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ABSTRACT 

 

T lymphocytes are distinguished by the expression of #$ TCR or !" TCR on their cell 

surface. The kinetic differences in the effector functions classifies !" T cells as innate-

like lymphocytes and #$ T cells as adaptive lymphocytes. Although distinct, #$ and !" T 

cell lineages produce a common array of cytokines to mount an effective immune 

response against a pathogen. The production of cytokine IL-17 is a shared characteristic 

between the !" T (T!"17) cells and the CD4 T (Th17) cells. !" T cells develop into T!"17 

cells in the thymus whereas CD4 T cells differentiate into Th17 cells in response to  

antigens in the peripheral lymphoid tissues. !" T cells exported from the thymus, as pre-

made effectors, are the early IL-17 producers compared with the late IL-17 producing 

Th17 cells.  In this thesis we describe how TGF$-SMAD2 dependent pathway selectively 

regulates Th17 cell differentiation but not T!"17 cells generation. We further illustrate 

the requirement of WNT-HMG box transcription factor (TF) signaling for the thymic 

programming of T!"17 cells. 

Cytokine TGF$ in co-operation with IL-6 induces the differentiation of Th17 

cells. Conversely, TGF! signaling also regulates the differentiation and maintenance of 

CD4
+
FOXP3

+
 regulatory T cells. The mechanism by which TGF! signals synergize with 

IL-6 to generate inflammatory versus immunosuppressive T cell subsets is unclear. TGF! 

signaling activates receptor SMADs, SMAD2 and SMAD3, which associate with a 

variety of nuclear factors to regulate gene transcription. Defining relative contributions of 

distinct SMAD molecules for CD4 T cell differentiation is critical for mapping the 

versatile intracellular TGF! signaling pathways that tailor TGF! activities to the state of 



 vi 

host interaction with pathogens. We show here that SMAD2 is essential for Th17 cell 

differentiation and that it acts in part by modulating the expression of IL-6R on T cells.  

While mice lacking SMAD2 specifically in T cells do not develop spontaneous 

lymphoproliferative autoimmunity, Smad2-/-
 T cells are impaired in their response to 

TGF! in vitro and in vivo and they are more pathogenic than controls when transferred 

into lymphopenic mice. These results demonstrate that SMAD2 is essential for TGF! 

signaling in CD4
+
 T effector cell differentiation and that it possesses functional 

capabilities distinct from SMAD3.  

 Although SMAD2 is essential for the differentiation of Th17 cells, TGF$ 

signaling via SMAD2 is not required for the thymic programming of innate T!"17 cells.  

Among different !" T cells, V!2+
 (V2) !" T cells are the major IL-17 producing subsets. 

We demonstrate that Sry-high mobility group (HMG) box TFs regulate the development 

of V2 T!"17 cells.  We show that the HMG box TF, SOX13 functions in a positive loop 

for the intrathymic generation of V2 T!"17 cells. SOX13 regulates the programming of 

T!"17 cells by controlling the expression of B-lymphoid kinase (BLK) in developing 

immature V2 !" T cells. BLK is an Src-family kinase expressed by all T!"17 cells. 

Furthermore, we show another HMG box TF, TCF1, the nuclear effector of canonical 

WNT signaling, is the primary negative regulator of IL-17 production by all !" T cells. 

We propose that the antagonism of SOX13 and TCF1 determines the generation of IL-17 

producing !" T cells. We also show that extrinsic cues from #$ T cells do not affect the 

generation of IL-17 producing !" T cells. Using OP9-DL1 culture system, we 

demonstrate that the progenitors of V2 T!"17 cells are the c-Kit
+
 early thymic precursors. 
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INTRODUCTION 

 

The term ‘immunity’ was derived from the latin word ‘immunis’ that was used to denote 

individuals exempted from military duty. In biology, it refers to an exemption from the 

disease state arising from pathogen encounter. The immune system is the collective 

biological machinery comprising of various organs, cells and effector molecules that 

provide protection and give rise to immunity.  

  

The Innate and Adaptive immune system  

In mammals, the immune system is broadly divided into two functional arms- the innate 

and the adaptive immune systems, which work sequentially or simultaneously to perform 

surveillance and protective functions. Cells of the innate immune system act as a first line 

of defense against foreign assault, and include granulocytic cells such as mast cells, 

neutrophils, eosinophils, basophils and myeloid cells such as macrophages, dendritic cells 

(DCs) and lymphoid natural killer (NK) cells (1). These cells recognize pathogen 

associated molecular patterns (PAMPs) (common antigenic determinants expressed on 

the surface of microbes) through their germline encoded pattern recognition receptors 

(PRRs). This recognition is broad and leads to a rapid release of soluble microbicidal and 

cytotoxic factors, cytokines and chemokines. This unbiased, fast and potent response 

against invading pathogens acts without the need for extensive cellular expansion and 

does not generate immunological memory (2).  
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This innate immune response triggers the development of the slower yet more 

specific adaptive immune response, which consists of the thymus derived lymphocytes (T 

cells) and the bone marrow derived lymphocytes (B cells). T and B lymphocytes express 

a wide array of antigen specific receptors that are generated by random gene 

rearrangements during their development. The B cell receptor (BCR) is activated by 

soluble antigens and results in the secretion of antigen specific antibodies. On the other 

hand, conventional !" T cell receptors (TCRs) respond to antigenic peptides presented 

on major histocompatibility complex (MHC) molecules expressed on DCs, macrophages 

and other nucleated cells. The recognition of antigen by a T cell induces the release of 

multiple cytotoxic factors and provides signals for clonal expansion, thus amplifying a 

highly specific immune response to control and eliminate the exponentially growing 

pathogen. The expansion phase is followed by a contraction phase where most 

lymphocytic populations undergo apoptosis leaving behind a residual fraction of cells 

that form the memory cell pool. Memory T and B cells generate a fast and specific 

response upon secondary challenge by the same pathogen. Memory cells are thus key 

mediators of immunity and their effective generation is the basic goal for any successful 

vaccine strategy. 

A set of lymphocytes that share overlapping characteristics of the innate and 

adaptive immune cells are called ‘innate-like lymphocytes’(2). These populations include 

#$ T cells, intestinal intra-epithelial lymphocytes and NK-like T (NKT) cells. These cells 

express rearranged antigen specific T cell receptors like conventional !" T cells. 

However, similar to innate cells, they can also recognize conserved stress induced 
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antigens expressed on infected or diseased cells, or even lipid antigens as in the case of 

NKT cells. Additionally, many of the innate-like lymphocytes such as #$ T cells express 

toll like receptors (TLRs) that are normally expressed on innate cells, which enable them 

to recognize and get activated by PAMPs and danger associated molecular patterns 

(DAMPs) on infected or stressed cells (3). Innate-like lymphocytes exhibit a pre-

activated, memory cell-like phenotype and are poised for the rapid mobilization of the 

effector arsenal. Whether innate-like lymphocytes are capable of generating a memory 

response is unknown and it appears that most of them respond in a similar fashion upon 

either a primary or secondary antigenic challenge. As a consequence of these phenotypic 

and functional properties, these cells are considered to bridge the gap between innate and 

adaptive immune responses.  

A new cluster of cells called innate lymphoid cells (ILCs) has recently been 

described (4). These cells are of lymphocytic origin, some express NK cell specific 

markers and have innate properties by virtue of their ability to rapidly secrete cytokines, 

most notably IL-17 and IL-22, but unlike innate-like and adaptive lymphocytes, they do 

not express rearranged antigen specific receptors. Most ILCs originate in the gut 

associated lymphoid tissues (GALT) and in addition to their role in maintaining mucosal 

tissue homeostasis; they secrete Lymphotoxin that is required for the architectural 

development of lymph nodes (LNs) and Peyer’s patches. The principal cell type critical 

for the development of lymphoid tissues is called lymphoid tissue inducer (LTi) cells and 

all GALT ILCs are related to LTi. In other mucosal sites, such as tonsils etc, ILCs 

producing Th2 cytokines IL-4, IL-5 and IL-13 are found. These ILC2 cells are distinct 
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Figure 1.1. IL-17 producing innate and adaptive lymphocytes. Among the innate 

lymphocytes, subsets of !" T cells form the major IL-17 producing population. These 

cells reside in the epithelial layer of respiratory tract, reproductive tract, intestinal tract 

and other tissues. A small subset of NKT cells also produces IL-17. LTi subsets that 

belong to the ILC lineage, contribute to IL-17 production in the fetal developmental 

stages while ILC17 subsets are the adult IL-17 producers that reside primarily in the LP. 

Th17 cells are the major adaptive IL-17 producers and in homeostatic environment, they 

are found primarily in the LP along with CD8 IL-17 cells. 
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from GALT ILCs and have been shown to play critical roles in clearence of helminth 

infections. 

An important mechanism employed by innate and adaptive immune cells in 

response to infection and insult is the production of cytokines. Cytokines are small 

soluble proteins, which act in an autocrine and/or paracrine manner, influencing both the 

properties of the cell that releases it and the function of other cells that express the 

receptors for these proteins. Arguably the most immunologically important cytokines 

released by some ILCs and the innate-like lymphocytes such as #$ T and NKT cells and 

adaptive !" T effector subsets is IL-17 (5), (6) (Fig.1.1). While the IL-17 producing 

innate-like #$ T cells (T#$17) originate in the thymus and constitute an early source of 

IL-17 (5), the adaptive CD4 T cells differentiate into IL-17 producing effectors (Th17) in 

response to antigenic stimulation in the peripheral lymphoid organs and the inflammatory 

cytokine milieu (Fig 1.2). T#$17 and Th17 cells play critical roles in controlling 

pathogenic infections. However, the inflammatory IL-17 production also implicates these 

cell subsets in enhancing pathology in a variety of autoimmune diseases (5), (6). Though 

both these lymphocytes subsets secrete IL-17, the regulation of IL-17 production 

pathways in these cell types were predicted to be distinct based on their radically 

different origins and chronologically segregated participation in immunity to infections 

using varied modes of cytokine production.  

The work in this dissertation focuses on the identification and characterization of 

the distinct gene networks and key transcription factors (TFs) that program the 

differentiation of adaptive Th17 cells versus innate-like T#$17 cells.  This Introduction is 
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Figure 1.2. Thymic versus peripheral effector differentiation of !" and CD4 T cells 

respectively.  !" T cells differentiate into effector cell subsets in the thymus. These cells 

are exported into the peripheral tissues as pre-made memory like cells, thus they rapidly 

secrete their effector cytokines upon brief stimulation of their cytokine or toll like 

receptors. On the contrary, CD4 T cells differentiate into functional Th1, Th2, Th17, 

iTreg or TFH cell subsets upon antigen encounter and in the presence of a specific 

cytokine milieu in the periphery. 
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divided into three major sections. First part of the introduction focuses on the 

cytokines of the IL-17 family, second part describes the IL-17 producing innate and 

adaptive cells, and the last section reviews the current understanding of the TF 

networks that control the IL-17 production by these different cell subsets. 

  

1. IL-17 and IL-22: Signature cytokines produced by T#$17 and Th17 cells 

1.1. IL-17 in immunity 

Cytotoxic T lymphocyte antigen 8 (CTLA-8), more commonly known as IL-17A, was 

identified in a subtractive hybridization screen of a rodent T cell library (7).  Since its 

discovery in 1993, several structural homologues of IL-17A have been identified and the 

IL-17 family now consists of 6 members (A-F) (8). IL-17A, often termed, as IL-17, and 

IL-17F are the most well characterized members of the IL-17 family. These cytokines are 

produced by GALT ILCs, #$ T cells and NKT cells, and adaptive lymphocytes such as 

Th17 and CD8
+ 

Tc17 cells. Among the fast-acting lymphocytes upon pathogen 

encounter, #$ T cells are the dominant producers of these cytokines while Th17 cells are 

the major late IL-17 producers (5).  

The Il17a and Il17f genes are located in close proximity on chromosome 1 of the 

mouse genome, and their respective proteins share high amino acid sequence homology, 

especially in the conserved Cysteine amino acid residues (8). These cytokines mostly 

form covalent homodimers and rarely exist in heterodimers (9), (10). The signaling from 

IL-17A and IL-17F induces the expression of genes encoding proinflammatory cytokines 

(TNF!, IL-1", G-CSF, GM-CSF), antimicrobial peptides (S1008, "defensin1, RegIII#), 
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chemokines (CXCL1, CXCL5, CCL2 and CCL7) and matrix metalloproteases (MMP1, 

MMP3, MMP13) in epithelial cells, endothelial cells, chondrocytes and adipocytes. IL-

17A also synergizes with other inflammatory cytokines such as TNF! and IL-1" to 

promote the activation of tissue infiltrating neutrophils (11). 

With their above-mentioned inflammatory actions, IL-17 cytokines help in the 

rapid elimination of extracellular pathogens such as Klebsiella pneumoniae (lung 

infection), Citrobacter rodentium (gut infection) and Candida albicans (muco-cutaneous 

infection) (12), (13), (14). However, contrary to its protective role, the IL-17 mediated 

release of multiple inflammatory mediators from different tissue cells, and the 

recruitment of other inflammatory cells, exacerbate the inflammation in several 

autoimmune disorders like collagen induced arthritis (CIA) and experimental 

autoimmune encephalitis (EAE) in mice and in corresponding human diseases (6), (13)  

(rheumatoid arthritis and multiple sclerosis). 

Both IL-17A and IL-17F bind to the same receptor, which is a heterodimer of IL-

17RA and IL-17RC, which is expressed on lymphocytes, epithelial and endothelial cells 

of various tissues (8). However, the binding affinity of IL-17A to the receptor complex is 

much stronger as compared to IL-17F (15), (16). In contrast with the large body of 

knowledge that has accumulated on the generation of Th17 cells and the function of IL-

17 family members, relatively little is known about the signal transduction events 

downstream of IL-17. The IL-17 receptor heterodimeric complex contains extracellular 

fibronectin III like domains and intracellular- SEFIR (Similar Expression to FGF, IL-17R 

and Toll/IL-1R (TIR)) domains (17). The SEFIR domain containing adaptor protein Act1 
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directly associates with IL-17RA and IL-17RC to mediate downstream signaling events 

(18). The Act1 adaptor recruits TNF receptor associated factor 6 (TRAF6) and other 

proteins to initiate the canonical NF%b signaling pathway (19), (20). This activates the 

NF%b subunits p50 and p65 and induces the expression of other NF%B family member, 

the TF I%b&. Other signal transduction programs influenced by IL-17 signaling are the 

MAPK and AP1 pathways. MAPK signaling downstream of IL-17 helps stabilize the 

mRNA transcripts of chemokines such as Cxcl1. IL-17A also induces the transcription of 

the genes that encode the TF CCAAT/enhancer binding protein (C/EBP) (21). This TF 

further promotes the induction of proinflammatory cytokines, IL-6 and Lipocalin2. 

Overall, IL-17 cytokine signaling amplifies a positive loop where factors that will help in 

the secretion of more IL-17 as well as augment the inflammatory reaction are released in 

the milieu.  Magnification of this response, thus mediates the pathology observed in the 

autoimmune disorders. 

 The distinct and redundant functions of IL-17A and IL-17F, which are often co-

transcribed and co-expressed in the same cell types, have been elucidated using I17a-/-
, 

I17f-/-
 and I17a-/-I17f-/-

 mice (13). Mice with genetic ablation of Il17a or Il17f genes 

remain healthy; however, deficiency of both Il17a and Il17f genes increases susceptibility 

to opportunistic infection by Staphylococcus aureus that forms mucocutaneous abscesses 

around the mouth and nose of these mutant mice.  

The Citrobacter rodentium infection in mice results in colonic hyperplasia and 

increased villi length. Normal mice clear the bacterial burden and colitis within two to 

three weeks of infection. However, deficiency of Il17a and Il17f impacts the control of 
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intestinal Citrobacter bacterial load in these mice. The uncontrolled bacterial numbers 

results in the dissemination of bacterial antigens to the spleens causing splenomegaly and 

increased lymphocyte activation. Interestingly, Il17f deficiency results in a more severe 

Citrobacter infection characterized by splenic hypertrophy and acute inflammatory 

changes in the colon compared to Il17a deficiency, suggesting differential requirements 

of IL-17F and IL-17A in the maintenance of mucosal homoeostasis. Both these cytokines 

regulate Citrobacter and other bacterial infections by inducing secretion of antimicrobial 

peptides and chemokines from the intestinal epithelial cells (13).  

As opposed to the dominant role of IL-17F in clearing Citrobacter infection in 

mice, IL-17A is the primary driver of increased inflammatory responses in autoimmune 

diseases such as EAE, CIA and neutrophilic airway inflammation (13). The possible 

explanations for the functional difference between these two cytokines despite their 

structural homology are: Firstly, a signal of greater magnitude ensues downstream of IL-

17A binding to its receptor, which may induce the expression of more inflammatory 

mediators than induced by IL-17F signaling alone (15), (16). Secondly, IL-17RA and IL-

17RC complexes are differentially distributed in different tissue cell types (13). Thirdly, 

certain cell types preferentially secrete IL-17F over IL-17A and vice-versa. For instance, 

colonic epithelial cells have also been shown to specifically express Il17f transcripts (13), 

suggesting an increased requirement of IL-17F in regulating intestinal homeostasis. 

Therefore, it is thought that the quality of IL-17 signaling varies in different tissues 

depending on the relative abundance of these cytokines and differential expression of the 

receptors. 
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Another member of IL-17 family that functions similar to IL-17A and IL-17F is 

IL-17C. IL-17C is secreted by Th17 cells under inflammatory responses (22). Under 

homeostatic conditions, however, it is primarily produced by epithelial cells (23). Unlike 

IL-17A and IL-17F that signal by binding to IL-17RA/IL-17RC heterodimers, IL-17C 

signals by binding to IL-17RA/IL-17RE heterodimers (23). IL-17RE is predominantly 

expressed on epithelial cells with the highest expression on colonic epithelial cells. 

Similar to its receptor, the cytokine IL-17C is mainly produced by the epithelial cells 

upon activation with TLR ligands such as flagellin and peptidoglycan and other 

inflammatory stimuli like IL-1" and TNF!. IL-17C participates strongly in regulating 

homeostasis in the GALT by inducing the expression of a plethora of anti-microbial 

peptides, defensins and chemokines. The expression of these compounds is severely 

affected in Il17c-/- or Il17re-/- colons. IL-17C synergizes with IL-17A and IL-17F in 

augmenting inflammation in autoimmune diseases like EAE (22). In comparison to Il17a 

or Il17f deficient mice, Citrobacter infections in Il17re-/- mice result in much more severe 

gut pathology associated with high mortality rates (23). This indicates that while these 

cytokines have similar functions that are synergistic, they also perform distinct functions.  

In sum, IL-17 family cytokines are critical regulators of inflammatory responses. 

These cytokines are essential for clearing the pathogenic infections. However, they can 

also cause severe unwanted damage to the host either due to an exaggerated response to 

the pathogens that can damage bystander cells or by their direct participation in 

exacerbation of autoimmune reactions to the self. For the latter to occur, multiple triggers 

are required and the first step is the generation of the self-reactive lymphocytes. Once the 
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reaction is triggered the path to self-destruction is led by the synergistic actions of the IL-

17 cytokine family released by the innate and adaptive lymphocytes. 

  

1.2. IL-22 maintains the mucosal epithelial integrity 

Importantly, along with IL-17 family cytokines, other cytokines are released by subsets 

of innate and adaptive IL-17 producing cells that synergize with IL-17A and IL-17C to 

strongly upregulate the expression of anti-microbial peptides, defensins and chemokines. 

The most prominent of these co-factors is IL-22 (22),(3). Similar to IL-17 family 

cytokines, especially IL-17C, IL-22 is required for controlling and clearing Citrobacter 

bacterial infections in the gut (24). Although IL-22 has an additive effect in enhancing 

inflammation in IL-17 dependent autoimmune infections, IL-22 production in the 

absence of IL-17 cytokines leads to protective responses. For example, IL-22 aids in the 

proliferation of epithelial tissues of several tissues including the intestine thereby 

accelerating the recovery of mice after chemical induced colitis (25).   

IL-22 is secreted by Th17, T#$17, #$ intestinal IELs and ILC (NKp46
+
 or NK22 

and ILC22) (4). As discussed in more detail in subsequent sections the regulation of Il17 

and Il22 transcription is distinct. In particular, Il22 transcription is highly dependent on 

aryl hydrocarbon receptor activated by halogenated aromatic hydrocarbons (e.g. dioxin) 

and by-products of dietary vegetables (e.g. tryptophan-linked phytochemical 

compounds), making it a rheostat linking environmental toxins and diet to epithelial 

homeostasis, with both detrimental and beneficial impacts to host (26),(27). IL-22 

receptor complex is predominantly expressed in epithelial cells and it consists of IL-22R 
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and IL-10R" heterodimer (25). IL-22 receptor activates STAT3 and induces the anti-

apoptotic proteins (BCL-2 and BCL-XL), cell cycle regulators (Cyclin D1 and CDK4) 

and mucus secretion promoting molecules. These factors aid in the survival, repair and 

proliferation of epithelial cells in the large intestine, skin, liver and lung (25).  

The presence of multiple members of the IL-17 cytokine family and other Th17-

related cytokines such as IL-22 released in a temporally coordinated manner by the innate 

and adaptive immune cells in the gut and other tissues most exposed to the external 

universe best illustrates a complex and intricate network of cells and factors required for 

mucosal epithelia homeostasis. It is not known how the differential temporal and spatial 

distribution of these cytokines and their receptors during homeostasis and infection 

establishes the healthy balance between inflammation and epithelial integrity. 

Understanding how the heterogeneous populations of effectors that produce IL-17 and 

IL-22 are distinctly made, maintained and functionally engaged is a key to defining the 

elements that constitute optimal immune responses at the mucosal epithelia.    

  

2. IL-17 producing lymphocytes 

2.1 Adaptive CD4
+
 T effector lineages 

Conventional !" T cells fall into two main classes that are distinguished by the 

expression of cell-surface proteins, CD4 and CD8, which mark helper and cytotoxic T 

cells, respectively. CD4 and CD8 T cells originate as separate branches of !" T cells in 

the thymus. The TCR on a CD4 T cell recognizes antigenic peptides derived from 

extracellular or intracellular proteins presented by the MHC Class II proteins that are 
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expressed on professional antigen presenting cells (APC) such as macrophages, dendritic 

cells and B cells. On the other hand, the TCR of a CD8 T cell, recognizes mainly 

intracellular antigens that are bound to the MHC class I molecules, which are expressed 

on all nucleated cells. CD4 and CD8 entities on these two T cell types are co-receptor 

chains that assist the respective TCR’s engagement to APCs, by binding to the invariant 

regions of MHC molecules and thus promoting T cell activation. 

