. 

Level of Dfp1, the catalytic subunit of Hsk1, increases at the beginning of the cell 

cycle and it is a freely diffusible factor. DNA combing studies from our lab 

showed that modulating the levels of either Dfp1 or Hsk1 affects the origin 

efficiency (Patel et al. 2008). We sought to show a similar effect on origin 

efficiency using microarrays. We designed probes to cover the well studied ura4 

locus present on chromosome III of S. pombe. Experiments were performed on 

wild type and Dfp1 overexpression strains to measure the difference in origin 

efficiencies when Dfp1 is constitutively active or localized to an origin. 
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MATERIALS AND METHODS 

Synchronization experiments  

For the microarray HU experiments, cells were grown to an OD600 0.5 and 

collected for G2 phase sample. 10 mM HU was added to the culture and the cells 

were collected after 2, 3 or 4 hours for the S phase sample for different 

experiments.  

For the microarray time course experiments, cells were synchronized by 

centrifugal elutriation followed by synchronization using the cdc25-22 mutation 

which arrests cells in G2 at restrictive temperature of 35°C. Cells were kept at 

35°C for 3.5 hours. The cells are then released from the block by shifting to the 

permissive temperature of 25°C. Samples were collected at the indicated times 

and cell cycle progression followed by flow cytometry.  

Micro-array design 

Probes were designed to cover 200 kb region around the ura4 locus using 

the Arraydesigner 4.2. The average distance between the probes was 250 bp 

and 768 probes were designed with an average length of 60 bp. The slides for 

microarrays were printed in the Rando lab and the slides post-processed using 

the protocols followed in their lab. 

 

 



 
 
 

153 

DNA preparation and microarray experiment 

Genomic DNA was isolated using cesium chloride gradients as described 

(Noguchi et al. 2003). DNA was indirectly labeled to cy3 and cy5 dyes using 

Amino-allyl labeling protocol from DeRisi lab with a few modifications used in our 

lab (http://derisilab.ucsf.edu/data/microarray/protocols.html) (Dutta et al. 2008). 

Experimental DNA was mixed with the reference DNA, which was the G2 

samples for all our experiments, for differential hybridization. The sample was 

hybridized onto the microarray slides for 16 hours at 65°C. Slides were scanned 

using Genepix5000b scanner and the data was acquired using Genepix pro 6.0 

software. The data was normalized and replication profiles created using excel.  
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RESULTS AND DISCUSSION 

To measure the change in origin efficiency when Dfp1 was constitutively 

expressed, we designed probes for 200 kb region of chromosome III including 

the ura4 locus which has well defined origins (Dubey et al. 1994). We used 

microarrays to study origin efficiency as measured by the change in DNA copy 

number described previously in chapter III. To study if we could look at origin 

efficiency using this technique, we did HU arrest experiments where cells were 

arrested for different periods of time. HU arrests cells in early S phase where 

early firing origins have fired and traveled about 10 kb and then arrested. We did 

HU arrest experiments for four hours using wild type cells (figure V.2A). Although 

we observed the firing of all the origins known in ura4 locus, the peaks were very 

broad and it seemed that forks are able to travel longer making it hard to 

estimate the exact location of origin firing. We proceeded to shorter HU arrests of 

three and two hours (figure V.2B and 2C). Figure V.2C shows that two hour HU 

arrests gave us sharp peaks closer to the known origins and we used two hour 

HU arrests for subsequent experiments.  

The positions of peaks identified in our microarrays correspond to already 

known origins in the ura4 region. To ensure that the peaks observed in our 

experiments are not random noise, we label G2 samples with two different dyes 

and hybridize on the array to give us self-self hybrizidization. There are no peaks 

in the G2 control array indicating that the peaks identified are actual origins and 

not random noise (figure V.3). Hybridizing two G2 samples with different labels 
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served as the negative control for all experiments and also indicated the level of 

noise for each array experiment. 

Dfp1 effect on origin firing was studied using two different strains. We 

used a strain in which dfp1 was constitutively expressed using an adh1 promoter. 

Studies from our lab showed that origin efficiency increased globally when Dfp1 

was expressed continuously indicating an effect on origin efficiency. Dfp1 was 

also tethered near the origin AT3003 using Gal4 DNA binding domain (DBD) as 

described in appendix III.1. To measure the increase in origin efficiency in the 

adh1:dfp1 cells, we performed the two hour HU arrest experiment in the wild type 

and adh1:dfp1 cells. Replication profile of the ura4 locus in the wild type cells is 

shown in Figure V.4A. The replication profile shown is an average of three 

independent experiments and shows all the known origins represented by peaks 

in the ura4 locus. Replication profile of adh1:dfp1 has a similar pattern to the wild 

type cells (figure V.4B). Overlays of the replication profiles of wild type and 

adh1:dfp1 indicate no change in origin efficiency when dfp1 is constitutively 

expressed (figure V.4C).. We also looked at the replication profiles when dfp1 is 

tethered to AT3003. Although we observed the known origins firing in the ura4 

locus, the data is noisy and it is difficult to make conclusions from it (Data not 

shown). Based on our combing data, we expected an increase in origin efficiency 

by around 15-20%, but it is possible that the microarray data has a low signal to 

noise ratio to detect that magnitude of change.  



 
 
 

156 

Figure V.2 Timing of HU arrest to look at replication profile of ura4 locus 

 Cells were arrested in early S phase using 10 mM HU in wild type 

S.pombe yFS240. Known origins are represented with . 2A) Cells were 

arrested in HU for four hours. 2B) Cells were arrested in HU for three hours. 2C) 

Cells were arrested in HU for four hours. The peaks representing the origins 

become sharper as the HU arrest time is reduced. AT3004/3005 is a combination 

of two origins, which we cannot separate on our array due to the resolution. The 

data shows that two hours is the suitable time for HU arrest experiments. 
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Figure V.2 Timing of HU arrest to look at replication profile of ura4 locus 

 

A) 
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Figure V.3 Control for HU arrest profiles using Self hybridizations 

 Cells were arrested in early S phase using HU in yFS240 and is the same 

experiment performed in the previous figure. The replication profile is from the 

control array where two G2 samples were labeled was Cy3 and Cy5 and 

hybridized to the array. The array shows the noise level for the HU experiment. 

The profile has been created by averaging the control arrays for all the three HU 

experiments. 
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Figure V.3 Control for HU arrest profiles using Self hybridizations 
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A time course synchronization experiment was performed and replication 

profiles for cells during S phase were made. The S phase progression was 

followed by flow cytometry. Figure V.5 shows the replication profiles from 80 to 

95 minutes. Although the origins in the ura4 locus seem to fire during this time 

course, there is no noticeable change in the profiles itself at the various points. 

The lack of change in the replication profiles can be due to a lack of synchrony or 

due to the resolution of the microarrays itself. We used a double synchronization 

protocol to ensure maximum synchrony and the absence of any difference in the 

profiles indicates that the change in efficiency we are looking for cannot be 

observed using microarrays. We have also done early time course points (60-75 

minutes) and see no peaks at all indicating that the origins have not fired yet 

(Data not shown). We tried to capture the transition of an origin from no firing, to 

firing, and collected cells every 10 minutes or 20 minutes. However, these 

datasets were very noisy and we have been unable to reach any conclusions 

from them (Data not shown). 
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Figure V.4 No change in replication profile when dfp1 is overexpressed 

 Cells were arrested in early S phase using 10 mM HU in wild type yFS240 

and adh1:dfp1 yFS458. Cells were arrested in HU for two hours. 4A) Replication 

profile of wild type cells. 4B) Replication profile of adh1:dfp1 cells. The known 

origins are represented by .  There seems to be no increase in origin 

efficiency in these cells. 4C) Replication profile overlays of yFS240 and yFS458 

show no noticeable difference in the origin efficiency. 
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Figure V.4 No change in replication profile when dfp1 is overexpressed 
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Figure V.5 Replication kinetics at ura4 locus   

 cdc25-22 mutant cells were synchronized in G2 by centrifugal elutriation. 

The cells were then arrested at 35 C for 3.5 hours. Cells were collected at 80’, 

85’, 90’ and 95’ and replication profile made as described earlier. The replication 

profile shows no change in the origin firing over time as represented by no 

change in the peaks indicating that we are unable to see the small change in 

origin efficiency observed using DNA combing. 
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Figure V.5 Replication kinetics at ura locus 
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CONCLUSION  

Microarrays have been used as a method to measure a change in copy 

number to study change in origin efficiencies in various mutant strains. Although, 

we are able to identify known origins from the replication profiles, we have been 

unable to notice a change in origin efficiency. The absence of any changes in the 

replication profiles during various time courses shows that our setup has a low 

signal to noise ratio. Microarrays can be used to measure changes in origin 

efficiency using density transfer method instead of measuring the change in DNA 

copy number. The data shows that microarrays can be used for origin studies 

and different origin studies can still employ microarrays. The resolution of my 

setup was also significantly higher than the previous origin mapping studies and 

such a high-resolution array can be made for the entire genome. We are also 

able to see a couple of putative origins, which have not been identified in the 

previous genomic studies and we can use this system to look at other regions for 

identifying new origins.  
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APPENDIX V.3. EFFECTS OF MODULATING DFP1 LEVELS 

 

 

INTRODUCTION  

Studies from our lab showed that origin firing is stochastic in fission yeast. 

We have been working on identifying the factor responsible for the stochasticity 

and randomness of origin firing. We were able to identify Hsk1-Dfp1 as the 

kinase that regulates origin efficiency (Patel et al. 2008). Hsk1-Dfp1 is rate 

limiting and is required at each origin to fire. Level of Dfp1, the catalytic subunit of 

Hsk1, increases at the beginning of the cell cycle and it is a freely diffusible 

factor. DNA combing studies from our lab showed that modulating the levels of 

either Dfp1 or Hsk1 affects the origin efficiency (Patel et al. 2008).  This appendix 

presents my work towards showing that Hsk1-Dfp1 is responsible for regulating 

origin efficiency. 
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RESULTS AND DISCUSSION 

To increase the activity of the Hsk1-Dfp1 kinase, we overexpressed Dfp1 

from the constitutive adh1 promoter, leading to an approximately 3-fold increase 

in Dfp1 protein and Hsk1-Dfp1 kinase activity relative to wild-type S-phase levels 

(Figure V.6). The adh1:dfp1 cells grow normally and have normal bulk replication 

kinetics by flow cytometry. 

 To test if over-expression of Dfp1 interferes with or activities the 

replication checkpoint in fission yeast, we assayed HU sensitivity and Cds1 

kinase activity in adh1:dfp1 cell. We find no evidence of HU sensitivity, Cds1 

inhibition or Cds1 activation, suggesting that the effects of Dfp1 over-expression 

are not due to indirect effects on the replication checkpoint (Figure V.7). 

Although the simplest explanation for the effect of tethering Hsk1-Dfp1 on 

the efficiency of local origins in that Hsk1-Dfp1 is directly activating the origins by 

phosphorylating MCM, it is also possible that the local high concentration of 

Hsk1-Dfp1 affects local chromatin structure, which in turn indirectly affects local 

origin efficiency. We reasoned that any effect on local chromatin structure that 

would affect origin efficiency would also affect transcription. Therefore, to test for 

local chromatin affects, we used genome-wide transcriptional profiling to assay 

transcript levels in cells with and without Hsk1-Dfp1 tethered near the ura4 locus 

(Oliva et al. 2005). We find no significant difference in transcript levels near ura4 

between wild-type cells and cells with Gal4-Dfp1 tethered at AT3003  
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Figure V.6 Expression levels of dfp1 alleles. 

A) Protein levels measured by Western blot. Cells were elutriation 

synchronized and harvested in S phase as determined by septation index and 

flow cytometry. 150 µg of whole cell lysate was separated by SDS-PAGE on a 

10% gel, transferred to a PVDF membrane and visualized using anti-

Dpf1antibodies as previously described (Takeda et al., 1999). The bands 

representing Dpf1 and the Dpf1-2xGFP fusion are indicated; asterisks indicate 

non-specific bands. The membrane was reprobed with anti-tubulin antibodies. 

When normalized to the tubulin control, the adh1-expressed Dfp1 is 

approximately 3-fold more abundant that the wild-type Dfp1 and the Dfp1-2xGFP 

is approximately equal. 

B) Protein activity measured by in vitro kinase assay. Cells were elutriation 

synchronized and harvested in S phase as determined by septation index and 

flow cytometry. IP kinase assay was performed as described, using polyclonal 

anti-Dfp1 antibodies and myelin basic protein as substrate (Takeda et al.1999). 

Lanes 1 and 2 are wild type (yFS240) cells; lane 3 is adh1:dfp1 (yFS458) cells. 

Lane 1 is a mock IP, using no antibody; lanes 2 and 3 are Dpf1 IPs. Quantitation 

of activity is shown below the figure in arbitrary units with the background in Lane 

1 subtracted. 
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Figure V.6 Expression levels of dfp1 alleles 
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Figure V.7 Over-expression of Dfp1 does not activate or inhibit the 
replication checkpoint. 

A) Dfp1 over-expressing cells are not sensitive to chronic exposure to HU. 

Wild-type (yFS240), adh1:dfp1 (yFS458) and cds1::ura4 (yFS199) cells were 

grown to mid-log, 10-fold serially diluted, spotted onto YES plates containing 0, 1 

or 3 mM HU and grown for 5 days. 

B) Dfp1 over-expressing cells are not sensitive to acute exposure to HU. 

Wild-type (yFS240), adh1:dfp1 (yFS458) and cds1::ura4 (yFS199) cells were 

grown to mid-log, transferred to YES containing 10 mM HU, grown for the 

indicated time, plated on YES, grown for 5 days and counted. Data points 

represent mean +/- s.e.m.; n = 4. C) Dfp1 over-expressing cells activate Cds1 

normally in response to HU. Wild-type (yFS240), adh1:dfp1 (yFS458) and 

cds1::ura4 (yFS199) cells were grown to mid-log, transferred to YES containing 

10 mM HU for 4 hours and harvested. Cds1 was immunoprecipitated from 10 OD 

pellets and assayed by in vitro kinase assay using myelin basic protein as a 

substrate (Lindsay et al., 1998). Quantitation is mean ± SEM; n is 3 or 4. 
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Figure V.7 Over-expression of Dfp1 does not activate or inhibit the 
replication checkpoint. 
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(Figure V.8).  Specifically the change in transcript levels for the 24 genes with in 

the 50 kb around AT3003 is 1.02 fold, as compared to a genome wide change of 

1.01 fold  (p > 0.2).  These results suggest that the increased local concentration 

of Hsk1-Dfp1 is not affecting origin efficiency indirectly through local chromatin 

effects. 

 

CONCLUSION 

 

Using DNA combing and other methods we identified Hsk1-Dfp1 as the 

regulatory kinase responsible for firing efficiency. I used microarrays to measure 

a change in firing efficiency when Hsk1-Dfp1 levels are increased globally and 

locally. Here we show that putting Dfp1 under adh1 promoter increases the Dfp1 

protein and kinase levels 3-fold and does not activate a checkpoint response. 

Increasing local Dfp1 levels also does not change firing efficiency indirectly by 

having any effect on local chromatin state. 

 

 

 



 
 
 

173 

Figure V.8 Genome-wide transcript levels of in cells with Gal4-Dfp1 
tethered at AT3003. 

Relative transcript levels in wild-type and 5xGal4 UAS:AT3003 Gal4-Dfp1 

(yFS459) cells were determined by competitive hybridization of labeled cDNA to 

an microarray containing probes for all 5004 pombe annotated ORFs as 

described (Oliva et al., 2005). Wild-type (yFS105) cDNA was used as a reference 

in both cases to control for dye bias. The figures show relative difference in 

transcript levels between the two strains (Log 2) versus chromosome position. 

Relative p-values are shown by circle size; a circle of p = 0.01 is indicated on 

Chromosome 2. 98% (5282/5414) probes showed less than a two-fold difference 

between the two strains. The location of the Gal4 UAS site on Chromosome 3 is 

indicated; the bar shows the 50 kb surrounding the sites. All array data will be 

available at ArrayExpress (www.ebi.ac.uk/arrayexpress).  
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Figure V.8 Genome-wide transcript levels of in cells with Gal4-Dfp1 
tethered at AT3003. 
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Chapter VI                                                                              

Discussion and Future Directions 
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Maintenance of DNA replication fidelity during S phase is essential to 

prevent cells from disastrous consequences. Cells must replicate in an efficient, 

timely and error-free manner. Cells ensure error-free manner of replication 

through cell cycle checkpoints, which make sure that cells do not replicate when 

encountering damage. To ensure that replication is completed in an efficient and 

timely manner, the cells regulate origin firing. Checkpoints and origin regulation 

are the crucial components of a successful S phase. During my thesis research, I 

have studied the various aspects of checkpoints and origin regulation. My studies 

have also indicated origin regulation during DNA damage by the cell cycle 

checkpoints.  

Mechanism of slowing and role of Cdc25 in damage checkpoint 

Studies from the metazoans have identified the downstream targets for 

the origin regulation by the checkpoint (Falck et al. 2002). Another mechanism by 

which cells can slow replication is by slowing the progression of forks in the 

presence of DNA damage. Such a mechanism has been shown in mammals 

when damage is induced by MMS (Merrick et al. 2004). Recent work from our lab 

shows that in the presence of damage, fork progression is slowed (Willis N, 

personal communication). However, it remains to be seen whether checkpoints 

affect replication only by slowing the fork progression or also by inhibiting origin 

firing. Using 2-D gels, I did preliminary experiments where DNA damage was 

induced using MMS. Looking at rDNA origin ars3001, origin firing seems to be 

prevented in the presence of damage. It is possible that inhibition of origin firing 
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might not contribute to the bulk slowing observed due to a relatively minor role in 

slowing replication. This result along with Nick Willis’s results seems to favor 

slowing by inhibition of origin firing as well as slowing the replication fork 

progression. 

 When I began my thesis research, it was not clear as to what the 

downstream targets were for the S-phase DNA damage checkpoints in fission 

yeast. Work from the Huberman lab suggested that Cdc25 is the target for the 

checkpoint and the checkpoint functions in a similar manner to the metazoans 

(Kumar and Huberman 2004).  It is believed that different levels of Cdc2 trigger 

different functions of Cdc2 and dephosphorylation by Cdc25 during S phase 

would lead to catastrophic mitosis (Lundgren et al. 1991; Stern and Nurse 1996). 

Cdc2 is also known to remain phosphorylated during S phase (Gould and Nurse 

1989). Cdc25 levels are also known to be low during S phase (Moreno et al. 

1990). Due to these reasons we did not believe that Cdc25 would be a 

downstream target of S-phase damage checkpoint. In an attempt to resolve this 

confusion in the field, we initiated experiments using mutant strains in which 

cdc25 is over-expressed or cdc25 is deleted. Studies from our lab showed that 

asynchronous as well as different synchronized cultures of these mutant strains 

had a slowing of S phase comparable to a wild type strain in the presence of 

damage. Although data from the Pyp3 studies shows a lack of slowing when 

cdc25 is deleted, based on the literature and data from cdc25 deletion in the 

cdc2-Y15F background we drew the conclusion that Cdc25 is not a target of the 
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S-phase DNA damage checkpoint (Kommajosyula and Rhind 2006). The 

difference in the results obtained in these studies is primarily due to the kind of 

flow cytometry being used in both the labs. We use isolated-nuclei approach as 

opposed to a whole-cell method used by the Huberman lab. Our protocol 

increases the resolution of the assay and is quantifiable allowing us to 

reproducibly detect checkpoint dependent slowing in situations in which is 

slowing is not apparent in whole-cell flow cytometry experiments. Recently, work 

from their lab has raised concerns over our paper and I have addressed those 

concerns in the discussion.  

Hsk1 as an alternate target 

If Cdc25 is not acting downstream of the damage checkpoint, then we 

need to identify the target of the checkpoint in order to understand how 

replication is slowed in the presence of damage. The downstream target of the S-

phase damage checkpoint could be Hsk1. Previous work has suggested that 

Hsk1 may play a role in S-phase damage checkpoint in fission yeast (Snaith et 

al. 2000; Sommariva et al. 2005). Hsk1 interacts with Cds1 and is 

phosphorylated by it. However, Hsk1 is essential to cells and its deletion leads to 

lethality due to its requirement in replication initiation. To study the role of Hsk1 in 

S-phase damage checkpoint, we need to bypass the replication function of Hsk1. 

Such a bypass has been done in budding yeast where a mutation in mcm5 

(P83L) is able to bypass the Cdc7 or Dbf4 requirement for origin firing (Hardy et 

al. 1997). This mutant is known as the mcm5-bob1.  The corresponding amino 
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acid is at position 85 in fission yeast. We initiated work to replace the 

endogenous mcm5 with bob-1 by transforming the mcm5 P85L into wild-type 

fission yeast. However, due to the recessive nature of mcm5-bob1, where bob1 

will express only in the absence of the wild type mcm5, we were unable to get 

transformants.  Future work in the lab will focus on making the bob-1 mutant in 

fission yeast. Hsk1 will be deleted in the bob-1 background and then the effect of 

DNA damage on replication can be studied. If Hsk1 is involved in the DNA 

damage checkpoint, then its deletion will lead to the absence of slowing when 

damage is induced using methyl methane sulfonate (MMS). If cells slow 

replication when presented with damage in the hsk1 delete, then Hsk1 is not a 

target of the DNA damage checkpoint.  

It is possible that the checkpoint may function by not targeting either 

Cdc25 or Hsk1. Nevertheless, it is important to identify the targets for the DNA 

damage checkpoint to give us a clear understanding of the mechanism by which 

this checkpoint functions. Identifying the downstream targets for the DNA 

damage checkpoint will advance the field of S phase checkpoints in fission yeast. 

Origin efficiency studies 

In the second part of my thesis, I have tried to measure the efficiency of a 

late replicating sequence. Previous studies and work from our lab have 

demonstrated that origin firing is stochastic in nature (Patel et al. 2006). The 

stochastic nature of origin firing could lead to a potential problem in replicating by 
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taking long time to finish replicating DNA stretches where no origin may fire 

(Lucas et al. 2000; Herrick et al. 2002; Jun et al. 2004). This potential problem 

has been termed as the random gap problem. Work in Xenopus embryos have 

suggested that the efficiency of a particular origin increases as the cells progress 

through S phase (Lucas et al. 2000; Herrick et al. 2002).  We proposed that a 

similar mechanism in fission yeast was responsible for efficient replication in 

spite of inefficient origin firing. To study such a phenomenon, we have to 

measure the efficiency of a late replicating sequence. Two things made this 

project challenging: the absence of well defined late firing origins and passive 

replication of origins, which are capable of firing late.  

Regions are capable of firing late in S phase, but if they have not fired in 

the early stages, the chances are that replication forks from neighboring origins 

would passively replicate them. We set out to solve the problem of measuring 

efficiency of a late firing origin by preventing the passive replication from 

neighboring origins. The block was established using fork terminators known as 

RTS1 sequences (Dalgaard and Klar 2001). The RTS1 sequences are present at 

the mating locus in fission yeast and it has been shown that RTS1 is capable of 

blocking replication when placed at other sites in the genome (Codlin and 

Dalgaard 2003; Lambert et al. 2005). We integrated RTS1 sites on either side of 

a late replicating sequence AT2062. Using a combination of methods we tried to 

study the efficiency of this region. Initial results from two-Dimensional gel 

electrophoresis showed that passive replication was occurring at AT2062. We 
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also used microarrays and deep sequencing to look at the 80 kb region flanked 

by RTS1 sites. Deep sequencing revealed several inefficient origins yet to be 

identified and we surmised that when forks from neighboring regions were 

prevented from passively replicating AT2062, these inefficient origins would be 

responsible for the replication of the 80 kb region. We looked to make sure that 

forks were getting blocked at RTS1 sites and the forks were getting arrested. 

However, the block seemed to be weak leading to the possibility that forks were 

beginning to bypass the block. Deletion of rad51 in the strain having RTS1 

flanking AT2062 had no effect on the viability of the strain. Deleting rad51 

prevents any bypass of RTS1 sites by neighboring forks and hence replication of 

the 80 kb region is due to origins present within the region. We realized that 

AT2062 was not a good choice for studying origin efficiency due to the large 

distance between the RTS1 sites. I have recently focused my attention on 

integrating RTS1 sites at AT3003, a well-defined origin which fires during the 

early S phase. The RTS1 sites are being integrated at AT3003 about 7.5 kb apart 

on either side. To ensure that neighboring forks do not bypass the RTS1, I am 

integrating the fork blocks in a rad51∆ background. 

A biochemical explanation for the increasing efficiency model would be a 

rate-limiting factor required at each origin for it fire. Factors essential for origin 

firing could be an ideal candidate. One of the prime candidates for regulating 

origin firing was Hsk1. We showed that Dfp1, the regulatory subunit of Hsk1, was 

indeed a rate-limiting factor (Patel et al. 2008). Increasing Dfp1 levels in the cell 
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led to an increase in a global increase in origin efficiency as determined by DNA 

combing. Reducing Hsk1 levels by using a temperature sensitive allele led to a 

decrease in origin efficiency. Also, when the local concentration of Dfp1 was 

experimentally increased near one of the origins in the ura4 locus, an increase in 

efficiency was noted for that particular origin. I measured the protein levels of 

Dfp1 as well as kinase activity in the Dfp1 overexpression strains and there was 

a three-fold increase in the Dfp1 activity. Normal activation of checkpoints was 

observed in the dfp1 overexpression strain showing that the effects observed 

were not the indirect results of checkpoints. 

I used microarrays and 2-D gels to show similar effects of increase in 

origin efficiency using a different method. Because we were looking to see an 

increase in efficiency by only about 10-20%, these techniques were not sensitive 

enough. Although I observed replication profiles using microarrays at the ura4 

locus, I was unable to note a change in efficiency due to the high background 

noise when measuring the change in copy number using oligonucleotide arrays.  

Ways of using RTS1 sites to study origin efficiency 

Another mechanism to prevent forks from bypassing RTS1 is by putting 

rad51 under an nmt1 promoter. The presence or absence of thiamine allows for 

shutting off the nmt1 promoter thereby shutting off rad51.  Experiments will be 

performed in the presence of thiamine to prevent rad51 expression. Efficiency of 
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AT3003 will be measured using two-Dimensional gel electrophoresis as well as 

deep sequencing described in chapter IV. 

We hope to address the random gap problem by the efficiency studies at 

AT3003. There are several lines of data that suggest that increasing origin 

efficiency is the way cells deal with stochastic firing. Mathematical modeling 

(Monte-carlo simulations) done in collaboration with Bechhoefer lab show that 

inefficient origins firing randomly would lead to longer replication times whereas 

increasing the efficiency of origins through the S phase leads to completion of 

replication in a finite amount of time (Rhind N, personal communication). Studies 

from Xenopus embryos have led to similar models being proposed (Lucas et al. 

2000). Finally, identifying Hsk1-dfp1 as the rate-limiting kinase responsible for 

origin efficiency suggests that our model may be correct. Understanding the 

mechanism of how cells avoid the random gap problem will lead to a more 

realistic picture of how origin regulation works. 

However, the direct evidence for the increasing efficiency model will come 

from measuring the efficiency of a potentially later firing origin, which usually gets 

passively replicated before it has a chance to fire. Presently, the work is focused 

upon measuring the efficiency at AT3003. In the future a cryptic origin like ars727 

can be targeted. 

One of the advantages of using RTS1 to measure firing efficiencies will be 

to study the effect of DNA damage on late firing origins in fission yeast.  Studies 



 
 
 

184 

in budding yeast have shown that DNA damage during S phase prevents late 

origins from firing (Shirahige et al. 1998). However, the mechanism by which S 

phase DNA damage checkpoint slows replication is not known. Isolating a 

potential late firing origin from getting passively replicated will allow us to study 

the effect of drugs like methane methyl sulfonate (MMS) on replication. The 

advantages of these studies lies in the fact that mammalian origins are similar to 

fission yeast origins and the results inferred from DNA damage studies in fission 

yeast can be extrapolated on mammals.  

Identifying replication origins 

We recently started genome-wide search for Schizosaccharomyces genus 

using deep sequencing. Looking at origin efficiency at AT2062, we realized that 

the 80 kb region flanked by RTS1 seemed to have some inefficient origins which 

have not been identified. The reason for this is the low resolution of the various 

genome-wide analyses for origins in fission yeast. The only known common 

features of origins in S. pombe are the presence of AT rich islands, AT 

asymmetry and their presence in intergenic regions. We are using sequencing in 

collaboration with Helicos Biosciences and the Weng lab. Preliminary studies of 

the replication profiles in S. pombe show that the origins identified by sequencing 

correlates very well with previously characterized origins from other studies. The 

peak finding algorithm in the Igor software being used for studying replication 

profiles has identified potential origins in both S. octosporus and S. japonicus. 

The identification of peaks as well as correlation with previously identified origins 
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makes deep sequencing a good method for identifying origins.  The reason for 

identifying origins in three different fission yeast species is an attempt to 

overcome a lack of sequence specificity between the known origins of S. pombe. 

Identification of sequences determining origin activity can help in finding origins 

in fission yeast de novo. The origins are large and inefficient similar to mammals.  

Resolution of genome wide origin studies in mammals is only about 100 kb which 

is very low for identifying specific regions acting as origins. Sequencing can also 

be used to identify origins in mammals and should provide sufficiently higher 

resolution compared to the previous studies. Identifying origins will also lead to 

the advancement of research in S. japonicus and S. octosporus where origins 

are yet to be identified. Studying the origins across the three distant pombe 

species will also give us an idea about the evolutionary divergence of replication 

amongst these fission yeasts. To identify these origins I have performed the 

experiments using HU arrest in the early S phase in all the three fission yeast 

species. I have also done a time course in S. pombe in order to make replication 

kinetic profiles and see the how replication progresses through the genome. 

Bioinformatic analysis will be done on these datasets and common motifs 

identified. The origins identified in S. octosporus in our studies do not have AT 

rich islands and due to this I believe that it is not simply the presence of AT rich 

islands that defines an origin but a sequence motif that is yet to be identified. The 

results from our sequence analysis should help us in understanding the nature of 

the origins and identify this sequence motif. The absence of origins defined by 
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AT rich islands, markers for origin prediction in S. pombe, in S. octosporus and 

S. japonicus, is the proof that some other sequence specificity governs origins.  

Potential uses of using sequencing to identify origins 

In the future, the effect of nucleosome positioning on origin firing can also 

be studied using deep sequencing. The presence of nucleosomes at a particular 

region would alter the firing potential of origins. Genome-wide analysis of such a 

nucleosomal effect on origin regulation can be studied using sequencing. 

Effects of DNA damage can also be studied using sequencing. Cells can 

be sequenced in the presence or absence of DNA damage like MMS and the 

corresponding replication profiles can be compared. If origin firing is inhibited 

upon damage, then we will see the absence of origins in the replication profiles of 

damage induced cells. 

Deep sequencing approach will open up many avenues of research 

especially in identifying origins in organisms with newly completed genome 

sequences. This is clearly seen by finding potential origins in S. octosporus and 

S. japonicus. The potential impact on mammalian origin studies can also be 

huge.  
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SUMMARY  

Origin regulation and checkpoints have been the focus of my thesis 

research. My results have shown that neither tyrosine-15 phosphorylation of 

Cdc2, nor Cdc25 itself, is involved in the S-phase DNA damage checkpoint in 

fission yeast. I have also studied the origin efficiency of a late replicating 

sequence. Although, my work has not proven that firing efficiency increases 

through S phase, my work has setup the platform for future studies pertaining to 

origin efficiency. This work can be pursued in a number of different ways. This 

work also has the potential to help in future studies pertaining to DNA damage 

and becoming a good model to study the effects of damage on origin firing. 