   

 CD4
+
 T helper effector cells (Th) promote B cells to secrete antibodies, enhance CD8 T 

cell responses and CD8
+
 T memory cell generation, potentate the microbicidal activities 

of macrophages, and recruit eosinophils, basophils and neutrophils to the site of 

infections. CD4 T cells also secrete different cytokines and chemokines to orchestrate 

immune responses by both hematopoietic and parenchymal cells. Immune responses 

controlled by Th subsets are countered by a specialized suppressor CD4
+ 

T cell subset 

termed regulatory T cells (Tregs). “Natural” Tregs (nTregs) differentiate in the thymus, 

arising from DP thymocytes, post thymic selection events that also govern conventional 

T cell development.   nTregs were  identified by their distinct expression of IL-2 receptor 

! chain (CD25) in the thymus (28). They express TCRs that recognize self-antigens with 

intermediate affinity to escape negative selection in the thymus. Subsequent to their 

identification, it was shown that they express forkhead family TF FOXP3 (29), (30) 

whose deficiencies or dysfunction underlies the devastating multi-organ autoimmunity in 

scurfy mice and results in immunedysregulation, polyendocrinopathy, enteropathy, X 

linked syndrome (IPEX) syndrome in humans (31), (32). FOXP3 acts as a central 
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transcriptional activator and suppressor of several genes in Tregs and thus specifies a 

significant part of their transcriptional signature. For example, FOXP3 regulates the 

expression of genes that are considered hallmarks of Treg cells such as Il2ra, Ctla4, 

Tnfrsf18, Itgae, Gpr83 and Nrp1 (33). It also suppresses the transcription of Il2. The lack 

of IL-2 production and the constitutive expression of CD25 enables Tregs to consume the 

IL-2 available to effector T cells and thereby competitively restrict effector T cell 

proliferation.  Tregs also suppress proliferation and activation of conventional !" T cells 

through other mechanisms such as direct cell-cell interactions, by release of suppressive 

cytokines like TGF" and IL-10 (34), (35) and by rendering DCs relatively quiescent via 

CTLA-4 engagement of its ligand B7 molecules(36). The ligation of CTLA4 with B7 on 

DCs induces trans-endocytosis of B7 molecules (37) and subsequently limits the CD28-

B7 interactions, to inhibit effector T cell activation. Furthermore, this interaction has also 

been proposed to result in an inside out signaling, where suppressive factors such as IDO 

(indoleamine 2-3 deoxygenase) are induced in T cells that breakdown tryptophan into 

products, which inhibit T cell proliferation (38).  

  Apart from nTregs that arise in the thymus, CD4 T cells can differentiate into 

multiple effector subsets in the peripheral lymphoid organs. Before the discovery of 

different CD4 T cell effectors, it was thought that a CD4 T cell participates in two kinds 

of immune responses: antibody mediated (humoral) and cell mediated. However, the 

humoral and cell mediated responses did not always work in parallel. In 1986, the work 

of Tim Mossman and Bob Coffman showed for the first time that long term CD4 T cell 

lines could be subdivided into two groups based on their cytokine secretions, those that 
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produced IFN# (Th1) and those that produced IL-4 (Th2) (39). This led to the realization 

that CD4 T cells represent a pool of heterogeneous populations, which possess different 

effector functions. How these effectors are generated and what TFs regulate their 

differentiation have been two dominant themes in immunological research for over 20 

years. In the presence of different cytokine microenvironments, a naïve CD4 T cell can 

differentiate into at least five distinct functional lineages: Th1, Th2, Th17, induced 

FOXP3
+
 Tregs and T follicular helper (TFH) cells. The in vitro T helper cell cultures, 

often used to study these functional lineages, utilize a specific Th lineage-promoting 

cocktail of recombinant cytokines and Abs that block cytokines of alternate lineage. 

However, in vivo, several of these effectors co-exist with each other, indicating that the 

rules of Th subset differentiation are much more complex than those mimicked in vitro. 

Overall, it is the relative dominance of a specific effector arm or the co-functioning of 

different effector lineages that determines the clearance of a pathogenic infection with 

limited immunopathologies or susceptibility to autoimmune inflammation.     

  

2.1.1. IFN#+
 Th1 cells 

Th1 cells secrete IFN# as their signature cytokine and TNF! and Lymphotoxin " as their 

secondary cytokines. Their primary role is to help in clearance of intracellular viral, 

protozoan and bacterial infections (40). Outside their roles in clearing infections, Th1 

cells are also implicated in the pathogenesis of autoimmune disorders such as 

Inflammatory Bowel Disease (IBD) and EAE. The key cytokine and the TF that are 

necessary for Th1 cell differentiation are IL-12 and T-BET respectively (41). T-BET 
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induces chromatin remodeling at the IFN# locus, promotes upregulation of the IL-12 

Receptor "2 (IL-12R"2) subunit to amplify IL-12 signaling while inhibiting T cell 

differentiation to other functional lineages.  In vitro, a naïve CD4 T cell can be polarized 

towards the Th1 lineage by the engagement of TCR in the presence of IL-12. During in 

vivo infections, activated innate cells such as NK cells and innate-like #$ T cells act as an 

early source of IFN#.  Early IFN# synergizes with TCR stimulation to induce T-BET 

expression in naïve CD4 T cells. Subsequently, IL-12 released from pathogen-activated 

macrophages and DCs augments T-BET expression to polarize CD4 T cells toward Th1 

lineage (42).  IFN# signaling maintains multiple aspects of inflammatory processes: it 

augments antigen processing and presentation by APCs, stimulates IgG2! antibody 

production from B cells, and enhances phagocytotic and nitric oxide releasing activities 

of macrophages. Further, IFN# augments the recruitment of granulocytes and myeloid 

cells such as neutrophils and macrophages to the site of infections. These functions of 

IFN# capture most activities associated with Th1 cells and IFN#-deficiency results in the 

susceptibility to an array of intracellular pathogens in mice (40). Although IFN# is the 

central cytokine of a Th1 response, Th17 cells that predominantly produce cytokine IL-

17 can also convert to Th1 lineage-like cells by producing IFN#. The reverse conversion, 

Th1 to Th17 cells, is not observed. In vivo, Th17 cells that co-express IL-17 and IFN# 

have been suggested to be the primary pathogenic effector cells in autoimmune diseases 

(43). 
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2.1.2. IL-4
+
 Th2 cells  

Initially characterized as helper cells for B cell activation and class switching, Th2 cells 

are important in protecting the host against extracellular infections of worms (Helminths), 

parasites, and are also implicated in aggravating allergic disorders such as asthma and 

atopic dermatitis. The signature cytokines released by Th2 cells are IL-4, IL-5 and IL-13 

(42). The differentiation of CD4 T cells to the Th2 lineage requires the presence of IL-4 

along with T cell activation signals. The exact source of IL-4 in vivo for initial priming of 

Th2 differentiation remains unclear. Memory CD4
+
 T cells, basophils, NKT cells and #$ 

T cells are some of the early producers of IL-4 that can program naïve CD4
+
 T cell 

differentiation towards the Th2 lineage. IL-4R signaling on T cells activates the TF 

STAT6 that in turn induces the expression of the TF GATA3, which docks onto the Il4 

gene loci, respectively (44). GATA3 can program Th2 cell development when 

overexpressed in T cells (45). Moreover, it can direct cells towards the Th2 lineage even 

in the absence of the TF STAT6 (46). One of the TFs that can upregulate GATA3 

expression in CD4 T cells is IRF4 (47).  Interestingly, IRF4 is also critical for Th17 cell 

differentiation and Treg cell function (48), (49). The exact underlying differences in the 

function of IRF4 in these T cell lineages are not fully defined. However, it is likely that 

many TFs critical for effector cell differentiation and function have multiple co-factors 

and depending on the cell type-specific TF network, they regulate discrete set of genes. 

Throughout T cell development, major TFs are recursively used at different stages of 

maturation, with constantly changing repertoire of target genes under their regulatory 

umbrella. This reutilization is economical, conserves cellular energy and confers onto 
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cellular systems rapidity of response to changing environmental cues by limiting the 

number of effectors needed to alter global genome activity. The differentiation of CD4 T 

cells is an excellent case study where the same cytokines and TFs can have cell type 

specific functions by interacting with a few effector lineage specific factors.  

 

2.1.3 Follicular helper T cells (TFH cells) 

CD4 T cells, whose primary function is to provide help to B cells, have been recently 

grouped as a distinct lineage called as TFH cells. These cells are identified by their 

expression of chemokine receptor CXCR5, cytokine IL-21 and the TF BCL6 (50), (51), 

(52). In the absence of BCL6, TFH cell differentiation does not occur (52), while its 

constitutive expression drives this differentiation (53). BCL6 represses the differentiation 

of Th1, Th2 and Th17 cell lineages while specifically maintaining the TFH cells. These 

results suggested BCL6 as the master regulator for TFH cell differentiation and placed 

TFH cells as a distinct lineage. Multiple factors such as cytokines IL-6 and IL-21 (52), 

(54), (55) and B cells have been proposed to be required for TFH cell differentiation but 

the detailed process for their in vivo differentiation is not known yet. TFH cells are 

located in the Germinal Centers (GC) of lymphoid organs where they help B cells for 

Class Switch Recombination, memory B cell formation and plasma cell differentiation 

among other functions (56). B cells and TFH cells engage in mutual interactions and help 

in the development of each other. Like other T helper subsets, TFH cells also exhibit 

plasticity and in infectious settings, can contribute to IFN# and IL-4 production. The 

production of cytokine IL-21 and the requirement of TFs STAT3 and IRF4 are shared 
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features between TFH cells and Th17 cells (56). Moreover, similar to IL-21, IL-17 has 

also been shown to induce GC formation in the autoimmune BDX2 mice (57). Whether 

TFH cells co-operate with Th17 cells for GC formation under homeostatic conditions is 

not known. 

  

2.1.4. TGF"-dependent iTreg cells 

CD4
+
 T cells can adopt regulatory fates in the peripheral lymphoid organs in the presence 

of antigenic stimulations and the cytokine TGF". TGF" can turn on Foxp3 expression in 

CD4
+
 T cells and generate induced Tregs (iTregs) (58). FOXP3 provides these cells with 

immunosuppressive properties similar to nTregs. The gene expression profiling iTregs 

showed that they express a subset of the nTreg gene signature, such as Nrp1, Itgae and 

Gpr83 genes, but lack the expression of other central nTreg-associated transcripts such as 

Il2ra, Tnfrsf18 and Ctla4 (33). In vitro and in vivo Treg functional assays have shown 

that iTregs possess limited suppressive activity. The reasons for their limited activity 

include: a) Partial epigenetic modifications at certain regulatory Conserved Non-coding 

Sequence (CNS) elements at Foxp3 gene locus that render FOXP3 expression unstable in 

the absence of continuous TGF" availability, thereby permitting a reversion to 

conventional CD4 T effector cells (59), (60) and (b) The inability of induced FOXP3 to 

activate all of its target genes found in nTregs (33).  

Although, it can be said that iTegs do not completely mimic nTregs, the fact that 

TGF" can induce these cells is relevant in vivo especially under non-homeostatic 

conditions when a locally present iTreg cell could help in suppressing the inflammatory 
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responses induced by CD8 T cells, Th1 or Th17 cell types during infections or 

autoimmune disorders. Also, TGF" is central to the differentiation of not only iTregs but 

also for Th17 cells. Therefore, the understanding of Th17 cell generation is tightly 

connected to the differentiation of iTregs. 

  

2.1.5. IL-17/22
+
 Th17 cells 

After the discovery of Th1 and Th2 cells, there were a number of observations that 

remained unexplained. For instance, though Th1 cells were implicated in potentiating 

autoimmune disorders, mice deficient in IFN# or IFN# receptor were found to have an 

increased susceptibility towards CIA and EAE (61). Similarly, EAE was exacerbated in 

the mice deficient for the Th1 inducing cytokine IL-12 (62). Subsequently, it was 

discovered that IL-12 cytokine shares its p40 subunit with IL-23 cytokine and mice 

deficient specifically in IL-23 were found to be resistant to EAE (63). Though IL-23 did 

not promote IL-17 production from CD4 T cells, it was shown to promote the expansion 

and survival of cells that produce IL-17, which were later termed as Th17 cells. IL-23 

expanded Th17 effector T cells were able to transfer EAE more effectively than EAE 

induced by the transfer of Th1 cells alone (64). These results challenged the importance 

of Th1 cells and IL-12 in autoimmune diseases and shifted attention toward IL-23 and 

Th17 cells.  

  Th17 cells were identified as an independent effector T cell lineage in 2005 by 

Casey Weaver’s laboratory (65). Subsequent studies showed that in vitro stimulation of 

naïve CD4 T cells with TCR engagement in the presence of immunoregulatory cytokine 
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TGF" and proinflammatory cytokine IL-6 results in their polarization towards the Th17 

cell lineage (66),(67), (68). Th17 cells produce IL-17A and IL-17F as their hallmark 

cytokines and IL-17C, IL-23, IL-21 and IL-22 as secondary cytokines. Th17 cells, as 

described previously, have dual roles in inducing inflammation in many autoimmune 

disorders while also providing protection against extracellular microbes (Candida 

albicans, Citrobacterium rodentium and Klebsiella pneumoniae) and some intracellular 

pathogens (Francesella tularensis) (14), (69), (70). In vivo, a very small percentage of 

CD4 T cells in the peripheral lymphoid organs secrete IL-17. A relatively significant 

proportion (around 10%) of CD4 T cells present in the lamina propria (LP) of the small 

intestine and colon of mice produce IL-17. However, the cellularity of LP lymphocytes is 

very low under homeostatic conditions (71). Infections by pathogens such as Citrobacter 

rodentium (72) or induction of autoimmune diseases (EAE) (22) increase the 

development of Th17 cells. Therefore, these models are often used for studying the 

cytokines and transcription factors required for Th17 cellular differentiation. 

  The generation of Th17 cells requires three simultaneous signals, TCR activation, 

co-stimulation and cytokine receptor activation. Distinct components of the TCR signal 

transduction pathway convey the quality or quantity of signals to integrate the existing 

activities of TFs or for the de novo induction of new TFs involved in T cell effector 

differentiation. One such example is the Tec family kinase ITK, which acts downstream 

of the TCR to relay the signals for activation of the TF Nuclear Factor of Activated T cell 

(NFAT). Mutations affecting Itk do not completely eliminate TCR signals but result in a 

decreased T cell response. Itk deficient CD4 T cells are impaired in the expression of 
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Il17a, but they can express other Th17 cell associated cytokines normally, including the 

closely linked Il17f (73).  The defect in IL-17A expression arising from Itk deficiency is 

caused by a decreased binding of NFATc1 specifically to the Il17a promoter. These 

results suggested that expression of Il17a, but not Il17f, is controlled in part by the 

strength of TCR signaling and that proper Th17 differentiation requires “strong” signals, 

if the loss of ITK is viewed primarily as a setting for increased signal threshold required 

for T cell activation. However, there are caveats to this interpretation. ITK-mediated 

Ca
2+

/NFAT signaling is likely to be influenced by CD28 costimulatory signaling that also 

activates ITK (74). CD28 has been implicated as both a positive and negative regulator of 

Th17 differentiation (75), (76), greatly complicating the issue. In humans, it has been 

reported that relatively weak, but not strong, T cell activation signals promote Th17 

differentiation (77), suggesting that signals in addition to those generated by TCR have 

major modulatory effects on Il17 transcription.  

Aside from TCR signaling the driving force for the Th17 cell generation is the 

presence of a specific cytokine milieu. Initial studies of murine Th17 cells implicated 

TGF" and IL-6 as the Th17 differentiation factors. The dual role of TGF" in inducing the 

suppressive iTregs and inflammatory Th17 cells strongly reinforced TGF" as the kingpin 

determining the fine balance of immune homeostasis and inflammation, with the 

concentration of TGF" put forth as a major deterministic parameter of the balancing act 

(78). However, Th17 cell differentiation is not entirely controlled by TGF", as other 

inflammatory cytokines IL-1" and IL-23 can also program Th17 differentiation during T 

cell activation (79), (80). Therefore, Th17 cells are now sub-divided into two main 
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categories (80), (81) based on their generation in the presence of two distinct cytokine 

environments: Th17 cells generated in the presence of TGF" and IL-6 are called 

Classical Th17 cells or Th17(") cells; and Th17 cells generated in the presence of IL-1" 

with IL-6 and IL-23 have been named Alternate Th17 cells or Th17(23) cells (Fig.1.3). 

The comparison of gene expression profiles of Th17(") and Th17(23) cells showed 

increased expressions of Il18r, Tbx21 (Tbet), Cxcr3 and Il2 in the latter. The induction of 

these Th17 genes is associated with the development of IL-17
+
IFN#+ 

CD4 T cells that 

develop during EAE and IBD and are thought to contribute to the inflammation and 

pathology in these disease settings (80), (43).Thus, it has been suggested that classical 

Th17 cells are not pathogenic, but that inflammatory cytokine generated alternate Th17 

cells are.  The cytokines that are involved in Th17 cell differentiation are described in 

more detail below. 

  

Transforming Growth Factor "  (TGF") is a morphogen in the Bone Morphogenic 

Protein (BMP) family and a cytokine that is critical for angiogenesis, epithelial to 

mesenchymal transition, cell growth and division, carcinogenesis, and development and 

homeostasis of the immune system (82). In the immune system, it affects most, if not all, 

cell types: It regulates the proliferation and responses of T cells and NK cells, mediates 

class switching of B cells for IgA production, regulates NKT cell development and 

inhibits the maturation and expansion of multiple cell types, including APCs (83) (84). 

Most critically, TGF" is the central cytokine required for the maintenance of peripheral 

tolerance by controlling the nTreg development and imposing quiescence on most 
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Figure 1.3. Distinct sub-types of Th17 cells. CD4 T cells can be differentiated into 

Th17 cells in the presence of TGF! and IL-6 or with IL-1!, IL-6 and IL-23 cytokines. 

The Th17 cells generated in the presence of TGF! are called Classical Th17 cells, 

whereas IL-1! induced Th17 cells are Alternate Th17 cells. These sub-types secrete IL-

17 but they express many distinct markers that could categorize Alternate Th17 cells as 

more inflammatory than Classical Th17 cells.  
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hematopoietic cell types. The absence of TGF" in mice leads to deregulated immune cell 

activation resulting in an early onset fatal multi-organ autoimmunity (85). 

TGF" has three isoforms, of which TGF"1 is predominantly expressed in the 

immune system. TGF" engages a receptor comprising of two subunits, TGF"RII and 

TGF"RI, which are serine threonine kinases and transduce signals through 

phosphorylation of downstream transcription factors called SMAD proteins. SMAD2 and 

SMAD3 (receptor SMADs) present in the cytoplasm undergo phosphorylation upon the 

receptor engagement and are imported to the nucleus with or without SMAD4, where 

they affect a large number of genes primarily involved in cell cycle and differentiation 

(84). The details of the TGF" signal transduction cascade will be described in depth in 

Chapter II, while the functions of TGF" in different cell types, particularly Th17 cells, 

remains the focus here.  

Dissection of the role of TGF" has been performed by using multiple models that 

alter TGF" signaling globally (Tgfb-/-
 mice) and in a T cell specific fashion (Cd4cre-

TgfbrIIfl/fl 
mice) and transgenic mice expressing a dominant negative form of TGF"RII, 

(DNR), specifically in T cells (85), (86), (83). Similar to Tgfb-/-
 mice, Cd4cre-TgfbrIIfl/fl

 

mice and DNR mice suffer from spontaneous T cell mediated autoimmune disorders.  

One of the reasons for the autoimmune manifestations in the absence of TGF" signaling 

is the drastic reduction in the cellularity of nTreg cells.  A number of studies were 

subsequently conducted to investigate whether TGF" affects thymic differentiation of 

nTregs or their survival in peripheral lymphoid organs. Analysis of DNR mice showed 

normal nTreg frequencies in the thymus, but a stark reduction of nTregs in peripheral 
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lymphoid organs (83). However, analysis of TgfbrI CKO neonatal mice (3-5 days old) 

showed an early requirement of TGF" in nTreg development in thymus (87). Further 

investigations have shown a requirement of TGF" in protecting nTregs from apoptosis by 

maintaining a balance of pro-apoptotic proteins (BIM and BAX) and the anti-apoptotic 

TF BCL2 (88). Apart from maintenance of nTregs, TGF" as mentioned before, is 

necessary for the differentiation of iTregs, which require the action of SMAD TFs to 

induce FOXP3 expression (89).   

TGF" signaling was also shown to play a key role in mouse Th17 cell 

differentiation (67). It was shown that T cells from Tgfb CKO and DNR mice did not 

efficiently differentiate into Th17 lineage cells and these mutant mice were protected 

from EAE upon MOG peptide immunization (90). Conversely, transgenic overexpression 

of Tgfb in mice increased the generation of Th17 cells and correspondingly increased the 

severity of EAE. It was also shown that T cell derived TGF" functions in an autocrine or 

paracrine fashion to induce and maintain Th17 cell differentiation (90). 

For Th17 cell differentiation, TGF" by itself can upregulate the expression of 

ROR#t, the master TF of all IL-17 and IL-22 producing lymphocytes (78). IL-6 signaling 

activates STAT3, which further amplifies ROR#t expression and IL-17 transcription. 

Various mechanisms by which TGF" can regulate Th17 cell differentiation have been 

proposed. It has been shown that TGF" mediated suppression of Th1 and Th2 cell 

differentiation pathways is one of the fundamental parameters in which TGF" promotes 

IL-6 dependent IL-17 production (91). Further, TGF" can directly enhance IL-6 signaling 

by increasing the expression of the Il6ra subunit of IL-6R and by inhibiting the 
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expression of STAT3 inhibitory SOCS3 proteins (92), (93). Thus, TGF" enhances and 

maintains IL-6 activated STAT3 phosphorylation to promote sustained IL-17 production 

(93). Importantly, the concentration gradient of TGF" has been suggested to determine 

the fate of effector T cells. It has been shown that lower concentrations of TGF" drive 

Th17 cell differentiation while higher concentrations are inhibitory, instead promoting 

the iTreg differentiation (78). TGF" is one of the most ubiquitously expressed cytokines 

in the immune system, with nearly all hematopoietic cells capable of expressing it. 

However, complex processing is necessary for its full function (94) and the active form is 

extremely difficult to detect in vivo. Given TGF"’s pleiotropic and potent effects, the in 

vivo availability of paracrine TGF" is likely to be tightly controlled and full 

understanding of TGF" function will require more in depth understanding of anatomical 

distributions of TGF" producing micro niches in homeostatic and inflammatory settings.  

 

IL-6 as the essential cytokine for Th17 cell differentiation was discovered when naïve 

CD4 T cells cultured in the presence TGF" and supernatant from LPS stimulated DCs 

produced IL-17. This IL-17 production was completely abolished by the blockade of IL-6 

signaling (66). Further, it was shown that addition of recombinant IL-6 with TGF" 

induced Th17 cell differentiation, while addition of TGF" alone resulted in FOXP3 

induction (95). IL-6 is an inflammatory cytokine that functions in acute phase response 

during infections. It was initially cloned as a growth factor for B cells which induced 

differentiation of plasma cells (96).  IL-6 also acts as a co-stimulatory factor for T cells 

helping in their activation, proliferation and memory cell generation (97). The production 
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of IL-6 by the DCs, monocytes, macrophages and B cells is stimulated by external 

inflammatory stimuli such as LPS, IL-1 and TNF!. IL-6 binds to a receptor complex 

consisting of IL-6R! and the common signal transducer of IL-6 cytokine family gp130 

subunit. The T cell stimulation of IL-6R activates Janus kinases 1 and 2 (JAK1, JAK2) 

and Tyk2, which in turn recruit and phosphorylate STAT3 (97).  

For Th17 cell differentiation, IL-6 activated STAT3 induces the transcription of 

several key TFs (Rora, Rorc and Batf) and cytokines (Il17a and Il17f) (98). Although IL-

6 has been considered the most critical cytokine for Th17 cell induction, it has now been 

shown that Th17 cells can be generated in an IL-6 independent manner. Cytokine IL-21 

has been shown to partially compensate for the absence of IL-6 and it can participate in 

Th17 cell differentiation in Il6 deficient mice (99). Although IL-21 can contribute 

towards Th17 cell differentiation, its major action is to maintain these cells by inducing 

the expression of Il23r on developing Th17 cells (100). Interestingly, a recent study 

showed that normal proportions of Th17 cells are observed in the spleens of the Il6-/- 

mice (101). Th17 cells form a small proportion of the memory T cell pool compared with 

their relatively larger proportions in the LP of the intestine. Despite the normal Th17 cell 

proportions in the spleen, the loss of IL-6 impaired IL-17 production from LP CD4 T 

cells under homeostatic as well as inflammatory environments. This defect was shown to 

be due to distinct populations of DCs that were localized in the spleen and LP in mice. It 

was shown that the DCs in the LP secreted TGF" and the Vitamin A metabolite Retinoic 

Acid (RA) to preferentially induce Treg differentiation (101). In this setting, IL-6 was 

proposed to interfere with the inhibitory effects of RA on Th17 cell differentiation. 

33



However, Vitamin A-deficient mice (102) or RA Receptor A (Rara)-deficient mice 

exhibit a striking decrease in Th17 cell proportions in the GALT (103), ruling out the 

previous conclusion that RA favors Treg cell development at the expense of Th17 

differentiation (104) and raising doubts regarding the IL-6 and RA interaction.   

  

IL-23 cytokine is composed of p19 and p40 subunits, the latter being a common subunit 

of IL-12 and IL-23. The generation of p19 deficient mice led to the distinction of the 

signaling between these two cytokines (63). Similar to the cytokines, IL-23R and IL-12R 

also share a common subunit. However, while signaling through IL-12 predominantly 

activates STAT4, IL-23 signaling instead leads to a strong activation of STAT3 (105). 

IL-23 (p19) deficient mice failed to clear Citrobacter infection (67). Furthermore, p19 

deficient mice were also resistant to the development of EAE (63) implicating a central 

role for IL-23 in Th17 cell differentiation. However, the lack of IL-23R on naïve CD4
+
 T 

cells and the normal IL-17 production by the IL-23R deficient T cells (43)  suggested that 

IL-23 is specifically required for the expansion and pathogenicity of already 

differentiated Th17 cells (106), (107). Consistent with this IL-23 alone cannot generate 

Th17 cells in vitro nor can it replace IL-6. IL-23 is required for generating pathogenic IL-

17
+
IFN#+

 dual cytokine producer cells, as these cells do not develop in Il23ra deficient 

mice, which correlates with increased resistance to EAE induction (107). In Th17 cells, 

IL-6 has been shown to be the major driver of Il23r expression (100), which is further 

amplified by IL-23 itself. IL-23R expression, however, is not restricted to CD4 T cells. It 

is also expressed on T#$17 and IL-17 and IL-22 producing ILCs (108), (3), (109). IL-23R 
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expression on innate effectors does not depend on IL-6 (110) and an alternate pathway 

for innate IL-17 production exists (Narayan et al., in press), as discussed in more detail in 

Chapter III. The activation of IL-23R signaling induces Il22 expression and consequently 

IL-23 participates indirectly in IL-22 mediated protective and pathological responses 

(111). AHR, which is expressed in all innate and adaptive IL-17 producing cells, also 

increases Il22 transcription (26), (3). Which of these pathways is dominant in IL-22 

production is not known. Interestingly, a recent study showed that IL-23R expression and 

IL-23 mediated IL-22 production is reduced in the absence of AhR in the ILCs (27). This 

suggests that AhR and IL-23R pathways converge for IL-23 production; the detailed links 

that would connect the AhR- IL-23R pathway are not yet understood.  

  

IL-1" is one of the 11 members that comprise the IL-1 family of cytokines. IL-1" is 

primarily known for its function in innate responses. Its signaling through the IL-1 

receptor leads to NF%B activation, which potentiates inflammatory responses (112). IL-

1R1 is highly expressed on all innate and adaptive IL-17 producing lymphocytes. During 

Th17 cell differentiation, IL-1" synergizes with TGF" to enhance IL-17 production 

(113), (79). Interestingly, an association of IL-1" with hyper IL-17 production was 

observed upon a gain of function mutation in the NLRP3 inflammasome (114). An 

inflammasome is a molecular platform that senses endogenous danger signals (uric acid, 

cholesterol and others) or exogenous pathogen signals (through PAMPs) and induces a 

signaling cascade to drive the secretion of inflammatory cytokines (115). In mice, a point 

mutation in the Nlrp3 gene lowers the threshold of NLRP3 activation. This induces 
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strong expression of IL-17 inducing cytokines such as IL-1" in DCs resulting in the 

development of an autoinflammatory disease characterized by increased Th17 cell 

responses.  

 Previously published results showed that IL-1" and IL-6 can induce Th17 cell 

differentiation, but this inductive condition was thought to be dependent on the 

endogenous TGF" secretion by the activated T cells.  However, subsequent results 

demonstrated that IL-17 could be induced in the presence of IL-1" with IL-6 and IL-23 

even when TGF" signaling was blocked (80). Moreover, in the absence of IL-1R1 on 

CD4 T cells, in vivo and in vitro Th17 cell differentiation is dramatically compromised. 

IL-1" mediated IL-17 induction involves the induction of IRF4 and ROR#t and 

overexpression of both TFs has been shown to be required to restore IL-17 production in 

Il1r1 deficient T cells (79).  

 

In addition to specific cytokine environments, another unique factor driving in vivo Th17 

cell differentiation is the gut microbiota. The release of IL-17 cytokines, as mentioned 

before, is necessary for the maintenance of homeostasis in the dynamic gut environment.  

Apart from Th17 cells, the LP also contains other IL-17 producing subsets that include 

LTi-related ILCs, #$ T, CD8
+
 T, and iNKT cells. The generation of Th17 cells requires 

the presence of gut flora and they are completely absent in the germ free mice (116). 

While the development of T#$17 cells is independent of microbial flora, their expansion 

in the LP is limited in the germ free mice (117). Further, the development of ROR#t+
 

ILCs is also not dependent on the gut microbiota (118). One of the mechanisms by which 
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gut flora induces Th17 cell differentiation is by releasing the ATP in the gut lumen (116). 

ATP then activates a subset of CD70
hi 

CD11c
low 

DCs present in the LP. This leads to the 

transcription of the genes for Th17 inducing cytokines such as Il6, Il23a, Tnf, and for 

integrin genes !V and "8 that converts latent TGF" to its functionally active state. The 

mechanistic link between the activated ATP receptors expressed on a subset of DCs and 

the altered gene expression that favors the induction of Th17 gene expression program in 

the engaged naïve T cells is not well defined. How bacteria and ATP release in the lumen 

influence iTreg cell differentiation in the gut is also not known.   

The gut flora in the intestinal lumen belongs to several genera. Not all the bacteria 

have the same ability to induce Th17 cell responses. A pioneering work from the Littman 

lab showed that C57BL/6 (B6) mice bred at Taconic contained more Th17 cells than 

those from the Jackson Laboratory (119).  Detailed studies led to the identification of a 

family of bacteria termed segmented filamentous bacteria (SFB) as the causative agent of 

the expanded Th17 cells in Taconic B6 mice (120). It was shown that the colonization 

with SFB alone could confer high Th17 state in Jackson B6 mice. SFB induces genes that 

encode for Serum Amyloid A (SAA) proteins in the LP DCs. These SAA proteins have 

the capacity to induce the secretion of proinflammatory cytokines from LP DCs to 

promote Th17 cell differentiation. Whether this is the sole mechanism responsible for the 

unique ability of this bacteria to promote Th17 differentiation remains to be determined.  

The release of ATP and SAA for enhancing Th17 cell differentiation is a feature 

of commensal bacteria that reside under homeostatic conditions in the gut. Interestingly, 

other mechanisms are at play to increase Th17 cell differentiation upon pathogenic gut 
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infections in mice. Pathogenic bacteria such as Citrobacter rodentium attach to the 

intestinal wall and cause the loss of epithelial integrity by inducing massive apoptosis of 

the epithelial cells. The infected apoptotic vesicles that contain self-antigens and TLR 

ligands like LPS are phagocytosed, causing activation of TLRs expressed on the 

phagocyting cells (72). The activated phagocytes secrete cytokines TGF" and IL-6 and 

prime the gut environment to generate Th17 cells. In a reciprocal condition, when 

uninfected apoptotic vesicles are released and phagocytosed, it results in the secretion of 

only TGF" by phagocytes, which helps in the generation of FOXP3 expressing iTregs in 

the LP. Interestingly, while blocking apoptosis by using mutant Citrobacter strains or by 

inhibiting caspase mediated apoptosis blocks overt IL-17 induction, the basal Th17 cell 

numbers were maintained. This emphasizes that the sensory cells in the LP are triggered 

by various stimuli released by the gut flora. While strong signals like pathogenic assault 

potentially induce a stronger inflammatory response dependent on TLR activation, 

constant, tonic stimuli ensure continuous generation of Th17 cells.   

Although CD4 T cells release most of the IL-17 in the adaptive T cell 

compartment, CD8 T cells can also contribute towards IL-17 production. Cytotoxic T 

cells capable of IL-17 synthesis (Tc17) can be found in the LP (71). This suggests that to 

maintain intestinal homeostasis, there is a strong requirement for IL-17 produced by 

multiple cell types in the gut, which is contributed by nearly all of the major subsets of 

the adaptive and innate lymphocytes. 
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2.2. #$ T cells: innate sources of IL-17  

Despite the increased attention received by Th17 cells in past few years, much of the IL-

17 released during an inflammatory response is actually derived from ILCs and the 

innate-like #$ T cells (5). Unlike Th17 cells that differentiate in a foreign antigen specific 

manner in the context of an established inflammatory milieu, ILCs and #$ T cells are pre 

programmed effectors that can secrete cytokines immediately upon pathogen detection. 

Given that T#$17 cells can be activated by TLR signaling plus IL-23 (3), (121) to secrete 

effector molecules, without an absolute need for the engagement of clonal TCR, the size 

of the responding population at the initial phase of pathogen detection is very large 

compared to adaptive T cells ruled by the clonal selection. For instance, during 

Mycobacterium tuberculosis infections in mice, #$ T cells constitute the dominant IL-17 

producing population present in the lungs soon after infection (122). Similarly, during 

EAE development, a major fraction of #$ T cells make IL-17 in the draining lymph nodes 

at early time-points compared to a minor involvement of Th17 cells (123). Furthermore, 

very few Th17 cells are found in healthy animals and they are primarily localized to the 

gut. However, T#$17 cells reside in multiple organs such as the epithelium of respiratory 

tract, reproductive tract, lung, dermis, as well as in blood, peritoneum and lymphoid 

tissues (5). 

#$  TCRs are proposed to recognize antigens of limited complexity that are 

upregulated on stressed, damaged, infected or transformed cells. One class of such 

antigens are non-classical MHC Class I molecules such as T10/22 and Qa, which are 

upregulated upon stress (124). However, as emphasized earlier, T#$17 cells have the 
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ability to secrete large amounts of cytokines without the need of TCR engagement, by the 

mere activation of their innate toll-like receptors, or inflammatory cytokine receptors. 

This innate sensing and activation are programmed during differentiation processes in the 

thymus. 

  

2.2.1. Thymic development of #$ T cells: Developmental stages 

Both #$ T cells and !" T cells develop from multi-potent precursors in the thymus. 

Thymic T cell development begins with the settlement of uncommitted early thymic 

progenitors (ETPs) that still possess limited myeloid development potential, which gets 

restrained by the thymic environment. The loss of multi-potency and the progressive 

commitment to T cell lineage is a gradual process. The sequential progression of 

thymocyte precursors initiates from the DN1 stage (CD4
-
CD8

-
ckit

+
CD44

+
CD25

-
) to DN2 

stage (CD4
-
CD8

-
ckit

-
CD44

-
CD25

+
) followed by DN3 stage (CD4

-
CD8

-
c-Kit

-
CD44

+ 

CD25
+
), which contain mostly !" T cell lineage committed cells, and finally completed 

by DN4 stage (CD4
-
CD8

-
c-Kit

-
CD44

-
CD25

-
) (125). The gene rearrangements at $, # and 

" loci occur primarily as cells transit from DN2 to DN3 stages (126), (127). The 

productively rearranged Tcrg and Tcrd genes are necessary for #$ T cell differentiation 

whereas successful Tcrb gene rearrangement ("-selection) commits DN3 cells to the !" 

T cell lineage (128). Most #$ T cells arise from the DN2 stage but some #$ T cells can 

arise from DN3 cells (129), however in DN3 cells Tcrg/d expression is inhibited and very 

little intracellular TCR# or TCR$ chains are detectable (130). The " chain on DN3 cells 

forms a complex with an invariant pre-TCR! chain forming a pre-TCR. The cells 
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expressing pre-TCR quickly transition from DN4 stage to the double positive (DP) stage 

characterized by the co-expression of CD4 and CD8 co-receptors. At this stage, cells 

rearrange Tcra gene and start expressing TCR!" on their cell surface. This is followed by 

the positive and negative selection events and eventual downregulation of CD4 or CD8 

co-receptors giving rise to mature CD4 SP or CD8 SP T cells. With the elucidation of the 

steps leading to development of these T cell types, it became necessary to understand 

how the precursor cells undergo this binary (!"/#$) cell-fate decision process.   

  

 2.2.2. Thymic development of #$ T cells: !"/#$ T cell lineage commitment 

Two evolving models have been advanced to account for !"/#$ T cell lineage 

commitment. The TCR instructive model proposes that the strength of TCR signaling 

specifies the fate of T cells to develop into #$ or !" T cells (131). This model proposes 

that #$ T cells develop from relatively strong signaling in DN3/DN4 precursors while 

signaling of lower duration or intensity directs the fate of T cells towards immature !" 

lineage DP thymocytes. In contrast, the stochastic model states that there is heterogeneity 

among the DN1/DN2 cells (variations in gene expressions), which are predestined 

towards #$ or !" T cell fate (132). It further proposes that the acquisition of a functional 

TCR primarily enables the survival and maturation of the lineage-biased cells.  

The initial evidence for stochastic model was provided by the data showing that 

DN2 cells can be separated by their expression of high or low levels of the IL-7 receptor 

(IL-7R). Intrathymic injection experiments showed that IL-7R
hi

 DN2 cells were more 

likely to differentiate into #$ T cells whereas IL-7R
lo

 cells differentiated more toward !" 
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T cell lineage (133). Subsequently, TF SOX13 had been identified as the first #$ lineage 

restricted marker as it was selectively expressed in #$ T cells and not in any !" T cells 

(134). The expression of SOX13 is higher in IL-7R
hi

 DN2 cells that are biased to give 

rise to #$ T cells. The overexpression of SOX13 promoted the #$ T cell development at 

the expense of the !" T cell lineage. In fact, the presence of SOX13 in the DP cells 

induced the expression of #$ T cell genes such as Tcrg and Blk, in the !" T cells. 

Complementary experiments showed a loss of #$ thymocytes in fetal Sox13-/- 
mice. These 

results have placed SOX13 as a candidate for #$ T cell lineage fate determination. 

However, the loss of SOX13 did not result in a complete loss of #$ T cells nor did the 

ectopic Sox13 expression convert all precursors towards #$ T cell lineage, leaving open 

the possibility that other factors and events, including TCR-mediated selection, are 

necessary for full #$ T cell lineage commitment.  

Recently, it has become apparent that #$ thymocytes segregated based on the 

germline encoded TCR repertoire have distinct developmental requirements (Narayan et 

al., in press). Given that these separable #$ thymocyte subsets are endowed with unique 

effector capacities it became important to determine how these #$ subsets are different 

from each other developmentally and whether #$ T cell development is in reality a mix of 

distinct processes, not under one deterministic checkpoint. Systematic gene expression 

profile analysis of all emergent #$ thymocyte subsets distinguished by the germline 

encoded TCR repertoire indicates that there are three distinct subtypes in #$ T cell 

lineage and that they are as different from each other as they are from !" T cells 

(Narayan et al., in press). While more detailed discussion on this subset heterogeneity 
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will follow, this result will require reassessments of most studies on #$ T cell 

development that have treated #$TCR
+
 thymocytes as one uniform population. 

  

2.2.3. Thymic development of #$ T cells: Repertoire of #$ T cells 

#$ T cells are the first T cells to develop in most organisms. Tcrg and Tcrd gene 

rearrangements have been detected in the murine thymus at embryonic day 13 (E13) 

(135). In theory, the clonal diversity among #$ TCRs is greater than that of !" TCRs or 

BCRs, but whether this diversity is relevant for antigen recognition or #$ T cell function 

has not been established. Instead, #$ T cell function correlates strongly with the germline 

encoded Tcrg and Tcrd genes. For example, V#3:V$1 (V3) T cells in the murine skin 

(Dendritic Epidermal T cells, DETCs) and V#4:V$1 (V4) T cells in the reproductive 

tracts express canonical #$TCRs, with no diversity in junctional sequences (136), (137).  

It is believed that the highly restricted TCRs expressed by #$ T cell subsets enable them 

to recognize ligands that are specifically expressed in infected, diseased or stressed cells. 

In addition, IL-4 producing NKT-like V#1.1:V$6.3 (V6) T cells in the liver also lack 

clonal TCR diversity (138). Combined with V#2+
 (V2) and V#5+

 (V5) T cells constituting 

the bulk of adult T#$17 cells and intestinal IELs (iIELs), respectively (139), there is an 

overwhelming evidence that #$ T cell function is linked to germine encoded elements of 

#$TCR, not the RAG-mediated clonal TCR diversity that underpins adaptive !" T cell 

selection and function. 

Activation of Tcrg V gene segments for recombination is not random, being 

tightly regulated based on the proximity to J gene segments and cis acting promoter 
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sequences (140). The early fetal thymus (E13-E15) contains large proportions of V3 

cells, which mainly home to the skin. The Vg3 gene at the Cg1 locus rearranges 

exclusively at this fetal stage and the development of these cells specifically requires the 

fetal stroma (141). Following V3 cells, a wave of V4 cells originate at E15-E17 in the 

fetal thymus. These cells home to the reproductive organs (uterus and vagina), oral-

respiratory tract (tongue, lungs), and can be found in circulation in the blood and the 

lymph nodes in the adults. Similar to DETC cells, V4 cells also arise mainly in the fetal 

thymus as Vg4 gene rearrangements wane after birth. Adult thymus derived V5 subset of 

#$ T cells makes up a major population of iIELs. These cells were initially suggested to 

undergo extrathymic development as they could develop in athymic mice. However, 

subsequent cell fate mapping studies revealed that committed IEL precursors are 

exported from the thymus to cryptopatches. (139). The main #$ T cell subsets originating 

in the adult thymus are V#1.1
+
 and V#2+

 (V2) cells. V#1.1
+
 cells can be divided into 

V$6.3
+
 cells (V6) cells and the rest of V#1.1

+
V$6.3

-
 (V1) #$ T cells. V6 cells produce IL-

4 while V1 cells are the primary IFN# producers of #$ T cell lineage. Hence, V1, V2 and 

V6 #$ T cell subsets are the main circulating and tissue resident populations of #$ T 

cells that are found in the adult blood, spleen, LNs and in non-lymphoid tissues. V1 

and V6 cells are particularly prevalent in the liver, whereas V2 cells form a major subset 

of lymphocytes present in the lungs and the dermis (Fig.1.4).  
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Figure 1.4. !" T cells arise in sequential waves in the fetal thymus that home to 

specific tissues. V3 and V4 cells form the early waves of !" T cell development, and are 

generated at ~E13 and ~E15 respectively. V2 cells start arising at ~E17 but they continue 

to develop in the thymus through adulthood. V5 cells form the major proportion of Intra-

epithelial lymphocytes (IELs) in the intestine. V!1.1+ cells predominantly arise post-

natal and are further segregated into V1 and V6 cell types.     
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2.2.4. Thymic development of #$ T cells: #$ T cell subset function 

Similar to CD4 T cells that are divided into Th1, Th2, Th17 and iTreg lineages based on 

their functions, #$ T cells also possess distinct innate effector lineages that secrete a 

discrete cluster of effector cytokines. CD4 !" T cell helper/effector lineages develop in 

the peripheral lymphoid tissues in response to antigenic stimulation of the TCR and 

specific cytokines (section 2.1). But, #$ T cell effector subsets are programmed in the 

thymus and are exported as pre-made memory cells in the peripheral lymphoid and non-

lymphoid organs (3). Unlike !" T cells, #$ T cell effector subsets is segregated on the 

basis of specific V# and V$ gene usage. Thus, #$ T cell functional subsets that originate 

in the murine thymus are composed of T#$17 cells made up of adult-thymus derived V2 

and fetal-thymus derived V4 cells, Th1-like IFN# producing V1 cells and NKT-like IL-4 

and IFN# dual producing V6 cells. The gene expression analysis of different #$ subsets 

during their development in the thymus showed that the acquisition of these effector 

functions occurs in a step-wise manner (Narayan et al., in press) (Fig.1.5). #$ cell subsets 

emerge as immature cells that can be identified by their high expression of Heat Stable 

Antigen (HSA, CD24). At this earliest identifiable developmental stage V2 cells have 

been shown to be molecularly distinct from V1 and V6 cells, while V1 and V6 cells are 

nearly identical. Upon transit to mature (CD24
lo

) state, V1 and V6 cells diverge 

molecularly to become distinct effectors. Critically, the intrathymic differentiation of V2 

T#$17, V1 (Th1-like) and V6 (IL-4
+
 NKT-like) subsets are uniquely guided by the 

expression of TFs ROR#t, EOMES and PLZF, respectively (Narayan et al., in press). The 
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Figure 1.5. !" T cells effector lineages. !" T cells in an adult thymus are comprised of 

Th1 like-V1 cells, NKT like-V6 cells and Th17 like-V2 cells 
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same TFs program !" T cell effector function with ROR#t, EOMES and PLZF 

controlling IL-17, IFN# and IL-4 expression, respectively (71), (142), (143). 

#$ T cell subsets serve unique functions in different tissues. For example, V3 

DETCs are the only resident lymphocyte populations in the murine skin. They play an 

important role in the wound repair processes by releasing KGF and EGF necessary for 

the wound closure (144). V5 iIELs are located primarily in the small intestine where they 

are required to maintain intestinal homeostasis by promoting the repair of damaged 

epithelium (145) as well as for limiting bacterial penetration  into the host tissue by their 

release of antimicrobial lectins (146). V6 cells help in IgE antibody production by B cells 

by their capacity to secrete IL-4. In Itk-/-
 mice the expanded V6 cells have been shown to 

be responsible for hyper IgE syndrome (147). 

A major function of all #$ subsets is to protect against pathogenic infections. #$ T 

cells impact immune responses to diverse bacterial, protozoan and viral pathogenic 

infections. An example is Listeria monocytogenes infection, where #$ T cells play a non-

redundant role. In the absence of #$ T cells, unusually large atypical abscesses in the liver 

of the Listeria infected mice are observed (148). #$ T cells are the major early source of 

IL-17 in the lungs of Mycobacterium tuberculosis infected mice. IL-17A from #$ T cells 

induce ICAM-1 and LFA expression in infected macrophages, leading to effective 

granuloma formation necessary for the containment of the bacteria (122).  Vaccinia virus 

infection of Tcrd-/- 
results in increased viral titers and mortality. Innate #$ T cells can 

clear and control virus infection up to 8 days post infection without !" T cells. However, 
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the response does not persist and the viruses eventually expand rapidly in the absence of 

adaptive T cell responses (149) 

  

2.3. T#$17 cells: innate sources of IL-17  

T#$17 cells found in adult mice include two subsets: the canonical TCR expressing, fetal-

derived V4 cells and V2 cells continuously produced in the thymus after E17.  While V4 

cells are primarily generated in the fetal thymus and are thought to self-renew in tissues 

like V3 cells in the skin. Though the V4 and V2 subsets possess different developmental 

requirements and express distinct TCRs, they are functionally alike.  

 

2.3.1. Cellular events during intrathymic differentiation of T#$17 cells 

T#$17 cells are IL-7R
+
CCR6

+
IL-1R

+
IL-23R

+
TLR2

+
CD27

- 
(150), (3), (117), (151). These 

cell surface markers are uniquely shared with Th17 cells and GALT IL-17/IL-22 

producing ILCs (152), (153), (5). During thymic development the characteristic markers 

of T#$17 cells are first detected on the cell surface at the CD24
lo

 mature stage (Narayan 

et al, in press). T#$17 cells also acquire some unique receptors that are not shared with 

Th17 cells at the immature thymic stage (CD24
hi

). These include the scavenger receptors 

SCART-1 (CD163L1) and 2 that are downregulated when #$TCR is crosslinked.  The 

role of SCART-1 and 2 in T#$17 cells is not well understood (154).  