Finally, I have collaborated with other labs to carry out a genome-wide analysis 

of origins as well as finding origins in three Schizosaccharomyces species. Two 

of these Schizosaccharomyces species did not have previously identified origins 

and this work identifies the origins across the genome in these species for the 

first time. This will advance the field of origin studies in Schizosaccharomyces 

species and information gained from this study can potentially be used to identify 

origins de novo in mammals. 
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Appendix Table List of oligonucleotides for AT2062 microarray 

Sequence Name Bases Sequence 

SPB1801420.63 63 

GTA AAT GTT TTA ATG ATA CGG TGA GTG ACG 
GAA AAT TTG AAT ACT GGT CAG CTA CGC AGT 
TTA 

SPB1803820.59 59 
TAA ATC ATA CCT TAT TGG CAA TTT ACA ACG AGA 
CTG TAG AAC TCC ACA ACA GGT TTG GA 

SPB1804370.61 61 
ATT AAC TAA AAT CCT TAC CCG ATT AGG TGG 
GTG TTG TTC ATC CAT TAT CTG TGC TAC ATT T 

SPB1804970.60 60 
TAG CAA GTC CAA CCT ATA ATA AGG AAA ATA 
AGC TCA CTC TGG AAG TTC TAC TGG TTT GGC 

SPB1806370.58 58 
GAA AAT TTG TGG AAA CGA GAT GTG CAG TTA 
AAA CGT GCA ATT TCC GAA GGA ACT ATT C 

SPB1806920.63 63 
TTT ACC TTA TGT TTC CCT TGT GTT GAC TAA CAT 
ATT ATT TGT AGC CTG TTT TTG CAG TTT GTC 

SPB1807420.63 63 
GAA GCT GAG TAT GTG GAA CTT GCC AAT TCT 
TTA AAA ACA AAA GTA GAG ACC AAT ATA GAG ATT 

SPB1808020.58 58 
TTA ATT GCA AAA CTA CGC ATA ACT TGT CTA TCG 
TTT AAT TGT ATC TTT TCA CCC TAG T 

SPB1808670.63 63 
GTA GAT AGA AAC ATC TGA TTA TCA ATG AAC TTC 
CAT CCC GAT TGT AAA TCT TGT GTA CTC AAA 

SPB1809220.59 59 
CCT CTT TTG AAC CCG CAC AAG CAG AAC AAT 
GAG AGA TTG CAG GAT GAA GAA CGG TGA TC 

SPB1809670.63 63 

TGA ACT TAA AAA ATG TGA AAA GGA AAA ACC 
CAC CAG GAA ATT AAA GAG AAG AAA GAA TTA 
ACG 

SPB1810120.58 58 
GGC TAG AGA AAA TGA GAG GTT CGA TGG GCA 
GTT TAT ATT CGC AAG ATT CGC AAT AGA T 

SPB1822220.62 62 
AAT CAT GGT CAA ACT TTT CGA GCG TAA TAT TTA 
GAA TCT ACG TAC CAC GAA CAA AGA GCA TC 
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SPB1822820.63 63 
TGA GAC GCT ATA GAA TTT TAC GTA TTC GTG TGT 
GTC CGA ATC TTT TGT AAT AGT AAA CAG CAG 

SPB1823320.63 63 

ATT ACT ATG AAA GAC CTC CTC GAT AGT AGA 
TGC TGT AGA GGT ATT AAA CAT GGA GTT GAA 
CTT 

SPB1823770.57 57 
AAA CTT TGT TAT GTC TAT TGA TGA TTC CGT GCA 
GCC TCC TTT ACT TTC TTG GAT GGG 

SPB1824320.63 63 

ATG ACT AAG AAA ACC GGC ATT TGT AAT AGA 
AGT GTA AGC GAA CCA TAG TAG TAC ATT AAC 
CTT 

SPB1824920.59 59 
TTT TGG GAA ACT ATG GGT CGT GAA TGG ACG 
GGA ATT GAT ATT TTA CGA ACA GAC AAA TT 

SPB1825470.63 63 
TTC TGA ATA TAC AAA GGA TTC ACA ATA ATT AAT 
TGA TTC GGC ACG TTT ATT AGG TTT TGG TGA 

SPB1826120.63 63 
TGA GTA AAA CAG TCA GAT TGC AGT AAG ACC 
TCG ATA TCA TAA TTA ACC TCT AGA AAT ACA CCA 

SPB1827120.57 57 
ACT TAG ATG CAG ATA CTA CCA CTT TCA ACC TTT 
ACC AAC CAC CAT GTC TCA ATT TCC 

SPB1827620.63 63 

GAG ATA AAG TCA TTG CCA AGT CGA GAA AAG 
AAC AAG AAA AAC TGT TGG AAG AAA ATG AAA 
GCA 

SPB1828220.63 63 
CGT TGT AGC AAA TAC TGA ACG TCC GTA CTG 
TAG TTA TTT CAT TTA ATG TGA TTT GTA TCT AGC 

SPB1828720.59 59 
AGA CAA TCG TTC AAA AGA CCC TTG CTC CAA 
AAC TTT CCC GTC TCC AAC AAC AAT TAT TT 

SPB1835770.63 63 
AAT GTC AAT GGC AAA TCA TAT ACT GTT TTG AGT 
TAA AGA GGC TTT GGC AGA TCA TAA ATC AGC 

SPB1836370.63 63 
CAC CTC CTC CCG AAG AGG CAT CCC TTT ATG 
CTA GTA AAT GTG ACT ATT ATG AAA GCG ATA TTT 

SPB1836820.62 62 
ATC GAT TAA ATG AAC AAC AAA GCT TCT ACC AAA 
GGC ATT TAG AGT CTA CTA GGC ATG AAT TT 
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SPB1837370.61 61 
AGG AGG AGA AAC GAG CCC AGA AAA TTC AAA 
AGT CAA AAT CTA CTC ATC TTC TAT AGC GAA T 

SPB1837820.58 58 
TAA ATT TGG ACA ATC CCA ATG GCA CCA GAT 
ACT GCT TGA AGC CCC AAC CAA GGA TCA A 

SPB1838270.63 63 
AGC TGA AGG ATT AGG ATA CGA CAT CCC GAA 
GTA TTT GTT TGC TAA TTG AAT TTT AAG TCA GAA 

SPB1838720.59 59 
ACT AAC CGT TAT TAA TCA ACT TGC TAT ACG CTG 
TGA CAT CTA ACA CTC TTT GAC CAG TT 

SPB1839370.57 57 
CCA GTG TAG CCT TCT ATA TAA ACA AAG GTC 
CTA TTC TTT GAC CTC CAC CAC AAA CGG 

SPB1839970.60 60 
ATA TAA AAT GCT CCA AAG ATT ACC CTT GTT TGT 
GCT TCT TGT TGT TTT GAT TTA CTA ATT 

SPB1840470.57 57 
GCT TTC AAA ACC CGC ATT TTA TAG CGT CTG ATT 
CTC CAT CCT CCG TAT TAT CTG GTC 

SPB1840970.57 57 
ACA ACA ACA TCA CCA TCT AAA TAT GGA TAT GTG 
TCT GGC AGA ATA GCT CTA TCT CCT 

SPB1841570.58 58 
CGG AAA TCT TTT CAA CCT GAA CTG TCT ACC TTA 
CTT TTG AGG CGA GAC GCT TTG TCT A 

SPB1848620.63 63 
TCG TAG AAA GAA CAT CAG CAC CAG GAG CTC 
TTG CAA CTA ATT TTT GAT ATA AAG AAT CTC TGT 

SPB1849320.62 62 
AAG TAA ACA TGG CAT TAG TCT TTT CCT CAT CCT 
TTC AGA GCC TTC AGT AGA ATC TAA TTC CC 

SPB1849820.58 58 
TTT TTG CTA TAT CGC TTA GAT AAC CAG GAG AAT 
GAA GAA ACA GAA GTC GCC AAG CAT C 

SPB1850470.61 61 
AGT CCT TTA ATA ACA TCT TTA GCT TCA GCG TAT 
TGA ACA GTA AAA TTG TCG AAA TAT TGC A 

SPB1851070.63 63 
GTC AAG TCA GTT CTA AAT TGA ACA CTT CTG ATG 
CCT AAC CCT AAG GAT AAA AAC AAC AGA TTT 

SPB1851520.57 57 
TAT GTA GCA ACG GAG CGA ATA TTT TCA GAA 
ACA AAA GCA GAG GTC ATC AAA ACT TTG 

SPB1852070.63 63 
TAT TGT AAA TGG CAT CAC TAA TAC TTT GCA TTA 
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TGA TTG GAG TAA CAG ATC CAG AAG ATA CAC 

SPB1852570.61 61 
GTT TTA TAA GAC TTA GAT GTC TTT TGA GAT GCT 
GCT CCA GTG TTC TCT GAA ACA AGT GCA T 

SPB1853070.60 60 
GTT TAA CCA AAG GGA AAC AGA ATA TCC ATT AAT 
TGG CAT TAC AGG AGA GCT CAG CGT AAA 

SPB1853570.63 63 
ATA ACT CAA CAA GAG ATG CAT TGG TAT TAT CTT 
GCA AAG AAG GTA CAA GCT TCA AAA GCG AAA 

SPB1854020.63 63 

AGC AGC ATT CAA AAA TAT CAA GAC TTA GTA 
ACG ATT GAA AGT TTA GCT TAG TGA CAG CCT 
TCT 

SPB1854470.60 60 
GAT GCT TGC TTA AAT TTA TCG TTA TTG AAA CTG 
GCA ATA ATA GTT CGT AGT GGT TGG CGG 

SPB1862420.61 61 
AGC TCA GAG CTA AAT TAG AAG GAA GAG GAG 
GTG AAA ATA AAT GAT TAC GAA CGG TCT TGT G 

SPB1862920.57 57 
AAT GCT TCC TTT AAC CCT TCC GAC ATA GAT TCC 
CAA AAT TCC GGT AGC ACA TTA GTC 

SPB1863420.57 57 
CGC TTT CGG TTG TCA ACG GTG CGA TTA ACT 
CGA TCT AAT GTT ACT AAG CCA AAC CCG 

SPB1863970.60 60 
GAG GAT AGA CGA GGT TTC CAA CAC CGC ATC 
CGA CTT CAA GGA TAG TCA ATG GCA ACT TAT 

SPB1864570.61 61 
AGT GCA TTG GAG CAG AGA ATG GGT TCC TGT 
TGT TGT AGA TAC ATA TTC TAA TGA AGA TGA T 

SPB1865120.63 63 
CTT TGT AAA ATA TCA ATA TCT TCT ATG ATG ATC 
GTG GAG TTT TCA AAT TCA AAA TCG TTT TCC 

SPB1865520.59 59 
AAT GTG ACA GGT GTT TCT CTT GTT CCC AGT 
AGC AAA GTT AAA GAA AAA GGC TCA GGA AT 

SPB1866070.63 63 
AAT AAT TCC AGA GAT TGG TGA GAA CAA GGA 
ATA GTT TTA TAA ACA TTT GTT TCT GTA CAT TGT 

SPB1866570.58 58 
GGT AAC AGA AAA GGA TGC CAG GAA GTA TTG 
CTC CAA GTG CCC CAT AAA TGC CAA GGA A 

SPB1867220.63 63 
CGA CCA CAA CAT AAA TAG ATA TTG TTT CCT GGT 



 
 
 

207 

AAA TTC TTA TAT CGG CTT TCA ATA TGC GGT 

SPB1867920.60 60 
TAC AAC AAT TCA GGG CTC AAA GTT AGA AAA 
ATC AAG TTT AAT AAA TTA TAC TAT CCG TGC 

SPB1868470.63 63 
ATT CAC TGT ATT TAG TGG AAA TGT AGT TCA CAA 
GAT TAT CGA ATT AGA TTG TTA TTC CTC AAT 

SPB1875820.57 57 
CAT ACA AAA CGT AGC CGG GAG AGG AGG GGA 
GAG AAG TAG AAA AAG ATT GAA AAT TGT 

SPB1876370.57 57 
CTG GGT CAC TAG CGC TTT GAA CCA TTA AAT 
CTG AAG GCA CAC GAT ACG GAG TTT GAT 

SPB1876820.60 60 
AGT AAA ATA TCG GTA TGA AAG TTC TGC ATT CCT 
TGT TGC GAT ATA TAC CAT TAT ACC ACT 

SPB1877420.63 63 
AAC CAT ACG CTA ACG ATT AAT TAG GAA TTG ATA 
CAG GTT CAT AAC ACC GTT CAT GGA TTG GAA 

SPB1877920.60 60 
GAT TGT TTC ACT ATC CAC TAG TTT TGG ATT ACA 
TGC CAT TAG TGA TCA GGG CTA TAA GCG 

SPB1878520.59 59 
CGT GCA AGA CAA GTG AAG AAT AGT AAC ATC 
TGG CTA GTG AGA AAT AGC TGA GAA CGA AT 

SPB1879020.57 57 
CAC CAA ACG TTC TTG AGT TTT ACT GGT CTT GCA 
CAA CTT GGA ACA AAC AAA CAA CCT 

SPB1879470.57 57 
CTC TCT CTT TTC CAA GGC ATT GGG TTC AAC 
TCG AAG TGT CGT TGT TGT GTA ATA ATG 

SPB1879970.63 63 
CAT GCA TTC CGA TTT GTT CCT ACT TAC ATC CTT 
TGG AGT ATA CAT ATT CTC CTT AGC ACC TTC 

SPB1880520.58 58 
TTT ATC TAT CTG GTT CGT TTG CAT TTA CTT TCT 
CAG TCG TCG GTT GGT TAC TTG CAT T 

SPB1881020.58 58 
TCC ACC TTT GCT GGA CTA TGC TGA TTC TTA TAC 
TGC TTT GGA CTC TTC TCT CAT TAA T 

SPB1881620.57 57 
TAT TAG TAA CAT TGT TAT TGG CAT GGC TCA TCG 
AGG TCG TCT GAA TCT TCT TCA CAA 

SPB1889170.58 58 
ATG ATA AGA CAA GTT ATG TGG CTA CCT TCG 
TAA CTG CCG TAG TGT GTC ATC AAC GGT A 
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SPB1889720.63 63 
TCT GAT AAC CAT AAT GGC TTA ACG AAT TTC ATA 
TGC TAA TCA CTG ACC GTT ATG AAT ACA ATT 

SPB1890270.59 59 
TAA AAG TAC AGG ATC GCC AAA ACA AAA GGG 
AAC ATA AGA GAC AAT CGA AGT ATG ACT CC 

SPB1890820.58 58 
TTG CAC CAA TTC AAA AGT GTT CCA ATC ATA AAT 
TTC GAC GCG ATC ATC AAC TGC AAT T 

SPB1891320.62 62 
CGA TTT CTC CAT GTT CTA TAA ATT TTG TAT GAC 
CTT CAC CAA CTT CAG GTT CAT AGT CTT CA 

SPB1891870.57 57 
CGA GAC TTA AGC AAA TAC TGT AAG AAT ATT AGA 
TCC CCG TAT CAG AAT CTA TCG AAT 

SPB1892420.63 63 
ACG AAA TTG CCG CGA GAC TAC ATT GTC CAT 
GAA ATT AAT GTT TGT GTT TAT TCT ACT AAA GGG 

SPB1892970.57 57 
CTC CAC ATC CAG GGT ATC TGA TGT CCT CGA 
CAA AGT CTC AGC GAA CGA GCG ATT TGG 

SPB1893570.63 63 
ATA GTC CAA AAA TTA TTT CGT ATG TTT AAG TCG 
CCG AGT CCA TTA AGC TAA CAT TGT TTT TCT 

SPB1894170.60 60 
CGA AAA GCG GAA GAA GAA TCA ACT AAT AAC 
AAC AAA TGG GCT AAA AAG TTC TCA ACC AGC 

SPB1894770.63 63 
CCA ATA AAT TCT TTA ATG TTG GGG GTA AAG 
CGA AAA GGA ACA ATT TCT CCA TTA TGG TAA ACT 

SPB1895320.62 62 
CAG GAA TGT AAA ATT TCA AAC AAC GTC TTC 
GAG TCT CAC AAT TTA AAG CAA GTG CAT CAT TT 

SPB1902670.57 57 
ATT TGG AGT GCT CTA AGC TAA AAT TCT GAG 
AGG AGC CTT GGA AAG AAA ACT GGA TTG 

SPB1903120.62 62 
TCA ATC TGT TGA AAC ATT CTA GCA TTA CTT GGA 
GAA GTG GTA GTA TTT CCT TGT AAA GAG AA 

SPB1903520.57 57 
ACA CTC AAA TAT ATT CGG AAA CTC GGA TTC CAA 
AAT TTC GAC GAA AAC AGA TGG GTC 

SPB1904020.63 63 
CAG CAT TTT CCT GTA AAG AAT CTC TCA GCT TCA 
TAA ACT CGA AAT TCA GAG AAG TCA ATT TTC 

SPB1904520.62 62 
TCA AAC TGT TTA AGA GCA GCA CCA AAA CTT 
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CTC AAT AAA TAG GCG AGA AAA GAG AAT GAT TT 

SPB1905070.57 57 
ACA CTG CCA TCT CTT CAT TAT CAT TAA CGA CTA 
TAC GAA GAA GCA CGG CAA AAG TCC 

SPB1905570.63 63 
TTC GCT ATT TTA ATT AAC GGC CTT ATT ATT TTG 
TGC GGT AGA AGT TGC TAA AAT GAT GAA CGA 

SPB1906170.62 62 
TCA TTT AAG AGA AGT GCT TTT ATT CAT TAG TAA 
TTG ATG AAT CCT TCG ATT TAT TGA TGA GT 

SPB1906720.63 63 
GGC TCG TAA AAC CTT GGG ATT ATA ACC ATG 
AAT TGT ATA TTT GAT TAG ATT GCC ATG AAT AAC 

SPB1907220.63 63 
CAA ATA AAA CGA TCA TAT TCC ATC TTC CAA TTT 
TTC TTC ATC ACC AGT GTT TTC TTC ACT ACC 

SPB1907870.63 63 
GCA GGT TAA TTT TTG ATT TAT AAG AAG GAG AAA 
AAG AAG TTA CAG GAG TGT TTA TTT CCG AAA 

SPB1908470.57 57 
CAG CAA AGT TGA TCT GGA AGA CCC AGT CTT 
TCA TGG AGA AAT AAT TGT TCC CGG AAA 

SPB1810820.57 57 
TGG TGC TAA ATC TGA TCT GAT CTC ACT GTC ATT 
GTT TTG TTT CCT CCC ATA AGC TCA 

SPB1811320.58 58 
TAA GGC ACA ATC CTA AGG CAG CAA CGT AGT 
AAG GAG ATT TGG AAT TGT AAC TTA TTG C 

SPB1811920.63 63 
AAT TAT TCC CGT AAG TTT CCC GCT TTA GAA AAC 
AAA GAA TCA TGG TAA CAA AGA ACG TAT GGA 

SPB1817420.63 63 
ATC AAA CGA TGC GTT TTC GAT CCT ACC ATT AAC 
CAA CTA TAT TGC CAC AAA TTC TCA TTG ATT 

SPB1818170.63 63 
TTC ATA CTT AAC TAC ATA TCC TAA CCT ATC CTA 
CCC TAT TCT TTT ATT TTC TCT CTT CTC TTC 

SPB1818620.57 57 
CTT ATC AAG CAA TGT CTT ATT CAG TTA GTC CTA 
CCT CTA CCA ATT CTT CCG TAG CTA 

SPB1819170.58 58 
CAA ATC TTT TCG CCA TGG AGT TAC TTA AAG TAA 
TTT CAC TAT TGT TTT CCC CTT AGA T 

SPB1819670.57 57 
CCC CCT TTT AAG TTT TAA TAT CTT TCT CTT AGT 
CTC ACT ATG TCT TTC GAC CCG CCG 
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SPB1820270.60 60 
GGT ACG ACG ACC TCC TTC CTC TTT TGT CAA 
AAT ATA GAA TGA TGC CTT GAA TTT CTG ATG 

SPB1820720.57 57 
GCC GCT AAC AAT TGG AGT ATT GTC ACC ATC 
AAA TCC GTA TTC GGA GAG TAG CTC ACG 

SPB1821120.58 58 
AGA TCA GAA AGG CAT TTA GTA ATA GCA GCC 
GTC AAC GTC GTT TTA CCG TGG TCA ACA T 

SPB1821720.57 57 
TCT GAT CTC TAA AGG AAT GTC AAT CTG ATT TTG 
CTA GAT CGC AAG AGC AAC CAC CAT 

SPB1829320.59 59 
AAT GTC GAA AGA TAA GTT ATC AAA TAT TGA AGC 
TGA AGG ACG AGT TGG GTA TGC AAA CC 

SPB1829820.60 60 
TTA AAT CAC CGA GAG CAT CTT GTG TAG TCC 
TGG AAA GTT TCC GAA CAT ACT CTC CAT AAA 

SPB1830370.57 57 
ATT CCA TCC CTG ACC CCT TGC TAG TGT GAA 
GAG ACG AAA AAC ATT GAC TTT CTT GTT 

SPB1831020.62 62 
TTC CAC GAA GTA CTC TAC ATT CGC ATA AGG 
TAG GTG CTT TGG TAC ATA CTA AGA TTT CAT TT 

SPB1831620.63 63 
ACA TTT AGT GAC ATT GAA GGT TTG TTA CGG GTT 
GTA TTC ATA TTA AAT TAA CCA CAT GCA GTT 

SPB1832170.58 58 
AGA AAA AGG AGC CTG AAA AAC CTA AAA AGA 
CTA AAA CCA AAA AGG AGA CCA TCC AGG T 

SPB1832720.57 57 
AGT AGA ACA AAT CCA GCT CTG TGC AGT TGA 
TCC TAA TAC GAA ACT TTC CAT CAC CAT 

SPB1833170.58 58 
AAC AAT TTG TAC ATT TGC CAT CAA AGC AAC GTG 
GTC GCT GGG ATA TCT TCC TTC TAA A 

SPB1833670.62 62 
CAA ATA CGT AAT TCA TAC TAC GTT CTA TAA TGT 
CAG TAG CCC TTT GGC AGA TGG ATA GAG GG 

SPB1834270.58 58 
GAC GAA TAT TTG TCT GAG CAA GTA CGT TGT 
AAG TCA TAA TAG TAA TAT CCA ATG CAG A 

SPB1834870.57 57 
CGT ACA ACC TCA GGT ATA TCA TCT AAA ATA 
CCG CAT ACT AGC GTG CTC TCC TTG ATG 

SPB1835320.57 57 
GGA GAC TTA TGG TGC TTT TAT ACG GTT GGT 
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GTT ATT GGA GAA GTC GGT GGT AAG TGT 

SPB1842220.59 59 
AAA CAG GCT AAC ACT CTT GAG AGT CCC GAC 
GCT TAT CGT TTC TTG TAT AAA TTT TAT CG 

SPB1842620.57 57 
AAT CGA ATG ACA TCC AAG AAC CTT GCA GTA 
GTA TTT TCC CCA ACA TTA ATA CGC GAC 

SPB1843170.62 62 
TTT TTC CCA AGA TCC CTA ACT TAG GAA ATG CTA 
GTG CAA CGT ATT GTG AGT AAG TGA TTT TG 

SPB1843670.60 60 
TCA AAA GCC CAA ACA TAT AGA ATG CCT ACT TGT 
GGA CTC TAA AAT CAC CAA AAC AAG GAG 

SPB1844270.63 63 
TAA TAT TGG TCC TCA AGT TTA TTT CGA TCC TAG 
GGA AAG ATT GCT TCA TGT TAA GGA GTT ACT 

SPB1844770.58 58 
CCC CCA TGA TGT TTC ATT CTT AGT CAC TCC TTT 
GTT TAT CTT CGA GGA TTC ACT CAT C 

SPB1845520.60 60 
GTT CAG GAG TTA TAT ATC TTT CTC GTA TCC CTC 
CTT ACA TGG CAC CAA ACA AGC TTA GAC 

SPB1846020.57 57 
GAA ACA AAA GAC TTA TCA GAA GAT ACT AAG 
CCA AGC AAG CAA GCC CGC CGC TTC TTT 

SPB1846670.63 63 
GTC CTT TGT CAT CTC CTG CAA AAA TAC CTC TAG 
CTT GGC CGT TTG GAG TAA TGG TAA TAA TAT 

SPB1847220.58 58 
AAC ACA TGT AAT TCT ATA ACG GTG ACC ATA AAG 
AAC CCG CTT CAA GCT AGC CTT AAT G 

SPB1847720.57 57 
CTA CTG CGG CAG CAA GCT CAA ATT CAT TTT 
CAA TAT TTT CAA GAT CTA TAG CAC CTT 

SPB1848170.62 62 
CAA AAG GTC GTA AAC GAA TTA AGT AAG AAC 
ATA CAA TCA TTG CAG AGG AGT AAT GAG TAC CA 

SPB1855070.57 57 
CCC CAA GGC TCA TCA CAC ATA AAA AAG TAA 
CCA ATT TGC TTA TGG CGT CGT AAA AAA 

SPB1855720.57 57 
GCG GCG GAT TAA TAG CTT GAG GAG TTG CAG 
ACA GTT GTT GCT GTA ATT GCT GCT GAT 

SPB1856670.57 57 
TAG CAC GAG TTG ATT CTA GCT TGA TAG CGA 
CCT CTT CAC CAG AAA CGA CAT TAG TCC 
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SPB1857320.63 63 

GAT CTA AAA AGA TAG AGA AAA TTC GGG TTC 
TCA GAC GAA AAT AAA AGC TGT AAG ATA CAC 
TGT 

SPB1857870.63 63 

TCG TAA TTT TGA AAG ACG AAA ATA GAT CAG 
CCG TTG GAG ATA GCG ATA TTT GAG AAA TGG 
TTT 

SPB1858420.59 59 
GCC CAA TAG ACG CAA TTG TTC AGT AAC GAT 
TTC CAT TGA AAA CAT ACC TTC TCC GAT TT 

SPB1859020.62 62 
ATG TTC TAA TTG CAA CTG TAA ATA CTA GGC ACA 
TAC TAT TAA GGC TGA CAA CCA TTA GGA GT 

SPB1859670.62 62 
AAC TAT TAA TAT GCT GGC ACT ATG GCA ACA TTA 
GCA CAT CCC AGG CTT CTA TAT ATC TCT TC 

SPB1860170.63 63 

AAC AAG AAA TTT AAC AGT TTA GTG TCA CCG 
CCA ATA ACC CAT ATA AAC AAT GAT ACC AGC 
AAC 

SPB1860720.63 63 
ACA ATT CTC ACT TGG GCA GAT ACC TTT TGA 
TGC ACT ATT TCA TCT TCA TTG TAT ATA TCA ACA 

SPB1861170.63 63 
ATG TCG AGA GCG AAA TTG TCC TTT TTA ACC GTT 
GCG ATC AAA ATA TAC CAC AAA AAT CAA ATG 

SPB1861770.63 63 
TAT AGT TCA TGT ACA GTT GTT TCT TTT AAA TGC 
ATC ATA TAT AGG TCG GAA AAT TAG GAC AGA 

SPB1868920.58 58 
ACA AGG GCG GTT CGA TCC CGA TTG CAA ACG 
CTG GAA AAT CTA GAA ATA TTG GAA AGT T 

SPB1869370.58 58 
GCT GAT CAG TTT GCT GTT AGA TAA CTT GGT 
GTG TCA TGA CTT ATA CCT TTG GAG TTG C 

SPB1869920.57 57 
TTT TCA CTT TAC AAA TAT CTC ACT CTC TAC TTT 
ATG GTA GGC TCT CAT TTT TGG AAT 

SPB1870470.60 60 
TTG AAG ATG CTA AAG ACG CTT GTA ACC GCA 
TTT CTG CTA CTG AGA ATG TAG ACT GTA ATT 

SPB1870970.59 59 
GAT GGA CAA CGA AAA GCT TCC ATT TTG CGT 
GAA AAG AGG GAA GAG TTG GGT TTA AAT AA 
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SPB1871620.63 63 
CTC TTA AAT CTG CTT CGT TAT GCT GAT AGA CTT 
TGA AAT TGA TTC GTG CAA TGA CTA CAC CTT 

SPB1872170.57 57 
GAC TGG GAA GGA CGT TCG TTC TAC TAT TCA 
GGT TCA AGT TGG GTA AGC GCA TAG ATA 

SPB1872720.57 57 
TTT AGA CCT GGA CCA AGC TAC ACA ACA CAC 
GCT AGG AAG AGA ATT GAA GAG GTT CGC 

SPB1873370.63 63 
TAG AGA AGG ATT TTA TTT TGT CCG CTA AGT AAG 
TGA AAT AAA TAA ATA TCT CGG CCA CCT CGG 

SPB1873970.62 62 
GGC AAT TGA AGA TTA CGG GAT GCT ATT TTC 
CTT TTC ATG CAA TTA GCA AGT ATT ACT GAT TT 

SPB1874620.57 57 
TAT ACT GGC GTA TCG CAT GTG TGC TGT CTA 
TCA CCA TGT TGG TTA TAA GGA TGT CTC 

SPB1875220.58 58 
GCC CTA TTT CAG AGT GAT TGC TTG GGA TCC 
AAC TAT TGC CCT CAC TGG AAG TAA GTT T 

SPB1882320.62 62 
CCT ACG TTT AAA ATA TAC ACA CAA CAA CTT TTA 
CAA GAA AAG ACG GTT TCA AAA GCA GAA GT 

SPB1882870.57 57 
CTC TGT CTG AAT ATG GTG TTT TAG GTT TTG AGT 
ATG GTT ACT CTT TGT CAT CAC CTA 

SPB1883520.59 59 
TGG AAA CAG ATG GCA GCC AAT ATT TCG CAG 
TAT CCT AAT TTG AAG GAA ATT ATT TGG TG 

SPB1884120.63 63 
ATA ACG GTT ATA CGA TAT AAG AAA ATG AAT TAA 
AAC ATA ACA GAA CAG AAC TTT ACG GCG ACA 

SPB1884670.57 57 
CCT CGT CAA ATG GCC TAA CAC GAA CCG AAC 
TAG GCA TGA CTA TTC GAG AGT TAC CAG 

SPB1885220.57 57 
TGG GTT CAT GCC CTT TTG ATT TAA AGG AAC 
GTA AAT ATC ACG AAC GAC ATC AAT GCT 

SPB1885770.61 61 
AAA GAT TTA GCA ATA GAA ATA TGT TCG AGC AAA 
AGA ACG ATG ACA GAG ACA GGA AGT TCG C 

SPB1886270.57 57 
GAA CTC AAT GAT AAA ACC AAG TCG TAA AAG 
ACC TAA ACC GCA AGT AAT GGC ACC TGC 

SPB1886870.57 57 
TGG TTC GGG ATA AAC AGG GAC GAA ATT AGA 
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TGG TGG TGG AAC AAG ACC AGG CAC ACT 