It has been suggested that #$TCR
+
 thymocytes that recognize ligand and signal 

are selected to become IFN# producers and those that do not interact with a ligand default 

to IL-17 producers (123). This conclusion was based on the analysis of the developmental 
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potential of T10/T22 non-classical MHC Class I specific #$ T cells. These #$ T cells form 

<0.5% of total #$ thymocytes as determined by the MHC tetramer assay and they can 

develop in the absence of their ligands in b2m-/-, T10-/-
 or T10-/-T22-/-

 mice.  The absolute 

numbers of these cells were unaffected in the absence of their ligands and they did not 

express markers associated with TCR signaling (CD122 and lower expression of the 

TCR). However, stimulation of the T10/T22 cells that developed in the absence of their 

ligands resulted in IL-17 production, while those from WT mice produced IFN#. Hence, 

these results suggested that T#$17 cells do not require ligand dependent stimulations to 

produce cytokines. This is likely an oversimplification. Immature V2 cells that are the 

immediate precursors of T#$17 cells require TCR-ITK signaling as the gene expression 

profile of Itk-/- 
immature V2 cells is divergent from that of WT V2, so much so that Itk-/- 

immature V2 cells resemble WT immature V1 cells that are destined to become IFN#+ 

producers. While the absence of Itk does not alter the core transcriptional network 

associated with V2 cells (Narayan et al, in press) some form of TCR signaling is 

important for proper maturation of V2 T#$17 cells. Further, T#$17 cells express Src 

family kinase B lymphocyte kinase (BLK), best known for its function in BCR/FcR 

signaling in B cells (155). T#$17 cells are not generated efficiently in Blk-/- mice (156). 

While it is not known what activates BLK in #$ T cells, the specific requirement for BLK 

indicates unique biochemical properties of T#$17 cells and that the generation of most 

T#$17 cells involves signaling.  

 Another distinguishing marker that separates T#$17 cells and IFN# producing #$ 

T cells is CD27, a TNF family member, expressed on all developing #$ cells, but not on 

52



T#$17 cells (151). The ligation of CD27 with its ligand CD70 helps in the production of 

IFN#, and survival and expansion of #$ T cells. The absence of CD27 reduces IFN# 

production from #$ T cells but it does not affect the development of T#$17 cells (157). 

Furthermore, it has been shown that TCR stimulation of CD27
-
 #$ T cells leads to 

apoptosis. The differential expression of CD27 on IL-17 versus IFN# expressing cells 

reinforces the discrete developmental requirements of T#$17 cells. The unique gene 

network underpinning T#$17 differentiation is the subject of Chapter III.  

  

2.3.2. T#$17 cell function 

Similar to Th17 cells, T#$17 cells have protective and pathogenic roles in infections and 

autoimmune disorders, respectively. T#$17 cells participate in Mycobacterium 

tuberculosis (lung infections), Candida albicans (muco-cutaneous infections), Escherichia 

coli (gut infections) and a variety of other microbial infections (122), (158), (159). The 

early IL-17 production from these cells keeps the pathogen in check and creates a 

conducive environment for subsequent antigen specific responses by Th17 cells. Thus, it 

is the co-operation of early-innate T#$17 cells and adaptive Th17 cells that results in the 

control and elimination of pathogens (Fig.1.6). Although both innate and adaptive IL-17 

producing arms play significant roles, the unique early contributions of innate T#$17 cells 

are often not appreciated in infection models due to very limited studies using proper 

animal models and in few reported cases, minimal changes were observed in the health 

and survival of an organism in their absence. A clear verdict on the essential function of 
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Figure 1.6. The early and late IL-17 producers. Innate-like T!"17 cells are 

preprogrammed effector cells residing in the peripheral tissues. They express TF ROR!t, 

cytokine receptors for IL-1# and IL-23, and toll like receptors like TLR2. These cells can 

be activated in the presence of cytokines IL-1# and IL-23 alone or in combination with 

stimulation of their TLR by PAMPs. Due to their pre-activated feature, they can produce 

cytokines in a few hours after their activation. On the other hand CD4 T cell 

differentiation into Th17 cells requires antigen specific stimulation of their TCRs and the 

presence of cytokines like TGF#, IL-1# and IL-6. Development of these adaptive effector 

cells takes 3-5 days. Once polarized, they migrate to their target tissues and take over the 

early IL-17 producers by their rapid proliferation abilities. 
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T#$17 cells awaits infection studies using pathogens that elicit a strong innate IL-17 

response necessary for their control.  

The clonal expansion and strong IL-17 cytokine production makes #$ T cells key 

players in many autoimmune diseases such as EAE, psoriasis and IBD. In EAE, #$ T 

cells are the first T cell types to respond to IL-23, migrate to the CNS and secrete IL-17 

and other inflammatory cytokines (160). It is suggested that the presence of #$ T cells in 

the CNS inhibits the suppressive functions of FOXP3
+
 nTregs as well as the conversion 

of conventional !" T cells to iTregs. The ineffective Treg function has been proposed to 

cause the expansion and infiltration of Th17 cells contributing to the pathology and 

inflammation in EAE. The increased resistance of Tcrd-/-
 mice to EAE development after 

MOG immunization further supports the role of #$ T cells in contributing to this 

autoimmune inflammatory disorder.  

Similar to the EAE where Tregs are suppressed by T#$17 cells, interplay of Tregs 

and #$ T cells is also observed in IBD (161).  It has been shown that in the absence of 

Phosphoinositide-dependent kinase 1 (PDK1) in T cells, mice succumb to colitis. The 

development of T cell dependent colitis seemed paradoxical, as PDK1 is important for 

the activation of conventional T cells. Subsequently, it was revealed that Tregs present in 

the Pdk1-/-
 deficient mice are dysfunctional in making regulatory cytokines such as IL-10 

and TGF". The absence of IL-10 was suggested to cause the abnormal expansion of V2 

and V5 #$ T cells in the IEL compartment of the colon of these mice. Further, V2 #$ T 

cells in the colon induced IL-17 dependent inflammation.  
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Through their presence in the epithelia of several distinct tissues, T#$17 cells 

serve as sentinels of the immune system, poised to serve the first line of defense.  But, the 

presence of the armed effector cells in these tissue interfaces can be dangerous under an 

inflammatory condition.  Psoriasis is one example in which the V2 cells residing in the 

dermal layer cause skin inflammation by producing IL-17 (162). IL-17R signaling in 

epithelial cells mediates recruitment of neutrophils, epidermal thickening and 

hyperplasia. The other inflammatory cytokines released by T#$17 cells, IL-22 and IL-6, 

further enhance this inflammation.   

In sum, T#$17 cells are strong inducers of inflammation in many organ specific 

autoimmune disorders and understanding the development and maintenance of these 

innate cells is crucial for providing effective treatment options in clinics. Although '#$17 

cells are the major innate IL-17, other ILCs also contribute significantly to early IL-17 

production, particularly in the gut (109). Thus, understanding how innate IL-17 is made 

requires more integrated analysis of all sources of innate IL-17 in autoimmune models 

and in infectious settings.  

  

2.4. Other innate lymphoid sources of IL-17 

2.4.1. iNKT cells 

A small proportion of iNKT cells that are CD44
hi

 NK1.1
-
 ROR#t+

 produce IL-17 upon 

their TCR stimulation (163). Similar to T#$17 cells, IL-17 producing iNKT cells are 

generated in the thymus in an IL-6 independent manner. It is not known if the 

developmental pathways of T#$17 cells and IL-17 expressing iNKT cells are linked. 
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Though these cells represent a minute IL-17 producing population, they are shown to 

play important roles in airway hyperreactivity and asthma like lung inflammatory 

responses (164).  

  

2.4.2. GALT ILCs  

ILCs comprise diverse groups of lymphocytes that do not express somatically rearranged 

antigen specific receptors and have innate abilities to sense altered tissue environments 

and pathogens. The prototypes of the family are NK cells and Lymphoid Tissue initiator 

(LTi) cells (4). Fetal LTi cells are generated starting 12.5 days post coitus from common 

lymphoid progenitors (CLP) in the fetal liver. Their development and maintenance 

requires signaling from IL-7 and TFs ID2 and ROR#t. Subsets of CLPs that express 

integrin !4"7 and have lost the potential to develop into B cells generate immature 

ROR!t
+
 cells that then mature into LTi cells (165). The release of Lymphotoxins (LT) 

from LTi cells mediates their interactions with the stromal mesencymal tissue organizer 

cells that express LT" receptor. These interactions form the basis for the development of 

LNs and Peyer’s patches. Other than being a major source of LT, LTi cells also secrete 

IL-17 and IL-22 cytokines in the sterile fetal environment.  In adults, LTi related ILCs 

secrete IL-17 and/or IL-22. A major adult ILC cells that are capable of IL-22 secretion is 

referred to as NK22 cells since they express the NK cell marker NKp46 (166). These 

cells develop after birth and constitute the major ILC subset after weaning. Similar to IL-

22 deficient mice, Citrobacter rodentium infection induces severe debilitating disease in 
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the deficiency of ROR#t+
 ILCs, suggesting their non-redundant requirements in the 

GALT (167). 

  

3. Gene networks controlling IL-17 production 

Literature summarized so far described the unique and contrasting features of adaptive 

Th17 and innate T#$17 cells. A set of TFs positively regulates the expression of IL-17 

produced by both of these lineages. Dynamic fluctuations in the cytokine milieu can 

impact the peripheral activation and differentiation of !" T cells towards iTregs or Th 

subsets. Therefore, the TF network for adaptive Th17 cells is embedded with TFs 

activated by TCR signaling and cytokines. In contrast, T#$17 cells arise from the thymus 

as pre-programmed effectors. The TFs that regulate thymic programming of #$ T cells 

are those involved in generating T cells from T cell progenitors. The most prominent are 

those belonging to the High Mobility Group box TF family that includes, TCF1, LEF1, 

SOX13 and Sox4. These TFs are the focus of Chapter III. 

 

3.1. ROR#t: the master regulator of all IL-17 producing cells 

ROR#t commonly marks all IL-17 producing innate and adaptive lymphocytes (71). It 

belongs to the retinoic acid orphan receptors (RORs) superfamily of steroid hormone 

receptors (168). RORs exhibit a typical nuclear receptor domain structure consisting of 

four major functional domains: an N-terminal domain, followed by a highly conserved 

DNA binding domain (DBD), a hinge domain, and a C-terminal ligand-binding domain 

(LBD). They regulate gene transcription by binding to specific DNA response elements 
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(ROREs) in the regulatory region of target genes. There are three members in ROR 

family, ROR!, ROR" and ROR#. From Rorg locus two distinct transcripts are generated 

by alternative transcription start site utilization, the longer form, Rorg is expressed 

mainly in the liver, adipose tissue and kidney, while a marginally shorter transcript Rorc 

encoding for ROR#t is expressed predominantly in the immune system. 

 ROR#t is highly expressed during thymic T cell development. Rorc-/- 
mice have 

smaller thymi with drastically reduced DP and SP T cell numbers, due to an arrest in 

thymocyte transition to DP stage, and massive apoptosis of the residual DP cells. It was 

subsequently shown that ROR#t is required for the expression of the anti-apoptotic TF 

BCL-XL in thymocytes (169). As described earlier, ROR#t is important for the 

development of LTi cells. Thus, Rorc-/-
 mice lack functional LTi cells and most 

secondary lymphoid organs (169). All ILCs related to LTi cells, including NK22 cells, 

are also lost when ROR#t is absent (166). 

After the discovery of Th17 cell lineage, gene expression profiling analysis of 

Th17 cells identified ROR#t as one of the most lineage-specific TFs. Subsequently, with 

a ROR#t reporter mouse line, it was shown that the ROR#t+
, but not ROR#t-

, !" T cells 

isolated from the LP expressed IL-17 (71).   The in vivo analysis of LP cells from ROR#t 

deficient mice showed significant loss of Th17 cells. Conversely, retroviral 

overexpression of ROR#t in T cells was shown to be sufficient to turn on IL-17 

production. These results suggested that ROR#t is necessary and sufficient to induce 

Th17 cell differentiation. Subsequent studies showed that other TFs such as STAT3 and 

IRF4 are also critically required for Th17 cell differentiation. 
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   It is proposed that ROR#t enables IL-17 transcription by binding to the 

conserved non-coding sequence 2 (CNS2) of the Il17 gene locus (170). The CNS2 of Il17 

gene locus has been shown to undergo active chromatin remodeling in Th17 polarization 

conditions (171) and in its absence T cells do not convert efficiently to Th17 lineage. 

  In Th17 cells, the function and expression of ROR#t is antagonized by a variety 

of TFs that reciprocally promote iTreg differentiation. In the LP of the small intestine, a 

small subset of CD4 T cells that co-express FOXP3 and ROR#t have been observed using 

confocal microscopy (78). This result suggested that the T cells are poised for two 

distinct cell fates and tipping the fine balance between these two factors could lead to 

generation of Treg cells vs. Th17 cells.   Further, it was shown that FOXP3 could interact 

with ROR#t and compete with its co-activators to inhibit the ROR#t mediated 

transcription of the Il17 gene (113). The presence of cytokines like IL-6, IL-21 or IL-23 

relieves the FOXP3 mediated inhibition of ROR#t, thereby promoting Th17 

differentiation.   

Another recently described TF that inhibits the Th17 lineage while promoting 

iTreg differentiation is the TF Inhibitor of DNA binding 3, ID3 (172). ID3 belongs to the 

Helix Loop Helix TF family and inhibits the function of E protein family members such 

as E2A and E47 critical for T and B cell development at multiple stages of early 

differentiation processes.  In the absence of ID3, there is a defect in the generation of 

TGF" dependent iTregs. The loss of iTregs enhanced the generation of Th17 cells in the 

LP and Peyers patches of Id3-/-
 mice. Molecular analysis of the Rorc promoter led to the 

identification of four E boxes that can be recognized by E proteins. These sequence 
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elements were enriched with E2A in the TGF" stimulated ID3 deficient T cells and the 

knock down of E2A abrogated Rorc transcription and IL-17 production. Thus, ID3 

functions as an inhibitor for TGF" dependent ROR#t expression by antagonizing E 

proteins. 

  

3.2. ROR! 

Another member of the orphan receptor family of TFs, Retinoic Acid related Orphan 

Receptor alpha (ROR!), regulates Th17 cell lineage by synergistic co-operation with 

ROR#t (173). Of the known isoforms of Rora the isoform Rora4 is expressed in the Th17 

cells. Forced expression of ROR! in T cells can differentiate T cells to Th17 lineage 

cells. However, co-transduction of ROR! and ROR#t greatly increases Il17a, Il17f and 

Il23 expression and induces histone acetylation at the CNS2 element of the Il17 gene 

locus. In the context of Th17 cell differentiation, the deficiency of ROR! only partially 

mimics the deficiency of ROR#t.  However, the absence of both of these TFs completely 

abrogates Th17 cell differentiation. These results suggested a non-redundant requirement 

of ROR#t and ROR! in regulating Th17 cell differentiation. To date, the exact 

mechanism of how ROR#t and ROR! work synergistically is not well elucidated. 

Although ROR! is also expressed in T#$17 cells, whether its absence affects their IL-17 

production is not known (159). 

  

3.3. Aryl hydrocarbon receptor (AhR), a sensor of toxins and dietary byproducts 
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Another TF important for Th17 cell lineage and innate IL-17 producing cells is AhR. 

AhR is a cytosolic sensor of small synthetic compounds (xenobiotics) and natural 

chemicals. In the absence of AhR, Th17 cells can produce IL-17A and IL-17F, but not 

IL-22 (26). Further, IL-22 production from adult GALT ILCs is reduced in Ahr-/-
 mice 

(27). Conversely, AhR overexpression promotes Th17 cell differentiation and IL-22 

production. Although in vitro and in vivo studies performed using high concentration of 

AhR agonists have indicated a function of AhR in both Th17 and Tregs regulation, its 

role in vivo in controlling the balance of Th17 and Tregs remains to be determined (174). 

The uniqueness of AhR lies more in how it directly regulates all IL-22 production. 

Similar to Th17 cells, AhR activation also promotes IL-22 secretion from a subset of 

T#$17 cells (3). 

  

3.4. RUNX1  

RUNX1 plays a dual role in Treg and Th17 cell differentiation (175). RUNX1 belongs to 

the family of RUNX proteins, all of which contain a runt domain (identified in 

Drosophila) for DNA binding. RUNX proteins function by pairing with their non-DNA 

binding partner, core binding factor " (CBF"), which stabilizes their binding to the DNA 

(176). It has been shown that TGF" can upregulate Runx1 in CD4 T cells, which 

promotes Foxp3 transcription. For Th17 cell differentiation, RUNX1 increases the 

expression of Rorc as well as it interacts with ROR#t at the Il17 gene locus.  Importantly, 

RUNX1 can form an inhibitory complex with T-BET, which results in the blockade of 

RUNX1 mediated transactivation of Rorc promoter, leading to inhibition of Il17a and 
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Il17f expression (177). Details of this interaction, however, remain to be uncovered as IL-

17 and IFN# double producing T cells are commonly found in inflammatory 

environments, clearly indicating that not all RUNX1 is bound by T-BET and vice versa 

(80). 

  

3.5. TCR signaling activated IRF4 

The interferon regulatory factors (IRF), named for their ability to induce type I IFNs, 

have multiple roles in T cell differentiation. The absence of IRF4 abolishes in vitro Th17 

cell differentiation (48). Activation of TCR induces the expression of IRF4 (178). 

Further, it is also strongly uprgeulated downstream of IL-1" signaling in T cells (79). In 

vivo models to study Th17 cell development have shown that IRF4 deficient mice are 

completely resistant to development of EAE despite mounting a normal Th1 response. A 

part of the resistance to EAE in these mice may be accounted for by an increase in the 

number of Tregs. The absence of IRF4 affects Rorc transcription, but overexpression of 

Rorc in IRF4 deficient T cells only marginally restores IL-17 production, suggesting that 

IRF4 and ROR#t act in parallel, although the mechanism of IRF4 mediated regulation of 

Th17 cell differentiation is not known. Importantly, unlike Th17 cells, T#$17 cells do not 

require the activation of IRF4 for their development or IL-17 production (159).  

  

3.6. STAT3  

Signal Transducer and activator of transcription 3 (STAT3) regulates signaling 

downstream of cytokines IL-6, IL-21 and IL-23 in Th17 cell differentiation pathway (6).   
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STAT3 is activated by its phosporylation by JAKs recruited downstream of the IL-6R 

complex. Once activated, STAT3 proteins form homodimers or heterodimers and are 

translocated to the nucleus where they affect transcription of hundreds of target genes. As 

one would expect, deficiency of STAT3 in T cells abrogates T cell programming to the 

Th17 cell lineage (179). T cell specific deficiency of STAT3 protects mice from IBD due 

to stunted Th17 cell responses and decreased concentrations of other pro-inflammatory 

cytokines (98). For programming of Th17 cells, chromatin immunoprecipitation coupled 

with massive parallel sequencing (ChiP-Seq) experiments have revealed that STAT3 

binds to Il17a, Il17f and Il21 loci. Moreover, STAT3 directly regulates the expression of 

major TFs that drive Th17 cell differentiation such as Rorc, Rora, Batf, Irf4,  AhR  and  

cMaf. STAT3 deficiency does not affect the generation of T#$17 cells (180). 

  Intriguingly, ablation of STAT3 specifically in Tregs (Foxp3-creStat3fl/fl mice) 

induces fatal, intestinal inflammation associated with a massive increase in the number of 

Th17 cells in the gut of these mice. It was further shown that in the absence of STAT3, 

Tregs expressed transcripts of inflammatory cytokine genes like Il6 and Vip, as well as 

other genes like Tgfb whose protein products promote Th17 cell development (181).  

STAT3 signaling is inhibited by IL-2, which has a reciprocal role in promoting 

the Treg differentiation while inhibiting Th17 cell induction (182).  It is proposed that IL-

2 activated STAT5 interferes with STAT3 binding at Il17a and Il17f gene promoters 

(183). Thus, Th17 commitment not only requires equilibrium between FOXP3 and 

ROR#t, but also a dynamic balance between TFs upstream in this pathway, STAT3 and 

STAT5.  
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The other important regulator that prevents overt STAT3 signaling is Suppressors 

of Cytokine Signaling 3 (SOCS3). SOCS members are thought to be classic negative 

feedback regulators that restrain cytokine signaling by degrading cytokine receptors, 

affecting activation of JAKs and STATs, and by targeting JAKs or STATs for 

degradation (184). Of multiple SOCS proteins known to affect T cell development and 

effector cell differentiation, SOCS3 specifically limits Th17 cell generation. SOCS3 

deficiency is associated with hyperactivation of STAT3 that leads to an increased 

generation of inflammatory cytokines IL-21 and IL-17 (185). 

 In addition to these prototypic TFs of Th17 cells there are others, less 

characterized, which are essential for Th17 differentiation. BATF, an AP-1 family TF, 

promotes Th17 cell differentiation by increasing the transcription of Il17a, Il17f, and Il21 

genes (186). Another TF that BATF can regulate is c-Maf, which has been shown to be 

important for inducing IL-21 expression (187). Furthermore, the NF-%B family member 

I%b& and hypoxia-induced factor-1 (HIF-1) are necessary for optimal transcription of 

Il17a or Rorc (188), (189). These findings reveal that IL-17 production is a highly 

regulated process involving diverse signal transduction pathways downstream of TCR 

and cytokines, with multiple feedback loops, some like AhR, involved in sensing 

environmental alterations to fine tune cytokine production (Fig.1.7). 

  

In this chapter I have presented the key characteristics of adaptive Th17 cells and 

innate-like T#$17 cells. Innate IL-17 producers develop early in the embryos, whereas the 

gradual post-natal microbial colonization of the gut drives LP Th17 cells differentiation. 
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Figure 1.7. Positive and negative regulators of IL-17 production. A schematic of the 

TFs that regulate Th17 cell differentiation is shown. The expression of the TF ROR!t is 

central to differentiation to IL-17 producing innate and adaptive cells. Signals from the 

TFs STAT3 and IRF4 contribute to the generation of Th17 cells but they are not required 

for T!"17 cells. Some of these TFs increase the expression of ROR!t to enhance the Th17 

cell differentiation (shown in arrows outside the circle). Other TFs that play important 

role in Th17 cell differentiation are ROR#, RUNX1, NFAT, BATF, I$b% and HIF1. The 

TFs FOXP3, ID3, STAT5, SOCS3 and others (shown in red bars) inhibit the expression 

or transcriptional ability of ROR!t and STAT3. Thus, a balance of cytokines and TFs 

helps in maintaining the equilibrium of Th17 and iTregs. 
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IL-17 producing innate and adaptive cells are also different in their lineage plasticity. 

While Th17 cells can shut down IL-17 expression and switch to become Th1-like IFN# 

producers under specific inflammatory settings, innate T#$17 cells do not deviate from 

their programmed function (158). Moreover, IL-23 has been proposed to induce this 

conversion of Th17 cells to Th1 cells (190), while IL-23 is a potent activator of IL-17 

production by T#$17 cells. The flexibility to acquire different effector function is 

probably advantageous in infectious settings where extracellular pathogens attempt to 

evade the host immune system by invading target cells. For eliminating these pathogens 

Th1 cell responses would be beneficial over Th17 cells.  

The most important distinguishing feature of Th17 versus T#$17 differentiation is 

that Th17 cells differentiate under the control of TCR and cytokine signaling at the time 

of the T cell recognition of pathogen derived antigens presented by APCs. This entails 

TFs activated or induced by TCR and cytokine receptor signaling. In contrast, T#$17 

cells are produced in the thymus, in the absence of inflammation. How innate T#$17 

function is programmed was largely unknown, but given its reliance of ROR#t, a 

common as well as unique gene networks in comparison to those responsible for T#$17 

differentiation was expected. 