SPB1887620.57 57 
AAA GCG GTG TAA GAA CTT TTA CGA CTC CGT 
TCA GCT ATG AAA CAG ACA GAG TGG TTG 

SPB1888120.60 60 
GCG GAC GGA CGT TAT AGA GAA GAA GAA GAG 
AAT TGT GAG AGA AAT GCA AGG AAA AGA AAA 

SPB1888670.58 58 
CAA AGG TAC ACA TAA ACA CCT GTT CAT TCA CAT 
TAT GTC TCT TGA AAA CCT CCC TCC C 

SPB1895820.58 58 
AAG TTC GAT TCG GTT GAA GAA GGA AGT TTC 
ATT TCA TCC GTT ACG ATC CCC AAA CGA A 

SPB1896420.57 57 
AAT AAC CAC AAT ACC CTT GCC AGC ATC TTA 
CGA GCT TTA GAA CTT TGG TAA GTA CCA 

SPB1897020.63 63 
ATC ATA GAG AAT ACT ATT TGT CTC CAA GAA ATG 
AGA TCA CGC CAA AGA TTA ATA TCG TCC CAG 

SPB1897570.57 57 
ACA AGT TGT ATT CTG ATT CTG AGA AGG GAA 
TGG CTT CAC TGC GAG CCT TGG TCT GTG 

SPB1898170.61 61 
TTT TTA GGA ACA AAT CCA GTT GTT TGA AAA AGG 
TAA ATC TGC CAA GAG GAA TAG CTG AAC C 

SPB1898770.63 63 

GCA CCA CAA CAC TTA AAA ACC ATC TAC GTT 
GAT CTC CTA AGC TTG CCA TGC GTA CTC TAA 
TAA 

SPB1899420.58 58 
AAT AAT GAT AAC CCC TTC TTT GAA AGT GGA TTT 
TCT TCA ACT GGT TCG GGA AAA AGC G 

SPB1899970.57 57 
CAA TCG TAG CGT AAG CGG CTT GTT TTA CCA 
TAG GAT CTT CGA GTT TAA TGT AGT TCC 

SPB1900470.63 63 
TTT AAA CTA GAT AAA AGC ATT TTT GTA ATG GAC 
GAT ATA CAC CTG CGA ATA GGA AGA AAT AGA 

SPB1901020.63 63 
TCA ATA ACG AAA GTG AGG CAG TCT CTA GGA 
CTT TAG AAT CAG ATA GAA CAT TAA GGT GTT GAA 

SPB1901670.62 62 
AGA AGA TCA ACC ACA CTA AGT TTA GAA TTG TTG 
GAA ATG TTC TCA ATA GCT TGT TGC ACA GT 

SPB1902170.60 60 
AGA CCT GGT ATT TTC ATT TTC AGA ACA TAA AGA 
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TTC GAA AAT TCC GTT GAT GCA CGT AGT 

SPB1908870.62 62 
CTT AAT AAC ACA ACT GGG GAG ATT GAA GTC 
ACA AAA GAA TTA AAC GAA GAG CAA TTG GAT GC 

SPB1909420.57 57 
CAG GTA ATG AAG ATT ATA CGA GCA GAG AAG 
CTC TTG AAT CCT GGT GGT CGG AAA ATC 

SPB1910020.61 61 
TAC TCA ATA TAA GAA GAA TTT CGT ACT ATA TGT 
AAG AAA CAG AAA TAG TGA ATT ACG CTG T 

SPB1910620.61 61 
AGG AAG AGT CGA TTC GAG ATA ACT TTG TTC 
TTG TTT ATG AAT TGT TAG ACG AGA TCA TGG A 

SPB1911120.63 63 
TCC TAT CGC ATG AGT TCA AAT GTA AGT TAT TAG 
TTT GTG CCT GTT CTT TTT ATT CCC TCT CTC 

SPB1911720.63 63 
TCT ACC TTT AGA TAC CTT TCC CTT CAT CTA TAT 
ATT TGT TTT CTT AGT GTA CTG ATC CCA TTT 

SPB1912320.57 57 
TAC ATA TTA TTT GCT CCA CTC AGC GAA AAC ATT 
AAT TCG TCT TGC CAT TTC AGC TGC 

SPB1912820.58 58 
ACC ACC AAC TAC AAG TAC TGA TTC ACC CAC 
GAA TAA TTC TGG TTC ACG GAA TAG CGA T 

SPB1913570.63 63 
ATA TCC AAT TGT GAA GGA GTG TAA TTG AAT GAA 
AAC TAC ACT TTA TGT GCG TTT TAT ATC TTT 

SPB1914070.60 60 
AGC GTT TAA GAA TTA GTT ACT TAT AAA GAC CGA 
AGC GAT CTT CCA GAT AAT GAA TAG CAA 

SPB1914720.63 63 
TGG TTA AAA TTG GCA GCA CAA TAT AGT TTT TGA 
TGC AAT TAC AGT TAA CAT GCA TAA TAC TTG 

SPB1915470.62 62 
AAA AGG AAG CAA TGT AAT GAA CAA AGC GAT 
CTA GAC TAG AAT ATG TCA AGG AAA CAT ACT TT 

SPB1801770.60 60 
TGG GAA ATC GCA TTA TTT AAA ATA GGT TTT CGC 
TCT ACA CCA AAT TGA TTT TTC ATT TTT 

SPB1804120.63 63 
GTT TTA AGT CTG CAC GTA CTC ATT GCC GAT ATT 
TAT TTC AAC TCA ATA GGT ATC ATT ACG GTT 

SPB1804620.57 57 
CTA ACT CGT AAA GCA AAT GTT CAT TCT GCC 
TCG TTT GAC ATA TCA GAC GGA AGT CAA 
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SPB1805520.63 63 
AAA TTC ATT CAA CCA TTA CGG AAG ACA CTA AAT 
TTC CTT AAA GAA TGA GTT CTG AGC TAA AGG 

SPB1806620.60 60 
TCA AAT CCT TGA AAC AAA GCC CTC AAT TGA TAG 
TTT ATA CCT TGT ATC TCT TTT ACC CAT 

SPB1807170.57 57 
TGA AAT GCA CAT TGC TAA ACA TGA AAT TCG 
AGC TCA TTT TCA GGA GGA GGA GTT TCA 

SPB1807770.58 58 
TAT CTT TCC CCT TTA TCC AGC AAC TCG ACC AAT 
TGA GCT TTT TGA ACA TGC CAT TTA T 

SPB1808420.58 58 
AGC GGG TCC TAC ACT TTC AAA AAC TGG CGG 
GCA TTC TTC ATC CCA ACT AAT ACC TAA A 

SPB1808970.58 58 
TGG ATG GTA TCA GGC GAA GGA ATG GCA GCT 
CGC TTT AGT TGG AGA GGA AAC TTA AGA A 

SPB1809420.63 63 

ATA TCT AAC GTA CAG CGA GCA GGG TCT TTT 
GGC GTG GTT GAA CGA GGT AGT GCA AGT TTT 
AAT 

SPB1809920.57 57 
AGC TGA ACA AAG GAA CTT TAT GAG TTT GCT TTA 
TGT CTC CCT TAG TGA TGA TGT TTT 

SPB1810470.57 57 
ACG GTG ATT AGG TTT ACG CTA AAC GAA TTA 
ATG CAG AGA ACC GTG TTT CCA TAA GTG 

SPB1822570.57 57 
GAT TTC ATC CAA AGA AAG CCT CAC CAA ATC 
AAG AGG TTC CGC GAC CTA CAA ACA TTA 

SPB1823120.57 57 
CCT CTG GAC GTG GTC ATA AAG GAT CTG GTC 
AAA GGC GTG GAC GGA GAA TTA AAC CTG 

SPB1823570.58 58 
TTT CAA AGA AAG ACA TAC GCT ACT ACA CAA ATC 
CAC ATT TTG CAG GGT ATC TTG CCA A 

SPB1824020.61 61 
TAG TCA GTT CAT TCT CTG TCA GAT AAA CCC TTT 
CTC ACA TTT ATT CAT TTG CTT CAT TAG T 

SPB1824620.63 63 
ATA AAT GAT TAA TGT ACT AAC ACT GTA AGA TCG 
AAA AAC TCG TGA TAA GGC TCT TGA ATC GTT 

SPB1825270.63 63 
CTA ACT GCT TTT AGT ACC GAA AAT CTT GCT TTT 
CCA AAT GGG ATT TTA TTC CAT TTA GCT GAT 
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SPB1825920.61 61 
TGT TGC TTG ACT TGT GTT TTA AAC ATT CCT AAT 
GAA CAT TCG TAA TCA ATT ACC CGA CGT G 

SPB1826770.58 58 
GTG TTT GCT TTA ATG TCT TGG CGT TCC TAT TTG 
ACA AAT CTC AAA CTC CCG ACT TGA T 

SPB1827320.60 60 
TGA ATT TTG AAA ATG ATT CGG AAG CTG AAC AAA 
CTA GAT TTG AAC AGA ACT TTC CTC CCA 

SPB1827870.63 63 
CCT TTT TGC TTT CAA TGC TTG CAC ACT ACC CTT 
CCT TTT GAC ACA ATT AGC AGT GTT TAA AAT 

SPB1828420.63 63 
GTT TTA GAT TTT ACA GTT TCT TCT CAG TTG ATA 
TTG CTT AAA GGA ACA ATT TCC GCA GCC CTT 

SPB1829020.57 57 
CTC CGG GAA AGA AAG CAC AAA ACT ACA ATT 
CGC TCG TTT GGC AGC ATC TTC GAT TTC 

SPB1836120.62 62 
TTT CAC GGA AGC AAC AAC ACA ACC AAC AAC 
CAA CCC TTC AGA AGT AAC TTT CGG AAT AAT TT 

SPB1836620.57 57 
TCC CAA AAT TCT AAT CAG CAA ACT TGT GCT CGA 
AGA ACC CCT CGA AAA CCT CCT TTT 

SPB1837070.63 63 
AAT GAA GGC TAC TGA ATC AAT TAA TAT TTA TAC 
ATT ACC GTT TTG CAG CGA CTC AAT CCC TCG 

SPB1837570.59 59 
TTT CAA GCT CTG AAT TGT CCT CTA TTG TAT CCT 
CGA CTG GCT CCA TAG TGG AAA CAA AT 

SPB1838020.63 63 
GAG TAA TTA AAG GAA TGA ACA CAA TGT TGC 
TTG AAT TTC CAG CTG AGA TGC ACT TTT ACG TTC 

SPB1838470.63 63 
ATA CAC ATC TTA AGT GCA CAA TAT AAT TTA ATG 
AAC GTG ATC CAC GCA GAA TTT TGA AGC ACA 

SPB1839120.63 63 
AGG GGG AAT GTT GTA TAG TTC ATT TTT AGT CGT 
ACA ATA AAT CTC GAT AAA TTT GTA TAA GCA 

SPB1839620.57 57 
CTT ATG AAT TCG GGT ACG ACA CTT CAT CTG 
GAC AGA CTT AGT TTG GAG ACG CCA TCC 

SPB1840220.60 60 
AAT TGT CGA GCT TTC ATT AAT TCA AAT GCT TTT 
GGC AAG TTC AAA GGT CAA CAT TAC TGC 

SPB1840720.58 58 
TTC AGC TAA TGC CTC TCC ATT TGA TTC GTG TGA 
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CTC TTT TCA TTC TGG AAG TTC GAT A 

SPB1841320.62 62 
ATG TGA ACC TGA ATA CAA TCG AAG TTC TTT GGT 
TAG AGC AAG TGA TGT GTT TAC TTC AAA CG 

SPB1841870.62 62 
GTT GCA TCT AGC CTT GGA TTT AGA CCC AAA 
GAC AAT AAA GAC AAG GAG AGT GGA GGG TAT AA 

SPB1849020.58 58 
CCT AGA GAC ATT ATA AAC ATC TTG GAT TGA ATC 
ACC CGA CTC AAT AGA CCG CAT AAC C 

SPB1849570.63 63 
TTT TCA TTA AAT GTG TTC TGT GCC AAT TGC TTT 
CTT AAA TGT TCC AAT CGA GAA AAT TGA AGA 

SPB1850170.58 58 
AAA CTA CCC AAA TCA TCA ACA ATT TCA AGC CAG 
CTG CCC TTC AAA TAT CCT AAG AGA T 

SPB1850770.63 63 

TCA GCA GTA ATA GTA TCC ACT GGA GAT AAA 
AAC GGA AAC ACA ACC TTA GTC AAA AGT TCA 
CTA 

SPB1851320.58 58 
GAG TTA TCA TGG AAG AAA ATC GCC TCA AAA 
AGG ACG GTT CAC CAT TTG ACT TTA TGA G 

SPB1851770.63 63 
AAT CAA AAT CTA AAA TTA AAT ATC GAA ACA ACA 
GTG GAT TCA TTA CAA GAG GAT GCT TAA AGC 

SPB1852320.62 62 
AGA ACG AGA GAA TGC TTG AAT ACT ATG CAG 
TAA ATC TTC GGT ATT TGA TTT AGA ATC TTG GA 

SPB1852820.59 59 
GGA CTA AGG TAA TCA AAT GCC ACG AAG GTG 
GAT TTA GAC TAG GAT TAT CTT TGT AAA TT 

SPB1853270.57 57 
CAT TCG ACA CTC CAA AAG TGG CAC AAT GTA 
ATG TGA TCT CAT TGA GCA AAT CTT TCG 

SPB1853820.63 63 

AGG AGA AGC AGC TTG AAT AGA AGA ATC TGT 
CTT GGA AGA AGT ACC TAT TGC ATA AAT GGA 
AAT 

SPB1854270.62 62 
TTA CTT GAA TAA AAG ATA GAA GAA AGA ACC TAA 
CAA AAA TAT TCG TTC CTA GCC CCT GGT GC 

SPB1854820.57 57 
TCA TGA AAT GAA CGC TTC AAT AAA ACA GTC 
AAG CAC GAG ATC ATG CAC CCA GAA CAC 
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SPB1862670.63 63 
TTC TGT ATT ATG TCG CAA TCG GGG CAA GCA 
ATA TAA AGC GTA ATG CAT ATA ATT ACT CAA GTT 

SPB1863120.62 62 
ACG CTG AAG GTG GGT AGT AAG TAA AGT TAT 
ACT AGT CAC TCG TTG ATA ACA ATT AAA TAG CA 

SPB1863720.62 62 
GCA GTT AAT GTA TCA ATG CAA GCA GAA CCC 
AAA ACT TCA AGC AAA GAA TCT TCG GTT ATA TC 

SPB1864170.62 62 
TTT GAT ATA CCA CTC ATA TCT CCT AAC AAT TTC 
GTA GCA CGG TCT TCT ATA TGT ATG AAA GA 

SPB1864870.57 57 
CTC GCA TAT TCC ACT ACG AAA GTG ATT TGG 
CAT TCG AGA AAG ACG CAG GAA TCC GGT 

SPB1865320.61 61 
AAT ATC CAT TCC CTA ATA TTG GTT CAG TAG GTT 
AGT CAT ACG AAT AGT TTA TCA TTC AAC C 

SPB1865720.63 63 
AAC CAG AGT AAG AAT GAA CAA GCC GGT CAG 
TAA TGC AAA GCT AGT TCT AAT ATT ATA GAA GTT 

SPB1866370.57 57 
TTA TTT TCT TTG TGA AGC CAA GGC ATA TTA CAC 
GTA AGA CTT CCT AGT GGG ACG AAC 

SPB1866870.58 58 
GTG GAG GAC GAT ATA AGT GGC ACG TAT GGC 
AAT AAA CTG TAT TAA CAA AGA CAG AGT C 

SPB1867520.58 58 
TTT TGT TGT CGG TAA GGA TAT GAA CCC CTT TTG 
CGA TGG AGG GTG AAG TAA ATA TTA G 

SPB1868170.61 61 
AAA ATA ATG GGA GGG TGT AAT TGA GAA AAT 
ATT AGA AAT GAA GGT ACG GAA GCA ACG AAA A 

SPB1868670.58 58 
GCG GTC AGC AAC TAC TAT TAA GTT ACT AAC 
CTC ATG GCA GCT AAA TTT TGA AAA ATG A 

SPB1876070.57 57 
TAG GAA ATC CTG TTC CCC AAA GAA AGG CAT 
TTG ACG CAT TGT ACG TGC ATA ATA AGG 

SPB1876620.58 58 
TGC GGG TTT AAA TTT TGT AAT CCT AAG AAA TTG 
GCA AAG ACG ACC AAA CTG TAT AAT T 

SPB1877070.63 63 
CTG TAT GAC TCA TTT TCA ATC AAA TTT ACT TCG 
TCT TTT ATA AGA AGA TTC ATT GAC TTG AGA 

SPB1877670.61 61 
CAT ACA AAT GTT TTT GAA GAA TAC CTA CCA TTG 
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GGG CTG AGC TAG AAG AAA TAT GGG ATT T 

SPB1878220.58 58 
ACT CAG CAT GTC TGT TTT GTA ATT ACC AAT CCG 
TTT AAT TTA TTT GAT GTG CGC TCA A 

SPB1878770.57 57 
GAA GGT GGT AAC CCC TTT TAT TGG CTA CGT 
GTA ACT TTA GCG AGT CAA GAT ATT GGC 

SPB1879270.63 63 
TGA AGA GGT GTT TCG ATG TTT GCC ATT TAT CTC 
AGA TTC ATT TGA TAA GTA TAC AGT TGA AGG 

SPB1879670.57 57 
TTC GCC TTG TTC ATT CGC TCT CTT TAT TTG ACA 
TTT ACG TGA AAT TTG GAT GGT GTC 

SPB1880270.61 61 
TTG TAC ATC TCG ATT TCC TCT TCC TTA ATC TCT 
CTT TGC CAT TGT TAT AAT ATT AGT GTT T 

SPB1880820.58 58 
ACG TGT CTT TCT TCT CTT CAA CAA AAT CGT ACC 
TTT GCT ACT CAA CCT ACT GAT GAT T 

SPB1881220.57 57 
CAC TTG AAC ATT ATG GTT TTA CGG AAT CTG ACC 
TTA ATC GCA CAA TTC ATC TGG GTC 

SPB1881970.57 57 
GTG TTG TAT ATG AAA CAT TTG GTT TAC ATG CTT 
TAC CTG GCT ACA GCA CTG GTG GTA 

SPB1889470.63 63 
TGA AAG ATA GAG GAT TGT GCT TTG ATT ACT TTT 
AAT TTC TAC TTA CTA GCC GTT CTC TTT TGA 

SPB1890020.61 61 
GTA AAT GAA ACC ACC CAA AAC ATA AAT CTT CTA 
TCC AAA CAA AAG AAC TCT AAA AGT CTG C 

SPB1890520.63 63 
AAT ATT TAA GTA AAC ACA TAC CGT TAA GTC TAA 
AGA CAT GAA ACG AAT GCT GCA ATC TGC TCC 

SPB1891120.63 63 
CTG AGA GCG TTC TTT TCC TCA AAT AGT TTA TCC 
TTT CTT CCA TAT AAA CGT AAA TGG TCA ATT 

SPB1891570.58 58 
AGT TCC TCC TCC ACC ACC AAC CGC CAT TTG 
ATG GTT ATT AAT CCA ACA AAG AGA ATA A 

SPB1892220.63 63 
CAA CTT TGC TAC AGA CAC TAT TTA ATA TCT CGG 
TCT CCT GTA CAT TTT ACC AGG TTT ACG TTG 

SPB1892620.62 62 
ATA ATA TGT TGT TTC ATT TCC TTA TTT AAC TAC 
CAA TTC TTG TTC ATT TGC AAT TCA CTC AA 
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SPB1893320.63 63 
AGT TTT GCC TCC AAC TCT TAC CGT TGA AGA 
AGA ACT TGA ACT TGT AAA TTA TTA TAG TTT CCA 

SPB1893820.60 60 
TTT TAG ATT GTC AAA CAG TGC TTC CGA AAG TTG 
CTG TCG AAA AGT TTT ACG AAT GTC ATG 

SPB1894520.60 60 
GAC TGG TAA GTT ACC ATA AGC AAC CTG ACT 
TAA TGA TGC AAC CCT TCG CAT TAT AAG ATC 

SPB1895120.61 61 
TTT TTC AGC ATC AGT AGA TTC CTG ACT AAT TTG 
GGA GTT TAA TTC CAT CAT ATG TTT TGA T 

SPB1895520.60 60 
AAT TCC ACT TCA GGA AGA AAC CTT TCT ATG CAA 
GAA AAA CTA TTG TTG TTA TCC TTG TGC 

SPB1902920.58 58 
AAA TTC TTG AGT AAG ATT ATC CAA GCA AAG TTC 
AAA TAT TCG AAG CCC TTG ACT AGC T 

SPB1903320.63 63 

TTT TCG GGA AAA ACA TTC ACA GTC ATA AAG 
GCC AAC TTG AAT AAT CGC AAT AAA ACA GAA 
ACC 

SPB1903770.57 57 
AAA ACT TCA TTA GTT GAA CTA AGA TGT AAC TTT 
TCA GAC CAT TCC TGA GCT GTA AAA 

SPB1904320.60 60 
GTC GTA ATG AAT GCT GAG AAG TGA TTC CAG 
AAC CAA CTA GAA TTT TGG TAT CAA GTA GTT 

SPB1904770.60 60 
TTT GAA ATA GGA GAA AGA CGA TAA TGG GAA 
ATT CAG CAG TGA CCT TGA AAC TCG AAG AAG 

SPB1905270.59 59 
GGA ATG AAA GTT TCA AAA TTC GTC TTT TCA GTT 
ACC AAC ACA TCA TCC AGT GCA TCT CG 

SPB1905820.57 57 
CGA CGG TTA ATG AAG GAG TAT AAG GAG TTA 
ACG GAG AAT GGG CCT GAT GGT ATT ACT 

SPB1906470.57 57 
CGA GAC TAA CCT TCA TTT CAG TTT ACA AAG ATG 
GGA CGG TTT GCA TTT CCA TCC TAC 

SPB1906970.63 63 
TAA TCC ATC TTT TAA TAA ACA TCA CTT GAA CTT 
TCT ACA CAG ATA CAT GGC AAC GTA CAT CGC 

SPB1907570.62 62 
TTT CAT CAC GAC GAC TTA ATT CTT GTG GAC ATT 
TCT CTA TAA TCT CAT CTA GTA ACT CCT CA 
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SPB1908170.58 58 
ATC CTC TAT TGA ATC TTC AGA TTT GGA ATC CAG 
ATT TTC TCG TTT TGG AAG TGT TTC A 

SPB1908670.57 57 
ATC CGC TGG GTA AAA ACT GCT TAC AAA AAC 
TAT GGG GCC GAG TGG AAA CGA ATA TGG 

SPB1811020.57 57 
TAC TCG TAC CAG TCT ATT CAT AAG GTC AGG 
AGC ATC CCG TCG ATC TGT ATC CGC CTG 

SPB1811570.57 57 
TCT TAA TAA GCC CAT TGC AAT TTG GCG ATT CTT 
ATG CTA CAA GGC CTC TTT GTT TGC 

SPB1812220.63 63 
AAC TTA TAC AGT ACA GAA CAG TGT ACA TGC 
TCA AAC ACT CTT AGT CCA TTC ATT TAC CTA TGT 

SPB1817820.59 59 
TTT TAC ACA ATA AGT GAT ATT TCA CTC TCC AGC 
ACA TCC GAA CCC TTA CTA AAC GGA AG 

SPB1818420.57 57 
TTC TGT TTC TGG CTC CCC TAA CTC TTC TAG CAA 
TAG TAC TCC CGC TAA TCA AGG TTC 

SPB1818870.58 58 
GGA TGT CAA GTT TTG TCT TGC TGG CTC TTT ATA 
CCG TTC TTG CGT CTC TTG CTT TTA T 

SPB1819470.63 63 
AAC TAT GCT TTA CTT AAA CCG AAT TCA TAA AGG 
TAT TTA CAA TAT GTG AGT AAT GGT CGT CCA 

SPB1820020.59 59 
CAA TAA GTT CAT AAA TGC ACT AAT CCA AAA GTT 
CAG TAA CCA AAG CTG TGC CTA CAG TG 

SPB1820470.60 60 
TAG TCT TTA AAT GGC TAC CAT AAC CGA CGA TTT 
CGA TTT CAG CAC CCT TCT TTA AAG TAC 

SPB1820920.60 60 
CAA CAA TGA TAG CGC CAT CCA TTG TAG CAG 
CAC CAG TAA TCA TAT TCT TAA TGT AAT CGG 

SPB1821370.57 57 
AGC CTT GAA AGA GGA GAG AGG TAG CTT TAG 
CTG AAT TCA TAA CGA AGG GAG CGT GTA 

SPB1821920.63 63 

ATA ACA AGA AGT GGT GCG TGA CTA AAG AAA 
GAT AAA ACT ATC CAT CCA ACG GAA TAA AGG 
AAA 

SPB1829570.57 57 
AAT GAA CTT AGC TGT CCT ACA GTT ATA TCA CCT 
GCA GCA ACC ATT CTT CCG CCT AAC 
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SPB1830170.63 63 
ATG ATT CTA CCA AAG TTA CAA GCT GAA CCA 
AGG AAA AAT AAA CCC AAC AAA CCA ATA TAA AAC 

SPB1830670.58 58 
ACT ATA ATA TTC TGC ATT TGG CGT GGG AAG 
TAA TAG AGT ATT CGT ACT TTT GTA AGC C 

SPB1831270.61 61 
AGG GAT AAG CTA GAA CTT AGT GAT GAC AGG 
TAT GAA ATA TAC GGT TTG GAG AGG AAA TCG G 

SPB1831920.62 62 
ATT CCT GGA GGC ATG TCG TAT CAT CAT ATG 
CTT ATG TCT TTA TTA AAA GTA ATT AAA GAT GC 

SPB1832470.59 59 
TTC TTT TGG AAG CCT TTA ATG CTG AAC TAG AAG 
GGA AGC CGT CCT TAG CAA AAC AAT AT 

SPB1832970.63 63 
GAA GGA ATC ATC GAC ACA ACG AAA GGT GAG 
ACT ATT CCT CAA TTG TCT TAA ATT TTT CTG CTT 

SPB1833420.57 57 
TCT GGG TGA ACC AGT TTA TAG CCC ACT GAA 
TAA AGA CTG AAA AGT ACG GGA TTT TGC 

SPB1833970.61 61 
TGG TGT TCA TTC TAC CTG GTA ATT CAT CAT GAT 
CAT CGT AAT AAA TAG TCA AAT CTT GCA C 

SPB1834670.61 61 
GGG TAT CGA ATC TGC CAT CTT GTT CTT TTT CTG 
ATC AAA GAA TGA TAT AGC AAG TTT GGA T 

SPB1835120.60 60 
ATT AAG ATT AGA TTT GCA CTA GAA TGT TGA ATA 
GTC ATC TCA TCT TCT GTA ACA GGT GGT 

SPB1835520.60 60 
TTT GCT ACT ATT CTT CTC AAA ACC TTC GTC TCT 
TAA TCT ATT TAT TCC TAT TGG CAT GTT 

SPB1842420.60 60 
AGC AAT ATC TTC GCA ACC TTC CTA ATC CAA TTA 
TTA CCT ATG ACC AAT ACT TTC CGT TCA 

SPB1842920.63 63 

GTC ATT TTT AGA TGT CAT CGT GAA ATC AGT 
GGC AGA TGA GTG TTT TAT GGA TTT GGC GTA 
TAG 

SPB1843420.63 63 
TAT TTT ATT ATC TAT GTG AAC AAA ATT ACG GAA 
TTT TAC TAA TGG CAG ATG TTA TTA AAC GAT 

SPB1843970.57 57 
GGT AGC TAG AGC CTG TAA ACA GTT TCC GTT 
AAA CCA AAG GTC CCC TTT ACT TGA CTT 
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SPB1844470.62 62 
AGC GTC TTG CTC ATC TTG AAA AGG AAT ATT TTG 
ATA AGG ATG TAT CCA AAT TAG TGC TTT GA 

SPB1845170.57 57 
AGC TGA ACA ATT ATT TGG GGC CGA AGA AGA 
AGA GAA GTA CGT TGA CCA AGA TTT GAG 

SPB1845770.63 63 
AAA GAG CAG TTG GTA TCA CGA TGA TAT ATG 
GAA CAT GAA ATA TCT TCC TAA GTT TAA ATG GCA 

SPB1846420.63 63 
TAT TAA GAC ATA AAT TAA TTC TTA TAA CAT AAA 
GGC ATT TGT CGG TAA CAC TCA TAA CAG GTT 

SPB1846970.63 63 
CAT CCG AGT TTT CAT TGT AAA TCC GAG ATA ACT 
TAT CTT TAA CAA GTA TTT TCC CAT TGA CGT 

SPB1847520.63 63 
AGA AGG ATC ATA TTG TAT GTG AGC AAC CTT TTT 
ACA AAT CCT AAT AAT GGG AGA GCA GCT TTG 

SPB1847920.58 58 
ATA GCT GGA TCG CCT TTA GCC CAA GGT GGT 
AAT ATA ACA TCG TTG ATA GGG GTG GAT T 

SPB1848420.57 57 
AGT TAA ATC ATT ATA GGT ACG CCC AGC TAA TGT 
GTT CAC AAT TTG AAG ATA GTT AAA 

SPB1855370.58 58 
TAG AAT TTA AGT CAA CAC AAG ATC TTC AGC CAA 
ATA AGC TAT GAA CCC TCA ATA AAC T 

SPB1856070.57 57 
GGA ATC CCC GAC ATA AGA CCT CTG TAG GCG 
TAG AGA TCT TCT TCT CCA TAA TCT TTT 

SPB1856920.62 62 
GAG CAA GTT AGG TAA CGT AGA AGT AAA GAA 
CTT AAA GTA AAC ATA ACG AGA GTT AGC ATT GC 

SPB1857620.63 63 

AAT AAA ATA AAA TAA ACT GAC AAT GGG CAG 
GAT AAA AGA AAG GGG AAA AAC ACG CAA AAC 
ACT 

SPB1858170.63 63 
GAT TCA GCA ACT CCG AGT CAT CAG TCT GTA 
AAC ATT TAG TTT GCA GTA TAT CTT GAG GAT CAA 

SPB1858720.57 57 
TAT TTG ACT GGG GTC TTC TTC ACT TTT GGG ATT 
AGT GGG ATT ACT TTT TGT TTT GGA 

SPB1859320.63 63 
ATT TTA GGA TCG CAG TAA TAT AAT TCA TAA GTC 
AAA TCT AGC ATT TGT TTT GCA CCT TCT TCT 
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SPB1859920.57 57 
GAC TAA TGT CGT TTT ATG CAA ATC TGT AAG GTT 
TTC ATT GAA TGG ACG CTC CTC ATG 

SPB1860470.58 58 
CAA AGA GGA AAT GTG CGG AGA GCT TTT GCG 
GGA ATA ATG ATG ATT ATT ACG ATT ATC G 

SPB1860970.60 60 
GAT TAG AGG GAC TAG GTG AAG TTG ACT TGT 
TGG TGT GTC GTC CAA TTT TAT AAA TCG TTG 

SPB1861420.63 63 
TGT ACA TAA AAG CAC TTT AAA TTA ACG ATT AAT 
GCA GCA TAG TAA CCT ACT TTT CGG TTT CAC 

SPB1862070.63 63 
AAC ATA AAA CCA GGG AGA TTC CCA ATA TCA 
AAC CAT TTA TAA CTG CTT AGG CAA TTG AAC AGA 

SPB1869120.63 63 
AAT GTT GCG AAT GTT CGC CTA CGT ATT TCA TTT 
TGA CAT TTA CAA TCA TAA AAG GAT TTT AGA 

SPB1869670.58 58 
GAA GAC ACC AAA AGC AGT AGC GGA AAA AGT 
GAT GAG AGT CTT GAT TAT AGC TAC AAG T 

SPB1870270.57 57 
TTG CCG AAA ACA ACG CTT TTC AAC TTA GAA AAT 
TTA GCA AAC CCA CTC ATA CCT TTT 

SPB1870720.62 62 
TCT ACT ACA AGG GTT GAG CGT CGA TGT CAT 
AAA TAA AGT CAT TGG CAA AAT TAC TTT CAC TC 

SPB1871320.58 58 
TTT TCA ATC GCA AGG CGC TGT CAA GAA CTC 
TGA GCT ACT GTG GCT TGG TTT TTA TAA A 

SPB1871820.60 60 
TAT ACT ACT ACC CAT GCG AGA TTC ATT ATG GCT 
AAA TCA CCA TTC CTG GAG CTT TCT TAC 

SPB1872470.63 63 
TGA CAG ATG AAC AAA ATA TGC TAT CAG CCT 
ATC GCG GAA GAA TTG CTA ATT TTA AAT CAG GTT 

SPB1873020.58 58 
TGG GTG TTT AGG TTT GGG TTC TCT TCA TTT GCA 
AGA ACA GAC ATC TGA TCC CAG CAT T 

SPB1873720.57 57 
AAA ATT TGT TGG GCT CTT GCT CTC TAT TTG TCG 
TTT GCG TTG GTG GTT TGT AAT ATT 

SPB1874270.57 57 
GCC TTG TCT TGT CTT GTC TCG TCT AGT GTT GCT 
TGT ATT GTC TTA CCC TAT CTG TTC 

SPB1875020.63 63 
TGG TAT ATT CAA GTC GCA TTT TGC GTA ACC TCT 
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GGA TTC TTT TCA TAT TTG TTT ATT AAT GCC 