 The experiments that follow in this thesis further illustrate the distinct 

biochemical pathways and gene networks that regulate the differentiation of adaptive 

Th17 cells versus innate-like T#$17 cells.  Although the importance of TGF" in Th17 cell 

differentiation was realized soon after the discovery of this effector lineage, the 

mechanism by which TGF" promotes Th17 was unclear. In Chapter II, I determined 
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whether TGF" regulates Th17 cell differentiation in a SMAD2 dependent manner. We 

identified that effector functions of #$ subsets are molecularly programmed in the 

thymus. Experiments in Chapter III determined the functions of TFs selectively expressed 

in developing T#$17 cells. I show that HMG TFs TCF1/LEF1 and SOX13 are central 

regulators of T#$17 cells.  
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CHAPTER II 

SMAD2 is essential for Th17 cell differentiation 
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Introduction 

The importance of the cytokine TGF" in regulating Th17 cell differentiation came as an 

unexpected discovery as it linked the generation of regulatory T cells to the inflammatory 

IL-17 producing cells (58), (67) After multiple convincing publications illustrating the 

substantial role of TGF", it became imperative to understand how TGF" regulates the 

Th17 cell differentiation pathway. 

The TGF" superfamily includes TGF", Activin and Bone Morphogenic Proteins 

(BMP) proteins, all of which have pleiotropic roles in the development and 

differentiation of immune cells of the lymphoid and myeloid lineages (82). TGF" is 

synthesized as a precursor, which is processed in the golgi complex by a furin like 

peptidase for its maturation. Following processing, it exists as a homodimer bound non-

covalently to another homodimer protein, called the latency-associated protein (LAP) 

(191). Once released into the extracellular matrix, LAP is proteolysed by TGF" activator 

(TA) enzyme releasing active TGF". TGF" signals through the TGF" type I (TGF"RI) 

and TGF" type II (TGF"RII) transmembrane serine/threonine protein kinase receptors. It 

first binds to the constitutively active kinase receptor TGF"RII that recruits TGF"RI by 

phosphorylating its glycine-serine rich domain and thus forming a heterotetrameric 

complex. TGF"RI further uses its kinase domain to phosphorylate Small Mothers against 

Decapentaplegic (SMAD) proteins, ultimately transducing the signals to the nucleus 

(191). 
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SMADs are divided into three functional classes: receptor regulated SMADs (R-

SMADs which include SMAD2 and SMAD3), common mediator SMADs (Co-SMADs, 

SMAD4), and inhibitory SMADs (I-SMADs which include SMAD6 and SMAD7).  

SMAD2 and SMAD3 are subject to TGF" Receptor I mediated phosphorylation and 

subsequent activation (192). Phosphorylated R-SMADs form homotrimers and interact 

with SMAD4, which mediates translocation of R-SMADs into the nucleus. Another 

member of the TGF" superfamily, Activin, also shares the R-SMADs (SMAD2 and 

SMAD3) and a co-SMAD (SMAD4) with TGF", to transduce signals downstream of 

ActivinR complexes, which exist as a complex of Activin type II and Activin type I 

receptors (192). The kinetic differences of SMAD2/3 activation and a selective 

expression of Activin Receptors as compared to the ubiquitously expressed TGF" 

Receptors are some of the features that distinguish these two morphogen pathways. 

However, when expressed on the same cell types, Activin and TGF" can synergize with 

each other. For instance, ActivinA, a member of the Activin family can induce Foxp3 

expression in CD4 T cells, but when added to TGF", its synergistic activity with TGF" 

potentiates a significant increase in the expression of Foxp3 (193). 

The receptor SMADs, SMAD2 and SMAD3 are comprised of two amino (N) 

terminus Mad homology domains known as MH1 and MH2 domains, which are linked 

by a poorly conserved linker region. The MH1 domain of these proteins is important for 

DNA binding, nuclear import and for activating transcription, while the MH2 domain 

helps in protein oligomerization that is required for efficient transcriptional activation 

processes. SMAD2 and SMAD3 proteins share around 60% homology in their MH1 
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domains while their MH2 domains are highly identical in their amino acid sequence 

(194).   

SMADs constantly shuttle between the cytoplasm and nucleus but they are 

retained longer in the nucleus upon their activation, which requires phosphorylation at 

their Carboxyl terminus by the serine-threonine kinase activity of TGF"RI. A number of 

proteins have been identified that mediate the interactions of R-SMADs with their 

membrane receptors. An example of such a helper protein is SMAD anchor for receptor 

activation (SARA), which tethers unphosphorylated SMADs to the TGF"RI kinase in the 

cytoplasm and dissociates from them upon SMAD activation (194). In the nucleus, 

SMAD2 and SMAD3 function as weak TFs by forming complexes with each other, often 

associating with SMAD4 or other TFs and thus regulate transcription of a plethora of 

genes involved in cell cycle, cell development and cell death. Some genes in the TGF" 

pathway are redundantly regulated, but unique targets of SMAD2 and SMAD3 also exist, 

suggesting that each SMAD possesses distinct functions. For example, SMAD3 but not 

SMAD2 binds to the FOX family members FOXO1, FOXO3 and FOXO4 proteins in a 

TGF" dependent manner to activate transcription of p21 (195). Similarly, SMAD3 

interacts with Vitamin D Receptor (VDR) and its overexpression induces transactivation 

of VDR associated target genes (196). 

A major difference between the functional mechanism of SMAD2 and SMAD3 is 

introduced by an extra exon, Exon3 in the MH1 domain of SMAD2, which restricts its 

binding to the DNA. Therefore, SMAD2 interacts with proteins such as SMAD3 and/or 

SMAD4, other TFs and co-activators to mediate its transcriptional effects (194). The N-
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terminal MH1 domain of SMAD3 and SMAD4 recognizes the sequence 5’-GTCT-3’ and 

its reverse complement, 5’-AGAC-3’, as SMAD binding elements on DNA. Due to their 

weak binding, SMADs work as oligomeric complexes by binding to these inverted or 

direct repeats and often requiring synergistic actions from other TFs. For example, for 

TGF" dependent peripheral Treg induction, SMAD3 binds along NFAT at Foxp3 

enhancer region to enable gene expression (89). Hence, due to their indirect or direct 

interactions with several other TFs, SMADs modulate transcription of a large number of 

genes.  Importantly, in contrast to most TFs that can bind to naked DNA and directly 

recruit transcription activation complexes to proximal promoters, SMAD TFs require 

chromatin to be able to activate transcription (197). Therefore, they predominantly act 

through chromatin remodeling by recruiting the histone acetylase p300 (which acetylates 

histone H3) and the SWI/SNF component Brg1 among other histone modifying enzymes. 

Though most of the SMAD-DNA binding interactions have been studied in the 

context of R-SMAD-SMAD4 complexes, some of the genes do not require SMAD4 for 

their regulation (198). Ubiquitin ligase- TRIM33/TIF1# is one such protein that competes 

with SMAD4 to associate with SMAD2/3 complexes (199). Interestingly, SMAD2/3-

TIF1# complexes possess complementary roles to SMAD2/3-SMAD4 complexes in 

mediating erythroid cell differentiation. Furthermore, in the immune system, SMAD2/3-

TIF1# and SMAD2/3-SMAD4 complexes function in a stage specific manner in 

regulating iNKT cell differentiation, where the TIF1# branch controls lineage expansion 

while the SMAD4 branch maintains the maturation of iNKT cells (200).  
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Although SMADs are the significant transducers of TGF"R signaling, TGF" also 

activates other signaling cascades including Erk, JNK and p38 MAPK pathways (201). 

Unlike slower SMAD dependent responses, SMAD independent activation is marked by 

rapid kinetics of activation (201). The mechanisms of activation of these SMAD 

independent pathways and their biological consequences are poorly characterized. For 

instance, MAPK pathways are also triggered upon TCR stimulation, thus whether their 

concurrent or subsequent activation downstream of TGF"R has unique independent 

effects is difficult to elucidate (202). 

As described in the previous chapter, TGF" plays important roles in the 

development/maintenance of CD8 T cells and NKT cells in the thymus. It is 

indispensable for the maintenance of peripheral tolerance by regulating survival of 

nTregs, controlling activation of CD4 and CD8 T cells and inducing T cell effector 

differentiation into iTregs (191).  Due to its central role in maintaining T cell tolerance, 

TGF" was known as regulatory cytokine but its key reqirement for Th17 cell 

differentiation changed this paradigm. The importance of TGF" in T cells was elucidated 

by the usage of mice that lacked TGF" or its receptors on T cells. To dissect further the 

mechanism by which TGF" functions in T cells, Smad2, Smad3 or Smad4 deficient 

mouse genetic models have been utilized.  

The disruption of Smad3 in embryonic stem cells generates viable mutant mice, 

which develop a progressive illness with onset around time of weaning. Symptomatic 

Smad3 mutant mice die between 1 and 3 months of age due to a wasting syndrome that is 

associated with formation of pyogenic abscesses around the eyes and within the walls of 
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the stomach and intestine (203). The initially characterized Smad3 deficient mice were 

associated with enlarged peripheral lymph nodes due to hyperplasic T cells that were 

unresponsive to TGF". However, subsequently characterized, Smad3 deficient mice, 

generated by another group, were healthy and had a relatively normal immune system 

(204). Some of these differences in the phenotype of Smad3-/- 
mice could be due to 

different genetic backgrounds or different targeting mutations in the Smad3 gene.   Chen 

Dong’s lab studied the role of SMAD3 in T cell differentiation and showed that Smad3 

deficient nTregs were functional in suppressing proliferation of effector T cells in the in 

vitro Treg suppression assays. But, CD4 T cells from Smad3 deficient mice exhibited a 

profound defect in differentiation into FOXP3
+
 iTregs (205). Other Treg associated genes 

such as Gpr83 and Ecm1 were also affected in the Smad3 deficient iTreg cells. These 

results supported the previous studies, which showed that binding of TFs SMAD3 and 

NFAT at Foxp3 enhancer is essential to induce efficient transcription of Foxp3 gene (89).  

Reciprocal to the defects in iTreg induction, SMAD3 deficient T cells 

increasingly differentiated into Th17 cells (205). However, the expression of ROR#t 

remained unchanged in these Th17 cells. Further, it was suggested that the interaction of 

SMAD3 with ROR#t potentially inhibits ROR#t dependent transcriptional activation of 

Il17 gene. Thus the authors concluded that SMAD3 reciprocally regulates Th17 and 

iTreg differentiation of T cells. These results further indicated that TGF" signaling 

utilizes SMAD3 independent mechanisms to induce Th17 cell differentiation. 

Unlike Smad3-/- 
mice, Smad4-/- 

mice are embryonic lethal due to arrest in 

gastrulation during embryonic development (206). Therefore, the role of SMAD4 in T 
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cell differentiation has been studied by the usage of Cd4-Cre-Smad4fl/fl 
(CD4:SMAD4) 

mice (113) and Lck-Cre-Smad4fl/fl 
(Lck:SMAD2) mice (207). The activity of Cre 

recombinase excises Smad4 gene at the DP and DN T cell developmental stages, in these 

transgenic mice models respectively.  Though CD4:SMAD4 mice remained healthy, the 

Lck:SMAD4 mice developed gut lesions (adenomas) in the sub-pyloric duodenum. In the 

LP of the Lck:SMAD4 mice, there was an increase in IL-17A expressing CD4 T cells 

that correlated with an increase in Th17 polarizing cytokines, TGF", Activin, IL-23, IL-

6, and IL-1". Despite an increase in Th17 cells in the gut of these mice, in vitro 

differentiation of Lck:SMAD4 deficient T cells towards Th17 lineage was similar to their 

wild type counterparts suggesting a T cell extrinsic role of SMAD4 in Th17 cell 

differentiation in this mouse model. Furthermore, no defects in in vitro Th17 cell 

differentiation were observed in CD4:SMAD4 mice. The differences in the phenotype of 

these mutant mice could arise due to differences in the time of deletion of SMAD4 in the 

developing thymocytes or due to different animal housing conditions. Interestingly, in 

both of these mutant mouse models, differentiation of CD4 T cells to iTregs was 

significantly reduced. 

Combined, these studies illustrated that T cells derived from Smad3-/-
 or Smad4 

CKO mice possess defects in iTreg induction. But, unlike mice with defective TGF"  

signaling in T cells (90), none of these models showed an impaired Th17 cell 

differentiation response. There could be multiple interpretations of these observations. 

First, it is possible that SMADs show a higher redundancy in regulating Th17 cell 

differentiation (which requires co-operative actions of both TGF" and IL-6) but have 
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stronger non-redundant requirements in regulating iTreg differentiation (which is 

dependent on TGF" alone). Importantly, unlike TGF" deficient mice that suffer from 

spontaneous multi-organ autoimmunity (85), Smad3-/- 
and Smad4 CKO mice are 

relatively healthier with delayed partial penetrance of organ-specific inflammatory 

disorders. Furthermore, the importance of SMADs in reinforcing tolerance is 

reemphasized by the loss of both SMAD2 and SMAD3 in T cells, which develop the 

autoimmunity observed with TGF" deficiency (208). Hence, these observations illustrate 

the existence of strong compensatory mechanisms in the single Smad gene deficient 

mouse models. Second, non-SMAD pathways could control some aspects of these 

differentiation pathways. Activation of p38 MAPK, JNK and Erk kinase pathways 

downstream of TGF" has been suggested to affect in vitro Th17 cell differentiation (209). 

A recent study showed that TF Eomesodermin (Eomes) is suppressed by TGF in a 

SMAD independent way. Eomes was further shown to inhibit transcription of Rorc and 

Il17 (210). Though it is conceivable that the non-SMAD pathways contribute in Th17 cell 

differentiation, but due to the multiple routes for MAPK-JNK activation including the 

TCR activation itself, it is difficult to know if these are the dominant pathways 

downstream of TGF". Last, though it has been shown that SMAD4 is not uniquely 

required for Th17 cell differentiation, the other R-SMAD, SMAD2, could still be an 

important player in driving these processes. 

The experiments described in this chapter determined if TGF" utilizes SMAD2 to 

regulate Th17 cell differentiation. Smad2-/-
 mice are embryonic lethal due to defects in 

mesoderm formation (211). Here, by analysis of T cell-specific Smad2 deficient mice we 
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show, that in contrast to SMAD3 and SMAD4, SMAD2 plays a non-redundant role in the 

generation of Th17 cells in vitro and in vivo.  The diminution in IL-17 production by 

CD4
+
 T cells correlates with an accelerated loss of Il6ra expression and a corresponding 

decrease in STAT3 activation in Smad2-deficient T cells, suggesting that SMAD2 

specifically modulates the crosstalk between TGF" and IL-6 in Th17 cell differentiation. 

 

Results and Discussion 

Smad2 deficiency in T cells does not impair immune homeostasis   

To determine the role of SMAD2 in T cells, Smad2 conditional knock out mice were 

generated by crossing CD2 promoter Cre transgenic mice to Smad 
fl/fl mice (referred to as 

Smad2 CKO mice) (Fig.2.1A). In these mice, Smad2 is deleted from the genome of 

developing T cells at DN2-DN3 stages of thymic maturation. 

Smad2 CKO mice appeared healthy and showed normal development of T cells in 

the thymus, normal frequency and cellularity of conventional !" T cells in the peripheral 

lymphoid organs, LN and spleen (Fig.2.1B). A subtle but consistent increase in the 

frequency and numbers of nTregs was observed in the thymus and spleen of Smad2 CKO 

mice, although their rate of proliferation as observed by Ki67 staining among Treg cells 

was not altered (Fig.2.1B and 2.1C).  In vivo, Treg cells from Smad2 CKO functioned 

normally as they could control the colitogenic T cells in lymphopenic Rag-/-
 mice and 

were able to inhibit the proliferation of conventional T cells in vitro (Fig.2.1D). 
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Figure 2.1. T cell homeostasis is maintained in Smad2 CKO mice. (A) Smad2 

Targeted Allele and Conditional Allele is shown. Exon1 of the Smad2 gene was flanked 

by the loxp sites, introduced by the homologous recombination (EJ Robertson et al). B 

(BamH1), E (EcorI),S (Spe1), H (HindIII) are some of the restriction enzyme sites used 

for the generation of the targeting allele. Primer locations for genotyping the mice are 

shown, and primers are abbreviated as S1, S2 and S3. (B) Representative flow cytometric 

profiles of frequencies of nTreg cells in the thymus and spleen of WT and Smad2 CKO 

mice, and proportion of splenic nTreg cells in cell cycle as determined by Ki67 staining. 

(B) Average frequency of nTreg cells in the spleen from 4 independent experiments. 

Statistical significance was determined by Student’s t test. (C) WT and Smad2 CKO 

nTreg cells can equally suppress colitis precipitated by the transferred naïve CD4 T cells 

in Rag1-/-
 recipients, as indicated by normal weight gains over time in mice that were co-

injected with nTreg cells of either genotype. X-axis, % weight change in recipients after 

T cell transfer, with the starting weight set at 100%. Error bars represent standard error 

(S.E.). 
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Smad2 regulates T cell differentiation into iTreg and Th17 cells 

TGF" suppresses the cell division of conventional T cells by inducing cell cycle arrest 

Before testing Smad2 CKO T cells for TGF" mediated effector T cell differentiation, 

their responsiveness to TGF"  mediated suppression in proliferation was tested. To assay 

this, cells were labeled with the cell cycle dye CFSE and activated in the presence or 

absence of TGF". As expected, WT CD4
+
 T cells showed diminished proliferation in the 

presence of TGF", with the proportion of divided cells (CFSE
lo

) decreased by ~50% as 

compared with cultures without TGF" (Fig.2.2A). In contrast, Smad2 CKO T cells were 

relatively insensitive to TGF" as indicated by the limited difference in the proportion of 

divided cells with TGF" (Fig.2.2A). However, when the concentration of TGF" was 

increased, Smad2 CKO T cells responded to TGF", and their proliferation was reduced 

 (Fig.2.2A). These results suggested that there is a dose-dependent impairment in the 

TGF" signaling in Smad2 CKO T cells. CD4
+
 T cells stimulated with TGF" in vitro 

convert to FOXP3
 
expressing CD4

+
 T cells that resemble nTreg cells. We observed that 

in Smad2 CKO T cells, there is a partial, but significant, decrease in the TGF" induced 

differentiation to FOXP3
+
CD4

+
 T cells  (Fig.2.2B). These results demonstrated a non-

redundant role of R-SMADs, SMAD2 and SMAD3, for differentiation of CD4 T cells to 

iTregs.  

Th17 cells can be generated in the presence of TGF" and IL-6 as well as in the 

presence of IL-1" and IL-6. To study if SMAD2 functions downstream of TGF" in 

regulating Th17 cell induction, Smad2 CKO naïve CD4
+
 T cells were cultured in 

different culture conditions under varying concentrations of both TGF" and IL-6. Unlike 
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Figure 2.2. SMAD2 is necessary to efficiently induce TGF! dependent FOXP3
+
 

CD4
+
 T cell subsets. (A) CFSE-labeled WT and Smad2 CKO naive CD4 T cells were 

activated (anti-CD3/CD28 crosslinking in all panels) with varying concentrations of 

TGF! for 2 days. Extent of proliferation was measured by the loss of CFSE using flow 

cytometry. Data shown is representative of three independent experiments (a minimum of 

3 mice/ genotype/experiment) with similar results. Error bars are S.E. (B) WT and Smad2 

CKO naive CD4 T cells were cultured under iTreg conditions with varying 

concentrations of TGF! for 3 days. FOXP3 expression was analyzed by intra-nuclear 

staining. Data are representative of three independent experiments with similar results.  
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the previously described Smad3-/-
 and Smad4 CKO T cells, Smad2 CKO T cells were 

significantly impaired in Th17 cell differentiation (Fig.2.3A). Critically, the 

differentiation of Smad2 deficient CD4 T cells in converting to the Th17 lineage was 

dictated by the concentration of both TGF" and IL-6. Smad2 CKO T cells showed an 

increased impairment in converting to the Th17 cell lineage at lower concentrations of 

both TGF" and or/ IL-6 than at higher concentrations of both of these cytokines 

(Fig.2.3A and 2.3B). This suggested that alterations in both TGF" and IL-6 signaling 

pathways in Smad2 CKO T cells were responsible for the reduced efficiency in the Th17 

cell generation. 

Further, Smad2 CKO T cells were cultured in the presence of IL-1" and IL-6 to 

acquire an alternative Th17 cell fate. Surprisingly, the IL-17 induction in these culture 

conditions was also less efficient in the Smad2 deficient T cells than with the control T 

cells (Fig.2.3C). Adding IL-2 to Th17 cultures strongly inhibited IL-17 expression and its 

blockade resulted in an extremely efficient conversion to Th17 lineage with more than 

60-70% cells expressing IL-17. Smad2 CKO T cells were cultured using classical (with 

TGF" and IL-6) Th17 culture conditions and IL-2 signaling was blocked to determine if 

it would restore IL-17 induction in Smad2 deficient T cells to the control levels. 

Although blocking IL-2 signaling did considerably increase IL-17 induction in Smad2 

CKO T cells, it did not restore the expression to control cell levels suggesting that 

impairment observed in Smad2 CKO T cells was not due to an alteration in the IL-2 

pathway due to Smad2 deficiency (Fig.2.3D). 
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Figure 2.3. SMAD2 is necessary to efficiently induce IL-17A
+
 CD4

+
 T cell subsets. 

(A and B) WT and Smad2 CKO naive CD4 T cells were cultured in varying doses of 

TGF! and IL-6 with mitomycin treated splenocytes in Th17 conditions for 4 days. 

Intracellular staining (ics) for IL-17A and IFN" was performed after restimulation for 5h 

with PMA and ionomycin. Flow cyotmetric profiles shown in (A) are representative of 

three independent experiments, and (B) shows average reductions in IL-17A
+
 Smad2 

CKO T cells relative to controls in varying culture conditions. (C) WT and Smad2 CKO 

CD4 naive T cells were cultured with IL-1! and IL-6 in activating conditions for 4 days 

followed by ics. Top row, anti-CD3/CD28 mAb without cytokines.  (D) WT and Smad2 

CKO naive CD4 T cells were cultured with increasing doses of TGF! and IL-6 in the 

presence of fixed amount of IL-2 blocking mAb for 4 days, followed by ics for the 

cytokines. Data shown is representative of three experiments. 
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It was next determined if other cytokines that activate SMAD2 were also impaired 

in their function in Smad2 deficient T cells. Activin A, a member of the TGF" family of 

cytokines, has been shown to exhibit a marked preference for SMAD2 activation over 

SMAD3 in CD4
+
 T cells (193). Analysis of Activin Receptor II on CD4 T cells showed 

that it was not expressed on naïve CD4
+
 T cells but was upregulated upon T cell 

activation. Activin A with IL-6 could promote the generation of IL-17 secreting CD4
+
 T 

cells without TGF" addition, even though only ~15% of activated conventional T cells 

detectably expressed ActRII (Fig.2.4A). Activin-mediated Th17 generation from naïve 

Smad2 CKO CD4
+
 T cells was also significantly impaired compared to control CD4

+
 T 

cells (Fig.2.4A). 

Finally, it was determined if IL-17 production dependent on SMAD2 in CD4 T 

cells affected IL-17 production in innate #$ T cells, which constitute the major early 

source of IL-17 in vivo. It had been shown that in contrast to !"T cells, IL-17 production 

in #$T cells did not require TCR signaling or IL-6, but was dependent on TGF" and 

SMAD3 (110). Ex vivo #$ T cells from the LNs of Smad2 CKO mice were not different 

from control #$ T cells in IL-17A secretion, indicating that SMAD2 was dispensable for 

innate IL-17A production (Fig.2.4B). In sum, SMAD2 was found to be uniquely required 

to efficiently induce IL-17 in adaptive !"T cells but not in innate #$ T cells. 