SPB1875520.63 63 
CTC GCA AAT TTA ATT TAC TGT TTA ATG TCT ATG 
TTT GAC CTT CCG AAA CCT CTA AAG TAT CAG 

SPB1882620.59 59 
AAA AGG ATC TTG AAC AAT CGT AAC AAG TCA ATT 
AGC TCA GGT GAA GGT ATC GAT ATG CC 

SPB1883170.62 62 
ATC AAG ATT GTA ATA TTC AAG CCA TTT ATG TTA 
CTA AGC CAT CGC AGT ATT TCC ATG CTC TT 

SPB1883820.61 61 
GAT TTA CAA TTA TTG ATT GTG TTC CAA TGC CAT 
GAA TTC CTA TCG TAG TTA ACG AAT TTG T 

SPB1884370.57 57 
CGG CAC CGT CTG AGT GCT CGA TAT TTT CAT 
TTT CAA CTT CAT TCG TGA CAA TTT TGG 

SPB1884920.58 58 
ATC AAC GAG AGC TTG AAC ACC AGT AGT ATC 
AAT ATG ATT GAC AGC ACT GAA ATC TAA A 

SPB1885470.57 57 
AAA AGG AGA GTT TGT CGC CAA GGA ATG ATG 
AGA TCA AAA ACA GAA TGG ATG ATG ACG 

SPB1885970.63 63 

AAT AAT GAT GAC GGC ACT ACG AAG CAC ATT 
GGT GAG GAA GAA AAC ACG TTG AAA TTT AGT 
ATA 

SPB1886520.57 57 
GTA GCG ACT TTG GCG TAA GAC ATA CCT TGA 
GGT ACG ACA ACA CAA CCG ACA GTG ATA 

SPB1887270.58 58 
ACT CGA ATA ATT CAA TAG TAA ACA CGT CAA AAC 
TAA GTC GTT TCG GGG AAA ATT AAA A 

SPB1887870.63 63 
TTG TAC CCA CCA ATC CCA ACT TTA CTT TAA ATA 
AAC TTC AAT TTT AGG TAG CAA ACA AGG TCC 

SPB1888470.57 57 
TGC TTA GTA AAC ACT CCT CAT AGC ATC TCT CCA 
ATA CCT TCT TTC AGC ATT ACC AAA 

SPB1888870.63 63 
ATT TTA ATT ATT GAA GTG TGC TAT TAT ACC AAT 
TTT TAA GTG CGA TGC CTC ACG TCC TTT GTC 

SPB1896070.60 60 
CTT TAT TTG TTG CTG GAG CAT TCG TGC TTT GAT 
TGG TAG AAA GAA AGT TAG ATT GTA TGC 

SPB1896720.63 63 
TTT GTA ACA ACC TCC AAA CCT GTT TTC AGA TCT 
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CTT GGG TTT TGT AGA TAA CAT AAA ACT TGC 

SPB1897320.63 63 
TCT TTA ATG GCA AGA GGT TGA GAT ACT GAC TTT 
TGA AGT GTC ATA AAG CAT TGA AAG GTA AGT 

SPB1897920.58 58 
GCA GCA CAC TTA ACG AAA GAT GAA ACC AAA 
GTA GAG ATC ACA TTC GGT CGA TTG TTT A 

SPB1898470.58 58 
CCA TAA AAT CCA TTC GTA TTT TGG TAT CTT TAG 
ATG CCG TAG CAA GAA GGA AGG CTT G 

SPB1899070.63 63 
GAA TAA CTG AAA GTA GTA GTT GTT TAA AAT CAT 
CAG CCT CAT TCG TGT CTT CTT CTT CTT CTG 

SPB1899720.62 62 
ATG AAT TGG TAA ACT GTC AAA GGC TGT GAT 
ATA CCC TGA ACA TCT TCG GAG ATA ACT AAT CT 

SPB1900170.63 63 
CAA ACA TGA GTG TAA ACA GAA TGA ACA ACA 
TCC TTA TCA ATA AAG TTA TTT TCT CCG CAT GAC 

SPB1900770.63 63 
GCA CCA ACG AAT CGA GTT ATT AAA TCG CCA 
TTA CGT GCA TTA TTC AAA ATA TAC ATC CAG GTA 

SPB1901370.63 63 

TTA TGA GCC ACC AAA GAA GCA AAT AGT AAA 
TGC AAG CAA GTA GCC CTT AAT TTT CGT AAA 
GAA 

SPB1901970.63 63 
AGC TTA TGA TGT GAA TCA TAC GAA AGT ATT GCT 
TTT AAG CCG AGA AAT CCA GCA TTC TTT TGG 

SPB1902420.63 63 
ATA GAT CTT TGC AGA TAA TAA GAT TCA TCT TTG 
TCA GGG CAC AAC CTA CCA TTA GAG ACT TGC 

SPB1909120.57 57 
ACA TAG ATG TTC CTG CTG AAT TTG AAG CAT TTG 
ATG AGC GTA CTG CTG TTG TTA ACG 

SPB1909770.60 60 
TCG TTG CAC TTT CTT GGG ATT TGT GGC TTT TAA 
TAT TTA CAA TGT TTG AGA TCA AAT TTT 

SPB1910320.63 63 
TGA TAT CCC CAT GTC AGT AGT TGA AAA GTT TTT 
ACC TTT AAA ATC AGA AGT TGA AGA AGA ACA 

SPB1910870.57 57 
TGC TGC CGA TGG TAC GGT CAT TCA AAG TGA 
AAT CTT AGG AAA AGT TCG TCT CAA ATG 

SPB1911470.57 57 
GCG TGC TGA AAT GGG TTT ACC AAG TGT TAA 
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AAA TGA AGA TAT TCA AGT TCA GAA AAA 

SPB1912020.63 63 
AAC ATA ATA AAT TAA AAA CCA AAA GCG AGA GAA 
TGA GAG GGA GAC CGG ATA GTA AGA AAA AGA 

SPB1912570.63 63 

ATT TCA ACT TAG CCA GGG AAG GAA ATG GTA 
CGG AAT ACA AGT ATC CGG TAC AAT AAA TAA 
CTC 

SPB1913170.59 59 
AGC TTT GAT CAC AAT AAC CCA TCA ACT CAA TTG 
GGG TAT TAG TTT GCA GAT CAC GAT AC 

SPB1913770.60 60 
ATG GAT TCA AAA ACG CAT CCG CTT TTC GCA 
ACT TTA AAC AAT CTT TTC ATC ATA CTC AAT 

SPB1914470.62 62 
AAA CGT TCG TTT TTA TAA TCA GAG ACA AGA AGA 
TTT TAA GAT TTG CAG GGA GGT ATA CTC AT 

SPB1915070.57 57 
CAA CTC TTT CTA CTT GAA TGC GAA AGT GGA 
TTG GTC TCA CCA AAA GAT TAC CGT ACA 

SPB1915770.57 57 
AGA TCA CTT ACA AAC AGA AAA GTC GCT GCT 
GAG ATG CAA TAA CAA GAG GAG ATG AGA 

SPB1916020.57 57 
GGA CAC GTT TAA CAG ATT TAG GGC TTC CAG 
AGT ACA AAC ATC CTT CTA CAC TAT TGC 

SPB1916570.57 57 
TTT AAT AGG TGC CTT TCT TCT TCC CAG AGC ATC 
TAA CGC AGG TTT CCT TCC TGG TTT 

SPB1917170.57 57 
ATA CTA CAA TCA TTC GGC ACA CCA ACT ATC ATA 
GTA ATG CTT ATC CAT GTT ACT TTT 

SPB1917770.57 57 
AGA ATA AAG GTT GCT ATG CAC GCA AGG ATG 
GAG TGA ATG TAT GGA TAC TTA GCT ACT 

SPB1918320.57 57 
CGC AGT TTC TTT GCT ATC GGT CTT TTC CTC CTT 
GTC ATC GAC CTC TAT ACT ATC AGT 

SPB1919120.57 57 
ATT CTA AGC GAA GTC TCT CAA AAT CTT TCT CAT 
TCA GCA TGT GTG GAT CAG ATT CAT 

SPB1919620.58 58 
GGA TCG TCA TGT GCG GCT GTG TCA TAA GCA 
TAA GAA GTT TCA GCT TGT TCC ATT TCT T 

SPB1920070.60 60 
CAT ACG TCG GTA TTA GGA AAT GCT TCT TTA AGA 
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GTC GCA CGC GCT TTC TCA GCC ATA TAA 

SPB1920670.60 60 
GGA AAG AAA ACA GCC ATC ATT AGT TTA AAA GTT 
TGG ACG TAA ACA AAG CGA TTA TAA CAT 

SPB1921120.57 57 
AAA AGC AGC AAA AAG GAT CGG CAG TCT CCT 
TGG TGA GGA AGA TAA TTC AAG CAA ATC 

SPB1921720.57 57 
TAA ATT TGA TAC TTT GTC AAA AGG TCG GGT 
GCC TCG ATG TAA TGG AAT AGG AAG GAC 

SPB1922170.58 58 
TTA ACG GTC TGA ATG TGA ACA ATC GGT AAT 
GTT TGT CTC AAT TGG TTT GAT GCT CTT G 

SPB1929770.61 61 
AAA TGT CTA TAG CGA ACT TAA TAA ACA CAC AAG 
TTG AAG TGA CAA ACA CCA TTG AAG AGC T 

SPB1930420.63 63 
AAT ATC AAG TTC ATT ATT TAA AGA GTG CAA AGT 
AAA ATG CTT GAC AGT TTT GAC TAA GAA TGA 

SPB1930970.63 63 
CAT TTG TAG TAG TAA AGC GCA CAG CTT CAT 
TAG AGC GAA GAT CAT TTT TAT AAA TAA GAT GGT 

SPB1931520.58 58 
AGC AAA TGT CGG GGT CAA AGT TCG ACT TGC 
ACA AGT ATT GAC ACC TTA CAA AGA AAA T 

SPB1932170.57 57 
TCT CGA CCA AGT ACA TCC AAA TTT ACC TCT TCG 
TGT AAG GGC GTC TGT TTT GTC AAC 

SPB1932570.63 63 
TGG ATA TAA AAT TTG CTT TAC TTT CAT TTG CAA 
CCG CTT TAG CCA ACA GAG TTT TAC CAC ATC 

SPB1933120.62 62 
TAA TTG ACG GAA GTC AAA ATC TCC ACT AAG TTT 
CAA ACC CTT TGC CAT AGT ACG TAA AAT TT 

SPB1933720.63 63 
CAA GCA ATT CGT TAA TAC AAT CAT CTA GTC CTC 
CTA TAT CAC TCA AAG AAA TGT CAC TTG GTG 

SPB1922620.57 57 
AAC GCA AAT TCA TTT GGA AGG TCT TTC TAC 
AGC GGT GCT AAC GTC GCA ATC TTA GAG 

SPB1923220.63 63 
GAT TTA CTA TAA TGG TAT CAT TAA GGT TGA AGT 
AAT AAC AAA CCA CCT CAC AAA CGC CGA TCT 

SPB1923920.62 62 
TTT TCC TTA AAA ATA GCA CAT TTA CGA TTA TTT 
CAT AGA CGA AAG CGT TTG TAA CAA TCC CG 
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SPB1924620.57 57 
ATG GTG AAA TAT TCC GTG TTT TAA AGC CTG 
GTG GTG TCT TCG GTG TAT ATG AAT GGG 

SPB1925120.63 63 
TAG TTT TCT TAC AGT TAC ATT TGT TTG TAG TGA 
AAC CAA TGT TTG AGT ATT AAC TTT TCA GCG 

SPB1925720.58 58 
ATT TGG AGA GCA TGA AGG CCG CCA TCA AAT 
TCA TCT TTT AGT AAT CCA TAA ACA AGT C 

SPB1926370.63 63 
TCG GAT TAC CAA ACG CTG TAG TAC ACC AAA 
AGG TTT ACT ACT ATA TGC CAG TAT CTT CCT ATA 

SPB1926870.63 63 
CAC AAT GAC TGG TAA TTT TCA TAT GGC TTT ATG 
AGA ATA GAT TGA TTG GAA TTT AGT ATC AAG 

SPB1927520.57 57 
CAT GAG CCC AAA ATT GCA AAA GGT TAT GCT 
CGC ACA GAA GTC CTT GAT ATT AAA CAA 

SPB1928170.63 63 
TAA ACC TGT ATT TTC AAC TCT TCT TTA CCT CTT 
AAC CGT ACT TTG AAC ACA TGG AAT CTT CAT 

SPB1928770.61 61 
AAT CTG CAT TCT GGG ATT GAT TAC TCA TTA TAA 
ATG GAG CCC TGT GAA GAC AAA TGT AAG C 

SPB1929220.57 57 
CGT CGC GGA ATT AAA GCA ATT TTT AAG ACA 
ACA GTG CAA TTC TTG CCT ACA AGA CTG 

SPB1916270.62 62 
AAT CTC TGT ATA AAC GGC ATT CTT AGC ACA 
GGG CGG CTC GAC CGG ATA ATT GTA CTG ATT TA 

SPB1916920.57 57 
ATA TCT GAT CTA AGT GCC GTG TGG TTC GAT 
GAT TGT ACT GTT AAC CCG GTA TGC AAC 

SPB1917470.59 59 
AGA ACC GTA TTA ATG GTT GCA GCT TTT TCC TCT 
TCA TGG AAT CGG TAT AGA TTA TGT CG 

SPB1918070.58 58 
TAC TCG TAC CCT GAA TAC TCA AGG CAT ATA 
TAG TAC CAT TAG CTG ATT ACA ACT CTT G 

SPB1918570.63 63 
CTA GCT TTG TTA TTT TCG TCC TTA CTC TCC TTT 
TCT TCC CCA ACG TCA GAT TTC TCT TCT AAA 

SPB1919370.63 63 
CAC CCA TTC CAT ACT TCT TTG CTT AAA TGA TTG 
GAA TCC ACG CAT AAA TGT ATC TTT GAT GAC 

SPB1919870.59 59 
CAC AGT ACA TCC CCA AAG ACA CGA AAT ATA 
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TGT GTA GCC TAA TAC TTA CCA AGC AAT GC 

SPB1920370.59 59 
GTG ATG AAT TTG AAT GAA CAA CGA GGC GTA 
CTG CTT CTT ACT GAG GGT ATA CGT CTT AT 

SPB1920870.60 60 
GCT GAC TTT GGT AGT GAA CAG TTC CAG AAG 
CAA GAG ATC CTG AAA CCT CGA AAT TGA TAT 

SPB1921470.63 63 
AAG GAA GGA ACC TTG TGT AAT CCA AGC TTT 
TAG AAG ATA TCA TGT TTC CTA AGA TAA AGC AGA 

SPB1921970.57 57 
GAA GAC GAC ATT AAA TCA CAT TGG GCA CAA 
ATT ACA GCA GGC CAG GTT GGT TCT TTA 

SPB1922420.57 57 
GGT CTT TCC TTT CTT AGA TGT ATG GAG CTC AAC 
AAA CGA TGC GCT TAG TGT GCG ATC 

SPB1930170.63 63 
GGC AGT AAT CTA ATA CTC GCC AGT TGA GTT 
ATT GAG CCA TTT AAA AAT TCT AAG TAA AGT TGA 

SPB1930720.57 57 
CAC CAA GGA TGG ATT CTA AGC GTG TAT TCA 
AAG CAG CAA CTC TGT CGG TGA GAT CTA 

SPB1931220.61 61 
ATC TTT CAG GAA ACA TTT TGG TTT TGA TCC ATC 
AAA GTA AAA ATG AAC TGC CTG TGA CTG G 

SPB1931870.59 59 
ACC CGA AAT CCG TAA ACA ATA ATT TCA ATC TAG 
TCA GCA TCA TTT GTA CTT GCC GAA GA 

SPB1932370.57 57 
AAG ACC GTC CAG TTC AGT AAG AAG GGT ATT 
TAC AAC TCT TGA CGA GGC TTC TGA CAG 

SPB1932820.57 57 
TTT GGC GAG TGC TTC AAT AAA ATC TTG TGG 
ACA AAT AGC GAG TGG TTC AAG TTC CTC 

SPB1933420.59 59 
TTT GAG CAC TTT CAC GTT TGG GAG TAA CGG 
CAT CAA TTT CAT CTA TAA ACA TCA AAC AG 

SPB1934070.57 57 
AGA GCA GCA AAG CAT ACC TTA ACT TCC ATC 
AAG TTT GAG TCA GAT TGT TCT TCC ATG 

SPB1922920.63 63 

TAA TGT CAT AAG GAA AGG AAT AAA TCG AGC 
AAT TCA TGG GAA TTT CGG TTA GCG CCA TAA 
ATG 

SPB1923470.63 63 
GAC AAT GAT TAA TAG ACG ACG AAA GCT CAT TTT 
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ACC TTT TAC ACC TTC CTG TTT TGG CTT AGT 

SPB1924220.57 57 
TAC GAT TTA GCT ACC GAT TTG TAT GAA TAT GGC 
TGG TCG CAA AGT TTC CAT TTC TCC 

SPB1924870.57 57 
ATT GAC TGG TGA CAT TAC CAA GTG TCA AAA 
CAT TTG GGA TGT CTT CAC TGT TTT CCG 

SPB1925420.63 63 
TGT TTT GTA GAA TCG ACG GTA CAT ATT GGC 
AAC GTG TAT ACT AAT TTA AGT AAA TAA TCG CTG 

SPB1926170.61 61 
TGG AAT TCT TTT CCA CGA GTG TTA GAG GAC 
AAA CAT ACT TTT ACC AAA CCG AAT GAT ATG T 

SPB1926520.63 63 
GGA TTT AGT AGA GAA GCA TTG TTT TTC TTT AGT 
TTG TGA AAT TTG ATA AGG AGG CAG TTG TAC 

SPB1927220.59 59 
TTT GCT TGG AAA GAT TGA AAG TTA CTT GAA CAA 
TGG CTC GTC CAT GAA ACA CGA GGA AT 

SPB1927820.59 59 
TAA TGA AAA TTC TTG TGA TTT GAA TCT CTC AAG 
GAC CGC AAC CAT CAA GCT AGA ATC GG 

SPB1928470.58 58 
TCT TTG GGA GGG AAT GAT ATT TAC ACC CAT 
ATC AAT ACT GGA TTT CAC GAA AGG TTC G 

SPB1929020.60 60 
ATA TAC GTG AAT CCG AGA GAG AGC CAC CGC 
AAT CCC ATA ATT CAG TCT TTC AAC TGT TAT 

SPB1929470.61 61 
TTC AAC AAA ATC GAC TAC TTG ATA GGA ATT TGA 
AAG GAT GGA TTC AAG GGG AAT CAG AAA A 
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Appendix Table List of oligonucleotides for ura4 microarray 

 

Sequence Name Bases Sequence 

SPC45000.63 63 
AAA AAC TCG ATT TCT GTT CAA ATT TCC GAA AGT 
GAA AAG GTG AGT TAC GAT ACA GTG GAT TCT 

SPC45550.57 57 
TTT CAT TGG GTG ATT CAT TCA TTG CTT GAC TAT 
TTG ATT AGT AAA CTG TCG AAG AAA 

SPC46200.62 62 
AAT TGA AAA TCA GCA ATT AGC TTT GAA TAC GAG 
ATA TCA TCG AAG CCG AGA TAG AAC TTT TC 

SPC46750.62 62 
CTA TGG AAT GAT GCT TGA TTT TTC TAG GGT ATT 
CAT CTT TCA ACG AAC GAG AAA TAC AGT GT 

SPC47350.58 58 
CTA TAA ACT GTT AAC TTT ATG GGA AGG TTG CTT 
GGA AGG TTG CTT GGT TGG ATG GTT A 

SPC47900.57 57 
GCT GTT CAG ATC TTG CAT GTT CCT TTC TCT CAA 
AGC ACT TGA TAC ACC CAT TAC AAG 

SPC48450.58 58 
AGA AGT ACT TTT CCT TCT GAT GCC ATG GTG TAT 
AAT GAA TGG GTG ATC TTT GCA GCT T 

SPC48950.61 61 
ACA TAC CAA GCT AGA ATG TTG CTC GTT TCA AAA 
GAC AAC TGT AAA TTT GAT CTA TTC AAT T 

SPC49700.58 58 
CTA CTA AAC AAT CGT GGC GAC TGT GTG GAT AAC 
GTA TAT GCG GAA ATA TAC TAC AAT T 

SPC50250.61 61 
GAT ACT TAG CAA GTC GAT ATT TAT TTA GTG AAG 
TTT AGG AAT GTC GGT TAC GGC GAA GAT T 

SPC50750.61 61 
GAC AAT AGG AAG AAA AGG CAC TCT CTT AGT TAT 
CTT CAT TCA TTG GAA AGT CAG TTG GCT C 

SPC51300.63 63 
AAC TTT TAG AAT TTG GAT TAG ATC GCT CCC ATT 
TAA CTT CCG TTC AAT GTC TGT TAT GTC TGG 

SPC58200.57 57 
CCA ACC TTA GAA AAC ATG GTA TGT TTG GTA TAC 
TTG GTA ATG TCG TCG GTG CAT TCG 
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SPC58700.63 63 
TAA ATC ACT CAA GAC ACA ACC ACA ATT TCT ATA 
ATT CGA TAT TCG AAC AAG GGA ATT ACA ATC 

SPC59200.61 61 
GAA AGA TGC TTA ATA AAA TTA AAA GCT AGA CTT 
TTC AGT CGC AAA CTT GTG CTG GAC ATG C 

SPC59700.57 57 
TTC GTC CAA TAT ACT TAG GAG TGC AAG TCT AAG 
GTC GAA GAA AGG CTG GAA GTG AAA 

SPC60300.63 63 
AGC ATC AAC TTA GTA AAC AAA ATA GTT ACT TAG 
ATT TCG CTT TAT TCT TTA TTT CCC TCT CCA 

SPC60800.61 61 
TGT TAA TGA TTA TTA GCA CTG ATG GAA TGT GCT 
CTT AAA AGG TCA CCT TTA GTG GCA AAG C 

SPC61250.63 63 
CTA CAT AGG ATT CAT AAA CTG CAA CTT TTA TTT 
ATC TTT TTC TAA GCA CAT TAG CTT TAA ACG 

SPC61750.57 57 
TGT ACT AAG TAG CTG AGC ATT TCG GTA AGT CAA 
GCA AGA GCA AAA CTG AAA TTG ACG 

SPC62250.57 57 
TTA TCA AGA TAA CCG AAA CAA CCT TAG TAG CTG 
CGT CAA TAC ACT CAC TAC TCA GTG 

SPC62750.63 63 
GTT AAC GCA ACA GAT TCG ACG CAA AGT ATA GTA 
GAT AAT TTA AGC AAA CTT GTA ATA TTG GAG 

SPC63300.60 60 
TCA CTC CTT TGG CAT ATT CTG CAT TTG AAG CTG 
GAA GGT AAG AAA TGA TCT GTA TTG TAC 

SPC63800.63 63 
TTG TGC AAC GGA AGT ATG ACT ATT ACA CTC AAC 
AAA AAT CGA GAA GTC TGT CAA ATA TAC AAA 

SPC70600.57 57 
GAC TCA CAA GAA TCA AGG CCA CAC TTT TGG CTT 
TAT CTG CGA GTG CAT ACA TGA TAT 

SPC71100.57 57 
AAA ACT GGC CTG TGG AAT AAG GTA TAG AAG GAA 
CGA GAA AAC AAA GAG AAA TTC TTT 

SPC71600.61 61 
GGT AGA CAT GAT GGT AGA AGG AGA ATA GAA TTA 
TGA TAG GAT ATG ATG ATA AGT ATC GAA T 

SPC72150.63 63 
GCT TTA CAA TCT CTC TTA CAT TGT ACT ATG TAT 
GAT GAA AAT CCA AGT TTT GCA TAT TTC GCC 

SPC72850.63 63 
GAT CCT CGC TAC ACT ACT GAA CCT CTA CAC ATC 
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TAA CAT TTT GCA TAT TTT TCT AAT ATC CTC 

SPC73450.60 60 
ATT TCA ATC ACT TCC AGA AAA ATT AGC AGA AGT 
ATG GGG TTT TCT AAA ATA GCA CTT TTT 

SPC73950.61 61 
CTC GAA TCT TGT GCC TTT TAA TGA CTC ATC CTA 
CTT CCA TCC TTA CTG TTG GAT TGA CTA T 

SPC74500.60 60 
ATT GTT TTC CTC CTT CTG CAT ACT GGC ATT CCC 
ATT ATT TAT TAT GGA GAA GAA CAA CGC 

SPC75050.57 57 
ATA CAT CAT CTG CCA CAT CAA GCT CCA AGT CTA 
GCT CTA GCT CTA GCT CCA GGT CCG 

SPC75600.59 59 
TTG TAA ACA TAT TTC GCT TTT ATG TAA GGA TAC 
TGA GAT TCT ATC ATA TGC GTT CAA AA 

SPC76050.58 58 
AGT CTT TAA GAG CAA AAG CAG TTA AAC GGT TTT 
GTA GAA CAG GTA GTG AAA CGT CAA T 

SPC76700.63 63 
TGT TTT TCA AAA ATA AAG TCT CTT GAA GGA ATT 
TAT AAA CGG ACT CAC AAA CAC AGA ATC AAC 

SPC83650.63 63 
TTT TCG CTT GGT GCA TAT ACG GTA TCC TAT TGT 
CTA TCT TTT TTA AAG AAA TTC GAG CCG ATG 

SPC84200.58 58 
TAT ATC TGC TGC AGA TAC AGT TGG TGC TAT CTG 
TGG AGG CGC TAT ATT TGA TAT AAC C 

SPC84900.62 62 
TCA TGA GTA AAA ATT GGT TGA AGA AGT AGC TCC 
ATT TGT AAA AGC GTA AAA TTA GTA GGA CT 

SPC85400.59 59 
TTT TAT TCA AAA GTG CGT TTG CAG GAT GGA TGG 
ATA CAC ACA TGA AAG ATG AAC ATC AC 

SPC85900.57 57 
ATC CCT GAC AAG TAT CGT CGT GTG AGC ATT TAA 
ATT TTC CCA TTG ATA GAT TTA CTT 

SPC86450.63 63 
TAT AAG TGC GTA ATG TTT CAA CAG CCT TTG GTG 
TTT TTA TGA ACT TGT TAA ATA TTT CTT GAT 

SPC87000.62 62 
CTT TGA CAT AGG ATG AAT TGC TCG GTT CGA TGG 
AAA CGC CTT AGT AAA TAT ACT ATG AGG AG 

SPC87650.63 63 
TCA TTG AAA TGA GTA TAG CAA CTC TTG AAG TGT 
GAT TAT CTT TGA TAA ATT CGC TAC ATT CTT 
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SPC88200.58 58 
GCC AAC AGT TGA AAG AAA GAA AAG TTT TAA TGG 
AAA GTC CGT CGG ACA TAT TGA AGG C 

SPC88750.62 62 
GCA GCT AAG ACG TAA CCC GAC TCT ATG TCA AAT 
TTG GGT AGT AAC TAC TGT TTA ACA CTT AC 

SPC89200.57 57 
TAA TAA AAA CCG ATG CAA AGA ATT GGT TGG CGA 
CAT CTA AAA AGG TGC TAC AAG CTG 

SPC89750.57 57 
GTA CGT TAG AAA AAA TCA AAC AAC AGC AAC ATG 
GGC CGC GAT ATT TAC AAG GAC GAG 

SPC97100.57 57 
AAT TCC TTC CTT TCC AGT TAA CAG AAG AAG TTT 
TAC CGA CCG CTC GCA TTG AGT CTG 

SPC97700.62 62 
CTG CCT CTG AAT CTT TCA AGG CCC TTA AAT CAT 
TAT CTT CTA ATA TCC CCA ATG ATG TTG TT 

SPC98150.63 63 
TCT CCT TTA GGC AAC AAT GAT TAA TGT TAT TTT 
CCA ATG AAT TAA TAC CAA TAA ATA ATT TGG 

SPC98600.62 62 
TGA ACT CTT GAA CGT TTC ACT CCC AAT AAT TAT 
ATA CAT TTC CAA TAT AAT AAT ACA CGT GA 

SPC99050.57 57 
GCA TGG TGT TCA TGG TCC CTT GCA TAG TGT TCA 
TGG TCC CTT GCA TAG TAT TTA TGG 

SPC99500.57 57 
AAA TTA ATA TTG TTT AGT AGT AAC GCG AAT AGC 
AAG CTG GGT GCA GCC AAG TGT AGT 

SPC100100.63 63 
CGA AAA GGA ATT CGA TTA AAT ATT CAT ACT AGC 
TGA GCA TTA TTT CTT TTA TAC CTT CTC TGT 

SPC100650.57 57 
TAC CAC TAG AAG TTA CCA AGA TTC CAG AGT TAC 
TTA TGG TGG CAT GGT TAA TGT CTT 

SPC101200.58 58 
TTT CAC AGC ATT GTC GAA TGC ACC TGT ATA AAG 
AAA CAG ATT ACC CTT GGA AAA ACA C 

SPC101750.63 63 
GGT CCA AAT TTT AGT TTA GCT TCT TGT AAA ATA 
AAG CAT TCC TCT GGT GTA AAA TCA ACA TGA 

SPC102250.63 63 
CAG AAG TTA TGG GTT GCT GAG TGA GTT TAA GGC 
ACT GAT TGA TAT AAA GAA TTT ACT AAG TCC 

SPC102750.63 63 
CTA TGG TTG CAT GTA TCA TCT GAG CTT TCT TTT 



 
 
 

237 

CTT GTA GTT CAA TAA TTT TGC TTT CAA TGG 

SPC109850.59 59 
CGT TGG CAA TTG ACT TCT TGT TTA CAC CAA GTA 
ACC AAC AAA AGA GGT CTT TAA CAA CT 

SPC110400.61 61 
TCT TAC GTT CTT CTT TCA ACC CTT TTG TAT CCT 
TAG AAT TCG CTT CCT GAG TAG TTC CAT C 

SPC110850.58 58 
AAT CAT TAA ACG ACA AGG GCC TTC CGT GCT ATA 
GTG TTA TGC TTT GCC GTA ATT TAA A 

SPC111350.63 63 
TAA TTA GTG TAA AAC AAT TAA AGG TTA TCA AGC 
GTT GTT CAT ATA ATT GAT CGT GGC CTG TCT 

SPC112050.57 57 
TCG TGA AGC TAG TTG TTT CTA AGT ATA AAC GAT 
TGT GTA AAT CTC TTA TCG CAT AAA 

SPC112550.60 60 
GAG CAA AAC TTC TCA TAA TCA TGT TGT TAT TTC 
GAG AGA GCC TCA TGT CCA TAC GAT CAA 

SPC113050.57 57 
GGC TCA TCC AGA CTA TCT AAT GTC CTT TCA GAT 
CGG CCC CAT TCA TTT ACA ATA CCG 

SPC113550.63 63 
CCT TAT GTG ACT CAC TGA CTA TTC ACA TTT GCT 
GAG CAT ATC TCA TCC ATC TGA TCA TGA ATG 

SPC114050.60 60 
ACA AAT AAA ATC ACC ATA ATC TTG CCG CTG TCA 
TTA GGA ATT TCA CTT ACA AAA GAC GAA 

SPC114800.57 57 
AGT CTA GCT TTA CAG CTT GGC ATT GTT CAT ACA 
AAC GTC TTC AGC ATA TCT TTC CAC 

SPC115350.63 63 
TGT GAT ATT GAC GAA ACT TTT TGA CAT CTA ATT 
TAT TCT GTT CCA ACA CCA ATG TTT ATA ACC 

SPC115900.57 57 
TAC CGC AGT TTA CAA TCA CTT CTT CAG GAG TAC 
GAT ATT GCT GTC CCA GCC CGT CTC 

SPC122800.57 57 
TTG GTT TGT CTG CAA TGT TGG ATA TCA AAC TTG 
AAA ATA ATT TAG ACT ATA GCA TGC 

SPC123550.63 63 
ATA AAA TTA TCA GTA GGA TCA TTA GCA AAC AAA 
AGC AAT TGA GTT CGA CAA GGA GGG CAA AAG 

SPC124200.57 57 
TCA TTC CGT TCG TTG ATT ATT TGC CAA ACT CAC 
TAC CAT TCA ACT CAT ACT GTA CCT 
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SPC124800.58 58 
TCT GTC CAA ACG GAG TTT CCA AAT GTT ATT TCT 
GTT GTG TAT ACT GGC GAC AAT GTT A 

SPC125250.57 57 
GCG GAC TAT GTG ATG ACT AAC TCT TCA TGG ACG 
AGA AAC CAC ATT GCA TCT CTT TGG 

SPC125800.57 57 
GCA CCA TTA GCG AAT ATG CTG AAG CCT ACC ATA 
AAG CTC TTA CAT TGA GTC CTC AAG 

SPC126450.61 61 
TGA AAA GCG AAA CTT AAA CAA GTA CTA TAA TGC 
CAT TGT AAA ACT AAT CTC CAT ACT AAC T 

SPC127050.63 63 
GCA ATG ATG AGA CCT CAG TTC TTT ATA AAA TAA 
TCA ATC TCG ATT GCA TTT AAT TGT TAA CCA 

SPC127600.61 61 
ATT CTA TCA GAT GAC TGG ACC AAA AGT GTT CAT 
TTA CAA ACT GAT CGA ACG GTC GAT TTT C 

SPC128100.57 57 
AAG TCC TTA CAT GAG CAA AGA CCA GGG TTA CAG 
CAT GCC CAT TAA ATC TCT TCA CTG 

SPC128550.60 60 
TCT GTA TGA AAA GGC AAG ACT GAT TGC TAA TCC 
CTT CTC TTA TGA GGA ACA TCG TCA AAA 

SPC129050.59 59 
CTC CCT CTG GTA TGG AAA TGA CAT TCA AGG TTG 
AAA AGA AAA AGA AGT CTA AAC CTG TT 

SPC135900.57 57 
GAG AAA CCG TGA CAA GCA ATT ACA AAA CGA GCA 
AAG ATA AGG TTT GTT TCC ATT CAC 

SPC136350.57 57 
ACG AGA ATT AGC CTC CGT CTG GGT CAA ATG TTC 
GGT TGC AAT AGA GCG TCT CCA AAC 

SPC136900.61 61 
TTG GCA AAG GAT TTC ATT TAC TAG GTA AAA ATT 
TGT CGC CTC AAT TTA ACA GTA CTT TTT G 

SPC137450.60 60 
AAA CAT GTA AAT GAA TAT ACA CAA AAG TTA AAG 
GCT GCT GCT GGC CCT TCA AAT TCT TCG 

SPC137950.60 60 
AAT ACT GTA CCA CTT TAA ACA CTG CCT GCT ACA 
ATA GTG CAT AAC TTC TAT TTC ACT TGG 

SPC138550.57 57 
CCT AGT AGT TCG TGG TCG ATT CCT CTA AAC TTT 
CGT GTA TCG TGT TGT GTC GTA TTT 

SPC138950.57 57 
TTC GGT GGG ATT TAA TGA ATT GTG AAA CGT AGC 
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GCT TGC TGT TTG TTA TTT ATT GGT 

SPC139550.57 57 
CCA TCG TTT CCA GCT TCA GGT TCA ACT CCA TAA 
ACT TCG CAG TTT GGA GCA AAA TGG 

SPC140050.60 60 
TTC ACA TTT AAA AAA CAC TTC TGC CAC AAA CTC 
TTT ATT TAC TGT GCT CGA CGT GAG TAC 

SPC140500.60 60 
AAA CAG TGA CAT GTA GCA TAG CGA GTA TAA TGC 
TAA TCA CTA TTT GTA GTA TTC CTC TGT 

SPC141100.63 63 
ATT GTT AAT TCA CTT TTC GGT CCT TTT CTT TTG 
GTG TTA CTC TAC TTA CTG AAT TCT TTT CTT 

SPC141750.63 63 
TAC GAC TTG CAG TAT CAA ACC AAC GAC AAG TAA 
ATA ATG TTA GTC TAG CAA ATG GGA AGG AAA 

SPC51800.62 62 
AAT TGC GTT TTG AGT AAT CTT GGA AAA TAT AAT 
TTA GAG CTA ATG AAT TGG CAC TAT AAA CT 

SPC52300.59 59 
ATC TAC GTC TGA ATT TGT ATC TCC AAT TAG CGA 
TAC TGA AAA CGG CTC TTC ATC TCA GC 

SPC52850.62 62 
ATC GGG CAT CAC CAA GGT ATT GTA CAC ATA CAA 
AGA ATG ATG TTA TGT AAT TGA AAC ACA TT 

SPC53400.58 58 
GAA TGA CAA GCT TTG CCG TGA GCA TAA ACG TCA 
AAC CTA AAG TTA CCC TTG TGT CCT A 

SPC53850.63 63 
TAG GAT TTT AAG AAA TCT GAC ACA TTT ACT TCA 
TTC CCA CCA AGA GAT TCT ATT TCA ACC AAA 

SPC54400.59 59 
ATG ATT TCG TTA ATC AGC GTT AAG TCA GCG TCA 
TAC TGG AAG TCA GCT CAA TGG AAA TA 

SPC55000.58 58 
ACT CAA GAA TAA GTC ATG GAC TAC GGA CTA AAA 
TTA TCA AAT TTC TCA GTA ACT TAA G 

SPC55600.61 61 
TCA AGA GTG GTG TGT TTT CAT GGC TCA GGA AGT 
CCA TAA TTA AGT TTC AAG TTG ATA TTT T 

SPC56100.61 61 
GCC ACC AAA TTC ACT ATG TCG GCT TTC TAT GAT 
AAT TCC TCT AAT TCT TCA CAA TGA TGT T 

SPC56650.62 62 
TGG TAC AGA TAT TAA GAA ATT TAC GGC AGA AGA 
CTT GGA AAA CAC AAT AAG CCT TAG ACC TT 
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SPC57150.58 58 
TTG CCC AAA ACA TTT TGC CAA AAC GCT CTA GGT 
TGC TCA AAA TCA ACG TCG GTA ATT T 

SPC57600.57 57 
CAG ACC TTA GTA AGA TCG AAA ATG TTG TAG CGA 
TAT TTT TCA GCC TCC TGA GGG GTC 

SPC64350.57 57 
CAT AAA CAG TGA ATG CCA CAA GAC TAT TTG CTC 
TTT TAT GTC CTG AAA TAT TCC AGA 

SPC64850.62 62 
AGA CGA AAT GTA TTG ATC CCG AGT TAA ATC ACC 
AAA ATA CGT ATC TAC GAT GCG AGA CAA TC 

SPC65350.57 57 
ATT GAT GAA CGG GAA AGG GGA AAA GCA AAA 
GGA TAA ACT GAA GGA GAA TGA GCA AAG 

SPC66000.57 57 
ATT TCA ACT GTA CGC TCA GTA GAC TGT GGA AGC 
ATG TCT TTG GAA GCA ATC ATA CGG 

SPC66500.60 60 
TTG AAT AGT AGA ACC GTT AGT AAG AGT CGA TAG 
AGG TGT AGA GGG CTT TGG AGT AGG TAT 

SPC67000.63 63 
GGT GGG GAA ATA ACG AAG TTT GAA GAA CGT ATA 
GTA AAG TCG CAC AAT TTA CTG ATA GGA AGT 

SPC67550.63 63 
ATT CGA ATA CCT ATT TGT TCA CCC GTA CCT CTT 
TAG GTT TAT ATT TGT TCT TGC AAA CTG TTC 

SPC68050.57 57 
CAC AGT AGC GTG TAC CAT TCT TCT ATA CCT CAC 
TGA ACG AGG AAG TCT ACA ATT CTG 

SPC68550.63 63 
AAA AAC AGC AGA CAG ACT TAC GGT GTA ATA AAT 
TAA CTG TCG ATG GAT TTG AGC TGG TAA AAA 

SPC69100.63 63 
CGT ACG AAC TTC AAA GAA TCA TAC TCG ACA AAT 
AAT ATA TAC ATG GAC AAC AAA TGA CCC TGT 

SPC69650.58 58 
GCG CAA CTT GAC CTT AAG TTT CTT CCA TAT AAT 
CAA TAG TGC AAG CAC AGA CAT AAC G 

SPC70200.62 62 
ACA ACG AAA ATA ACA AGA CAC CCC ACA AAT CCT 
AGT TTT GAA TTG GTA TCC TGT TTG ACA TC 

SPC77250.58 58 
CAA ACC GGG GAA TGT ACG CGA AGT AGA AAA 
GAT ACG AAA AAT GTC TGA TCA CAA GAT T 

SPC77750.62 62 
TAT AAA TGA AGC TCA ATT CCT TTC ATT TTG AAA 
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CCA GAT TAG GAT TTG GTG TTT TCA TTG CT 

SPC78300.59 59 
TGA TTC AAT ATT TGG ACA AAA CAG CCT TGT CTT 
ATG CCG CTC TTT ATG GTA TGA AGA CG 

SPC78800.60 60 
GTT TTT ATT CCT AGT AAT CCC AGT AAA GCC CGT 
TTT CTG TCT TCT CGT GAG AAG CGT ATT 

SPC79350.57 57 
TTT ATT CAG TTG GTA ACA TTG TGT CGC CTC AGT 
TAT TTA AAT CGG GTC AAA CTC CTG 

SPC79950.58 58 
TGC AAG TGG TAC ATC TGT TCA CTA CTC TTT CTA 
ATA ATG TAT CAG GTG ATA TAG TCG T 

SPC80550.57 57 
AGC ACT ACG ACC GAA ACA GTG ACA TGG AGT 
CAG TAT AAA CCT CAG GAA ACT CAA AGA 

SPC81000.57 57 
ACG CTC TAC TTT CGA CCA CTG ATT GTT TCC TGC 
ATT TCT CAA ATA ATA GGC CAT TTA 

SPC81500.63 63 
TTT CAT TTC TAT CTT TAA TGT TGC CGG TTA TCA 
AAC CAG TGT ACC TAT TTA CGC TAA AGC ACT 

SPC81950.60 60 
TGG CTT TAT TGC TAT GAA TTT GGG TAT TGC CTT 
ACT GGT TTT TAT TCA GCT CCT CTA CTT 

SPC82650.63 63 
TTG CAT TTA CCG AGT CTT TAA TAT GTG TAT GTT 
CTA TAC TTC AAC TTC ATG GCC TAT GTT TGC 

SPC83100.59 59 
CCA CCC AAG AGA TCT ATT GCA TTT GTC CTG CTT 
AAC AGT ATT CTC TCA GAT ATG TCC AT 

SPC90650.57 57 
TAC TCA TGT AGA GCT TGG TTG AGA AGA TGT AAA 
CAA ATT GCA ATA TTC AGC CCA ACG 

SPC91150.63 63 
ATT CCT GCT TCC TTT TCA TAA ATG TAG TCT TGA 
TGT TCA AGT TTT CCA TCA TGT TTT ATT GTG 

SPC91750.57 57 
CAA GAT GCG ATT CAC GAT TTT GTT GTT TGG AAT 
GTA ATT TAG AGC ATA AAC GGT TAA 

SPC92250.58 58 
AAA GCC AAC ATA CAC GCA CCT GAT GAT ATG CAG 
TTT ATG ATA AAA TCT AGA AAG TCG C 

SPC92800.57 57 
AAT ATG GAT TTG GGA TAT GGT ATC TAG GTC ATA 
GAG CGT CCA TAC TGG CAA AGG ATT 
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SPC93300.63 63 
ACC CTC AAC CCA TTG ACT TTC ATG CCT TTA AGA 
ACT TGT TAA AGC AAT TAT TAG GTT ATG ACC 

SPC93850.63 63 
TTA CTC ACT ATT TGC TGC TTT CAC GGA CTT ATA 
CTG AAA TTG AAT CAA AGT TAA TGG ATG ATG 

SPC94300.58 58 
TGT ACA GTG ACT TTA GAC ACA GGC GTT TTA GAT 
TTA ATG GTG TCG AAC ATT TGC TTT T 

SPC94900.59 59 
AAA TAA CAG AGA CCA AGG GAC ATA CAC TAT CCC 
AAA ACG TGG ACA AAA AGA CTT TGA AC 

SPC95450.59 59 
TCG AAA ATT ATG AAT TTC AAG GAT TTA TTG TTT 
TTA GGA TTG GGA AAG GCT TCA CAA AT 

SPC96100.58 58 
GCT AAT CTT TGA TGT CTT GGT CGT GGT TCA CTA 
GTC TTT GAA TCT AAC CAT TTC TGG G 

SPC96550.58 58 
CTA GTT TCT CCA TTA TAA CGC AAC TGG CCA ATT 
CAA ACT TTG TCA TAT CCT CTT GCA G 

SPC103300.57 57 
TAT GCT TAA GGG AAT GAA ACA ACT TGG ACA GTT 
GAC ATT TTC TCC ATC ACC AGC TGC 

SPC103800.60 60 
TTT GTA TTG GTT TTA GCA TTT CAG CGT TAA AAT 
AGC AAG TAT GAC TCA TTG GTT TAT GGC 

SPC104300.57 57 
GTA TGT GTA TCA ATC TCT TCT TTC CAT TGC ATA 
ATT GCT ACA ACC GGA GCA ACA ACC 

SPC104850.59 59 
CAT CAT CAA TAA ATT CGG ATT CAT TAG ATT CTT 
CTG GAG ATG ACA ATG GCA CAA ACT TT 

SPC105400.57 57 
AGT AGA AAA TGG AGC CTG CCC ATT ACT TTG CTC 
ATC ATT ATT GTC TGC TTG AAG AGA 

SPC106000.57 57 
AAC GGA TGA AGA AGC TGA AGA CAA CGA GGA 
CAC TTT TTC AAT GAA TTC AAG AGC TGG 

SPC106600.62 62 
TTT GAC TGA ATT AAC AGA TGT ATC TTT TCA AGG 
TGC CTT TTT GGT TTC TTC CTC AGA ATG GA 

SPC107100.59 59 
AAA CAT TGT CCT TAA GAA GGT GTC TGT CAC TTG 
GAG ATA AAA CTG TTC GTG CAG TAT TG 

SPC107650.63 63 
TTA TTT TCA AAT TAG ATG ATA TGG TCT GCG AAC 
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AAA TAG CTA ACC ATT TCT TTG GGT AAT GAA 

SPC108200.60 60 
GAA AAT ATT GAT TCT AAT GCT TAA TAA TTC GAG 
TTT ACG ACT ACG GTC ATG AGC CTC ACT 

SPC108850.63 63 
CTG CGT AGC TAA CAG ATA ACA TAC ATT TAT TTA 
CTC ACA TAT ATT CTG GTT AAT TAT CAG TTT 

SPC109350.63 63 
TTT GGT TAT CAA AAT TCC AAG CTT ACT CGC TCG 
AAT TTC TCA ACT ATT AAT CTA TGT GTC TCA 

SPC116400.62 62 
CAG ACA TAG GGT CCA ATT TTA TCT ACC AAT TCT 
AAG ATT TCG GAT TTC TTC GTC AAA TCG AC 

SPC116900.60 60 
ACC ATG CCA AAA ATT ACA CAA GAT AGA ATG GAT 
GTT TGA AAT TAA ACG TGA GTA TAC AAA 

SPC117400.62 62 
ATC ATT TAT AAA ACA ACT TCT TCC ATT AAA AAT 
TCC TTG GGC AAA ACA AAA GTT CCA ATC AT 

SPC118000.61 61 
TAC CCA AAT TCA TCT GAC ATT GAT TAT GAT ACA 
TTG AAG GTG TGC TTA CAT CTT TCT AGT C 

SPC118650.57 57 
ACT TCT TCC AAG CCT TGG TGA CGA AAA CGT CAT 
TTA CGG CAA CGA CAT AGA TTC CGC 

SPC119200.57 57 
ATG GTT CGT GCG ATA TTC GGT ATT TGA CTG TTG 
TAA AAA GGC AAG AAA CGC TGA GAC 

SPC119750.58 58 
GTG GTA TTG CGA CAC AAT TAG CCA GTG CTA TGA 
ATA GAG CGA GAA AGG TGG AAA AAT T 

SPC120100.61 61 
AGC TAA GTG TCT ATG TTT ATA CGA TTT ACC GAA 
CTA GAA GGT AGG ATG AAT TTG GGT TTC C 

SPC120650.63 63 
ATG GGA TTG GAA AGC CCA ACA TTA AAT GGA TAA 
AAA TCA TAT GTC AAA TAC ATT CCG ATG GAA 

SPC121200.58 58 
TGG GTA GCT TGT GAA CTG CAT CTA ATA CTA GAT 
GAA TGG CTA CTG CCA AAA TTC CCA A 

SPC121650.57 57 
AAA CAG CGT TCT TTG AAT GAA TTG TCG CTT TTG 
CTA ATA TAC CTC CAA GGA AGG GAC 

SPC122200.58 58 
TGG AAC AAG ACT TGA ACG ATT ACT CTG AAA TGT 
TTC AGT AAC CGA CTC GAC TTC TGA T 
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SPC129600.63 63 
CAA CAA ATT ATA TAT ATC TTA GCT GTG GTA ATG 
TAA AGA ATC TGG TAA TCC ACT TCG TAT TGC 

SPC130200.62 62 
GTT TAA CAA CTG GAT CAA ATC TGT TCT CAT ACA 
AAA ATT CGC ACC CCA TGC TTC TGA TTA TC 

SPC130700.61 61 
CAC CTC CAC GCT CTT TTC GAC CTC CGT ATG GAA 
TTC AAT ATT ATT TTT ATT TAG AGG ATG C 

SPC131250.58 58 
ATA AAT AAA GTA TGC TCC CAG GCA TAT TTC ATC 
AAA TCA GAT TGC CCC AAA AAT TGC C 

SPC131700.62 62 
GAG AAT AAA AAT TCC TTT GTT AGA TCT CTT TTG 
CAG CAT AAA GGC ATT GAT GTT TTT GTG CA 

SPC132250.63 63 
TCA TTC ATA AAG TTA TCC AGA TTT CTG TTA GTC 
ATA CCC ATT CAC TTG CTC TTA CAA AGT TCG 

SPC132800.60 60 
CGA AGT CTA TGA ATT TGA TAT GAA GCT TTT ACT 
TGA TCG TGA TTC TAC CTC TTC CAA GAA 

SPC133300.63 63 
ATG AGA TGC AGC TAC TTT TTG AAG GAT CTA TAC 
CGA TTC TTA CTA GTT ATG AAA ATT ATA AGC 

SPC133900.58 58 
ATA GTT TTG ACA TCC CAA TAA CCG TCA ATT TGT 
CTC ATT TGA CTG TTG AGC ATA TGT C 

SPC134400.61 61 
CTT AAA GTT CTC AGA GAA TAC TTG TTT TCC CAG 
GAA AGT TCT CAA TTA TGG GAC GAT TCC C 

SPC134850.63 63 
ACG GTT TTG TCT GAT TCT AGA TTT ATG AAA GCT 
CCA ACT AAA AAA TCC CAA CGT GAG AAA AAA 

SPC135350.63 63 
TTT GAG AGT ACA GAA AGA ACT TGG AAT CCT TAA 
AAC TGA AAG AGA TAC CTC TAC GAA TAG AAA 

SPC142250.58 58 
GCT AAC GCC TTA TCC TAC TTG CAT AAG AAG CAT 
GTA ATA CAC CGT GAT ATC AAA CCT G 

SPC142900.57 57 
CTC ATT TAA TAG AGG ATC ACC ACC ATA AAC TAA 
TCG TTT TCC AGA TTT TCT TTT CGA 

SPC143400.57 57 
AGT AGC TCG TCG TTT GAC GCA TTC TTG ATG ATG 
CTT CCG AAA AGT TTT AAT GTT ACC 

SPC143900.63 63 
GAC AAC AAA CGA TAT CTC TAA TAA ATG TCA ATT 



 
 
 

245 

AAT AAA TTT TAC CTG TAC AAC ATT AGG TGG 

SPC144450.63 63 
CTA TTT CAT TGT GTT TGG AAT ATT TCA TTC CAT 
CGA GTT TCT TAT AAA GTG TTG GGA TTA CTT 

SPC145150.62 62 
ATT GCG ACG CCT TGA GCC TAC AGC TAT TGT TGC 
TTT CCA TCA AGC AGA TGT TGG TGA ATA TC 

SPC145750.62 62 
AAA TAG CCT AGC ATC TTT CGA CTT TTG CTT CGG 
ATG TAT AAG AGA AGT TGA CTC GGT ATA AC 

SPC146300.58 58 
AGT AGC CTT AGG ATT GAA GCT TTT AGG GGT GGG 
TTT TCT TCT CTT CCG AGT CTT TTT A 

SPC146750.57 57 
AAT CTT ATA GTG TAA TGC ATC GCC TAA TCC AAC 
CAA GCC CGG AGA ATA TAA AAC CGA 

SPC147300.63 63 
ATC TTT GGA AAT TTT GAG AGA CTC TTT GGA GGC 
TTT TTC ATT ATC ACC AGC TTG TAA ATA GGC 

SPC147800.60 60 
TAA TCA TCG CTT TCA TCA CCA AAA TCG AAG TCT 
TTT TAC ATG GCT ATT CAA ATA CAT TTG 

SPC148250.57 57 
TTT AAT CCC TAA CCG GAG CGA TAT TGT TCA AGC 
TAT ACA GAT GCT TCT ATC CTA CAA 

SPC45200.60 60 
ATT TGA ATA AGC AGA CGA GCC ACA TAC ATT CGT 
TTG AGG TCA TAT AGG TTA AAC AGT TGC 

SPC45850.57 57 
CCC AAG TCC CAA CTT CTA AAG CAT GAG CAT TGA 
GTT TTT CTC TTT CTG CGA TTG TCC 

SPC46450.57 57 
TTG GAG TTC CAC TAA ATG TTT CAG GTA CTC GTA 
TGT CTG TCT CAA TCA TTG GCA AAC 

SPC47100.60 60 
TCA CAA TAG CTA GTG AAC ACA TGT CGG TGT GAT 
AAT AAC AGT ATG ATG TTG CAA GTA TGT 

SPC47650.60 60 
AAG CCA TCA ATT ATA CGC TTT CAT CAA TGT CGA 
ATT CAT CAA GGC ATT TAG CAG GTA GAG 

SPC48200.57 57 
GGC AGG CTT AAT ATC CTT CAG CGC ATA CCA AAA 
CTC ATT ATC CTT GTT GTC AAA AGC 

SPC48650.63 63 
ATG TTA AAT TCA TCT TAA AAT CAG ATG GAT ACG 
TTT GAA TCT AAA GTG GTT TCG GCA CAA TTC 
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SPC49150.63 63 
TCG AAT AAT TTT ATA CCA ACA ACG CCT CTA TAT 
TCG AAA TCA TTA AAA AGA TAA GAT GTC AAC 

SPC49900.61 61 
TGC GTG AGC TAT TCA GGA CAT TAT TGT GTT TCC 
ATA TAT CCC ATT TGA TAT TAA AAG AAT T 

SPC50550.63 63 
GTC GTA AGT AGA TTT ACA TGT TTT CGT TTT TCG 
GTC TTT TCT AAC TAA ACA GAT GTT TAG CTT 

SPC51000.63 63 
CAA GTG CCT ATG ATC TAT CTT TGC CAG ATA TCA 
CAA AAG ACA ACA AGA CTA CTT GGA ATT TTC 

SPC51550.61 61 
TAA ATT TAT CGG CTT CAT TAT GGG GAG ACC CAC 
GAT GTT AAA ACG GTC GGA CGC CAG TAT T 

SPC58450.59 59 
AGT CTT TCG AGT TCA TTT CGC TGA TGT TTG AAT 
CCT TAG ACT GAG AAG ATG CAA ATC TG 

SPC58950.61 61 
GTG AGC CAA AGA GCA TCA TTA TTA GCG AAG CTA 
CAA TGA CAA ATT AAC TTC TTC TAC AGC C 

SPC59450.57 57 
ATG TGC TAA GAT CGG GAA ATG GGT GAG TGA 
GAA AAG GAA GTT ATG GTA ATT TTA TGA 

SPC60050.59 59 
GTT GTT TCC CAT CGC TCA CTC TAC ATT CGC TTA 
AAT AAA CTA CTA CCA TTT GAC TCG TC 

SPC60550.57 57 
GTT GAA ACT CTT GCA ATG CTG CTA AAC GCC GTT 
GCC TAT GAG AAT AAT AAG ATT GGC 

SPC61000.57 57 
TCA TTC GTC TAG TCA TCA CTG CTC GGC TCA CTA 
ATA TCG TTG GTA AGT AAT AAA GCG 

SPC61550.63 63 
AAA GTT TCT ATA CTA TTG AAA TTG AAG AAA AGA 
AAG CAG GCA AAT TTT ACG TGT TGA AGT ATG 

SPC62000.63 63 
AAT TCT CGA ATT GCT TCT TTT TGA ATG TTC TTC 
TAG GAT TTA CTC TTG CTT GTG GTA AGA TTG 

SPC62500.61 61 
ATC GTT TAA CAT CAC GAT TCT AAC CCT ATA CAC 
CTA ATA CAG TGG GTA AAA CGC AAA GTC T 

SPC63100.63 63 
ATC TTT GGA AAT TCA ATT TGG AAA GGA ATA TGG 
ACA AGT AGA TGT TTC ATT TGG TCA TAC AAG 

SPC63550.58 58 
TCG TGC TTC GGT CCA TTT TAT TAA TCA TGA TGG 
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AAA TTT AGT TGA TGC CGC TTG TAT C 

SPC64150.63 63 
AAA ACA ATG CTT TGA TGG AAT GGG ATG ATA TTT 
CTC TTC ATT TGA TTA ACA CTT CGC TAT CCT 

SPC70850.57 57 
AAC GAC AAT GGT GAA TGA AAT GCA AAG AAT TGT 
GTT ATT TAA CAG CAT CAA AGC CGC 

SPC71350.60 60 
GCG GAG TAT TTT ACC ATA TAT CAG TCA TTA GTT 
GTA CGG CTA CTG TAC TAG CTC ACA TGG 

SPC71850.57 57 
CTG TTC GGG TCG ATC ATT TTG GCT ACT ATC CGT 
CTG TCT ATG ATA ACC AGT GTA TGC 

SPC72500.57 57 
CAT CTT CCT TTC CTG AAC ATC GCA ATG TTT CCT 
CAT CTC TTC TTC CCT TTC CCA TGT 

SPC73200.57 57 
AGA ATA TAT CGC CCG GCG TTT GAT TTT GTT TCC 
CAT ATT TTC CTC TTC GAC ACG AGC 

SPC73650.57 57 
TTC TTA TTG CGG TGG TAC ATG GAG CGG TAT TCG 
TTC TAA ACT CGA CTA CAT CCA AGG 

SPC74250.58 58 
TTA CGA TCC CAA TGT CTC TTG TTC AGT GCG TAA 
TTA TCT CGA CAG CAT TAC CAG CTA T 

SPC74750.62 62 
GAA AAG GTG ATG TTT TGG GAG TTT ACA CAA ACT 
ACG AGT CAA GTT CTG ACA ACG TTA CTT AT 

SPC75300.58 58 
TGC TGT TCG TGT ATC TAT CCT TGG CGT TGC AGC 
ATT CAT TGC TAT CGT TCT ATT CAT T 

SPC75850.59 59 
GGA AAC TAT CAA AAG ACC CAA ATG GAG CAT TCG 
TTT ATT AAA AGC TTA ATT TTA GGC GA 

SPC76300.60 60 
ATC CAC GTA TCT CGA TAG CTG TGT ACT AAA ATA 
TCA AAG CAA AAG TAA ACA TCT TTC AGT 

SPC77050.63 63 
CAG AAA CCA GTA TTT ACA CAC CCT CCT GCA CAA 
TAG CGT AAG ATA GTA ATA AGA AAG TAT GGC 

SPC83850.63 63 
AGC GTT CCC ATT TAT GCT AAA GAG CTT TAT CAT 
TAC AAT GCC TTT CAA TCT GGT AAC TTT CTT 

SPC84550.63 63 
AAA AAT CAT TTA GAT TTG TGA GAC CTT AAA TCA 
GAT ATA TTT GTT CTA CGA GGA TTT GGA ATG 
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SPC85100.63 63 
AAT TCT TTA TCA CTC TCG CTA ATG ATA GCT TGT 
GAC GAT TTA GTT TTT CTA AAA CGG TAA TGA 

SPC85650.60 60 
TGA TGA ATT TCT TGC ATT TCG TAA AAA TGG AGG 
AGA GTT AAC GGA TTT TGG ATT TCC AGG 

SPC86150.63 63 
GAT ATT ATC ATA TTC TTA CCA ATT ATA CAT ACA 
CTC ACA ATT TGT TTT ACA TTT CCG CTC CCT 

SPC86700.58 58 
GGT ATC TGA GAG TGC TAG TAC AAT GTG TAA ACG 
AGT ATT TTC AAA ATC CGA GTC CTT G 

SPC87350.57 57 
CAG CCA TGT TAC GAA GTT GGT TCA ATT CTC TTT 
CAT GCT CCG ATT TTG TGA TTT TGA 

SPC87950.59 59 
CAA GGT TGG ATG GAC CAT CTT GGA AGA TAA TCG 
CAC TAA GAA GCC TGT AAT TAG GAT TA 

SPC88500.59 59 
AGT AAC GAT TTG CTT CTT TTG GTA ATC AGA AAA 
TAC GTT TGA CTC CAC TGA ATT TTT CA 

SPC89000.58 58 
GAC GGA TAG CAC GAG TCT TCT TTT GAC GGA GAT 
CAA GAG GAA TGT ACT TCT TGT TCT T 

SPC89500.58 58 
ATT GCT CAG CCA AGT TCT CTT GCG ATT GCT TAC 
GAA GTT CAA AGG TCT TTA ATG CCA T 

SPC90350.61 61 
ATG TAT CAC ATG CAA AAT GAA TGA AAA TGG TTT 
GTT GGC GAT TTC AGA CAA GCT AAA AGG T 

SPC97400.57 57 
CTT TGA AGT CAG CAC CCA CAA AGA TTT CTT CTG 
GGG AAT CAC GTG TTT ATT CCA AAG 

SPC97950.57 57 
TAC AGT TGC TGT GGG TAA CCT TGA CGT GCT CCC 
TTA CTA CGA TGA GCT TTA GGA TAC 

SPC98350.63 63 
AGA GCG GTT AAC TTA TAT TAA CTT CAG ATT TCT 
CAT AAA ACG GAT TTT CGA AGA CAG TAT GTT 

SPC98850.57 57 
TCG AGA ACA TTG ACT CCT AGA CAA CCG ATC TAC 
ATC TTG AAC TGA AGT AAT TGG AGG 

SPC99250.57 57 
AAC CTT TTT ACG CGC TCA TTT GTA CGA ATC TCC 
TCT TCA TTC AGG TGA GTT TTG TTC 

SPC99850.62 62 
TTG TTT GTT ACT ATG TTT TGC TTT TGA GTT ATC 
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AAA CCA GTC AGT TGA TCA TTA AAG AAA CA 