 

Smad2 regulates IL-6Ra expression and STAT3 phosphorylation in T cells 

Since both IL-6 and TGF" dictate Th17 cell differentiation in a SMAD2 dependent 

manner, the alterations in the IL-6 signaling cascade in SMAD2 deficient T cells were 

90



Figure 2.4. SMAD2 is necessary to efficiently induce Th17 cell differentiation but it 

is not required for T!"17 cell generation. (A) Activin receptor II expression on B6 

CD4 T cells ex vivo and after activation for 2d. B. IL-17A
+
 cells generated with Activin 

A and IL-6 in 3d activated CD4 T cells. (B) WT and Smad2 CKO peripheral lymph node 

cells were stimulated with PMA and Ionomycin for 5h and analyzed for cytokine 

expression in !" # cells. Data are representative of 2 independent experiments 
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examined. A previous publication had showed that TGFβ upregulates the expression of 

IL-6Rα in activated CD4
+
 T cells (92). Further, increased and sustained STAT3 

phosphorylation in activated CD4
+
 T cells was observed in the presence of both TGFβ 

and IL-6, compared to IL-6 alone (93). These results suggested that one function of TGFβ 

in promoting Th17 cell generation is to enhance and/or prolong IL-6 signaling in T cells. 

To investigate whether the IL-6 signaling pathway was altered in Smad2 CKO T cells, 

the amounts of Il6ra transcripts in stimulated SMAD2 deficient T cells were measured. 

QPCR analysis showed a dramatic down-modulation of Il6ra mRNA expression in 

Smad2 CKO T cells that were activated or cultured in Th17 conditions (Fig.2.5A and 

2.5B). Furthermore, when SMAD2 deficient CD4 T cells were cultured ex vivo with IL-6 

alone, a significant decrease in phosphorylated STAT3 was observed at early time points 

(15 and 30 min) compared to phosphorylated STAT3 levels in control CD4
+
 T cells, in an 

IL-6 concentration dependent manner (Fig.2.5C, 2.5D and 2.5E). In contrast to the 

alteration in IL-6 signaling, no change in the expression of Th17 cell differentiation 

central transcription factor, Rorc was observed in Smad2 CKO Th17 cells (Fig.2.5B).  

These results suggest that Smad2 CKO CD4
+
 T cells have a decreased capacity to 

respond to IL-6 and that the synergy between TGFβ and IL-6 in promoting Th17 

differentiation likely involves SMAD2 regulation of IL-6R expression.  

 

Smad2 deficient conventional T cells cause more severe colitis 

It has been shown that IL-17A is protective during colitis induction and CD4
+
 T cells that 

cannot produce IL-17A cause more aggressive colitis in Rag1-/-
 recipients (212). The in 



Figure 2.5. SMAD2 modulates IL-6R! expression on CD4 T cells. (A) Real time RT-

PCR analysis for Il6ra mRNA expression in activated CD4 T cells from WT and Smad2 

CKO mice (pooled cells from 3 mice/genotype) relative to Actb expression. (B) Semi-

quantitative RT-PCR analysis for Il6ra and Rorc with Actb as control. A 4-fold dilution 

series is represented. One of two experiments with similar results is shown. (C) Naïve 

CD4 T cells from WT and Smad2 CKO mice were activated for 30 min in the presence of 

IL-6. Expression of phosphorylated STAT3 (pSTAT3) was analyzed by ICS and flow 

cytometry. (D) Mean fluorescent intensity of pSTAT3 expression in WT and Smad2 

CKO T cells at various time points after IL-6 stimulation. Data are representative of three 

independent experiments with similar results. (E) Western blot for pSTAT3 expression in 

WT and Smad2 CKO CD4
+
CD25

-
T cells stimulated with IL-6 at 1,5 and 10ng/ml for 30 

minutes. Relative band intensities of phsospho-STAT3 normalized to loading control 

CDK2 is shown. 
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vivo relevance of the in vitro defects in IL-17 production by Smad2 CKO CD4
+
 T cells 

was tested by determining if naïve Smad2 CKO CD4
+
 T cells produced IL-17 when 

transferred to lymphopenic Rag1-/-
 recipients. Three weeks after T cell transfer there was 

a significant decrease in IL-17A
+
CD4

+
 T cells isolated from the peripheral lymphoid 

organs and colonic LP of Rag1-/-
 recipients that had been reconstituted with naïve Smad2 

CKO CD4
+
 T cells as compared to control CD4

+ 
T cells (Fig.2.6A and 2.6B). 

Interestingly, the decrease in IL-17 production was not consistently observed in Smad2 

CKO CD4
+
 T cells that were secreting both IL-17A

 
and IFN# (Fig.2.6A). The decrease in 

overall IL-17 production by activated Smad2 CKO CD4
+
 T cells in lymphopenic Rag1-/-

 

mice was correlated with the more severe colitis induced by the transferred Smad2 CKO 

T cells as revealed by more rapid and severe weight loss in the recipients (Fig.2.6C). 

These results demonstrated that SMAD2 was necessary for normal production of IL-17 

by CD4
+
 T cells in a lymphopenic environment. 

 

C. rodentium infection in Smad2 CKO mice elicits diminished Th17 cell induction 

The IL-17 family of cytokines is required for efficient clearance of the gut pathogen 

Citrobacter rodentium (13). To determine whether pathogen-driven IL-17 production by 

CD4
+
 T cells also required SMAD2, Smad2 CKO mice were infected with C. rodentium. 

Earlier studies have shown that Citrobacter infection in C57BL/6 mice reaches maximal 

pathogen load by a week, and it is resolved in two weeks. Ten days after infection Smad2 

CKO mice had comparable numbers of activated T cells in the mesenteric lymph nodes 

and spleen as WT infected mice (Fig.2.7A). However, there was a significant reduction in 
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Figure 2.6. SMAD2 is required in vivo for the generation of IL-17A
+
 CD4 T cells. (A 

and B). Smad2 CKO CD4 T cells cause more severe colitis in Rag1-/-
 hosts. Naive WT 

and Smad2 CKO CD4 T cells were transferred to Rag1-/-
 recipients (n=5/genotype).  

3 weeks post transfer, T cells from the lymphoid organs were analyzed for IL-17A and 

IFN! expression by ics. Flow cytometric profiles of individual mice in A, and averages in 

B are representative of two independent experiments with similar results. (C) The onset 

and severity of colitis were monitored by weight measurements, visual signs of distress 

and gut histology. Data shown is an average of two independent experiments. 
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the frequency of Th17 cells in the lymphoid organs of infected Smad2 CKO mice 

(Fig.2.7B). In Smad2 CKO mice IL-17
+
CD4

+
 T cells accumulated on average to ~50% of 

the numbers seen in control infected mice (Fig.2.7C). These results demonstrated that 

during Citrobacer rodentium infection optimal Th17 cell generation required SMAD2. 

 

Summary and future directions 

The work in this chapter illustrated a previously unidentified role of R-SMAD- SMAD2 

in regulating both iTreg and Th17 cell differentiation pathways. Combining the results 

obtained from the analysis of Smad3-/-
 and Smad4 CKO T cells, it can be concluded that 

all SMADs are necessary for the induction of iTregs. Though SMAD3 has been shown to 

bind at Foxp3 enhancer to increase its transcription, the interaction of SMAD2 at this 

gene locus was not observed (89). Since, SMAD2 does not directly bind to DNA, its 

affect in gene transcription is generally mediated through its interaction with other TFs. 

Thus, future work will elucidate if SMAD2 regulates transcription of Foxp3 by 

interacting with SMAD3/4 or in an independent manner. 

The defects in Th17 cell differentiation observed in the absence of SMAD2 are 

dependent on the concentration of both TGF" and IL-6. Further, in the absence of 

Smad2, the expression of alpha chain of Il6r gene was diminished with an associated 

reduction in the phosphorylation of STAT3, the central TF in Th17 cell differentiation. 

Forthcoming studies will help us understand how SMAD2 modulates the expression of 

Il6ra upon T cell activation. The importance of SMAD2 in regulating the in vivo Th17 

cell differentiation was realized by the relatively reduced frequency of CD4
+
 IL-17

+
 cells 
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Figure 2.7. SMAD2 is required for the generation of IL-17A
+
 CD4 T cells during 

Citrobacter rodentium infection. (A) Diminished Th17 response to C. rodentium 

infection in Smad2 CKO mice. WT and Smad2 CKO mice infected with C. rodentium 

were sacrificed at 2 weeks post-infection. Representative flow cytometric profiles of 

CD4
+
 T cells expressing the activation markers CD44 and CD62L in the spleens of WT 

and Smad2 CKO mice are shown. Data are representative of two independent 

experiments (minimum 3 mice/genotype). (B) CD4
+
 T cells from lymphoid tissues 

(splenocytes shown here, but a similar pattern observed in all tissues) of mock-infected 

and infected WT and Smad2 CKO animals were analyzed for the expression of IL-17A 

and/or IFN! by ics. (C) Averages (n=5/genotype) of the frequencies of CD4+IL-17A+ 

splenocytes represented in B are shown. UI, uninfected; CB, Citrobacter infected. Data 

are representative of two independent experiments. 
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observed upon C. rodentium infection in Smad2 CKO mice and also upon transfer of 

naïve Smad2 deficient CD4 T cells in the lymphopenic mice.  Interestingly, SMAD2 

mediated Th17 cell differentiation was altered not only downstream of TGF" but also 

downstream of ActivinA or IL-1" cytokines. Since SMAD2 is known to mediate signals 

specifically downstream of TGF" and Activin, the defect of SMAD2 deficient T cells in 

IL-1" dependent Th17 cell differentiation was surprising.  This could be interpreted in 

the following ways. First, in these in vitro cultures TGF" was not neutralized. The 

endogenous T cell produced TGF" or low levels of TGF" present in the culture media 

could synergize with IL-1" for Th17 cell differentiation. It is possible that this co-

operation between TGF" and IL-1" is altered in the absence of SMAD2 leading to 

decreased IL-17 production. Second, since SMAD2 deficient T cells respond weakly to 

IL-6 stimuli and show defects in STAT3 phosphorylation, this could also lead to their 

lower Th17 cell differentiation in the presence of IL-1" and IL-6 cytokines. 

It has been shown that Th17 cells can be generated in vivo in an IL-6 independent 

manner (101). Future work will determine if these IL-6 independent Th17 cells are 

present in normal proportions in the absence of SMAD2. Interestingly apart from 

regulating IL-17 induction, TGF" has been shown to inhibit IL-22 expression from Th17 

cells (213). We will further investigate if the TGF" signaling via SMAD2 negatively 

regulates IL-22 production from Th17 cells. It is possible that SMAD2 deficient Th17 

cells could be qualitatively different if they produce less IL-17A and more IL-22. 

One of the major unresolved issues in understanding the role of SMAD2 in Th17 

cell differentiation is the lack of knowledge on its molecular mechanism. The nuclear 
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translocation of SMAD2 had been thought to require its interaction with SMAD4. But, 

SMAD4 deficiency does not affect Th17 cell differentiation. How SMAD2 functions 

independent of SMAD4 in regulating Th17 cell differentiation requires additional 

investigations. Interestingly, TF TIF1# has been shown to associate with SMAD2/3 in a 

SMAD4 independent manner to regulate differentiation of NKT cells (200). Hence, it 

will be determined if SMAD2 interacts with TIF1# to regulate Th17 cell differentiation. 

Together, we propose that TGF" signaling regulates T cell differentiation via its 

qualitative and quantitative effects. For Th17 cell differentiation, we observe a biased 

role of SMAD2 over SMAD3 but for the generation of T#$17 cells SMAD2 did not play 

an essential role indicating that different pathways contribute toward differentiation of 

innate and adaptive IL-17 producing cells. 

 

Materials and methods 

Mice and infection: Smad2 fl/fl
 mice generated in the laboratory of Dr. Liz Robertson 

were provided by Dr. Richard Flavell. These mice were backcrossed six times to 

C57BL/6 background before analysis. Smad2 CKO mice were generated by crossing 

hCD2 Cre Tg
+
 mice with Smad2fl/fl 

mice. Rag1-/-
 and C57BL/6 mice were purchased from 

the Jackson laboratory. For Citrobacter rodentium infection strain DSS 100 was obtained 

from Dr. John Leong (UMMS). 10
10 

CFU of Citrobacter in 10% sodium bicarbonate was 

administered by oral gavage. All experiments were approved by The University of 

Massachusetts Institutional Animal care and Use Committee. 
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Abs, flow cytometry and cell sorting: Cells were stained for surface markers, and 

intracellular cytokines and transcription factors using monoclonal antibodies (mAbs) and 

intracellular kits purchased from BD Biosciences and ebioscience. Samples were 

acquired on a BD LSRII cytometer and data post acquisition was analyzed using Flowjo 

software (Treestar). Naïve T cells and nTreg cells were sorted to >95% purity using a 

MoFlow cytometer (Dako Cytomation). 

 

RT-PCR and Real time PCR: RNA was prepared using Trizol reagent and cDNA was 

made using Omniscript RT-PCR kit (Qiagen). For semi-quantitative RT PCR, four fold 

serial dilutions of cDNA were used. Following PCR primers were used: Smad2 

ATGTCGTCCATCTTGCCATT and GTCCCCAAATTTCAGAGCAA; Il6ra 

ACAGTGTGGGAAGCAAGTCC and ATGGTCAAAGGAGTTCACGG3; Rorc: 

CCGCTGATAGGGCTTCAC and TGTAATGTGGCCTACTCCTGCA. Real time PCR 

amplification was performed by using iQ SYBR Green supermix (BioRad). All data was 

normalized to Actb or Gapdh mRNA expression. 

 

Western Blotting:  Lysates from WT CD4 T cells and Smad2 deficient CD4 T cells were 

separated on a 10% SDS-polyacrylamide gel. Western blot for pSTAT3 (Cell Signaling 

Technology) and CDK2 (Santa Cruz) loading control was developed using Enhanced 

Chemiluminiscence (Pierce). Relative band intensity was calculated using ImageJ 

software. 
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T cell culture: For Foxp3 induction, sorted naïve CD4
+
CD25

-
CD44

hi
 CD62L

lo
 T cells 

were activated with plate bound anti-CD3 (1µg/ml) and anti-CD28 (2µg/ml) mAbs in 96 

well plates for 3d in the presence of 2ng/ml or 5ng/ml rTGF", Peprotech) and rIL-2 

(ebioscience). Th17 differentiation: Naïve CD4
+ 

T
 
cells were co-cultured with mitomycin 

C treated, T cell depleted splenocytes (1:5 ratio) for 4d in the presence of anti-CD3 

(1mg/ml) and CD28 (3mg/ml) mAb with cytokines at various concentrations: TGF" (2 

and 5 ng/ml), rIL-6 (20 and 40ng/ml, Peprotech), rIL-1" (10ng/ml, Peprotech).  For 

blocking IL-2 in Th17 cultures, cocktails containing anti-IL2, anti-CD122 and anti-CD25 

mAbs were added at 10ng/ml each. Anti- IFN# and anti IL-4 mAbs were also used at 

10ng/ml each to block Th1 and Th2 differentiation, respectively (all blocking mAbs from 

BD bioscience).  

 

CFSE labeling to measure cell proliferation: Sorted naïve CD4
+
 T cells were incubated in 

PBS containing 1mM CFSE for 15 min at 37
0
C. Cells were washed and activated with 

plate bound anti-CD3/CD28 mAb in the absence or presence of TGF" for 2 days. 

 

Colitis:  To induce colitis, naïve CD4
+
 T cells (3 x10

5
) sorted from WT or Smad2 CKO 

mice were intraperitoneally injected in Rag1-/- recipients and analyzed at indicated days. 

For prevention of colitis, sorted CD4
+
CD25

+
 Treg cells (2 x 10

5
) were co-injected with 

naïve T cells from WT mice in Rag1-/- recipients. General health and weight of animals 

were monitored and colonic pathology was determined 4wks after injections by H&E 

staining of formalin fixed tissues. To isolate colonic lymphocytes, colons excluding 
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cecum were isolated, cleaned and incubated at 37
0
C with media containing 1.5mg/ml 

Dispase (Invitrogen) for 45 minutes. Intestines were then finely cut and incubated in 

media containing 0.8mg/ml Collagenase II (Invitrogen) and 1mg/ml Dispase for 30 

minutes at 37
0 

C. Digested intestines were washed and passed through glass wool column 

followed by lymphocyte separation using percoll gradient. 
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CHAPTER III 

HMG box TFs SOX13 and TCF1/LEF1 program the  

development of T#$17 cells 
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Introduction 

The developmental programming and differentiation of T cells into diverse functional 

subsets begins with the migration of pluripotent hematopoietic precursors from the bone 

marrow or the fetal liver into the thymus. After seeding the thymus, the T cell progenitors 

rapidly proliferate, differentiate, undergo T cell receptor (Tcr) gene rearrangements and 

finally assemble TCR complexes that dictate their further survival and function. The cells 

go on to give rise to distinct T cell lineages including #$ T cells, !" T cells and NKT 

cells that undergo thymic maturation and subsequently migrate into the peripheral 

lymphoid and non-lymphoid organs. The step-wise thymic differentiation process 

includes successive intermediates CD4
-
CD8

- 
(double negative, DN), CD4

+
CD8

+
 (double 

positive, DP) and CD4
+
CD8- or CD8

+
CD4

- 
(single positive, SP) stages. The DN stages 

are further subdivided into DN1, DN2, DN3 and DN4 developmental stages (as described 

earlier in the introduction (125). The #$ T cells arise between DN1 and DN3 stages. The 

DN3 stage !" lineage committed cells rapidly pass through DN4 to DP stage. The 

immature DP thymocytes give rise to conventional CD4SP and CD8SP !" T cells and 

innate-like !" NKT cells. 

This T cell commitment process is an irreversible forward progression of distinct 

developmental stages, which are marked by stage specific gene expression patterns that 

are regulated by core TF networks that often act at multiple stages. These TFs act in 

concert with the regulatory influences of thymic epithelium, which provides a potent 

combination of growth factors and receptor ligands to trigger and support the T cell 

commitment, survival and maturation processes. The complex TF networks specifiying T 
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cell fate and differentiation includes WNT, Notch and other classical morphogen 

pathways (214).  

One of the major goals of this thesis work has been to understand the role of 

WNT signaling components in thymic #$ T cell effector fate determination. Wnt is a 

combined abbreviation from Drosophila melanogaster’s segment polarity gene Wingless 

and Integrase-1 (215), which is the mammalian homolog of Wingless gene. WNT 

proteins are a family of secreted lipid modified glycoproteins that are crucial for 

developmental processes such as cell fate specification, progenitor cell proliferation and 

control of asymmetric cell division (216). As morphogens, they function in a dose 

dependent gradient manner to provide positional cues to specify cell fate. In the 

hematopoietic system, WNT family proteins regulate renewal of hematopoietic stem cells 

and their differentiation into T and B cell lymphocyte lineages. The thymic epithelial 

cells primarily release WNT proteins, while their receptors (Frizzled) are expressed on 

both stromal cells and developing thymocytes. Different frizzled receptors and diverse 

WNT family members are expressed in thymocytes in a developmentally regulated 

pattern (217). 

There are at least three different pathways characterized for WNT signal 

transduction, of which the canonical WNT signaling pathway involving "-catenin and 

members of the T cell factor (TCF)/lymphocyte-enhancer-binding factor (LEF) family is 

most well studied in the immune system (218), (219). In the canonical WNT pathway, "-

catenin is sequestered in the cytoplasm and is targeted for degradation by the proteasome 

through the actions of an inhibitory destruction complex in the absence of WNT ligand 
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induced signaling. The destruction complex is composed of scaffolding and tumor 

suppressor proteins, Adenomatous Polyposis Coli (APC), Axis inhibition protein (AXIN) 

and the Serine/Threonine protein kinases, Casein Kinase 1 (CK1) and Glycogen Synthase 

Kinase 3" (GSK3") (220). Phosphorylation of "-catenin at multiple residues by CK1 and 

GSK3" creates recognition sites for "-transducin repeat containing protein ("TRCP), 

leading to ubiquitination and proteasomal breakdown of "-catenin. In the absence of "-

catenin in the nucleus, its binding partners, TCF and LEF, function as transcriptional 

repressors by recruiting transcription inhibitory proteins such as Groucho (221). At the 

cell membrane, WNT proteins bind to the Frizzled receptor and co-receptor Low-density 

Lipoprotein Receptor related protein 5 (LRP5) or LRP6 to activate the signaling cascade. 

In the presence of WNT, the Frizzled and LRP5/6 co-receptors form a complex with the 

kinases CK1 and GSK3" phosphorylate LRP5/6, thus creating docking site for AXIN. 

Subsequently, the activation of Dishevlled (DVL) destabilizes the destruction complex, 

leaving "-catenin free to translocate to the nucleus where it binds to TCF1/LEF1 and 

activates transcription (220).   

TCF1 and LEF1 belong to the high mobility group (HMG) box TFs (222), (223). 

HMG box TFs function by their unique ability to bind to the minor groove of DNA where 

they induce a significant structural bend allowing unique juxtaposition of transcription 

regulatory complexes (224). WNT signaling is important at the DN to DP stage transition 

and DP to SP T cell transition as demonstrated in Tcf1-/- 
mice in which T cell 

development is impaired with a block in the transition of thymocytes from DN to DP 

stage (225). This block in T cell development was associated with defects in 

111



differentiation, proliferation and survival of !" lineage T cells. While TCF1 is expressed 

in only T cells, LEF1 is expressed in both T and B cells and are necessary for their 

normal development (226).  LEF1 deficiency leads to neonatal fatality in mice due to its 

requirement for development of multiple organs. However, T cell development in these 

mutant fetuses was not as severely affected as in Tcf1-/- 
mice, suggesting that LEF1 and 

TCF1 have unique requirements (227). Importantly, the loss of both TCF1 and LEF1 

resulted in the most severe block in T cell development, indicating that synergistic and 

overlapping TCF1/LEF1 functions drive T cell development (227).  

  As many as eight TCF1 isoforms exist in the murine thymus but only the 

overexpression of one of the dominant TCF1 isoform that contains the N-terminal "-

catenin binding domain restored !" T cell development in Tcf1-/- mice (228). This result 

suggested that TCF1 functions in the canonical WNT signaling pathway to regulate T cell 

development. However, it is possible that TCF1 also binds to proteins other than "-catenin 

using the same N-terminus and thus potentially transduces signals independent of "-

catenin.  Sen et al showed that "-catenin deficiency blocks transition of T cells from DN3 

to DN4 stage (229). However, other studies failed to show the requirement for "-catenin in 

T cell development (230), (231). Further, it was thought that there exists redundancy 

between "-catenin and #-catenin, both of which are expressed in the thymus and have been 

shown to compensate for each other in distinct cell types. But, this was refuted by two 

studies showing that bcat-/-gcat-/-
 mice do not show significant impairment in T cell 

development (232), (233) while absolutely required for development of non-lymphoid 

tissues. A recent study also confirmed that T cell precursors are absolutely dependent on 

112



TCF1 for differentiation by inducing critical TFs of T cells such as Gata3 and Bcl11b, but 

modulations of "-catenin did not significantly impact TCF1 function (231). Thus, studies 

to date establish that while "-catenin is active during T cell differentiation (234), it 

appears not to be absolutely essential and that there may be other TCF1 interacting factors 

that can replace "-catenin for instituting T cell developmental programs.  