SPC100350.58 58 
AAC ATA CGG TTA GCT TTG AAG CAT CCT CAC TGA 
ACC CTC CGT AAG TTA TGG CTG AAT T 

SPC100900.63 63 
ACA TCC TCT GTT ATT AGA AGT ATG AAA ACT ATC 
ATA TCC AAT AAT GAC TTT GTC AGA TGA CCT 

SPC101500.59 59 
CCC GTC CAT AAG TTG ATG AAC TTG TTC TCT TTG 
GAA GTA AGA TGA GCC TGC ATT GTA AA 

SPC102000.57 57 
ACG GTT TCG GGC AAG GTA GCT CTG CGC GAT 
AAA AAG GAT CAT AAA TCT CAA ATT CTT 

SPC102550.60 60 
TTC CAA AAC GCA TAT ACT GAC TTA GGG AAT TAC 
GGT CCA AAA AAC TAG GAT AAC AAA AAA 

SPC103050.57 57 
CAC CAT CTA GCT TTA CAC AAT TAA ACC CGG CTT 
TTC GAA GTC GCC AAT GAA TGA GAT 

SPC110100.57 57 
CAT CCA ACA ATC ATC GGG GCT ACA GTG CTT AGC 
AAG TTC TTC AGC AGT AAC GGA AAT 

SPC110650.63 63 
AAG TTA CAA GCC ACA AAC GTT TAC TTT GTT CTT 
TAA ACA TCG CTA GTT GTA GTA TAA TTT CGG 

SPC111100.63 63 
ACA TTT AAA TTA TCC ACG CAA GTT GGT TTC ATT 
ATA CTC AAG TGT GTT AAA CGT GAA TCA GGG 

SPC111700.60 60 
AAA TGC GCG AGT GAT AAT ATA ATG TAT TTG TGT 
TCT TAA CAA CCA ACC TCT TTA AGA CGA 

SPC112300.57 57 
TCT GTT TAT TCG CTA GAG GAA AAT GGG CTG AAA 
GTG TAG CTT TCG TCG TAA GCC GCC 

SPC112800.57 57 
CCA CTC ATC CAT CGA GTT CCT CCA CTC TTT ATC 
CTC TTC TCT GGC TTT CTT CCA TTC 

SPC113300.58 58 
TTA ACG ACC GTT CGC AGG GAG GTT GAA CGC 
CCA AGT CAT TCG CAA ATA GTT CAT TTA A 

SPC113850.57 57 
TTA AAT TTT GTT ATT CCA ATA TGA GAT TTA TTT 
TGA GAA ATA CGG GCT AAC AGT GGA 

SPC114250.63 63 
TGC TTA TCG ATC ACT GAA TAT TTC TCT TCT CGA 
CAG TTA TAA ATA TTA ATT CAC ATG TTT ACT 
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SPC115100.59 59 
TCC TCG TAA CAT TGC CAG TAA GTA AGA ATT GAT 
CCT ATT GTT AGC AAC TTT GGC TTG TG 

SPC115650.63 63 
AAA ATT TTA CCA AAG AGT ACT TGT ATA CTA ATT 
CTA AAT GCC TTC TGA CAT AAA ACG CCT AGG 

SPC116150.57 57 
CAA AGG TAA ACC AAC TTC TTT GAG GCC TTG TAT 
AAT ACC CTC GCC TGG CAC TGT ATG 

SPC123200.63 63 
AAG AAA TAA ATC ATA TAA AAT AGG AAT AAT TTT 
TAG CGA ACT CTT TGC ATT AGA ACG AAT GAA 

SPC123800.58 58 
ATG AAG TGC GCT GCT TTG CCT TTT ACA AAC CAC 
AAA ATT GGT TGA TTA TAC TTA TTT T 

SPC124450.57 57 
GAC AGT TAA AAC ATC AGC CTA ATC CTT CTA CCT 
CCC TTC TTT TAC TTT TCT CAT TTT 

SPC125050.59 59 
TTT TCA TTG ACA CCA TGG GAT ATG CTT TCA CTT 
TTT GTG TCG TTA AAA GCT TCC AAA AT 

SPC125500.57 57 
TAC TGG TCG GTA GCG TTC GAG GTG AAG AAG 
ACA TGT GTT TTG TGA ATC ATT TGA AGA 

SPC126150.63 63 
TCT CAC ATA ATA AAT AAC AGT TTG GGG CAT TAA 
CGT TGT CAA TTA CAG GCT CTT AAT CAC CTC 

SPC126700.58 58 
TAC TAG TTG TTT AAG GAA AAG CTC ACA TTC CTA 
TTA CCT ATT CAT TCC AAA GTT CGC G 

SPC127300.59 59 
CTT AAA GTT CAA AAT CCG AAT AAT GTA CGG GTT 
TAC ACA GTT TCT GGT GAA GGC GTA AC 

SPC127850.62 62 
GTG TTA ATG TAA TAG ATA TAA ATC CTA TGC ACC 
AAT TGT TGG CTT TTG GGA CAG ATG CTG GC 

SPC128300.61 61 
CTG GTT TAA TTC TTA CAG CTA ATG AAG GTT CTC 
CTA TGC ACG CAT TCT ATA TTC CAT CGT T 

SPC128800.63 63 
TTT GAA GTG GAT GAA GAT ACT TTG GAA TAT AAG 
CAA TTA CAT CCT TCT AGG TCT GAA GCA AGG 

SPC129300.63 63 
TTT CTG TGT TGT ATA CAT CTT CAT TTA GCT TTA 
TTT TTG GTT TAG CAA GTT GGT ATT TGG GTT 

SPC136100.61 61 
GAT AAG AAA TAA CAA ACT TAG CAG GAA CTT TGA 
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TCC AGG TGG GAA CTT GCT GAA TAA GAC C 

SPC136600.61 61 
TTT CAA CTG ATT AAT TAT ATG TGT ACT GCA ACA 
AAT GGT ATT GGT AGC TAG AGG AAT TGC G 

SPC137150.57 57 
AAT CAA TTT CCC CTT CGT CCT AAA AAC CGC ACA 
TAC AGT GAT GCA AAT GGT GAA GCA 

SPC137700.61 61 
ATC AAC CAA ACG AGT GCG CTG CTG TTG ATG AAG 
ATT ACT CCT TTA TTT AGT TTA ATC AAT G 

SPC138050.63 63 
CTC CAA TGA TTA AAC CAA AGC ATC GAA ACA TCT 
CAT TTA TTT TTA ACT AAC GAC GAG CAG CAA 

SPC138700.63 63 
GCC TTA ATT TGG TAA AAG GGC TAA ATG CGT TAG 
TGA CTC GGT GGA GTA CAA TGC GTT TAT TTT 

SPC139200.63 63 
ATC AAA AAG ATG ATA ATT ATG ATT ACT GTG ATA 
AGA AAT GGG CAT AAC GCT CAA TGT CTA CGT 

SPC139800.57 57 
CAT CTT TGT ATC TAT CAT ACA TGA TTA CTT GAC 
CAC CAT AGC CTT TCG TGG CAG CGA 

SPC140300.62 62 
CAA ATC AAG CAG AGC TCT CGA TCA TTT ATA GAG 
AGA ACC GTC AAC TGT AAC GCT ATC TTA TC 

SPC140750.63 63 
CCA AGC CTC GTT AAT TTC TGT AAA CTG TAT CTG 
CTC AGC AAT GGA CTT GAC TGC AGC TTA AAT 

SPC141400.61 61 
TAA CAT TTG TAG AAT CGA AGT GGG TTC GTA TGC 
TAA ATA AAT TCG TTC ATA ATT TCC ATG T 

SPC142000.60 60 
TAT TGT GGC TCT CAA AAC ATT GCA TAA GTC TGA 
ACT TGT CCA GTC AAA GAT AGA AAA GCA 

SPC52050.57 57 
CTG TTA TAC GAG CAC ACC GTA CTG CAA ATG GCC 
TTC GAT ACT CGA CAC TAT ACA TAG 

SPC52550.61 61 
TTA TTG TTA GAA TTC CCT CTT TAT TAT GTG CGA 
ACC ATA TGT TAG CAT GGA CAG ATT ACT T 

SPC53100.62 62 
GGT ATA TCA TAA TCG AGG TAT TGA GGA GGT GAA 
TAT TGG ATG ACT TTT ATC TCA GAA TGC TC 

SPC53650.58 58 
TTT TTG CGT CAC AGG AAC CTC TAC CAT GAA TTT 
TAT CGC CTT CAA TGT AGT AGG GTA A 
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SPC54150.60 60 
AGA CGG TTA TTG AAC TCG AGC AGT AAT GGG AGT 
GTT CAT GAT TTT ATG GTG TAG TAG TAG 

SPC54750.59 59 
CAA TCG TAT TGA AGC AAA GTT GGA ACC CTT CTG 
CGA TCT GAA ACT TGC AAT GAA GTA AA 

SPC55350.60 60 
ACT AGA ATC TTG TAT TTG TAA GTT TGC TAT TGG 
TTT GGC TAT GTT GAG TGA AGT GCC TGC 

SPC55800.61 61 
AAT TAA TTT CGG CAA AAT CAA AGA TGT CAA ATG 
CCC TCA ACG GAA CTA GTC GTC CCA TTT T 

SPC56350.61 61 
TTA ATA GTT ATT CGA AAA TTT CAT TGA TAA ACC 
GGC CAA ACC TCA ACT GGC TTT GAA TAC T 

SPC56900.57 57 
TTT ACA AAC TAA TTT CGC ATA AGC GCA TTA TGA 
GCT TCC TTG GAA CAT ATG GGG TTC 

SPC57350.57 57 
AGA ATA GTT AAA GAC AGG ACA CTT AGG AGA ATT 
GAC GGG AAT TTG CTC GAA ATT AGC 

SPC57900.57 57 
CCC AAG TCA GAG AAA AGA ATC ATA ACT TGA TGG 
ATG GAC TCT GCG TTT TGA GAA AGG 

SPC64550.63 63 
GAA ACC ATC AAA CCA ACC AAA TCC GTA AAG ACT 
AGT TTA AAA GCA AAT TTG TAA TAT AAT GAA 

SPC65050.60 60 
CTG CTG TCA AAA GAG TCG AGT AAA CTA AAA TTA 
AAA CCC ACT AAG TGA ATA GTG CCA AAA 

SPC65650.58 58 
TTT CCG AAA TCT TAG ATC CTC CAC GAC CTA TTA 
TAC AAC CAA CCA TAT CTG CGG GAA T 

SPC66250.57 57 
GTC CAC TAA TAG TTA AAA CAC GAT CAT GAA CAT 
TAG GAA CAG CCT TGG TAA CGC CGG 

SPC66700.58 58 
TAG TAT TGG TTA ATT GAA TAG GAC ACA TAT GCG 
TTT CTA GGA GGA GAG TAG AAC CTT T 

SPC67250.57 57 
TCG TTG GCC TTT GCT TCG GTA TAT AGG ATA GCG 
TGG TTC AAG CGA CTT TGT AAG ATC 

SPC67750.60 60 
AAG TAT CTC AGT ATT CAA CCC AAA GTC ATA AAA 
ATT CTT GAA CCT TTA GCT TTC CAA GCG 

SPC68350.63 63 
CAT TTA GAA AAC TCA ATA GAA ATT TAG CAA ATA 
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TCG TCA ACC AAC CTA GAT TGA TCC TGT TTC 

SPC68900.58 58 
GTA GGA ACG GTG ACC GCT GTT TGG TAC TGC 
ACT TCA TCT TTA TCT ATT GAA AAG GTA T 

SPC69300.63 63 
TTT TAT AGG TTG TTT GTC TAA TTG ATC ATA ATG 
GCA TAC CTC TCT ATG TGT TAA TTG AAG GGC 

SPC69900.63 63 
AAA ACA AGG GTG TAA ATA ATA AAG TAA GGT TGT 
ACG AAT TCC TTG CCT GTA TAG TGA ATA GTT 

SPC70400.58 58 
ATT CCA GAT ATC GCT TTG AGA CTT CAT TGA AGA 
CTT GGC CAT TAA TCC TCC GAT GAA T 

SPC77450.59 59 
GCA CAC AAT GTT CGT TGT CAT TCT ATG CTA GTT 
ATT GAG ATA TGT TGG TCA ACT TTG GC 

SPC78000.63 63 
CTT GAT TCA TCG ATT CCC TCT CTA CTT TAT ACA 
TTG TTT TAA TTA TGT CTT CCA TCA CTT CAA 

SPC78600.57 57 
TCA TTA ACA TCA CAG CAA TGT GGT ATC GTC GTG 
AAG AAC AAC CCA TGC GTA CTC TAT 

SPC79100.63 63 
TTC ATT TCT GGT GTC TTG TGC AAG GTC TTT AAA 
AAT GGT CGT CTT TTA ATC GGT GTT TTT ATG 

SPC79650.59 59 
CAT TTT AAT ATC TCG TTA ATG AAT GAT CCT TAC 
TCT GCC TAT TGC GGT CAC ACG TTC CC 

SPC80200.59 59 
TTA GCA CCA TAT TCT CAA TTA AAA ATC CCT ACA 
AAA CCT GTG ATC TAA ATA CAA CAG CT 

SPC80800.61 61 
CAA TTG CAC TTG TAT TAC TCA ACA ATC TCA TGT 
CTG AAA TGT CTT TGA CTA TTG CGT TGC C 

SPC81250.59 59 
CCT TTC TGG GTG GTA TAT TAG CGA AGG CTT CTA 
TGC ACT TGA CAG ACC CAA TTT GGA AT 

SPC81750.60 60 
CCC GTA CAG CCC TAT TTT GTT TTA TAT TCC ATA 
ATG CAA TTT GGA TTT AGC GTT GGT TCG 

SPC82300.58 58 
ATA TAT AAT TTC TGT ATT TCA GCT TGG TAT TAC 
CAT CTA AAA CAA AAC TTG CCG CTA G 

SPC82900.57 57 
ATA GAG TTG ATC AGC CTC AAA GGC AGC CTT CTC 
GCT TGA GTA CTG TAG CTA GTA TTT 
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SPC83300.61 61 
TGC CAA TGG ATA TAC GCT CTA CTT TCG ACC ACT 
GAT TGT TTC CTG CAT TTC TCA AAT AAT A 

SPC90900.63 63 
CAT TAT GTA TAT AGC AGT TTT CTT TCC ACG ATT 
GAT ACG GTT TGT CTC ATA ATT AGC CGA ATC 

SPC91450.62 62 
GTT TTC TAG ATG CAA TTT TCT TCA GCA CAT GCT 
TTA TAA AAA TAC AAG ACG CGA TTC ATC GT 

SPC92000.63 63 
CAT TAA TAT CAA GTT TGC TCC CCC TTC CAA CAA 
AAA GAG AAG ATT AAA TAG AAC ACA TTA TGA 

SPC92450.57 57 
TTC AAG CTC GGA GCA ATC AGA CGA TTC TTC CTC 
TTC TTC CTC TTG TAT ATC GGA TTC 

SPC93050.62 62 
ATA TTA AAA ATC TGT TCG ATA CCT TGT TTA GCA 
TAC GTT GTA AAT TTC TTG GTG TGC TTC GT 

SPC93600.63 63 
GCT AAC GGT ACT TAT TAG GAT GAG CCA GTG ATT 
AAG CAA TTA ACC TCA TAC ATC ATT TCT CGA 

SPC94100.58 58 
GCT GTT GCT TAT GAC AAA TGA GGA TTT CAA AAA 
TTT GGT TCC CAA GCT GAT GGA AAT T 

SPC94650.63 63 
TAT TTT CAA CTT ACA AAG TGC ATA TCT GTC TTC 
TTC TTA AAG TCG CTT CTA ACG ACA CTT CTT 

SPC95200.58 58 
GGG TAC TGC TGA CTC TCA AAA TCG CAT GTG GTT 
ACT TCC AGA GGA GAC TTT GTA TCT T 

SPC95750.63 63 
TTT AGG ATA TGT GTG GTT AGC TCT CAG GAT ACA 
TTA TTA CCT ACT ATT TTT GAG ATT GAT GCG 

SPC96300.60 60 
TTC ATT ACT AGA CAT TAC TAC AAG TAA AGT TGA 
AGG CTT AGC TTT TAA ACA AAT CCA CAT 

SPC96900.58 58 
TGT TTC GCA CCT TTT GGA GAA GTT TGC ATT TAA 
AAC TAC GGA AGA GCG TTC TGC TTT A 

SPC103550.59 59 
ATG TTT GCA TAA TTA TTC AAA ACG ACA CCT TCA 
GCA AGA TAT GTA TTA AAT TTT CTT TT 

SPC104050.57 57 
TCT GGC AGT GTT ACA AGT CCT TGA TTT GAT ACC 
ATG GGC CTC ATC AAG TAT AAT TCG 

SPC104600.58 58 
TGT TGT CGA ATC AGA CGA TAA TGG GTT CTT TCA 
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TGT GAT GGA ATT GAT TTT GCT TGT G 

SPC105150.57 57 
CAC GCT CGA CTT GTT GAT TTG AAG CAT TCC CCT 
TTG AAT CAC CAT TAT CAT CTA GAA 

SPC105650.57 57 
TAT CCT CAG CAT ACT AAG GAT TTC TTT AAA ATG 
TCA AGT GGA AGT CGG GTG AGA GGG 

SPC106300.60 60 
TCA GGA TTT GTG TAT ACG AGT TAT TGC TGA ATA 
CAT AAA TGA TAT CGA AGC TTT TGG GGA 

SPC106800.59 59 
ATC TTG ATG ATG AAT GCG TCC GTC TAT TAG CTG 
GTT GTA GAA ATC TTG TCA GTT TGA AG 

SPC107400.63 63 
TAG GGC GTG AAG TTC AAT AAG GAT GGA AAT ACT 
TTC TTT TTC AAT TTT ATC AAA GGT TTT GGT 

SPC107900.57 57 
TAA TGG TAT TGC TTG CCA GAC TAA AGA GGT TTA 
CTG CTG CTC GGA AAC GCA AAG CTC 

SPC108500.63 63 
CCT TAT ATA CTA TCT ATT TTG CAG AGC TAA AGG 
GAC GAT TGT TAA AGC GGA GAT AAT GTC AGC 

SPC109050.62 62 
GTT AAA AAC AAC TTT AGT TAT GTT GAA CTT CCT 
TGG CTG TGT TGA ATA AAG AAT TCG CAG TT 

SPC109650.62 62 
ATG AAC TCT TTG AAA CTA AAA CAT AGC AAA GCT 
CTG CGC CCG AAT AAT AAA AAT ATC AGT CA 

SPC116650.59 59 
ACG ACA TGT GCA GAG ATG CCG ACG AAG CAT 
AGT TAA ACT GGG ATG GTA AAA TCA ATT AA 

SPC117150.62 62 
GCT TCT GTC AAA GTT TAA CAA TAT TTC TTT TGG 
TTT AAA TCA AAT CTT CCA TGC GAT TAA GA 

SPC117700.57 57 
TTT TTG ACC ATT GAC TAG GAG GAC TTT GAG AAA 
TGG AGG ATG AAG CTG TCT CCC TGG 

SPC118300.63 63 
GTG CTT TAT CTC CAT CAT TTC AAA CGC CCT TAA 
ATA AGG AGC TTA TCT TTT TGA TTC TAA GTT 

SPC118900.63 63 
TAG TAG TAA TAA ATT TGT GTA AAA GTT AAA GCA 
AGT GGT ATA AAA TCT TTA GGA GTA ACG GCG 

SPC119450.63 63 
AAA GTT TGA TTC ATT TTC AAG GTT GTT TAA TTG 
CTT TCA AGA AAG TCA CTG TAG TTT CCC CTC 
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SPC119950.57 57 
TGA CTG GTA ATT GAT AAG TAC GTA TAC AAA CAC 
ATT CCA CGT GTC TAT TCA GCA ATT 

SPC120300.57 57 
CTC CCT TTC TCA TGA TGC AAG TAA CGG AGT TAG 
ATG TTT AGA ATC TCA TTT TCT TTT 

SPC120900.63 63 
CTA GGA TCT TTG CTT AAT GTG TTT TGC ATT TCA 
AGG ATC CCC ACA TAA AGA TTA ATT GCA TGT 

SPC121400.59 59 
GTG TAA ATG GAA ATA CTA GCT TGG TAG CCG TTC 
ACG GTA AAG TAT GCT ATA AAT GCC AC 

SPC121900.58 58 
ATG GCC AAA AAT GTG AGC AAA CGA AGA TAC TAC 
CAT TGG TCG GAA GTA CAG AGT ATA A 

SPC122450.57 57 
TGG TAG ATA AGC GAT TCA AGG AGT TTT ATG CCG 
ATG AAG CCT ATA GTA TAG CTC GAT 

SPC129900.63 63 
TTT ATT TAT AAT AAT ATT TAT AAT AAG AGA TAT 
GAG CAG CTC GAA CTC CCG AGT GCA TGA GGA 

SPC130450.60 60 
ATT AAC GAA TTA CTT CCC CCA GAC CAA AGA AAA 
TTT GAC GTT GTT TCT CTA CAG TTT TGC 

SPC130950.63 63 
TGG ACA GGA AAA AGA AGC AGC AGG ATT TTA TTT 
AGC ATT TGC CTT TGA GAA GAG GGG AAT TTA 

SPC131500.60 60 
TAG TCT CGA TTG ATT AAA TGA GTC ATC TGC TTT 
TCG CGT ATT ACC TTT GCA ACG ACA TTC 

SPC131950.63 63 
CGA TAA TAG GAA ATG AAC TTT ATG GCT TTG GTA 
CTA ACG TAA ACA ATA CGC TCG GAA TAG CAA 

SPC132550.57 57 
CTA CTC CAA GGA GAG TTG CTG GCT TAT TAT CGC 
CTG TCA TAC ATG CCG TTT GTA CTA 

SPC133050.61 61 
TAC AAA TAT AAT AGA ATT GAA AAT TTA CAA ATG 
GTT GTT GGA GTC CGT GCG AGC GCT TCT G 

SPC133600.60 60 
TTT CTC CAT GGC ATC TTG ATT CAC GCT TTT CAC 
CTT TAA AAG AAA ACC TTT CAA AAC TTG 

SPC134150.63 63 
TCT AAT GGA TCT TTC ACT TAG TTA TCA CGC TGA 
GGA GCT TTA TTC ACG ATG TAT TGA TTA TGC 

SPC134650.57 57 
ACA ATA TAG AGT CTG CTT CGT CAG GAG GGG ATA 
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AAA CAC AAT TAA ATG GTC CTG GGG 

SPC135100.59 59 
CAT CTC AAG TAA TTT ATC AAG AAT CGA AGA AGC 
GCA TTT CCA ATG GTT CTC CAA CTA GT 

SPC135650.63 63 
ATT TGC TAC ATG GTG AAT TAT TTA TTA AGC TTT 
TGT TTC ACG ATA CCA ATC ACA CAT TTT ACA 

SPC142550.63 63 
CGT ATC GCC AAA GTT GAC TTA AAA ATT CCA AGC 
TTT GTT CCT CCT GAT GCA CGG GAT CTT ATT 

SPC143150.63 63 
ACG GGA TAT TAT AAA ATG GGA GGG GAA GGG 
AGT TGA CAT AAT AAC TAT CTG ACT TTT GTA AAC 

SPC143650.60 60 
TTA CCG GGA ATG TAA CCT CCA GTA CTT TGT GCA 
TCA CAA GGC TGG CAA GAA ATG TCT TTA 

SPC144150.58 58 
ATT GCA AGC TCT TTC ACA TAA AAC AGT ACA ACG 
CAA AAG TTT TGC AGT TTA TAA CGT T 

SPC144850.57 57 
GAA AAT GGC TAC ATC TGT AGC TCG CCA AAA TCT 
GAT GTC GTT GGG TAT TTG CTT TGG 

SPC145450.60 60 
AAA GAG GTT TTG GGC TTA ACT GCA ACC GTA TTG 
GTT TGG CAT TTT GGG TTG TGT GGT TTT 

SPC146000.63 63 
AAA GGA TTA ATT TGA GAA ATT GAA GCG AGA TAA 
CGA AGT AAT GTG ACT AGG TCA TGA GTA AGG 

SPC146500.59 59 
ATT CAA TTT CCT TAT CCA GAT AGC AAA GAG CAG 
CAA CTT TAC AAG AAA CTA ATT CGC TT 

SPC147050.62 62 
TTT TCT CAC TGA ACG CTG CTT TCC CAC AGC CAT 
GTC CAG CAA GGC CAA ATT TCG AAT AAA TT 

SPC147550.57 57 
AAC TGC AAT CCA GGA AGC TGT GAA GCA GCA 
GCA AGC ATA TTC ACT CGA ATA TCA GCG 

SPC148050.60 60 
TAT CAC TTT TTG TAT CCC CAA CTT CAA TTT TTC 
CAA TAC GCT GAG CAA GTT CCT CAA TCT 

SPC148550.63 63 
TAA GTC ATT TTG ACC TAC ACG CTA GTT GTT TTG 
CAA CGT GTT TTT AGA CAA AAT AGA CTC ATT 

SPC148750.62 62 
AAA AGA AAA TAA ATG AGT AGC ACT TAC AGA GAC 
ACG AAT GAC GAA CAG TTT TTC AAT TAG TG 
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SPC149250.59 59 
TTT AAA TGC TCT GCA ACC AGG TCA GCC ATT CCT 
TGA ATA GCT GTC ATA CTT CCA TTA AT 

SPC149750.63 63 
CCA TTC GAA ATC TTT TTC CAT TCC CTT TTC AAT 
AAG TTT TCT TCG TAA TTC ATT GAG AGA AGC 

SPC150300.57 57 
ACC CAT GTT CAT CAT GAC AAC AGC CTG CAC ACC 
TCT GTT AGT AAT ATA ATA ATT AAA 

SPC150850.62 62 
AGG TCT TAA TGC AAC TGA TTC GCG TTA CTC GTA 
TTA TAG CTG TAT AAG TAC TAC AAT AGG TT 

SPC151250.63 63 
ATA AAA TGG GAG TCT TGA AAA AGA GGA AGT CAA 
GAA ATG GCA AAG AAC TAT CAG GAT TTA CGA 

SPC151800.60 60 
TGA ATA ATG CTG ATA ATA GAA CCG TAG AGA CTT 
AAT TGA CCG ATG ACT ACG TAA AGC GGC 

SPC152400.63 63 
CAA AAT CTT TTA TCT AGT AGA AAA TAA AGG GGT 
TTT GCC TTT GGA GTT GAC TCC ACC TCT TCC 

SPC152900.57 57 
CAA TAA AAA AGT GAG AAG GAG AGT TCA ACA TCG 
CAT GGA AAA CCT CTT TCA GTG CTG 

SPC153300.63 63 
AGA GAA ATT CAA TGA AGA TGG GAT GAA TGT TAT 
GGA CTA GTA TTA AAT ATA AGA ATC TCG ACG 

SPC153850.61 61 
AAC TTT TTA GAA ATT AGC TCC GAT TCA GTT GGT 
TAA ATC TAG GCT CTT TAG TTT GTC TTT T 

SPC154350.63 63 
CTT GAA TAT GTA AAC ATT ACA ATA AAC GGA ACC 
AAA AGT CAA AGC ATG CAA AGC GAA GTG AAT 

SPC160950.60 60 
AAT AAC CGT ATC TAT GAA AGC AAG GAA TGA ACA 
CAT TAC TCC AGT TTG TAA ACT TTG GGT 

SPC161450.57 57 
GGA ACA GCC CGG CAG CTA AAT TGA TAA TTC CTG 
CGA TAA AGG CAA TCA ATC CAG TTA 

SPC161950.57 57 
AAG CTA GTT TTA GGG CCC AAA AGA TGG TTT TCT 
GAA GGA GAC GAC ATT GCT ACA AAC 

SPC162450.57 57 
CAA GAG AAA ACA CTG AAA AAC AGT ATG AAG CAG 
TCG AAA CAA GTG CTT TCA TGA ATT 

SPC163050.62 62 
TGA GTT GAA GCC ATT CAT TTT ACA ATG AAA GAA 



 
 
 

259 

GTT AGA GTA GTA ATT TGC GGT GAC CAA GG 

SPC163550.57 57 
GTT CTT TGC GAA AAT AAA TCA GAG GAT CTG GAC 
AAC TAT CAG GGA CTT CAT ACA ATT 

SPC164100.63 63 
TTT ATG AAG GAC AGT TGA CTT TGC CTG GGT TTT 
TAG CTT ATA ATC GTG TAC AAG TTG AAA ATG 

SPC164550.57 57 
GAT TAT AAA ACA ACA TTG GCT TAT TTG GCG TAC 
CTT GGG TTT GAC ACT GAT GGA CGT 

SPC165100.57 57 
TTA GAA TTT ATA CCC GGA TCT TCA AAA GAT TCC 
CTG CGT TTT CGC TGC TAC CAA GGC 

SPC165650.62 62 
ATA TAT TGC CAA GTA TGC TAG AAT CGC ATT ATG 
CAT TAT TGG TTA TTT CGT AAA ATT AGG GC 

SPC166200.59 59 
CAT TTT GAA GTT CGG GCA AAT CAA AGA CAC CAA 
TTA AAA CGC ATG TCG CTA AAC TAA AG 

SPC166700.60 60 
GCT TCG TCA CTG TCC ATG TCT TCA TTA ATT GAC 
TGC AAA GAT AAA TGC GAT TGA ATA TGA 

SPC173900.58 58 
ACA CAC ACT CTC TTG GTA AAC TGT TAA TCT AGA 
AAA CCG GGA AGT TTC CGT TCT TTT C 

SPC174400.57 57 
CAA CAA CGA TAA CTC CTA TGG TGG AAA CAA CAA 
CAA TTC TTC CTA TGG CAG CAA TGA 

SPC174900.57 57 
AGC ATG GTA AGC ACC ATA AGG ACG ACA ACT CCT 
ATG GAA GCA ATG ATA ACT CCT ACG 

SPC175300.63 63 
AAC AAT TAA ACG TCA ACG ACA ATT CGT CGA ACA 
ATA ATT CAT CTG GCA ATA CAG ATA GTT CCA 

SPC175750.57 57 
CTA ACA ACA ATT CCA ATA CAT CCA ACA ACA ATT 
CCA ATA CAT CCA ACA ACG AGT CCA 

SPC176250.61 61 
TCG TTC TCA TTT TCT TTG GTA AAC AGG TTG GTG 
AGC GCA TTC TAG TTC TTT TGA TAG TTA G 

SPC176800.58 58 
CCG CTG AAA GTT GGA ATA AGC AAT CGA TAC TTT 
TAT CTC GGC TGA TCG CAA ATT AAA A 

SPC177250.57 57 
GGA AAA GGC TAA AAT TGC AAA GGC TAA AGG AAG 
CAC TAG ATT TTG TAT GGG AAG TGC 
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SPC177700.58 58 
CCC TGT AGG AGA CGC TGT AAA AGA GAG ACT 
TCC GAT TCA TCC TTT CCT TCG CTC CAT T 