      TCF1 function in #$ T cell development has been similarly controversial. In Tcf7-/-
 

mice, the number of #$ thymocytes had been shown to be largely unchanged (227) 

although the differentiation of gut #$ IELs is impaired (235). These results, along with 

limited and unconvincing assays using Tcf7-/-Lef1-/-
 fetuses (227), were interpreted as 

evidence supporting distinct effects of WNT signaling in !" T versus #$ T cell 

development. The role of WNT signaling and TCF1 in #$ T cells was reassessed with the 

identification of the HMG box TF SOX13 that was shown to be specifically expressed in 

#$ T cells (134). SOX13 is the first TF identified that distinguished #$TCR
+
 thymocytes 

from !" T cells. SOX13 was shown to directly interact with TCF1/LEF1 and it altered the 

expression of TCF1 target genes, suggesting that distinct modulation of WNT signaling 

and/or TCF1/LEF1 regulated T cell lineage commitment in the generation #$ and !" T 

cells from precursors. Further, other SOX proteins were expressed in developmental stage 

and cell type-specific manner, pointing to a complex network of HMG TFs in generating 

T cell subtypes. For instance, SOX4 is highly expressed in all DN precursors, DP cells, 

and #$ T cell (134), (236). SOX4 has been shown to interact with LEF1 and "-catenin 

(237) and is a candidate TF participating in canonical WNT signaling in the immune 

system.  Sox4-/- 
mice are embryonic lethal due to defects in heart valve formation (238), 
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and studies using fetal liver chimeras showed that the absence of SOX4 during 

hematopoiesis results in severe blocks in T cell differentiation (236). More detailed 

analysis of SOX4 function during T cell development is now possible with the generation 

of mice lacking SOX4 at different stages of T cell differentiation (unpublished). 

  The interactome of differentially expressed SOX proteins with TCF1/LEF1 will 

determine how these TFs perform distinct functions in a cell type-specific manner. The 

intertwining of the WNT pathway with Notch signaling presents further entanglement in 

the complex web of TF networks that control T cell developmental processes. Notch 

signaling dominantly commits hematopoietic progenitors to differentiate into T cell 

lineage and is required at multiple stages of T cell maturation (239). While the WNT-"-

catenin pathway can upregulate Notch1 and Notch target genes Hes1 (hairy and enhancer 

of split 1) and Dtx1 (Deltex homologue1) (240), Notch, signaling in turn promotes the 

expression of Tcf7 itself and TCF1-target gene Gata3 in early DN progenitors (231). Of 

the four mammalian Notch receptors, only Notch 1 and Notch 2 are expressed in the 

thymus, along with Notch ligands Jagged1, Jagged2, Delta-like 1 and Delta-like 4. Notch 

is a single pass transmembrane receptor that is activated when its extracellular domain 

interacts with ligands of Delta and Serrated families. Ligand-receptor interactions cleave 

the intracellular domain of Notch, which enters the nucleus and affects gene transcription 

through its interaction with recombination signal binding protein Jk (RBP-Jk) (241). 

While the dependence of !" lineage differentiation on Notch signals is clear, its precise 

role in #$ T cell development remains controversial due to conflicting results generated by 

different in vivo model systems. The overriding theme however, suggests that #$ T cells 
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become independent of Notch signals after TCR expression while !" T cells continue to 

require Notch to reach the DP stage (242), (243). Hence, it is proposed that Notch is 

required in a stage specific manner for #$/!" T cell lineage commitment. The 

interconnected TCF1 and Notch signaling regulated gene networks in specifying !" 

versus #$ T cell lineage commitment and !" and #$ T cell subtypes and effectors are 

beginning to be uncovered, but important details of the networks remain poorly 

elucidated. 

Classical morphogen signals and cytokines such as IL-7 and Kit ligand generate 

heterogeneous DN precursor cells that respond distinctly to other developmental cues 

(244), (245). For !" T cells the TCR is the central determinant of their differentiation 

post DN3, TCR-mediated T cell selection processes give rise to mature CD4 SP and CD8 

SP thymocytes. The naïve CD4 and CD8 T cells migrate to the periphery where they 

differentiate into different effector lineages upon encountering their cognate antigens and 

cytokine signals.   In contrast to !" T cells, #$ T cell development in the thymus entails 

effector function programming in distinct #$ cell subsets (Narayan et al.,in press). Thus, 

unlike !" T cells, #$ T cells home to the peripheral tissues in a pre-differentiated effector 

state that can mount rapid innate-like responses to inflammatory settings. Similar to 

peripheral !" T cells, #$ T cells in an adult thymus have been segregated into Th1-like 

(V1), NKT (V6) and Th17 (V2) effector subsets. Though V2 cells form a significant 

proportion of T#$17 cells, fetal thymus-derived V4 cells also contribute towards IL-17 

production. Thus T#$17 cells can be further subdivided into V2 T#$17 and V4 T#$17 

cells. The T#$17 cell lineage provides protection to the host in several infections as well 
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as has potential to initiate and enhance many organ specific autoimmune disorders. 

Extensive amount of data has been published describing the cytokines and TFs that 

regulate the differentiation of !" T cells into Th17 effector cells. However, little is 

known about the thymic programming of #$ T cells into their effector lineages. A major 

goal of studies described in this chapter has been to identify pathways that regulate the 

development of T#$17 cells. While both Th17 and T#$17 cell differentiation is dependent 

on ROR#t (71), T#$17 cells are not strictly reliant on TGF" (246) and IL-6 (110) 

cytokines that generate Th17 cells. As discussed in Chapter I, T#$17 cells are present in 

normal numbers in the absence of STAT3 (180) and IRF4 (159), the key TFs for Th17 

cell differentiation. To deduce distinct pathways involved in the production of innate 

effectors requires mapping gene networks controlling early T cell development. The 

programming events of #$ T effector differentiation are embedded within and coincident 

with their development and maturation processes in the thymus. Therefore, TFs 

belonging to Notch and WNT pathway are candidate regulators of T#$17 cell 

differentiation.  Indeed, HES1, a transcriptional repressor and a direct Notch1 target, has 

been shown to be critical for the development of fetal V4 T#$17 cells and may also 

impact the generation of adult V2 T#$17 cells (180).  

Initial analyses of adult Sox13-/-
 mice showed a selective depletion of CD44

+
 V2 

cells in peripheral tissues. Further, it was shown that SKINT1, a ligand required for 

normal maturation of fetal V3 cells (dendritic epidermal T cells, DETCs, or skin IELs) 

(247) downmodulates the expression of Sox13 and Rorc (248). In the absence of SKINT1 

V3 cells aberrantly expressed IL-17, suggesting that SOX13, along with the IL-17 lineage 
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associated TF ROR#t, polarizes the cells toward T#$17 cell differentiation and that the 

suppression of this gene circuit is necessary to generate alternate effector cell types. In 

this chapter, I present studies that demonstrate that for normal adult T#$17 cell 

differentiation SOX13 and its target genes are the central positive regulators, and that 

TCF1, a SOX13-interacting factor, is the primary negative regulator of IL-17 expression. 

Thus, innate T#$17 differentiation program is fundamentally distinct from that of 

adaptive Th17 cells that are primarily dictated by balances of regulatory and 

inflammatory cytokines induced during pathogen challenges. 

 

 Results and discussion 

Emerging #$ TCR thymocytes are composed of different lineages: 

It had been previously assumed that all #$ T cells in the adult murine thymus originated 

from common thymic precursors and distinct TCR signaling dictated effector cell fate 

(123). However, recent work from our lab showed that the emergent immature #$ T cell 

subsets are embedded with distinct gene expression profiles (Narayan et al., in press). 

These analyses further showed that immature V2 #$ T cells are radically different from 

other immature #$ T cell subsets and this is not due to any difference in their cell cycle 

properties or susceptibility to death, which are similar between all immature adult #$ T 

cell subsets. One of the candidate features that propelled the distinct lineage commitment 

process in immature V2 cells is their relatively high expression of TFs. Among them, the 

most prominent TFs are the High Mobility Group (HMG) box family members, which 

are known to be critical regulators of cell lineage fate in multiple tissues (Fig. 3.1). 
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Figure 3.1. The expression of WNT-HMG TFs is enriched in the Immature V2 !" T 

cells. Heat map showing the expression of TFs in immature and mature !" T cell subsets. 

HMG box TF Sox13 is highly expressed in the immature V2 cells as compared to other 

!" subsets. Other HMG box TFs, Tcf7, Tcf4, Tcf12, Tox2 also show higher expression in 

the immature V2 cells.  
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We also showed that maturation of #$ T cells subsets can be identified by their 

downregulation of CD24 (Heat Stable Antigen, HSA), which had been previously 

established as a maturation marker of !" T cells. By the comparative gene expression 

analysis of TFs in immature and mature #$ T cell subsets, we showed that upon 

maturation, V2 cells downregulate the expression of subset-specific TFs. Furthermore, 

the maturation phase of V2 cells is characterized by a surge of expression of genes 

involved in the execution of specific effector functions, including genes that encode for 

chemokine receptors and cytokine receptors. For example, Rorc, Rora, Ccr6, Il23r, Il1ra, 

Il17rc, Il17re and Il17f are observed to be significantly and specifically upregulated in 

mature V2 cells as compared to other #$ T cell subsets (Fig. 3.2). Upon maturation, #$ T 

cell subsets migrate to their destined peripheral tissues where they function as memory 

like effector T cells. Thus, the initial burst of expression of TFs that distinguishes 

immature V2 cells is transient, but likely to be sufficient to generate T#$17-associated 

gene program by inducing heritable epigenetic modifications in maturing V2 cells. The 

high expression of HMG box TF in the immature stages of V2 cells indicated their 

involvement in programming their effector differentiation. Thus, we tested this 

hypothesis by determining the function of HMG box TFs SOX13, TCF1 and LEF1 in the 

T#$17 cell differentiation.   

 

SOX13 programs development of adult V2 T#$17 cells:  

While screening for genes that were differentially expressed between !" and #$ 

thymocytes, we identified Sox13  as a #$ lineage-specific gene that can act as the lineage 
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Figure 3.2.  Effector functions of !" cells are programmed in thymus. A heat map of 

relative expression of cytokine/chemokine receptors, cytokines and TFs is shown. Upon 

thymic maturation, V2 cells enter the effector-poised phase by abrupt and specific 

superinduction of cyokine receptor genes that are dedicated for IL-17 production and 

responsiveness: Il23r (the most induced gene, by ~100 fold, in CD24
lo

 relative to 

CD24
hi

), Il17re and Il1r1 are the strongest induced genes in mature V2 cells. Receptors 

for modulators of IL-17 production are divergently expressed upon maturation. Among 

TFs, programming TFs of WNT-HMG family, Sox13, Sox4, Tcf1, Lef1 undergo 

downregulation upon thymic maturation of V2 cells. TF associated with effector 

function, Rorc is expressed in immature V2 cells and its expression is strongest in mature 

V2 cells in comparison to other !" subsets. Similarly, Sox13 target Blk exhibits 

intermediate expression in immature V2 cells and undergoes strong upregulation in 

mature V2 cells. Expression of cytokines and TFs associated with V1 cells- Ifng, Eomes, 

or V6 cells- Il4 and Plzf are increased upon their respective maturation. 
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determining TF (134). Subsequent systematic global gene expression analyses of 

different #$ thymocyte subsets performed in conjunction with the Immunological 

Genome Project (Immgen, C. Benoist, Harvard) showed that while Sox13 is expressed in 

all immature #$ subsets, its expression is highest in the immature V2 #$ T cells (Fig.3.1).    

To study the function of SOX13 in adult #$ T cell development and function, 

Sox13-/- (129/J) mice, previously generated in our lab, were utilized. We observed a 

selective decrease in the frequency of V2 cells in the peripheral lymphoid organs of 

Sox13-/- mice (Fig.3.3). In addition, the remaining V2 cells in Sox13-/- mice expressed 

significantly lower amounts of TCR on their surface (Fig.3.3). Detailed analysis of 

Sox13-/- V2 cells illustrated that there is a complete loss of V2 T#$17 cells (characterized 

as CCR6
+
IL-17A

+
RORgt

+
CD44

hi
 V2 cells) in the periphery of these mice. (Fig.3.4A, 

3.5). Further assessment of Sox13-/- thymocytes revealed that 

CD24
lo

ROR#t+
CCR6

+
CD27

-
 V2 thymocytes that are the earliest identifiable thymic 

T#$17 cells do not develop when SOX13 is missing (Fig.3.4B, 3.5).  This defect is cell 

intrinsic as the T#$17 differentiation defect is observed specifically in Sox13-/- 
cells when 

mixed (WT: Sox13-/-) BM chimeras were analyzed (K. Sylvia, unpublished). Together, 

these results demonstrated that SOX13 is necessary for thymic development of V2 T#$17 

cells in a cell intrinsic manner.   

We further investigated the mechanism through which SOX13 could program 

development of #$ effectors. A clue came from an earlier work from our lab that had 

identified Blk as a SOX13 target gene. Ectopic expression of Sox13 in all developing T 

cell precursors in vivo led to the aberrant expression of Blk in DP thymocytes (134). A 
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Figure 3.3. SOX13 regulates the proportions of V2 !" T cells. Decreased frequency of 

V2 cells is observed in the periphery of Sox13-/-
 mice. Among V2 cells, V!2 TCR

hi
 cells 

are absent in the Sox13-/-
 mice. 

 

124



0.2

0.5

0.1

0.4

γδ

SPLEEN

LN

21 14

Sox13-/-WT

Vγ2

Vγ2

Figure 3.3

125



Figure 3.4. SOX13 is essential for V2 T!"17 generation. (A) V2 T!"17 cells are absent 

in the LNs of Sox13-/- mice. The differentiation of !" effector T cells was examined by 

the analysis of intranuclear ROR!t and EOMES and cell surface CCR6 and CD27 ex 

vivo, and the analysis of intracellular IL-17A and IFN! after stimulation of LN T cells. 

(B) The defects in T!"17 generation originate in the thymus. Expression of the T!"17 

markers as in (A) in mature (CD24
lo

) V!2
+

 thymocytes of WT and Sox13
!/!

 mice. 
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Figure 3.5. SOX13 positively regulates the development of V2 T!"17 cells. Sox13-/-
 

mice do not generate IL-17
+
 V2 cells. Total number of mature V2 thymocytes is 

decreased ~2 fold in Sox13-/-
 mice with a complete block in the differentiation of IL-17 

producers. The number of IFN! producers is not altered significantly in Sox13-/-
 thymus 

or LNs.  
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recent study from the Hayes lab showed that BLK is highly expressed in T#$17 cells and 

that its loss affects the differentiation and/or survival of these cells (156). Our detailed 

analysis of BLK expression in #$ subsets showed that BLK is highly expressed in the 

immature V2 cells and some immature V#1-
V#2-

 cells (which contains V4 cells) 

(Fig.3.6A). In the mature #$ subsets, supporting the published study, we observed a 

strong BLK expression in all ROR#t+
 #$ T cells (Fig.3.6A). 

We next determined BLK expression in #$ T cells of Sox13-/-
 mice. In the thymus 

we observed a substantial reduction in the proportions of BLK
+
 cells as well as a 

significant decrease in the BLK expression in the immature V2 thymocytes of Sox13-/-
 

mice (Fig.3.6B). Interestingly, by intracellular staining, we could observe the expression 

of BLK and ROR#t in a fraction of WT immature V2 cells, which did not produce IL-17 

at this stage. Approximately 20% of immature V2 cells co-expressed ROR#t and BLK 

and these “double positive” cells were essentially absent in Sox13-/- immature 

thymocytes, while the frequency of ROR#t+
BLK

-
 immature V2 cells did not change 

significantly. These results, combined with the published data showing that SOX13 can 

induce Blk expression, indicated that SOX13 regulates BLK expression and the absence 

of sufficient BLK expression in developing ROR#t+
 #$ thymocytes prevents their full 

maturation into T#$17 cells. The exact role of BLK in T#$17 cells is not known. 

Constitutive BLK activity in immature pro B cells has been shown to bypass the 

requirement for pre BCR signaling during differentiation in part by phosphorylation of 

other SRC kinases and Syk (249). Hence, it is possible that BLK could regulate the 

signaling threshold in #$ T cells. T#$17 and IFN# producing #$ T cell subsets have been 
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Figure 3.6. SOX13 regulates BLK expression in the immature V2 cells. (A) BLK 

expression in immature and mature !" T cell subsets.  Intermediate expression of BLK is 

observed in immature V2 cells and it is not detected in most immature V1 and V6 !" 

cells. BLK is also expressed in some immature V4 cells (V1
-
V2

-
V6

-
) cells. Upon 

maturation V2 and V4 cells express high levels of BLK. (B) BLK and ROR!t are co-

expressed in a subset of immature V2 cells. The proportions of BLK expressing cells are 

reduced in the absence of SOX13, with a specific loss of BLK
+
ROR!t+

 immature and 

mature V2 cells. 
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suggested to undergo distinct signaling during selection and maturation in the thymus, 

with T#$17 cells requiring only basal signaling to mature (123). SOX13-regulated BLK 

in developing T#$17 cells may be a primary biochemical property distinguishing them 

from other #$ cell subsets, and conferring unique developmental signals necessary for full 

maturation of T#$17 cells. 

Intriguingly, although the deficiency of SOX13 impaired V2 T#$17 cell 

generation, it did not affect the generation of fetal derived V4 T#$17 cells. However, we 

also observed that Sox13 is highly expressed in the immature V4 cells. This indicated 

that SOX13 could be differentially important for IL-17 production from adult versus 

fetal-derived effector cells. To test this possibility, we analyzed the Lck promoter driven 

Sox13 transgenic (Tg) mice that were previously generated in our lab (134). 

Complementary to Sox13-/- 
mice, we saw a marked increase in BLK expressing V#2+

 and 

V#2-
 #$ T cells in Sox13 Tg

+
 animals (Fig. 3.7A). Moreover, we observed an increase in 

the frequency and numbers of V4 T#$17 (V#1-
 V#2-

) cells in these mice (Fig. 3.7B). The 

effects of SOX13 overexpression are detrimental for the survival of V2 cells and their 

proportions are significantly reduced in these Tg mice (134). Thus, there was no 

substantial increase in mature V2 T#$17 cells  (Fig. 3.7B). These results suggest that the 

quantitative effects of SOX13 affect the survival and development of V2 and V4 T#$17 

cells differently. Although immature V2 and V4 cells are very similar in their gene 

expression patterns overall (Fig. 3.8), it is possible that trans acting factors differentially 

provided in fetal versus adult thymic tissues can alter a cell’s dependence on the key TFs.  
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Figure 3.7. Increased V4 T!"17 cell differentiation in Sox13 Tg
+
 mice. (A) Increased 

proportions of BLK
+
 !" T cells are observed in the Sox13Tg

+
 mice. BLK expression in 

immature (CD24
hi

) and mature (CD24
lo

) V!2
+ 

and V!2
-
 !" thymocytes of WT (C57BL/6) 

and Sox13Tg
+

 mice, determined by intranuclear staining analysis. (B) The proportions of 

V2 cells are significantly reduced upon overexpression of SOX13. A substantial increase 

in the frequency of V4 T!"17 (V!1-
V!2-

) cells is observed in the Sox13Tg
+
 mice. IL-17 

and IFN! production was measured after the stimulation of LN cells. 
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Figure 3.8. Fetal immature V4 and immature V2 cells are highly similar in their 

global gene expression. Scatter plots showing mean expression values for genes 

expressed in the immature V4 versus immature V2 cells. E17 thymocytes were sorted for 

the preparation of RNA. The red dots show T!"17 cell associated genes. A subtle 

increase in the expression of some of those markers is observed in the immature V4 cells 

compared to the immature V2 cells. 

136



Immature V2

Immature V4

il23r

ccr6

il17a
cxcr5

il1r
il17f il17re

rorc

ifngirak2

sox13
blk etv5

sox4rora

Figure 3.8

137



Overall, our results show that SOX13 and its target BLK are indispensable for the 

development of adult T#$17 cells. Further, SOX13 overexpression enhances the 

development of V4 T#$17 cells, but V4 cells are not absolutely dependent on SOX13 for 

development. Conversely, HES1, a target of Notch signaling, appears to be more critical 

for fetal versus adult T#$17 differentiation (180). Moreover, adult, but not fetal, LTi 

related effector ILCs are dependent on Notch2 for differentiation (250). These results 

show that distinct gene networks assume primacy in directing innate effector 

differentiation. 

 

TCF1 is a negative regulator of T#$17 cell differentiation 

TCF1 is expressed in all developing T cells and its role as a master regulator of !" T cell 

development is well established. While !" thymocyte number is reduced to 1-2% of 

normal in Tcf7-/-
 mice, the number of thymic #$ cells remained relatively unchanged in 

the absence of TCF1 (227). Interestingly, similar to Sox13, the expression of Tcf7 was 

highest in the V2 cells. We had earlier shown that SOX13 can antagonize TCF1 function 

in #$ T cells.  To determine if the relative activity of TCF1 impacts the development and 

function of #$ T cell subsets, we reassessed #$ T cell differentiation in Tcf7-/- mice. #$ T 

cell subsets in the thymus of Tcf7-/- mice exhibited a strikingly deregulated distribution 

and development. In particular, we observed that the effector programming of all #$ T 

cell subsets is extensively distorted in these mutant mice. For instance, GATA3 

expression is significantly reduced in all immature adult #$ thymocyte subsets lacking 

TCF1 (Fig. 3.9A). This observation is consistent with the known function of TCF1 in 
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Figure 3.9. Deregulated !" T cell effector differentiation in Tcf7-/-
 mice. (A) GATA3 

expression in immature (CD24
hi

) and mature (CD24
lo

) V!1.1
+ 

and V!2
+

 !" thymocytes of 

WT (C57BL/6) and Tcf7
!/!

 mice, determined by intranuclear staining analysis. (B) 

Expression of PLZF (left) in total !" thymocytes and EOMES (right) in the splenic V1 

gated cells of WT (grey filled) and Tcf7
!/!

 (black line) mice  

139



31 19

9.3 1.3

80 16

13

WT Tcf7-/- WT Tcf7-/-

A

GATA3

THYMUS

CD24hi

CD24lo

Vγ1+ cells Vγ2+ cells

B THYMUS

Figure 3.9

EomesPLZF

V1

WT

Tcf7-/-

140



regulating GATA3 induction in the Th2 cell differentiation process and in T precursors 

(251), (231). The other uncommon feature among Tcf7-/- #$ T cell subsets is their higher 

expression of the TF PLZF (Fig.3.9B). PLZF expression is normally associated with V6 

#$ cells (147). Interestingly, V6 cells are also present in increased proportions in these 

mice. Further, Tcf7-/-
 #$ T cells in the periphery are defective in the expression of 

EOMES and in their ability to produce IFN#. The regulation of Eomes expression by 

TCF1 had been previously demonstrated in !" lineage memory CD8 T cells (252) (Fig. 

3.9B)  

 A major phenotype of Tcf7-/- #$ T cells is their dominant IL-17 production. We 

observed that the deficiency of Tcf7 not only enhanced IL-17 production from V2 and V4 

cells, but non-IL-17 producers such as V1 cells were capable of IL-17 production 

(Fig.3.10A, B). Overall, > 80% of all #$ T cells expressed IL-17, CCR6 and ROR#t in the 

thymus and the periphery of these mice (Fig.3.10A). Importantly, we also observed that 

the absence of TCF1 in #$ T cells subsets reciprocally restricts differentiation to IFN#+ #$ 

cells. One reason for this reduction could be the decreased expression of EOMES in the 

absence of Tcf7. These results are congruent with other recent studies that identified 

TCF1 as a negative regulator for IL-17 production in !" Th17 cells, through its ability to 

bind and repress transcription from the Il17a promoter at the time of effector lineage 

programming (253).  

The multiple defects in #$ T cell subset specification in Tcf7-/-
 mice demonstrate 

that gene networks in all #$ cell subsets are controlled by TCF1. Relatively high 

expression of both TCF1 and SOX13 in immature V2 cells (Fig.3.1) suggests that the 
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Figure 3.10. TCF1 negatively regulates T!"17 cell differentiation. (A) Enhanced 

generation of IL-17
+
 !" effectors and a reciprocally diminished IFN!+

 cell differentiation 

and maintenance in Tcf7-/-
 mice. The differentiation of !" effector T cells was examined 

by the analysis of intranuclear ROR!t and EOMES and cell surface CCR6 and CD27 ex 

vivo, and the analysis of intracellular IL-17A and IFN! after stimulation, in mature 

(CD24
lo

) V!1+
 and V!2+

 cells isolated from isolated from thymus. (B) Numbers of 

mature !" thymocyte and LN effectors were calculated. Among mature V2 thymocytes, 

the ratio of IL-17
+
:IFN!+

 is skewed, with the biased ratio maintained in the LN, where a 

further loss of V2 cells is observed in Tcf7-/-
 mice. For mature V!1+

 thymocytes there is a 

>10 fold increase in IL-17 producers, while the number of IFN!+
 cells is not altered. 