SPC178350.61 61 
TAG AAC CCT TTG AAT TTA CTT GTG CTA ATG TGC 
TGT TCA TTC GAT AAA TCA ACC GTT AGG T 

SPC178800.59 59 
ACT GAC TTT TAG AAA ATT GGT CTT CTG AAA AAC 
GTT GGT AGA GCG ACT TTA TTG CAT TT 

SPC179300.62 62 
AAC AAA ATA GAT GAG GAG GAT TTT ACC TGG GAA 
CTA AAG GAT TCG AGT TTA GAA CTA GAT CC 

SPC186250.57 57 
AGC GTG CAG ATG AGC GCG AGT TTG AAC GAA 
CGT AGC TGG GTA AAA CAT TAT TGA CGG 

SPC186750.57 57 
CTT TGA GGA TTT CCG TAT GAA GAA GGC AAA CCT 
GTT TGC GAA GAA CCA TAA ACT TCC 

SPC187500.63 63 
ACT TCA ACA GTT TGA TTT CAA GCT AAA ATG GTA 
AAT TTT AAT GCA TAA AAT ATA CCC ATT GAG 

SPC187900.63 63 
CAG GTC GCA CGT ATA AGT CTA CCG TAT GTT ATA 
AAC AAA GAT AAT AAA TTT TAA TAA GAT GAC 

SPC188350.62 62 
TAG TGT CGC ATT ATT TAC ATT ACC ACT TAT AAC 
TTA TTT TTG GAC GTT GAA GAC TTT ATT CA 

SPC188950.63 63 
CAC GAA TTA GCA AAA TGC AAT TGA TAT GGC AAT 
TTC AAC CAA TTT TAT AAT TAA ATT TTC CTT 

SPC189450.61 61 
AGG ATT CAT GGA AAA GAG AGA TGA TAC CTT CAA 
TGC TGA TCA AGT GGA ATA TCT TCC TTC C 

SPC189900.58 58 
TTT GGA CCG TAA TAA TGG ACC TTC TTA TTC TCT 
TCT AGC ATC TCT GGC CTC TCA GCT T 

SPC190550.58 58 
CTG TAT ATA TGT AAA ACA ACT TCG TCC GAA GCG 
CTA CAA CAG CAT GCA AAC GTT GAA A 

SPC191050.60 60 
AAC AAG AAA ATC TTT GGC CGA GGA ATG GTT CAT 
GAA TAT ACT TTT AAA AAT CGA AGC TCC 

SPC191550.62 62 
TTA AAG ATA TCC CAT GAT AAT TTT TCA GAC TCC 
AAC GAT TTC TCG TTC CAA AAG AAA CTG AA 

SPC192100.63 63 
TAG TAT CGA TTT TGA AAG TAA TTT CTT TTG CTT 
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TAT TTA ATC ATT AAA AGA TGC CGT AAA GGA 

SPC198900.57 57 
CTC ACG TTA TGC AAT TCC TGA AGA AGC TTC ACT 
CTT TTC GTT TGA GCA TCA TGC AGT 

SPC199350.63 63 
AAA CGT TTC TAT TTA CTG ACA GAT TGA TTA ATA 
TAT TTA CGG ACT GGT TGT AAA GGC AGG CAG 

SPC200000.61 61 
CAA CTG ATT GAG GTA TAA ACA TTA AGA GAC TGT 
AGC TAA TCT CCG ATT TTT CTG CTC CAC T 

SPC200550.59 59 
TTT CCG CTG ATC GTG GTT ATC TCT GTT GTC AAT 
GCA GTT ATC GAG ATG ACT TTC TGT AT 

SPC201050.63 63 
ATT GAT TCG AAG GAA GGG TAT AAA TAA GCA AAC 
CTG AGA AAT ATG TGT TAT CGG TTT ATT ACT 

SPC201750.58 58 
TTC AGA ATA GCT TTC ACA TAT TTT ACA CCA GAA 
CGC CAA ATG CTT GTA ATT CTA TTT T 

SPC202300.58 58 
CTT AGA GCA AGT TTG GTC ATC AAG GTG AGA TTC 
GAA ATT TAG TTG CTT GTT TAC ATT T 

SPC202850.63 63 
ATA TGT ATA GAA CTG TAT CAC CAA AAG AAT CAT 
ATA ATA GTC ATG CTT TAA GCC TCT TCA GTC 

SPC203350.63 63 
TTA AAA CAA TCA TTA TTT GCT AAC AAC TTC TGT 
CTT CAG TTT GCT ACC TGA TAT CGT TTA ACA 

SPC203850.58 58 
TCC CTC CCT ATT TGA GTA TTG CAG CCG TTT GAT 
AAT CAT TTA AAA TAC GAT TCC TTC G 

SPC204350.63 63 
GCG GTC CTC ACC TCG GTA CTT TTC TTC TTT CTC 
TAT ATT ATA TCT TTT GAG ATT TTC TAT ACA 

SPC204850.57 57 
TAC GCA GAC AGG TAT GAT CCT GTC ACA GAT ACG 
TAT TCG TAT TCT TCT GCT CGC CAA 

SPC211900.63 63 
AAA TTT CCA TTC ATT CTC TCT CAT TCC TTT TGT 
TTG AGT CTT GTA TTT TGC GTA TTC GCT CTC 

SPC212400.57 57 
ATC ACC AAC ATG AGA GAT TTC CAA TCT CGT TTC 
GCA GAT CGG TAT AAT CCG GTA ACA 

SPC212850.58 58 
GTA TCC ATG GGT ATT AAC TTG CTT TGG GGT ATC 
ATC ACC TTC ATC GGT ATT TCT TTC C 
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SPC213300.57 57 
CCA TTG ATT ATT GGT GCT CTT TGG CAA TCC ATT 
ACT TTC TTC ATT TAC GCA GCT GTT 

SPC213850.57 57 
AAG GTA TTG AGG ACT CTA GCA ATG ACA TTA GTT 
CCA CAA CAT CTT CGG ATG GCC GTG 

SPC214300.63 63 
TAA AAG TCT CTT TTC CCT TGC TGT CTT TTT ACA 
ATT TAT TCC AAT GGT CGT TAC TGT ATT GAA 

SPC214900.63 63 
AAA TGT TAA AAG TAA GAA TGT ACA CTG CCT TCT 
AAG TTT AAA CCA CCA CTC TCG TCT ATC ATT 

SPC215350.63 63 
CCG CCA ACC ACA ATT TCA AGG AAA TCT TAG AAA 
ACT GTT CGT TGA AAA AGT TAA CAC GAT TAT 

SPC215850.63 63 
TTT TTA ATT GTT TAT TTG ATT TGG TTA ATA TAT 
GAC GAT GGG TTT GTA ACA GGA AAA GAT CGG 

SPC216300.57 57 
GTA TCC AAG AAA TCC TGT GTT AGC ATT CTT TCC 
CGT AAG CCA GGT GAT AGT GTT TTG 

SPC216800.63 63 
GAA ATC TAT GAG GTT CAT GAA GAG TAC ATC CGA 
AGA CTT GAA GGC TTA TGG AAC AAA TAC AAA 

SPC217300.63 63 
TAA TTC AGT AAG TCT TAG CGA TCG TTT ACA TTT 
GAT GAG TTG ACA GGG TTT GTA AAT TCA AAC 

SPC225800.63 63 
TAC TTT ATA TAT TTC TTG TAG ATG GCA AAT ACT 
CTG CGT ATT GCA ATG CAG CGG TTT ACA ACT 

SPC226250.60 60 
TAG ATA CTA CGC TTA TTT ACT GTT CAG CAT ACC 
TTT CTA CTC AAT GTC TAC AAT TCG CAA 

SPC226750.57 57 
AAC AAA CTT ATG CGT AGC GAT CTT GTT CAT CAA 
CAT AGT TAG ACT CAG GCT TAG CAC 

SPC227300.57 57 
AAC GGC ACC GGC ACG ATG GTT TGA GGT ACC 
ATT CTT ACG AGT AAG AGC ACG ATT ACC 

SPC227800.57 57 
CAG GAA GGA AAG AAA TAC CGA TGA ACA TGA TAA 
TAC CCC AAA GCA AGT TAA TAC CCA 

SPC228350.63 63 
TCC GGC CAT GGA CAC GAA GAC CAA CAT GAC 
AAT GGT CAA TGT CTT ACC CAT TTT AAG TAA ATT 

SPC228750.62 62 
AAG CCG AAG GAA CTG AAA CCC CGT CGA ACA 
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AAA GTT AAA TTA ACC GTA AAC CAC AGA TTT TA 

SPC229250.62 62 
CGA ACC TCT GCT ACT TTC TAC CAA ATG TCA CAT 
TGA TAG CAA AAC TGT CCA TAT TGT ACT TG 

SPC229750.58 58 
ATC TAT TAG ACG CAT CCT TAC AAA ATC TTA TCG 
TAG TTC GTA GGG AGG CGA TAT AAG A 

SPC230250.60 60 
TTA CCG TGT ATT GCC AGA CGT GTT AAA TCC CTT 
CAT GAT AAG AGT AAA GAC CAA AAG TTG 

SPC230800.58 58 
GGA AAA GTA GTG CGG TAG GAA TCT CTC TAT TCG 
TTG ATT AAG GAG GGG AAG AGG GGT A 

SPC231250.57 57 
CAG GTA TAG AGA AGG AAG TAG GAA GGA AAG 
GAG AAG AAT AGC AAA GGG AAA TGA ATG 

SPC40109.60 60 
GCT ATT GTC AAG TGA TGC GTC CCT TCC TGA GAC 
ATT TCC TGT AGA ATT CCC CTC AGG GCC 

SPC40229.60 60 
GCT TCT ATA CCA AAC AAC TGC CTC CCG TGA CTG 
ACT TCA AAT TGC ATT CTT GAC GCA AAT 

SPC40349.60 60 
AGA CCT GAG ACA AGG TCT TCA GAC CAA AAA TAG 
TCG CAA AAT GAT AGC ATG CTC GCT TGC 

SPC40469.60 60 
TTC CAT CTA TTA TTG TCA TTA CGT CTT GGT ATC 
ACT ATA CAC GAG TAG AGA AAC AGT ATG 

SPC40589.60 60 
ATT ATA CCA ATA AAA TTA ACA AAT AGT TAG CAT 
CAG GGA ATT TGT ATT TTA TGA TGA TGT 

SPM451.63 63 
AGT GAT AGT GAA GAG TAC CGT AAG GGA AAG 
CAA TGA AAT AGT TAA TCT ATA AGC GAA GAT AGT 

SPM2401.62 62 
TCT ATT TAA AAG GTT ACG TGA GTT GGG TTA AAT 
CCG TCG TAA GAC AGG ATG GTT CCT ATC TA 

SPM4451.60 60 
CAT TTG TTT TCC CAA GGT GTT GTG CAA TTA GTG 
TTA AGT CGA AAT AAG GTA ACC GTA GTG 

SPM6401.59 59 
AAA AAT AAA TAT TCC CGA GGA TCA CAA CAT CCA 
AAG GAT AAA TAA AAT AAG TTC AAG GT 

SPM8051.62 62 
TGG TAT GGT CTC ATC ACT TAT TCA CAG TTG GTT 
TAG ATG TTG ATA CTA GAG CTT ATT TCA GT 
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SPM10201.63 63 
TAG CTT TGG CTA ATA ATT ATA TGA TTG ATG CTC 
CTG AAC CTT CAA ATA TTT CAT ACT TCT GGA 

SPM12201.61 61 
GAA TTT GAT TAC AAA GGT CCA ATA GCT CGT AAA 
AGA ACT TCT GAA TCT AGA CAT CTT CAT T 

SPC154800.63 63 
TAC ATA TAA AGT GCA TCG CAT ACG CTT GAA ATT 
AAC TTT TGA TTC AGA AAT CTT CTC GTG TCT 

SPC155250.61 61 
CGA TTG CCG ATT AAA GCA TTC CGA CAT TTT TGT 
TTT CAT CAG ATT ATT CAA GTA ACG AGT T 

SPC155700.60 60 
AAC GAA AGA ATT TAC TGT TTA ATA TTC TGT TGA 
TTC CTT AAC TTC TTG GAG GAT CTA TTT 

SPC156150.58 58 
CTT TTC TGC TTA ACC CAG TAG GAT CAA GTC CTG 
GTA AAT TGC CCG TGC CTT CAA GGA A 

SPC156750.63 63 
CAA ACA ATT TCA CCA TTA TTC AAA GGG ATG TTG 
TAA GGC AAC AAG AAA ATG AAT ATC ACA AGG 

SPC157250.57 57 
CAG CCG AAT AAC TTT GCA CAA ACG TCG TTC GAT 
TAC CAA CCT AAT CAT CCA AAT GCA 

SPC157800.63 63 
GTT TCA AAA TTA AGG GAA ACA GTC CTA TGT GTT 
TTG TAG AAT TTG AGG AAG TTT GCC ATG CTG 

SPC158300.61 61 
TTT TAA CAT TCA GAA TCA GTT GCA TGA CAG AAT 
TAT TTT ATC CTT TGT GAA AAA TTC CAC A 

SPC158750.62 62 
CGA AGG CTG TTG CTT TCG GAT TGC TAG GAC AAT 
CAA TTA ACA TAT AAA TTC GAT AGC TTC TC 

SPC159300.61 61 
AAG GTT CCT TCT TTT CCA TGA ATT GTC ATT GTC 
AAT ACT TTT AAC AAA ATC TAA AAC ACG C 

SPC159800.63 63 
ACA TAG ATA TAT AGT TCT ATG GGA AAT AAA TAG 
AAA GCA AAG TAT AAG CAT TTT GCC ATT GAT 

SPC160400.58 58 
AAG AAG GAT TAG TTC GAT GGG ATA AAG TGG AAG 
CTG CAT CTT CAA GGA TAA ATT CTG C 

SPC167200.63 63 
AGC ATC TGA AGC TTG AGT ACT TTT GGA ACG CAT 
CGA AAT TGA CTC AGC ATC TGA TGT ATA ATT 

SPC167850.57 57 
GAC TAG GTA TTG AAG GAG CTA ACT GGG GAG 
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AAT TTT GCG CGA ATT GGG CAT TAT ATG 

SPC168450.58 58 
AAC GTT CAT TGA CTG TAG GTG CAG ATG AAA CAT 
TGA CAG AAT TGA TGG AAT GAA AAG G 

SPC169000.63 63 
TTC TAG AAA AGA ATC CTA AAA TTC GAT CAA TAA 
ATT AAC GAA CCT GAT TTA AGG GGA AGG GAA 

SPC169500.57 57 
AAT CGT TGT GTT GTG GAG AGA CAG TCA GCA ATT 
TTA CCC AAG GAA ATC GCT ACG CTA 

SPC170050.63 63 
ATG CTA TTC GAG ACG CAG TAA AGG TAT GGA AAA 
CGT ATG ATT AAT CCA AAT ATC TAC AAT CTT 

SPC170550.57 57 
CAA AGC ACT AAA CTA CAC AGG CGA AAA CGG TAA 
CAA CAA CGT AAA TAA TGA ATT TAC 

SPC171100.57 57 
AAA GCG AAT GTC AAA ACC CCA GAA AAT AGT CAG 
GAG ACT GCA TCA AGA CAT GAT TCG 

SPC171650.63 63 
TTA AAA TTT GCA TGG TGC TGG TTT ATT AAT TGA 
TAT AGG ATG AAG TGT ACA GCG TAA AGG AAA 

SPC172350.57 57 
CGT ATT TGC CAT GGG AAA CGA ATC TTC TTC TTG 
TCT GCT TTC CCT CTT TCA AGA AAT 

SPC172900.62 62 
AAC TGG CGT AAA TCG TAA CAT TTT AAG AAG TAT 
CAA ATA AAT TAG TAT CTC CGA TGT TGC GA 

SPC173400.63 63 
ACT CAT TGT TGT ACA CAA ATC TTC GTA CTT TTG 
TTA CTA AGT GTC CCT TTC CTT ACT ATG TGC 

SPC179850.57 57 
AAG AAG CAA CTC AAC TGG CGA AAG ATA CTG GTC 
TTT CAC TTA AAA TTT GCA CAG ACG 

SPC180350.63 63 
ATA GTC CGT GAA CGT GTT GCT GCT TGG TGG GCT 
AAA GAG GCA GAT ACT TCT CCT AAT AGT ATT 

SPC180850.59 59 
GTA ATT GAT GTA GGT TTC ATC ATG GAA CAG AAA 
ACA ATA GTC GTA AAG TTA CAG AAC GT 

SPC181400.62 62 
TTG GTT GTA TTC TCA TAA ATT TAG GCC AAC CTT 
TGT CTG TCA CTT CAA AAG CTA TAC GAT GC 

SPC181900.60 60 
TCT CTG AAG GTG CTG AAT GAG TGA AAA TGT TTT 
TTA TAC TTT GAT ATA CAC GTT CCA ACT 
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SPC182450.57 57 
GTT TGC AAT TAA GTC TGA GAA TCA TGG TTT AGA 
ATA CTA GTT AGT TCC GCG TTC TTG 

SPC182900.61 61 
ATA GCA ACG GTA TAT AGG ACA ATA GAC CAT GAG 
CAT CGC CAC CAA CAA TAT TCT AGG ATA T 

SPC183500.57 57 
CTC CGC ATC CGT TTG TTT GGA ATT ATT ACT GCT 
GCT GAC CTT GAA CTC TCC ATC ACT 

SPC184050.63 63 
ATC CTG CTT CCT TCT TCT TTC ATT TTA GGA AGT 
AAT TCT TTC AAC ACT CGA ATT TTA CCT GAA 

SPC184700.58 58 
GAA AGC GAG CAA GGA AAC TAA TTC TTT GAG ATT 
GTT TTG TAA AGG AGT ACC AGT CAG C 

SPC185150.59 59 
CTC ATC AGC CAA AAT CCC TGA CAG TTT CTG TTG 
ATA AAG CAA ATG TAA CCA ATT AAC GC 

SPC185650.58 58 
TAC TGC TGT TTA TAA AAT TGA GTA CAG TTC TCT 
CTA ACG CCG ATG TAT CCC TGT GAA C 

SPC192600.63 63 
GAA AGG AAC AAA TAA ATA AGG TAT TTT GAC AAT 
GGA CAG AGA AAT TTG TTT GAA GAT TCT TCC 

SPC193050.57 57 
CCA AAT GAT ATT GCA GAA AAC AAT ACC TCT AGG 
ATA AGA AGC CTT TTC GTA ACC GAA 

SPC193600.60 60 
GGT TTA TCA AGT AAC TAT GAT CGG TTC GGT TGA 
GGA GAT AAA CGC ATT CAA AGT TAG AGT 

SPC194100.63 63 
AAA CTT CTA AAA GTG AAT TTT GAT TGA AAT TAA 
AAG TCG AAG AGA ACT ATT AGC ATT GCC GTT 

SPC194600.57 57 
TGC GGT ATG TTA AAT AGT TGG TTT TTG TGA ATC 
ATA GTC GCT TCA TCT CTC CTT TTT 

SPC195150.57 57 
GAC CTA TAG CCG TGT ACA ACA GTT CAC CTG TCA 
CGG AAA TAA CAG AAA TAA AAC AGG 

SPC195650.59 59 
CGG CGG ATG GAA CTA TTA CAC TCT TTG ATC AAC 
TGA AGC AAA CAC AAT ATT CAA TTG AC 

SPC196150.57 57 
GCA TAC AGC TCC TGT TAG TGC TTT GAG CTT CAG 
TCA TAA CGG TCG CTA TCT TGC TAC 

SPC196700.63 63 
GTG AAC GCA AAT TAG TGG CTT CGT CTA ACA TAA 
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ATC AAA AGG AAC ATT ACT ATA GGT AAA GAT 

SPC197250.63 63 
GAC ATC GAA TAA ACC GGG AAC CAT ATG TTC GAT 
ACA ATC AAC GAT ATA ATC CCT AAA GGT GTC 

SPC197800.57 57 
CTA TCT AGT TCA GGT TCA CTT TCA CGT TTC ATA 
AAT GTG TCA ACG CTG CTC TGG AAC 

SPC198350.57 57 
TGG ATT TAG CAT CGC GTA TAC TTT TCA ACA CTT 
CAT CAG AAG ATT CTT CAG CCT CGA 

SPC205350.63 63 
TTA CCT TGC AGT TAA AGG AAG AAA TGA AGA ATG 
TAT GAA AAT TCT TAC TCG TAA TGC TGG CCT 

SPC205900.57 57 
TAC GTT ATC GTT GGT GAA TCG TAT CCC ATT CGT 
TAT CGT TCC AAG TGT GCT GCC GTC 

SPC206400.63 63 
TTT CAA GTC CCA ATA TGA AGA CAC TTA GAT TTT 
AAG TCC AGA TAA AAT TGG ATT TCC GCC GAA 

SPC207350.58 58 
ATG AAT AAC ATG CGT AAA TAA TAC GGA TTG GAG 
AGT GAA TGA ACA AGT ATC TGC ATT T 

SPC207850.57 57 
GAA AGG AAA AAG AAA AAG GCA CGC GAT GCT AAT 
GAG TAG CAC AGA TTT TGA AAG AAG 

SPC208300.61 61 
AAC GAA ACG AAA CAA AAC GAG AAA ATA ATC TTT 
CAT TTG ATG TTT GCG AAT CAT TAG CGT T 

SPC208800.59 59 
CCG ATA ATA ATT TTC ACC AAT GAC ATA AAT TTG 
CGA CCA ACA GAA TAG AAG CCT GTG CA 

SPC209250.57 57 
TAT TAT GTG TTT TAT TTT TGT TTA TGT ATG TGT 
GTA TGG AAA AGG TTT GAT GGG AAT 

SPC209800.60 60 
GGA TGG TTT CAT AGC TGC ATC ACA CAT TGC AAA 
AGT AGA ACT TGT TTT CAA ACT CTA GTG 

SPC210300.63 63 
GTT TAG TTA AAA CAT TGT TAG TAC ATA GTT AGT 
AGA TAG CTA GGA TCA CAG GGA GAA GCA ATT 

SPC210800.57 57 
TGA TAA GCC ATG ACA CCA AGA AAT CCT AGT AAT 
TAT GAT TCC CTC TTC GAC TCA TCG 

SPC211350.57 57 
CAT CCA TGC GTC GTT ACT TGT CCG TTC GGT AAA 
ACT GTC AGC AAG GCA ATT TTG TGG 
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SPC217850.60 60 
GTA GGG AGT CGA TCT CAG ACT GCA AAT CGC TAA 
ATT TCA AAA TTT GAT AAG GGT AGA GTC 

SPC218350.58 58 
TCA TTA ACA ATA CTA CCC TAT GTA CGT TAC GTT 
GTC ACC GAT AGA TGT AAT GTT TGC A 

SPC219300.57 57 
TTT TAT CAT CTT TAC CGC AAG TTG TTG CAA GTC 
TGG TCA GTA AAT GCG TAG AGC AAG 

SPC221050.61 61 
AGT TAA GCT TAT ATC TCA CAA ACT TAT AAG GCA 
AGA GAA TAA TTA AAG TAT GTT GGT GCT T 

SPC221600.58 58 
CTT TCG TTA CAA TAA CGA CAC AAC TTT GTA CAC 
CCA GCA CTT GAA ACA AAC CAA AAA G 

SPC222200.63 63 
ATA TTA GTA GTC TCA GAA GGG AAT ATA TAT TTG 
GAT GTG AAT CTT TGA ATT CTT GTC TTC TTT 

SPC222700.63 63 
ATT TCT TAG AAA CAA TCT ATT ATT GAA TGA TAT 
ACA CAC AAA TAG TTC AAT TGT TGT GAT TGC 

SPC223300.62 62 
TCA CTC TTT AAC AAC TAC AGT GGA ATA TAC AGT 
TAG AAC GTA CAT TTT GCG TTG CTT TCA CG 

SPC223750.62 62 
TAA CCT CGA AGA AGG TGA CGA AGT TGT ATT CGT 
CTC AAC GTT ACA CGG TAA AAC AAT ATT TA 

SPC224250.60 60 
CCT TCA TCC TCA TCT GAT GAG AAT GGA TGT TGC 
CTG GAA TGA ATA TTG TTA TGA GAA GGA 

SPC224750.58 58 
CGA GAT ATT CCC ACC ACG GGT GTT ATC GCC ATT 
TAG GCT GGA ATC ACT CTC AGC ATT T 

SPC225300.57 57 
TTA AGC ATC AAA TTT TCA CTT ACC TCG TAA CAA 
TAT GTA TGA CCG CAA TGA GTG GTA 

SPC231700.57 57 
TAA AAG TCC ATA AAA CGC TCA TTA TGA GTC GTG 
GAT TCA GAG AGG CTG CTT CTT TCC 

SPC232400.58 58 
AAT TGA GAG AAA TAA TAG AAC GAG ATT TTC GCG 
TAT TTC GAT GGA TTG ATC GGC CAG C 

SPC232950.57 57 
TGG AAG AGA GGT CTT CAG AAT CGG AAT TGG AAT 
CAG CGT GCT CCA AAT ATC TGG CTG 

SPC233450.57 57 
AGA GCA CGA TTA CCA ACA GCT GCA TAG ATG AAG 
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AAA CAA ATG GAT TGC CAA ACA CCA 

SPC233950.57 57 
CAA GTT AAT ACC GAT GGA TAC ACG CCA TTG AGC 
AGT TTT ATA AAG TTT GTG GGT ACC 

SPC234550.63 63 
AAG ACC AAC AAC GAT GTT GTG AAG TTA AAG GAT 
ATT TTG TTT TTA AGA CTT TGT AGG CTC TGC 

SPC235150.57 57 
GCG AAG GGT AAG TTT AGG AAA GAT CAG AGA 
ATG TAG CTC GAA AGA TGC CTT TAC CTT 

SPC235600.60 60 
AGT AGA AAG TTA GTT AAT CGG TTG AGT GGG ATG 
AAT GGG ATT TGA GAG AAA GGT TAT GGG 

SPC236100.57 57 
CAT TAC TTC CAC TCG GTT GGC AGG ACG AAT GAT 
CGT TGG CTA AGC GAT CGT TTA GGT 

SPC236600.59 59 
CGC CGG GTT TCC TTC GGG TTC CTT TCC TTT GGC 
TTT TAC AAC ATT CTC GTC TTG ACA TC 

SPC237100.60 60 
TTT CTT AAT CTT TTT GCT AGT TTT TCT TTC TAT 
GTG AAG GGA GCG GAC GAG TGT CCT TTC 

SPC237600.57 57 
TTG ACG TGA AAG AAG ACC CTT TCT TAG TTA CTT 
GGC AGT CTC CAA CCG ATC CTA AAA 

SPM14301.63 63 
CAG ATT CGT TTA AGC AGA TAT AAG TCA ATT GGC 
AGA CCT TCT GAT TTC CAC TTA GAT TAT GTT 

SPM16601.63 63 
AAT TAA GGT TAG ATT GTC TTA TTC TTC AAA TCT 
TTA ATT GTT TCC CCC TTC AAT CAT TTA AAG 

SPM18651.63 63 
ACA CAC TTA AAT GAT TAT CTT ATG TTC TAT CTA 
ACT TTC ATC TTT ATC GGT GTA ATC TAT GCT 

SPA4665000.57 57 
CCA AAA TTA CGT GAA CGA TTA GAC GAC CCT GAC 
ACT TCC GTT GTA AAT GCT GCT GTC 

SPA4665550.63 63 
AAA ATA TCC GTA CTA TCG TTA AAA CTT TAA TGC 
TCC AAT TAA TCG TTT CGT CGG ATG AAT CAG 

SPA4666200.61 61 
TTT AAT CAA GTC AGT GAC ATT GTT AAC ACC TCT 
GAT ACT ATG GAA GTT CTT GAG TTA CAA A 

SPA4666600.62 62 
AAC CTG AAA ATT TAA ATG TTG AAA CGT CGA TGT 
CAG ATG AGG CTT TCA ATG CTG ATA AAG TG 
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SPA4667100.58 58 
CTT TGA AAA GAG TCT TAA ATC CAA AGA AAT GTT 
ATT TGG TGC AAT TTA CAA AGT GTT T 

SPA4667600.63 63 
TTC GAA GAA CAC GTA ACA TAC TGG CTT TAT TTT 
CTA CTG CAA CAA CTT CAA AAG AAA CAA GAT 

SPA4668200.63 63 
GGT ATT TGA TAA AGT CAT TTG CTG GGT CAA GAT 
TGA CGA TAA TAC TAC TCC TTC CTA TGG CAG 

SPA4668700.63 63 
TCC TTA TGT AAT ATT GAA GTT TGA GAT GAC ATT 
TAA AGA GTT GTG GCA GTT ATT GAA ATT TGG 

SPA4669150.58 58 
AAA ATG AAA ACA TTA CAT CCT GAT GTT GCT CAG 
GGA AAA GAC GCT GCC TTA GCT CAA A 

SPC149000.63 63 
ATA TGG AAA TCT TCG TAG GTA GGA ATT CTT ATT 
TTT GAT GCT TAG CCA TAC GCC AAA TGA TTT 

SPC149500.60 60 
CCT TTG ATT GCC AAG CGT TCA CAA ATT TAT TCT 
TGT AAT TTA AAC GTT TCA TAA CGG CTT 

SPC150050.58 58 
ATT TTG AAC TTT AGG TGT CCT ACG TTT CGC AAT 
GAA TTT TCC TAA TGA ATT TTG AAA A 

SPC150550.58 58 
TTC TTT TTA GTG CAA AAC ATG ATG GGC AAA ATC 
GAA TCA TTT TGG CAT GAG TAG TCG A 

SPC151050.63 63 
GAA TGC CTT CTA CAA GAA TGC GTT ATA TGA ACT 
CAC TTA CAT TCA ATG ATT AGA ACT CTC CGA 

SPC151550.62 62 
TAT AAT TAA GAC GAA GGC AAT GGG GTA CAG CCA 
GTA CAC ATG ATA TCC AAA CAC ATG AAT AC 

SPC152100.58 58 
GAA TCG AGT AAA CTT GCA CTA AGC ATG TTT GTG 
TAT TGG TAG GCT AGT ACA ACG AAA T 

SPC152650.63 63 
TTG AGG AAT TAT GAG TGT AAT GAC TTT TAT CGA 
AGT CAG AAG TAC TGC TTT CCT GGT ATG ACT 

SPC153100.62 62 
ATG CAG TAG TAA ATT AAT AGT AAA AGC TCG ACT 
TTT GAA ATT AAT ACC TGA GTT GGC TTG CT 

SPC153600.63 63 
TAT CAC GAG TAT TAA CGA TTT GGT AAA TGT TAA 
GAC AGT TTA TTA TGT CCG GTC CTC CTG TTT 

SPC154100.63 63 
TAA GCT TGC TAG GGG TTT TAA CGA AAT TGC GTT 
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ATG TCA TTC TGT GTA ATA AAA TTG TCA CCA 

SPC154600.63 63 
TTT TTG AAA GCA AAT TCG TAA GGA GAA TAA TAA 
TAG TAT TAT AAA CAC CAC TTG ATC GCA GTG 

SPC161200.59 59 
GAT TTA AGA TTT CGA CAA CCT ATG AGC AAC GAT 
ATT GTA ATA CAT GAA AGT ATA GTG GT 

SPC161700.57 57 
TGC AAA TGA TAA TGC AAT AGG CAC AGA GAG ACA 
AGC AGT CGA GCA GCC AGC TAA CAC 

SPC162200.63 63 
GAA ATA AGT CAT AAG ATT TAA CTT GCA CTT AGT 
GAA TTG ACT GTA TTA TCA AAT TGG TAG GTC 

SPC162800.59 59 
CTT TGT ACT TAT AGT AAT AGT TGT TGT TCC CTT 
GGC AGC CCA AAA TCA TTT TAA TGG TT 

SPC163350.63 63 
CGT GTA GCG GAT AGC AAT GAA AGA GAA TAT TTA 
GCA GCA GAA ATA AAA AAG GCA AAT GTG ATT 

SPC163850.63 63 
AAT AAT CTT ACT AGA CAA TGA GAA AAG CTA CAA 
TTC ATG CTC TGA GTA GGA TCT TCT GTA CGT 

SPC164350.63 63 
TGG TAG ATC TCT TTT ATC AAT TCG ATA GAG ATA 
ATG ATG GTG CCT TGA ACA ATG AGG AAC TTT 

SPC164850.62 62 
GTG TTG AAT TCC AAA GCA CAC AAA GAT ATT TGG 
TGG TAT GGG ATA TAT TTA TTT AAT ACT TT 

SPC165400.63 63 
CAG TAT CCA GCT TCC TCT ATT ATC CGC ATT CCT 
GAA GAA GAT TCT AAT AAG ACA AAT TAC CAG 

SPC165950.61 61 
TTA CAA AGT CGG GTG TAT AAA TAT GCA TCT TTA 
AAA GTA GCA GAG TCC ATT TCT TGA TTG C 

SPC166500.57 57 
GAT CTG GTG ACT GGA AAA CAT CAG AAA TGT GTC 
CCA CTA TCA ATG ATA AGC GTA CAA 

SPC166950.63 63 
CTT TCA TAG GAG TAT TAT GAA ACA CAT GAC CTA 
AAG TAG CAA ATG GTG GTC GGT TAA CAA GTG 

SPC174150.61 61 
AGG CCT ACA ACG AGT ACC AAA AGT ACA ACA ACA 
ATG ACA GCA ACA ATA ATA GCA GCA ATA A 

SPC174650.57 57 
AAT GAC AAC TCC TAT GGA GGA AAC AAC AAC AAC 
AAC TCC TAT GGT GGA AAC AAC GAC 
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SPC175100.58 58 
GGT AAC AAC AAC TCC TAT GGT AAT TCT GGT AAT 
GGC AGT GGT TAT GGA AAC GAC TAT T 

SPC175500.63 63 
CTC ATG AAT AAA ACA AAT TAC TCT GCT AAT CAA 
TCC CAG AAT GGG AAT TCT CAA AAC AGC GGT 

SPC176000.63 63 
GAA CAG TAA TAA GCA GAA TTA CAA CAA CAA CAA 
TAA CCA GAA TTA TGG CAA TAA CAA CAA CCA 

SPC176500.63 63 
AGT TTG TTT TAG TAG CTT TTC ATC TAA ATA GTT 
AAT ATC TGA TAT ATG CTG AAA TCT ACA GTG 

SPC177050.60 60 
TAC GAC ACA CCA TTG ATC GAT TTG ATT TTT AGA 
GCC GCT TCC ATA CAT AGA AAA TTC CAC 

SPC177500.60 60 
ATT ATC AGC ACT AGG ACA TAT GAT GAA CGG TTA 
AAT ACT ATT GAC AAT CTT CGG AAA GCT 

SPC178100.62 62 
TAA AAG CTA ATT TTG GTT TTC CCA GCC TGG TTC 
TTT GAT GTG ATT CCA AAA TCA AAT CAG AC 

SPC178550.62 62 
AAC AAC TTC TGT AAA TTA TCT CAC TCA TCA CGA 
CAA CGC TTG ATT GCT AAT TAT AAA TTT GT 

SPC179100.63 63 
TTT AGG AAT ATT ATT CGA GAT ATC TAG ATT CTG 
CGC TAG TTC TTG CAA TTG TAA ATG ACA GTG 

SPC179600.61 61 
CCT TTG AGT AAA TTT CAA TCC AAC ACT GAG GAA 
GTC AAT GAA GAC CCA ATT CTA AAG CCT T 

SPC186550.59 59 
AAT AAC CAA AAT TGT TGT TGA TTG CAG CGG GAG 
CAT CTC TGG AAT AAG CAT TGG ACA TT 

SPC187050.62 62 
AAC GGT AAT TAT CGC AAT GCC GTA TAT ACT TTA 
ACC TGT CAG GAA TAG TAC ACT ACG CTA TG 

SPC187700.57 57 
CAC CAC TGT TTG ATA CAC CCT TGC CTG CTA AAC 
AAT TCA ATG TGA GTT TGT AAA TTG 

SPC188100.58 58 
ATG GAA AGG AAA TCC CAA GTT TCA GAT ACA AAT 
AAT AAC TCT ATA CCT ACG TAA GTT T 

SPC188650.63 63 
CTA AAT CAA ATT TTG AAG CGG ATT TTC CTT CTG 
CCA ACG TAT TTA GGT GAA TCA TTC GAT GTC 

SPC189200.63 63 
AAA GTT TGG TGT TAA TTA TTT ATT TTA TTC TGT 
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TTT CTG CTG ATT CAA AGA CTT CGA ACA TGT 

SPC189650.58 58 
GAT CTG ATA CAA ATT TTC AAG GTG AAA ACG AAC 
AAA TTC CTC AAG CTA CAG CTC CTT T 

SPC190200.63 63 
GAT TAA GCG AGA AAG ACT TTT CAA ACC CTT AGG 
AAT TCA ATT TTA TAT TAT CTT TTC AAC ATC 

SPC190800.63 63 
ATA AGC AGC GCC AAG AAA TAA TAA TTA TTT TTA 
GGA CGT GTT CAA GGT AAG TAA TTG AGA ATC 

SPC191300.59 59 
GAA GGT TGA AAC TGC TCG TTT GGA GAA TGA ACA 
GAA ATC TTA CGA AGA AAT GAA ACA AA 

SPC191800.63 63 
AAC TTA AGA TAA AGA ATA TCT AGA CAT AGA AAA 
GCT AGA GCT TAA GAC TTG ATG ACT TCT ACA 

SPC192350.63 63 
ATA ATT ATA AAA GCA AAG CAA TAC ACG GGT CTT 
AGA TAG CTA GTC AAA ACA ATA GCA ATG CGT 

SPC199150.57 57 
TTA GCT TTC GAT CTT AAT TCC AAG CAT CCT AAC 
AAG GAC CAC TTA CCT CAC ATT GTC 

SPC199700.63 63 
TGT TCG AAT TTA CCT ATA GTG TTC AAA TCG TCT 
ACG AGG CTC ATT TAA GTA ATA ATA TAT ACT 

SPC200250.63 63 
TTT CAG AAA ATA TTT ATG TAG TAC TCA GTA AGT 
AGA TGG AAA GGT TTA AAG ATT GCT ATC TCT 

SPC200800.57 57 
CAC TGT TCA AAC GGC ACA AGG AAT TCG TTT CGT 
CAA CTT TTG GTA GTA TGT GTA TTG 

SPC201400.60 60 
TAT GGT AGC ACC ATG GCG TAC TAG TTT TCT GAT 
TTG TCG GTT ACT GAA TAT TTA TTG AAT 

SPC202050.63 63 
TGA AAT TTT TCT CAA AGT CTG CAC AAA CAA TTT 
TGT CAT TAT CCA TTG GAT CTA TAG AAG ACC 

SPC202550.58 58 
TGT GTC AGT TTG CAC TGA ACT TCA CTC AGT CTG 
TTA GTG TTT TCG TTA CTG AAG AAT T 

SPC203100.61 61 
GTG ATG AAA TTA CAC AAA ACT CCA ATC ATG CTG 
ATT CAT GGT TGA GAC AGG ATG ACT GAA T 

SPC203600.59 59 
AAC TTG AAC GTT TTT GCA CTA AGT GCG GGG TTA 
TAA TTG ATG AAT TAG CTA GTT GTC TG 
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SPC204150.58 58 
TTT TCG TTT GTT TAC ATC CCA TTT TTC TCC ACA 
TTA TTG ACA CTG TTT GTT TGT TTT T 

SPC204550.59 59 
TCT CTA TAC TTA CTC TTC TAT TCT TTC CTT CTT 
TCT CTA ATA TTA CTA CAT CGT TGC GA 

SPC205050.57 57 
AAT TCC ATC TTG GGT TCA AAT GAT GGT AGC TAA 
AAT TTG GAC TGG TCT TGG CAT TGG 

SPC212150.59 59 
TAA CGA TAG TTA AAC TTC GGT TTC GGT TCT ATT 
TTG GGC TTT TGT CTT GTC ATT GAA AG 

SPC212550.60 60 
ATG GAT CGC ATT GGT AAG CGT ACC TCT ATT ATG 
TTT TGG ACT ATT GTT TAT TTG ATT GGT 

SPC213100.57 57 
GTT ATC GTA CCT TCC TTG GTC TTG GTG TCA TGT 
CTC TTC AAC AAC TTA CCG GTG ATA 

SPC213550.58 58 
TGT GGG GTT TCC TTA TTT CCT TTT TCA CTC CCT 
TCA TTA CCA ACT CCA TTG GAT TCA A 

SPC214050.63 63 
TTT ATT ATA TCC CTG AAA ATT TCT GAT GTT TGT 
TAG GAG TAG CGG TGG CAT TTT TTA AAG ATT 

SPC214550.59 59 
ATT TTT CAA GTT TGT TAA AAA TTT GAA TGA GTA 
AGG TGA TTA GAG GAA CGG AAT TAT GT 

SPC215100.57 57 
TTG ACT TGC TTG CAA AGG GAA AAG TGT CTT TCC 
AAT ATC TGA CTG TCA ATG AAA GAG 

SPC215600.63 63 
TGT AAG TGA GCA TCT TTT CTG ATG TTA CAA TAT 
CAA TGA TTT CTG AAA GTG AAA CTT CAT TTG 

SPC216100.60 60 
GGA AAT TAG AGG CTA CTC TAC ATC AGT GTT TTC 
CCT TTT AAT TCC ACA CAT AGT TTT CTT 

SPC216550.60 60 
TTT GAT GTT GTT TAC TTT AGT ATC TTG CTA ACC 
AAC ACA AGA CAT TTT TGA ACA GGT TGA 

SPC217050.60 60 
ATT TAC AAT ATA ATG TTT GAG GCA CTT TAG ACT 
TGT TTA TTT CTG TTC CCT TCT TCA ATT 

SPC217550.57 57 
ATG GTT CGA AGG TTC AGA CCT GCA ATA AGT TTA 
ATT AAT TCA AGC AAC CAT GTA CGC 

SPC226050.63 63 
TCA CGT ATA GTT TTA AGT ATA ATA TTT TCA ACC 



 
 
 

275 

ATA GCT TTC AAT GTT TCA CTC TAA GTA GAA 

SPC226500.63 63 
ATT ACC AGT TAA AAA GCA TGC ACA CCA ACT TAA 
TAT TAA TAT CTC TAA CAG AAA GGA CGG AAC 

SPC227000.58 58 
ATA CAG TTC GTT AAT CTC TTC CAA GGT AAG ACC 
TTT GGT TTC ATG GGC AAA CAA GAA A 

SPC227500.61 61 
AAG GAG AGT TCA TAC CAG TAC CCT CAA ACA CCT 
CGA AAC CAT AGT AGA AGT AGT AGT TAT C 

SPC228100.62 62 
TAA TAC CAA TCA AAT AAA CAA TAG TCC AAA ACA 
TAA TGG AAA CAC GCT TGC CAA TGC GAT CC 

SPC228550.63 63 
GTA TTA ATG TAA AGG GAA TGT GGA TAA TAT GAA 
CCA GCG AAA TTA AAT AGA AAA GAA TAG AGG 

SPC229000.57 57 
TGA AGA GAG GAA GCA ATT ATG CTC AGT TTT GCA 
CTC CCA AAT GCG GAA CCA TTT ATG 

SPC229550.57 57 
TAG GAT GGT CAA ATT AGT ACG GCA CTA TTC CGA 
ATG CAC CAT AAC TGT CCA CTC CGC 

SPC230000.57 57 
GAC AAG TAT AAA CAA ACC AGA AAA TGA TAT GAA 
GAG ATG AGA CGA GAT GAT CCA AAA 

SPC230550.60 60 
GGG CAC CCA CTC AAC GAG GCA TAA ATG ACA 
AGA GAC TAT GTA GCG GCA TTT GAC AAA TTA 

SPC231000.57 57 
TAC AAA GAA ATA TCC ACC CTT TTC GAT ATC AAA 
GCA AAC GTC CAT CCC TCA AGA AAA 

SPC231450.57 57 
CTT CAT TTT AGG GTT GTG TGT CGG CTT GCG GAA 
GCA CGT GTA TTA ACG GTG CGA AAA 

SPC40169.60 60 
CTC GAA ACT GTC ACC CCT TCA TCT TCA TCT TCC 
TGC ACT GCC TTC AGA TTG TCC ATA CCG 

SPC40289.60 60 
AAT TGA ATG AAC AAG TCG CAT TGC TCA CAA CCA 
TGG TAT AAT CTA TCA AAA AGC ACA TCT 

SPC40409.60 60 
AGG TGT ACA ACA TCT ATT ACA ATT CAA CGG AAT 
ATT ATT CCT GTT TCA TAA TAT TTC AAT 

SPC40529.60 60 
AAC TCT TAA GAA TGT TTT TGA TCT TTT AAT AGA 
AGC CTT AAT TGG TAT TGA ATA ATT ATA 
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SPC40649.60 60 
TAA TTA CTA TGA AAA GTA CAG TAC TGT TGA GTG 
TTT TTA CCG TCT TAG CGA CAT GGG CTG 

SPM1451.63 63 
GAA TAT CTT AAG GTG TTG AGA GAA CTA TGC TTA 
AGG AAC TCG GCA AAT TAG CTC TGT TAC TTC 

SPM3401.61 61 
GTA AAA GCT TAA CAA GCT CAA ATC GTA ATC ATG 
ACA CTA AGT GGT GCT CTG ATC ACA TTG G 

SPM5401.57 57 
CTT GGG GAA AAT TCG CCT GGT TAA ATC CAT CAG 
AGA CTC GTT TCT ATC ACA ATT AGA 

SPM7051.60 60 
AAG TTT CTA TTC ATC TCC CTA AAC ACT TAA AAC 
CAG CTA ATG ATT CTC AAT TTG GTC ACT 

SPM9051.63 63 
CTG TTT AGC AGC TAC ATT ATA TTT ACA TGG ATA 
CAA ACA TTC ATC AGT ATT CTT TGG AAT CAG 

SPM11201.57 57 
AAA ACC TAC GTC TAT CAT CTC AAA CAT ATA TAC 
AAC TAC GGG TCC CGC TAA GGT CAG 

SPM13351.63 63 
AAC CCT GCA AAG GGA ATG CGT CTT AGT TCA ATG 
ATT TGA TAA CAA TAT TTA TCT TCT TAA TCG 

SPC155000.60 60 
AAC CAT TCT ATT CTT TCT CTT TCC TTG CTA CCA 
CCA TCC ATT TCT AGT CAT TCA GTT CAG 

SPC155450.57 57 
CCT CAC ATC GAC GAC ATA AGC AAA TTC CGT TCT 
CTC ACT AGG CCT ATT GAC CGA TTT 

SPC155900.60 60 
TGA ATA ATG AGT CAA CTT TAT GCT TTA AAC GGA 
CAA CCT CTA GCA GGG AAA TCT GAT GAC 

SPC156450.58 58 
CTA GCT TGG TAC CGG AAC ATT ACT TTG ATG ATA 
CCG ACA AAT CAG TAC ATT CTA AAA G 

SPC157000.59 59 
CCC AAT AAA GGC TCC TAA AGC TGA ATA TCT TAA 
TCA ATC ACG AGC ATC AAT GGG AAA CC 

SPC157600.60 60 
ATA TGT CCG TGT TTG TGA ATT AAA ATG CCT TCA 
GGA AGA AGA ATT TGA TAA TAA AGT GCT 

SPC158050.59 59 
TGC TGT TGA ACG AAA ATA CCA TTT TCA AAA TAT 
GAC TCC AAA ACC AAA TGG AAC CAA CA 

SPC158550.61 61 
TAA CGA CGT CTT CCA TTT AAA GTC GAA TTA ACG 
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ATT TAT GTT TGT TAG TTC GTC ATG GTT T 

SPC159000.62 62 
AAC AAT GGA TTT ATG GTG ATT GTC GTT AAA CCT 
CTG GTT CGA TGA TGA TGT TAG CAA TGA AG 

SPC159550.60 60 
GAA AGG AAC TTG CGG AAT CGT TAC ACT TCA ATA 
AAC TAA TTT CTC GAG CCC TAA CGA ATC 

SPC160050.61 61 
GTG ATC GTA ACC ACC GAT GAG ATC CAA AAG ACC 
ATG TTT TTC AAA AAT ATG AAG AAC TTG C 

SPC160700.61 61 
GCA TGC AAG TAG GTA CAG TGG AGA ACA CAG 
GCA TGA TAA AGA ATG TTG CTA ACA AAA TAA G 

SPC167550.58 58 
GAG GAG GTA AGT AAA CTG GAT TGT TTG GCT TGG 
GAG GGG AAG GAA AGT TAC TAG ATA A 

SPC168100.60 60 
AGA AGA TGA TTT AGC AGA ACC AGA GGC TCG CTT 
TTG TTT TTC ATC AGC ATT TCG ATT AAA 

SPC168700.63 63 
TAA CAA AGA TTC AAA CGT TAA AAA CAA TTA AAG 
AGA AAA TGC AAA ACG CAG TTA AAA TGA TGA 

SPC169200.58 58 
AAT CAA AGT CAA ATC CCC AAC AAG CAA GGC TAT 
GAC AAA GAA GAT GAG CGA AGC AAA A 

SPC169800.63 63 
ATT CTG TAT TTA ACT CCC AGA AAA TGA ATT GTA 
GGT CAA CGA TAT GAT AGT TGA ACG ATG GAA 

SPC170300.63 63 
CAA TGA ACC TCG AAT TAT GTA AAC AGC GTA TTC 
AAA TTA TCG GAA AGA GTA ACT GCT AAC CAG 

SPC170850.57 57 
TCC GAC CCT CTA CAC GAT TTG ATT GGT TTG CTA 
CAG CTT AAT GTG CAT CCT AAC CCC 

SPC171400.62 62 
ATA TGT GAT CAT GTT AAT GGA GGC ATT GCA CTG 
GTT TTA AGT CAG ACT CTA GTT TAA CTC GG 

SPC172050.58 58 
ATA GTA TCG TGG CTG GTC CAA ACC CAT CAT CAA 
ACT TAA CCG ACT CAT TTT GTT TCA T 

SPC172700.60 60 
GCA TTA CTC AAG CTG GAT ATA GGG AGA GAA TGA 
GTT TGT ACG AAA TGG AAC AAG ATT AGT 

SPC173150.57 57 
TTA CCT CGT CCT CGG TTA CTA TTC TAG TGA CCA 
CTA CTG CTG TTG TTG CTA TTC CTA 
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SPC173700.57 57 
AAC TAA ACC TCT TGA TGC CTC GCC TAC TGT TCC 
CTT CCC TAG CGT TAC CCG AGA AAG 

SPC180100.61 61 
AGA TTG TAA CCG TCT TGC CGA AGA GTA TTT GGA 
ATT ACG AAA TAT GCA ATA TTC TAA CTC G 

SPC180600.63 63 
TAA CTT GCG CAT TGC TAG TCT GCC ATA TTC TTT 
TGG TTT GTT CTA TTT ATT TAT TTT CGC TCT 

SPC181100.57 57 
CGC CGC TGT CAT ACA GAA ACC GTG AAT TGG 
TGC GAG AAA ATG GAA CAG TAT TAT TTC 

SPC181650.59 59 
GAA AGG AAT ATT AGA AAG TTT TGC TTG AGC TTG 
CTC TTT GTA TTT TTC TTT AAG ATA GT 

SPC182150.57 57 
TGA TCT TAA GTA GGC ATC AGT AAG TAG TGA ATG 
AAT GAA TGT AAC TCG ACG CGT GAT 

SPC182700.63 63 
AAA AGA TGA AAA GCA GAA GGG TAA GAC TCA ATA 
ATA CCT TGT ATA ATC GAT GAA TTA TTA ACT 

SPC183200.59 59 
CTT GGT AGT TTT TTC TAT TGT GCT TAC GAC AGG 
TGA CGC CTC GGT GTC TAA ATC TAA AT 

SPC183800.58 58 
ATC ATC GAA TGG ATT ATA AGA GCA GTC ATA CAA 
TAT CAC CAC ATT TGC ACA CGC TAA A 

SPC184450.63 63 
CAT ATC GAT TGT AAA TTT CCA ACT GGT TTT CTG 
ATA ACT TAC AAT GTT CAA TAA TCT GAG TCT 

SPC184900.60 60 
CTA ACT GAT AAG TAG TAA CCA AAA TGT CAT ACT 
TTA TTT CGT TTT CTT CTA TTG CTT CGC 

SPC185400.63 63 
AGA AAC TCG CAT TTG GCA ATT AGA TTA TCA ATT 
GCA TAA TAT CCT TCC ATG GTT TCC ATA CAA 

SPC185950.62 62 
TTG GAA TAC CAA GGT CAC AAC TCA AAT ATT TTT 
GAG ATA AAA TAG AAA GTG CTG CAG TCT CA 

SPC192800.59 59 
GTT TGG AAT CAC TGT TAA AAA CTG ACA GAA AAG 
CAA GTA CTC CTT ATG ACC CCA TGA AC 

SPC193350.63 63 
CCT ATA TGG ATT AAT ACA GTT AGT AAA TTA GAA 
AAT GAG AAG TTG AGA TAA GAC ACT GCA CCT 

SPC193850.62 62 
TTT AGA GCG GTC TTA TAT CAG AAA GAA GCA TTC 
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GCT TGA CCT TGA AAC ATT TGT AAT AGA AA 

SPC194350.62 62 
TAA CTA ATA CTT CCA CAA CTA CTA AAA ACC GTC 
TCA ATG GGA ATT CGT CGA CAA TCC TTC AA 

SPC194900.60 60 
AAT GAA AAT CCT TGT AAA CTC CCT TTC TAT CTC 
ACC GTA CCT CAT ATA TGC GAA ACG ACA 

SPC195400.57 57 
AAC AGA TTA TTG TCT GCA ATC TTC TTT CGA TAA 
CCA AGA TAT CAC TGG CGT TGC TTG 

SPC195900.62 62 
TAG TGA TAC CAC TGT TAA GGT AAA TTT CTT TTG 
TCA TTC TAA TAA TTA CTG TTT TCT AAC GT 

SPC196450.58 58 
TAT CCA TTT ATT ACA GTA GGT TCG TTG GGT CAT 
CAT CTA TAG TCA AAT ATA TAC ATA T 

SPC196950.57 57 
GTT TTG AAG GAC TGC TTC AAC CAA GGA CAA AGG 
TGC ATC CCA GTA TGC TTC TTT CAG 

SPC197500.63 63 
TCA AAG GTG TTG AGC AAA GTG TTA TCC ATA AAG 
CCA GCA CAC TTT AAA TTA TCA TTA GCT ACT 

SPC198050.57 57 
AGA CTG CTT TAG TTA CAA GGC CAA CAA GAC ACT 
CTT GAT AAA TGG AAG CAA ATG TTT 

SPC198600.59 59 
TTC TCG AAG CTT AGA AAG TTT ATA ATG GGC GCG 
TAA CAA ATT TGG CAT ATC AGA GTC AA 

SPC205650.63 63 
TTT GAT TCT TGA TGC TGT CAA CTT TGG ATG TAC 
GTT TGG TGC TAT CTT TGT TCT TGA ATA CTT 

SPC206200.57 57 
CAA AGC GAC TCA GAA AAG GAG CGT GGA CCT 
ACT TCT AAG TTA CAT GAA TAC GTT GAG 

SPC206700.62 62 
ATG TTG CAT TTG TTT GAA GTG GTG TTT GTG AAT 
GAA GGA GTA AGA GAG GAG AGA AAG ATA TG 

SPC207600.57 57 
ATG AGA GGA GAC GAG GAG AAT GGA ATG GAA 
TGA TCA TGG CCT AGC TGA TAT AAC GAT 

SPC208050.58 58 
TCT CAT GGT TCG GTG TTA TAG GGT GCT GGA ACG 
AGT AAG ACG ATA AGA CGC AAG CCT A 

SPC208550.59 59 
TAT TAT CAA ACA CCG AAA TAA GGG TAC GCA CTA 
GGG AAA GAC TCA TGT GAT GGA AAG AA 
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SPC209050.57 57 
GTT GAA TGC AAA CAT TTG AAA GAC AAT GGA TGA 
GGG TGT CAA GCA TGA AGA AAG AGA 

SPC209550.60 60 
TGT AAC TAG GTG AAT CAC CAT GTA TCC AAG CTG 
TAC GTA TCC ACG CAA AGT TAA GAT TAC 

SPC210050.57 57 
AGT GTG TGT TGT GGA TCT TGT GGA TCT TAT GGG 
ACA CGA ATG TTT TGA GGG GCA GGG 

SPC210550.57 57 
CGT ACT GCC TGA TGC TGG AGA TAG CTT GTC ATG 
AGG AGG AGG AGG ATG ATG CAT ACC 

SPC211050.57 57 
GGG TCA GTA CCG TTA CAT CCC TTC CCA TCT CTC 
ACT GTC TCA TTG TCT CTC TCT CTC 

SPC211600.63 63 
TAT ATA TTA TAA CTG CAA ACC CGG TCT TTT CCT 
TCG TCC AAC AAT CGG TTT TAT CCA TCT CTA 

SPC218150.63 63 
TCT AAA CAT ACT GGA ATA GAT TAT ATG TGA ACT 
AAG GAA CAT TCG AAT AGA TCA TCT TCA TAG 

SPC219050.63 63 
TGA AAT ACT CTA AAC ACA TCA TGA TTT GTT TGG 
TAA ATC ACA ATT ATA TAG ATG CTT CTT TCC 

SPC220450.63 63 
AAT AAT AGC AAG TGA AAA GTA AAA TTC CAA AAC 
TCA TTT TCA AAA TGT AAT TGC TTC TGA CAC 

SPC221400.58 58 
AAA GAA GCT ATA CCA TTC CCG ATA AAT TTG GGC 
ATC CTT TTG AGA GCA CCT GGA CGT T 

SPC221900.58 58 
CAA TTA CCT TTA CAC ATT TTG CCA AGA AAA CTG 
CAG TCA CCT TTA CAC ATT GTG CCA A 

SPC222500.61 61 
AGA CAC AGC AAA TAA TCC TTG ACA CAC TCA ATT 
CTT TAT CTT ATC CAC CAA CAA CAC AAC A 

SPC223050.57 57 
TAG TAA TTT CAA TAT AGC GGT ATG CGC CCT GTT 
AAC TAA CAA TAT TAT ATT TAT TGT 

SPC223500.63 63 
CTT TCA AAC CTT GGC TCA ACT AAG TTG GGA TCA 
TTG ATT GAT TAT ATG GCT CAA ATA ATA GAA 

SPC224000.58 58 
AAA TCA TTC ATC ATG AAC AGA AAC CAT AGA CCA 
GGT TAA GGT TAC TTG ATT TCT CGG T 

SPC224500.57 57 
CCA AAG CAG TAA TAC CAT TTC CAT TAC TTC CAT 
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TGA CAG GAG CTA CGA AGT CAT CGT 

SPC225050.59 59 
ACT GTT TGA GGC AGC AAC CAC ATT CAT TAT TTC 
ATA TAC AAG ATA TGC TGG TGA AGG TT 

SPC225550.62 62 
GAA CCT CCA TTT TCT CAT CGT CCA AGT TAT TAT 
TAT AAT TTT CTT CAT CGT CTT CAT CCA AA 

SPC232150.62 62 
TTA GGT TCA CTC TAC TCT CCC AAT GTA CCG TGG 
ATT TTT ATT GCC TTT AGC TAT TAA TTT CT 

SPC232650.58 58 
TAA ACA TCC TTA AAG CAG AAA ACG GAA TCA AAC 
AAA AAA CAA TTA AAT ACA GGT GTG T 

SPC233200.60 60 
GAT GTA ACC ATA CTT GAA TCC AAT GGA GTT GGT 
GAT AAA TGG AGT GAA GAA GGA AAT CAA 

SPC233700.57 57 
TTC CCA AAA ATG TTC TGT ATC TGA TTT CCT TAC 
CAA AAA TCT CTG GCC ATG TGC ATG 

SPC234200.58 58 
TGA ATG ATA ACG CCG ATG AGG TAA ATA ACA CAG 
AAC CCA ATA ATG GAA TTA CGC TTA C 

SPC234900.57 57 
TTT TAC GCT TAC GAT TGT TGG ATT GGA ATA GGC 
AGT TGA ATG AGA GAG AAT GGG AAT 

SPC235400.62 62 
GTT GCA TAC CAA GCC CAA ATC CAT TCA CTT CCT 
CTA TGC CTG TTA AAC TCA AAC GCA AAT TT 

SPC235900.59 59 
TCC AAC TAT TCC TCT CTA CCT TAC TCC CCT ATA 
CCT TAT CCT TTG CAT CGG AGG GTT TT 

SPC236350.57 57 
GTC CAA TTC ACC ATT AGC TCA TCC AGG TAA GAT 
GTC TGA ACA CAC ATC GGA TCA CCT 

SPC236850.63 63 
CTA AGG TGA TGG TTG GTA AAA CGT AAA CAA TAG 
ATA GTG AAA CTG TGG GAT ACT ATA AAT CAA 

SPC237350.63 63 
TTC TTT TGT ATT CAT TTA GTT TTA TTA AAC TCG 
TTA TTT GCT TTG CTT GGC ATC TCT TGA CTG 

SPC237850.57 57 
CAT GAT TAG CGC TCC TTT ATC GGA AGT TTT TGG 
ACG TCG TAT GCT ATT GCA AGT TGG 

SPM15401.63 63 
ATT GGT TTC TTA CCT ATT ACA GTT TTA GTC GCT 
ATC TCT TTA TTA GAA TTT GGT ATT GCT TTT 
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SPM17651.57 57 
GGT TTA AGG AGC GAT ATT TGA GCT ATT GTG ATT 
TAT TCA TCG CAG GTT CGA ATC CTG 

SPM19201.57 57 
ACG GAC AAT GTA GTG AAC TTT GTG GTG TAC TTC 
ATT CAT CTA TGC CTA TTG TTG TTC 

SPA4665250.63 63 
ATA CAC ATG CGA TGT CAC TTT TAT ATG AGT GTA 
TCA ACA CAA TAG TTT CCG GTA ATA TGC TTG 

SPA4665900.62 62 
TTA CCT GCC ATC ATA TGG TGC CTC GGT GAA TAT 
GCT GAA TTT ATT GAG GAA TAT CTT GAT AT 

SPA4666400.63 63 
TGA AGT ACC AAA AGA GCT ACT TGA AAA CAT CAT 
CCA AAG TGA TGA TTC GTT AAT TAA TTT TGA 

SPA4666850.62 62 
ATA CTC CTT AAT TTC TTT GGA CCC TCC ACT TTC 
TAC CAA TCA AGG ATC AAT GGG TGA TAT TG 

SPA4667300.58 58 
AGT AGC AAA AGA TGA AGA TGA CAC AAG CAA GGT 
TGA GTA AAA TCT TTC AAC TTT CAA A 

SPA4667900.57 57 
CAG AAG GAT TCG TGC AGC AAT ATG CAT CTA CAA 
GTT GTA CGG ACA CAG GTC TAT AAT 

SPA4668500.63 63 
AAT ACA AAG ATT GGT AGA ATT TCC TTA AAT TTT 
TCA AAT GTA GAC GTT AAA TTC ACC GAA CTG 

SPA4668900.60 60 
CTT TAG GCC CTT TAT TTC TTT TGC ACA GAA GAG 
TTT ATT CAA TCG ACA AAT TAC TGG AAA 

SPA4669450.57 57 
ATA CGG AAA GCA ATG GAG TCT TCA AAT TGG GAT 
AGT GCT CTG CTA TAT GTC AAT CGG 
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