Overall, the numbers of !" T cell subsets are dramatically reduced in the LN of Tcf7-/-
 

mice. The peripheral V!1+
 IFN! producing cells are particularly dependent on TCF1. In 

contrast, there are more LN V!1+
 cells making IL-17 than LN V2 cells in Tcf7-/-

 mice. 
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interaction between SOX13 and TCF1 is particularly critical for the development of 

T#$17 cells. 

 

Mutually exclusive expression of LEF1 and ROR#t 

The HMG box TF LEF1 has been studied in conjunction with TCF1 for its independent 

and redundant functions in thymic T cell development. LEF1 and TCF1 act 

synergistically for the generation of !" T cells, as the block in T cell development is 

most severe in Tcf1-/-Lef1-/- double deficient mice. Similar to other HMG TFs, we 

observed Lef1 to be highly expressed in immature #$ subsets (Fig. 3.1). Further, the flow-

cytometric analysis illustrated relatively lower expression of LEF1 in immature and 

mature V2 cells as compared to the immature and mature V1 and V6 subsets, 

respectively (Fig. 3.11A). Interestingly, this expression pattern of Lef1 in #$ T cell 

subsets is opposite to that of Sox13 whose expression is highest in V2 cells and lowest in 

V6 cells. Indeed, we observed that LEF1 is not expressed in immature or mature ROR#t+ 

V2 and V4 thymocytes. This mutually exclusive expression of LEF1 and ROR#t 

(Fig.3.11B) is maintained in peripheral #$ T cells  (Fig.3.11C). Further, there is a 

significant reduction in LEF1
+ 

cells with a corresponding increase in ROR#t+
 cells among 

all #$ subsets in Tcf7-/- 
mice (Fig.3.11C). In Sox13Tg #$ T cells too, LEF1 expression is 

decreased overall (Fig.3.11D). Hence, it is possible that SOX13 interacts with LEF1 at 

the protein level (134) as well as inhibits Lef1 transcription to promote T#$17 cell 

differentiation.   
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Figure 3.11. Mutually exclusive expression of LEF1 and ROR!t in T!"17 cells. (A) 

LEF1 expression analyzed by intranuclear staining of thymocytes from C57BL/6 mice. 

LEF1 is highly expressed in immature !" subsets with highest expression in V6 cells and 

lowest expression in V2 cells. (B) Intranuclear staining for ROR!t and LEF1 in LN V2
+
 

(left) and V4
+
 (V1

-
V2

-
V6

-
) (right) T cells of WT mice shows mutually exclusive 

expression of the TFs. (C) ROR!t and LEF1 expression in LN V!1.1
+
 (left) and V!2

+
 

(right) T cells of WT and Tcf7
!/! mice shows the loss of LEF1

+
 !" T cells when TCF1 is 

non!functional.  (D) Similarly, ROR!t and LEF1 expression in the LN of Sox13Tg
+
 mice 

shows an increase in ROR!t+
 V4 (V1

-
V2

-
V6

-
) cells while LEF1

+
 cells are significantly 

reduced. 
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Based on these results, we speculate that LEF1 may be a decisive repressor of IL-

17 producing cells. A key difference between TCF1 and LEF1 expression pattern is that 

TCF1 is expressed in all #$ thymocytes, while apparently serving as a modulator of Il17 

transcription, while LEF1 is only expressed in ROR#t-
 #$ cells. Preliminary results from 

our lab indicate that LEF1 is bound to a regulatory sequence associated with Rorc locus 

in cells that do not express ROR#t, identifying LEF1 as a possible negative regulator of 

Rorc expression. Further verifications of LEF1 function await the generation of 

conditional Lef1-deficient mice. In the meantime, overexpression of LEF1-dominant 

negative (DN) protein in developing #$ T cells will help us further assess its importance 

in #$ T cell effector differentiation. 

 

Distinct developmental origin of IL-17 producing V2 cells 

Through our systematic analyses of #$ T cell subsets, we showed that developing 

immature thymic #$ subsets are marked with the gene expression profiles predictive of 

their eventual effector functions. Since #$ effectors are separable based on V#/V$ TCR 

repertoire, it remains possible that distinct TCR signal strength of different #$ TCRs 

directs the #$ effector fate. Further, our earlier results had shown the SOX13 could 

induce Tcr Vg2 transcription. Thus, it remained possible that the loss of V2 T#$17 cells 

in Sox13-/- 
mice is a result of impaired Vg2 TCR expression. Hence, to determine the role 

of #$TCR in determining the effector fate of V2 cells, we utilized mice that overexpress 

rearranged, functional Tcrgv2 transgene under the endogenous Vg2 promoter. Enforced 

V#2 TCR expression in all developing #$ thymocytes did not increase the differentiation 
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of V2 cells towards IL-17 or IFN# expressing cells, which remained in the normal range 

in these mice (Fig.3.12), hence demonstrating that #$TCR type-specific signal by itself is 

not the primary determinant for #$ effector cell generation. 

 Tcrgv2Tg
+
 mice were also bred in the Sox13-/- 

background.  If defective 

transcription of the Vg2 gene is responsible for the loss of V2 cells in Sox13-/-
 mice, the 

provision of a rearranged Vg2 gene should lead to normal production of V2 cells. Even 

when all #$ T cells expressed V#2 TCR in Sox13-/-
 mice, there was a complete absence of 

V2 T#$17 cells, indicating that the absence of SOX13-mediated promotion of Tcr gene 

transcription is not responsible for the block in T#$17 cell differentiation (Fig.3.12). 

While not definitive, these results suggested that specific TCR signals are not 

likely to dictate #$ effector cell fate, at least for those programmed to produce IL-17. We 

then tested whether different T cell precursors possess distinct effector lineage potentials. 

The generation of #$ cell subsets is a developmentally ordered process. Hence, it was 

hypothesized that #$ cells arising early during step-wise progenitor maturation would 

possess a different effector fate than those developing from more differentiated 

precursors. To test this idea, we compared the developmental potential of the early c-Kit 

+
(CD117

+
) progenitors (DN1 and DN2) with the late DN3 precursors, using the in vitro 

OP9-DL1 culture system. This in vitro culture system consists of the OP9 bone marrow 

stromal cell layer that ectopically expresses the Notch ligand delta-like 1 (OP9-DL1). T 

cell development into both !" and #$ lineages is efficiently supported in this assay 

system, which recapitulates the in vivo thymic T cell development processes. We sorted 

and cultured c-Kit
+
 (DN1+DN2) and DN3 cells in the OP9-DL1 culture system for 5-12 
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Figure 3.12. TCR V!2 overexpression does not restore T!"17 cell development in 

Sox13-/-
 mice. The loss of V2 T!"17 cells cannot be prevented by the expression of a 

functional V!2!J!1!C!1 (Tcrgv2)
+

 transgene in all developing thymocytes. LN cells from 

WT, Sox13
!/!

, Tcrgv2 transgenic (TgN, B6 x 129 F2) and Tcrgv2TgNSox13
!/!

 (B6 x 129 

F2) mice were analyzed for the expression of intranuclear ROR!t and EOMES, cell 

surface CCR6 and CD27 and intracellular IL!17A and IFN! in gated LN V2 cells.  
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days.  Subsequently we analyzed the effector potential of progeny V2 #$ T cells by their 

expression of CCR6 and CD27. These cell surface receptors faithfully mark the IL-17 

and IFN# producing effector cells respectively. CCR6
+
V2 cells were generated 

predominantly from the early progenitors, but not the late precursors, which gave rise to 

only IFN# expressing cells (Fig. 3.13A,B). These results favor the model that there exists 

a precursor cell intrinsic bias in #$ effector cell fate, with graded expression of Sox13 (in 

50% of single DN2 cells and very little in DN3 cells) (134), strongly influencing the cell 

fate decision process.  Further, the established correlation of TCR#/$ repertoire and 

effector function can then be accounted for by linking the temporally ordered 

rearrangement in V gene segments, with preferential earlier rearrangement of V#2-C#1, 

in c-Kit
+
 precursors that are biased to produce T#$17 cells (254). A definitive 

demonstration of a developmental link among c-Kit
+
 precursors, Sox13 expression and 

T#$17 differentiation will necessitate tracking the developmental potential of Sox13+
 

progenitors. A Sox13 transcription reporter mouse model is currently in development in 

our lab. 

 

Trans-conditioning through TCRb+ cells does not limit the generation of T#$17 cells 

Our results described so far illustrated that the intrinsic programming by the HMG-box 

TFs regulates the development of T#$17 cells. But, extrinsic cues originating from the 

thymic stroma and parenchymal cells as well as other thymocytes have also been 

proposed to be necessary for the normal maturation and acquistion of effector functions 

by #$ T cells. While WNT and Notch ligands provided in trans are highly relevant, 
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Figure 3.13. Distinct developmental origin of V2 T!"17 cells. (A) CCR6
+
 V2 cells 

develop exclusively from ckit
+ 

thymic precursors. ckit
+ 

(DN1 and DN2) and cKit
- 
DN3 

subsets from Tcrb-/- 
mice were sorted and plated on  OP9–DL1 monoayers at 1000-5000 

cells per well respectively, in the presence of IL-7 and Flt3 ligands.  CCR6 and CD27 

expression on developing V!1+
 and V!2+

 !" subsets was analyzed by flow-cytometry 

after separating the lymphocytes from stromal cells. (B) Frequency distribution of CCR6
+
 

cells among V!1+
 and V!2+

 !" cells, which developed from ckit
+
 (DN1+DN2) or DN3 

precursor cells is shown. Around 18 DN1 wells and 30 DN3 wells were analyzed. Data 

are combined from 3 different experiments. 
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Hayday et al. also proposed that LT" released from !" DP thymocytes signals to #$ T 

cells and precursors to permit normal differentiation of #$ thymocytes into effectors.  

This cross lineage (!" cells regulating #$ cells) trans conditioning has been a major 

theme in the field of #$ T cell development (255).      

To determine the role of trans-condtioning in #$ T effector subset differentiation, 

we utilized Tcrb-/-
 mice which lack all DP cells. Initial studies that suggested the 

importance of !" thymocytes for #$ cell differentiation emphasized that expression of a 

cluster of genes (the targets of trans conditioning) was silenced in #$ thymocytes from 

Tcrb-/- mice. We first noted that the proportions of different #$ subsets in Tcrb-/- mice was 

altered with a selective expansion of PLZF expressing V6 cells and a decrease in the 

frequency of V2 cells (Fig. 3.14A). Given that we now know that the gene expression 

profiles of #$ T cell subsets are highly distinct the differences in the relative proportions 

of #$ T cell subsets could potentially account for some of the differences in gene 

expression observed by the Hayday lab and others when only bulk #$ T cells from Tcrb-/- 

mice were compared against WT #$ T cells. When the gene expression profiles of each 

immature #$ cell subsets from Tcrb-/-
 mice were compared to their counterparts from WT 

mice, no overt differences in gene expression were observed (data not shown). Equally 

unexpectedly, the functional characterization of #$ T cells in these mice illustrated that 

the generation of IFN# producing V1 cells was increased, not decreased  (Fig. 3.14B). 

This was consistent with an increased expression of the EOMES in the V1 subset. 

(Fig.3.14B). Moreover, even V2 cells from Tcrb-/-
 mice misexpressed EOMES and were 

biased towards developing into IFN# producers (Fig.3.15A,B). However, unlike an 
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Figure 3.14. Increased proportions of V1 IFN! producing cells in the absence of 

trans-conditioning. (A left and right) Altered proportions of !" subsets in Tcrb-/- mice, 

with an increase in V1 and V6 cells and a decrease in V2 cells. (B) An increase in the 

IFN! producing V1 cells is observed in the Tcrb-/- mice. Differentiation of !" effector T 

cells was examined by the expression analyses of intranuclear ROR!t and EOMES, cell 

surface CCR6 and CD27 and intracellular IL-17A and IFN! in mature (CD24
lo

) V!1.1
+
 

thymocytes and LN T cells. IL-17A and IFN! production was measured after stimulation.  
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increase in the proportion of IFN# producing cells, we observed a significant reduction in 

the proportions of IL-17 producing V2 #$ T cells (Fig.3.15A).  Consistent with the 

cytokine production pattern, we observed that the expression of ROR#t was decreased in 

the Tcrb-/- mature V2 cells (Fig.3.15A). In fact, most of the genes necessary for IL-17 

production were decreased in expression in mature V2 Tcrb-/- cells (data not shown).  

Although the proportions of mature IL-17 producing cells were reduced in the 

thymus and the periphery of Tcrb-/- mice, the total numbers of IL-17
+
V2 cells were not 

significantly altered relative to the WT mice (Fig.3.15B)  (Tcrb-/- 
produce ~3 times the 

number of #$ T cells compared to WT mice). These results indicate that in the absence of 

!" TCR thymocytes, no significant impairment in the generation of immature #$ 

thymocye subsets from precursors exists. Moreover, no significant block in the 

generation of #$ effector cells is observed in Tcrb-/-
 mice. There is a biased production of 

V2 cells that mature into IFN# producers, while the size of IL-17 producing V2 cells is 

tightly maintained. Despite this relative normalcy, mature #$ thymocyte subsets appear to 

contain significant proportions of cells that do not fully differentiate. Whether this is a 

consequence of delayed or aborted differentiation is not established.  Therefore, we 

conclude that the cross lineage trans conditioning is not a significant factor in generating 

distinct immature #$ cell subsets in the thymus. Rather, the development of T#$17 cells is 

intrinsically programmed by the HMG box family of TFs members, a process that 

appears to be independent of “instructive” TCR signaling and LT" produced by !" DP 

thymocytes. 
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Figure 3.15. Altered proportions of !" effector cells in the absence of trans-

conditioning. (A) Decreased proportions of IL-17
+
 V2 cells with a reciprocal increase in 

the frequency of IFN!+
 V2 cells is observed in Tcrb-/-

 mice. Differentiation of !" effector 

T cells was examined by the analysis of intranuclear ROR!t and EOMES and cell surface 

CCR6 and CD27 ex vivo, and the analysis of intracellular IL-17A and IFN! after 

stimulation, in mature (CD24
lo

) V2 thymocytes and LN T cells. (B) Total numbers of IL-

17 producing V2 !" T cells are similar in WT and Tcrb-/-
 mice. The number of IFN! 

producers is significantly increased in the thymus and LNs of Tcrb-/-
 mice. 
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Summary and future directions 

Through extensive gene and protein expression analysis of #$ T cell subsets and by 

analyses of key mouse genetic models, we find that the HMG box TFs SOX13 and 

TCF1/LEF1 program the development of adult IL-17 T#$17 cells.  We showed that 

SOX13 and TCF1 are positive and negative regulators of this pathway, respectively, and 

their previously shown interaction is likely to be the dominant parameter in T#$17 

development. TCF1, a mediator of canonical WNT signaling pathway has been shown to 

function as a transcriptional repressor in the absence of "-catenin (256). It switches to an 

activator of transcritption in the presence of "-catenin. To understand the regulation of 

T#$17 cell differentiation downstream of TCF1 and SOX13, it will be important to define 

the relevance of WNT signaling for T effector cell differentiation. While Groucho has 

been identified as a key co-repressor associated with TCF1 in the absence of WNT 

signaling, very little is known about the mechanism of transcription suppression mediated 

by TCF1/LEF1 in T cells. Moreover, TCF1 can be an activator of transcription in the 

absence of WNT signaling, necessitating more detailed understanding of alternate 

transactivators that are present in TCF1/LEF1 complex.  

We proposed that the absence of IL-17 producing cells in Sox13-/-
 mice is a 

consequence of the loss of SOX13-regulated BLK expression in immature V2 cells. How 

BLK signaling ensures normal T#$17 differentiation is unknown. BLK and SOX13 are 

expressed in early thymic progenitors, suggesting that signaling from BLK prior to TCR 

expression is potentially critical for T#$17 cell differentiation. Our future experiments 

will attempt to identify the unique BLK dependent biochemical properties of T#$17 cells. 
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It is important to note that there are likely other target genes of SOX13 whose function is 

absolutely required for T#$17 differentiation. Our lab has found that ETV5, a possible 

target gene of SOX13 highly expressed in immature V2 thymocytes, is also essential for 

T#$17 cell differentiation and/or maintence as mice lacking Etv5 in T cells fail to 

generate T#$17 cells (Tal Shay et al. manuscript submitted). Thus, a network of genes 

downstream of SOX13 is required to promote T#$17 differentiation. 

In support of the stochastic model of #$ T cell effector lineage development that 

predicts the existence of effector lineage biased precursors prior to TCR signaling we 

provided two main sets of data. First, we showed that when all immature #$ thymocytes 

express V#2 TCR the number of T#$17 cells generated was not altered compared to 

normal mice. Thus, specific TCR by itself cannot drive effector #$ cell subset 

differentiation. In other experiments performed in our lab we showed that the TEC kinase 

ITK critical for Il17a transcription downstream of TCR signaling in Th17 cells (73) is not 

required to generate T#$17 cells (data not shown). In addition, TCR signal activated IRF4 

also necessary for Th17 cell differentiation by inducing Rorc, has been reported to be 

dispensable for T#$17 differentiation (159).  Together, we suggest that while some form 

of TCR signaling is clearly necessary for #$ T cells to bypass developmental checkpoints, 

#$TCR signaling is unlikely to be the initial discriminator driving effector lineage 

diversification. Second, in support of the pre-programming model, we showed that V2 

T#$17 cells arise exclusively from the early c-Kit
+
 progenitors, but not from the later T 

precursors in the OP9-DL1 culture system. While this result needs to be verified in an in 

vivo developmental assay, we propose that the development of different #$ effector cells 
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is governed by when and which Tcrg and Tcrd genes are functionally rearranged during T 

precursor cell differentiation. A temporal order that favors early Vg2 gene rearrangement 

can account for the association of V#2 TCR with T#$17 effectors. It is useful to note that 

most of the TFs that constitute the immature V2 gene signature are expressed prior to 

TCR expression in c-Kit+ progenitors. There is no evidence to indicate that TCR 

signaling impacts Sox13 or Tcf7/Lef1 transcription (257), ruling out a potential direct 

link between TCR signaling and the TFs that are essential for T#$17 differentiation. As 

eluded earlier a definitive test of the SOX13-TCF1/LEF1 controlled T#$17 differentiation 

can occur with the successful generation of faithful Sox13 reporter mice. Given that 

GALT LTi like IL-17 and IL-22 producing ILCs are generated without antigen receptor 

signaling we predict that variations in the gene network controlling T#$17 differentiation 

that is independent of TCR signaling are utilized to generate other innate effectors. 

 

Materials and Methods 

Mice: Sox13-/- 
mice maintained in 129/J background and Lck-Cre Sox13Tg

+
 mice in 

C57BL/6 background were generated previously in our lab (134). Tcf7-/-
mice were a gift 

from Hans Clevers and Tcrvg2 Tg
+
 mice were generated by Dr. Kang (258). Tcrb-/- 

and 

C57BL/6 mice (5-6 weeks old) were purchased from Jackson Labs. All experiments were 

approved by the UMMS IACUC (Worcester, MA). 
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Sample preparation for microarray analysis: Thymocytes were pooled from 5 week old 

C57BL/6 mice (Jackson Labs) and enriched for #$ T cells using Dynal depletion and 

MACS based selection. Depleted thymocytes were stained for cell surface markers and 

~2-3 x 10
4
 cells (>99% pure) were sorted directly into Trizol (Invitrogen) using a 

FACSAria cell sorter. For each population, independent triplicate samples were sorted, 

unless noted otherwise. RNA processing from sorted cells and microarray analysis using 

the Gene1.0 ST array (Affymetrix) was performed at the ImmGen processing center 

(SOP at ImmGen.org). The following abbreviations were used that correlate with the 

indicated ImmGen populations: ImmV2=immT#$.v#2+
.Th, ImmV1=immT#$.v#1+

v$6
-

.Th; ImmV6=immT#$.v#1+
v$6

+
.Th MatV2= matT#$.v#2+

.Th (sorted in duplicate); 

MatV1=matT#$.v#1+
v$6

-.
Th,  MatV6=matT#$.vg1+vd6+.Th (sorted in duplicate);; Total 

#$=T#$.Th; ImmV2.e17=immT#$.vg2.e17.Th; ImmV3.e17=immT#$.vg3.e17.Th; 

ImmV4.e17=immT#$.vg4.e17.Th. Complete sorting details for each population can be 

found at Immgen.org. Approximate frequencies of TCR$ chains associated with sorted 

TCR#$ subsets are as follows: V2 (V#2+
, 50% V$4

+
, 40% V$5

+
, all V$6.3

-
, ~45% of total 

#$ cells); V1 (V#1.1
+
, diverse V$s including 25% V$4

+
, 15% V$5

+
, others at lower 

frequencies, all V$6.3
-
, 30% of total #$ cells); V6 (V#1.1

+
, 100% Vd6.3

+
, ~8% of total #$ 

cells); V5 (V#5+
, 40% V$5

+
 and various others at lower frequencies, ~5% of total #$ 

cells); and fetal V3 and V4 thymocytes co-express V$1.  

 

Data analysis and visualization: Data analysis was performed using GenePattern 

(Genepattern.org) analysis modules. Expression files were generated from raw 
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microarray CEL files using the ExpressionFileCreator module. Unannotated probe sets 

were removed and data were RMA normalized with quantile normalization and 

background correction. The ConsolidateProbeSets module (Scott Davis, Harvard Medical 

School, Boston, MA) was used to consolidate multiple probesets into a single mean 

probeset value for each gene. Identification of differentially regulated genes was 

performed using Multiplot. Unless otherwise indicated, genes were considered 

differentially regulated if they differed in expression by more than 2-fold, had a 

coefficient of variation (cv) among replicates of less than 0.5, had a p value of less than 

0.05, and had a mean expression value (MEV) of greater than 120. Heatmaps were 

generated by hierarchical clustering (Hierarchical Clustering module) of data based on 

gene (row) and subset (column) using the Pearson correlation for distance measurement. 

Data were log transformed and clustered using pair-wise complete linkage. Data were 

row centered prior to visualization using the HeatmapViewer module. Data were log 

transformed, gene and subset normalized, and filtered for genes that had a MEV>120 

prior to visualization. Pathway analysis was performed using Ingenuity software 

(Ingenuity.com) and by manual inspection. Some functional classifications were 

performed using AmiGO (Amigo.geneontology.org) and KEGG pathways 

(Genome.kp.kegg). 

 

Flow cytometry: Antibodies (Ab) to the following cell surface markers and cytokines 

were purchased from BD Biosciences or eBioscience: CD3, CD4, CD8, CD25, CD44, 

cKit, V#2, V$6.3, CCR6, CD24, IL-7R!, CD27, IL-17A, IFN#, TNF!, streptavidin (SA)-
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APC or -PE-Cy7. V#1.1 Ab was purified by Bio-XCell and biotinylated using the 

FluoReporter Mini-Biotin-XX Labeling Kit (Invitrogen). Intranuclear staining was 

performed using the FOXP3 staining kit  (eBio) for the following Abs: BLK (Cell 

Signaling), EOMES (eBio), TCF1 and LEF1 (primary Abs- Cell Signaling, secondary Ab 

-Molecular probe), GATA3 (ebio), ROR#t (eBio) and PLZF (Santa Cruz). All samples 

were acquired on a BD LSRII cytometer and data was analyzed using FlowJo (Treestar).   

 

Ex vivo stimulation of lymphocytes: Freshly isolated thymic and peripheral LN cells 

were cultured (2x10
6
/well) with PMA (10ng/ml) and Ionomycin (1µg/ml) for 4 hours at 

37°C, with Golgi Stop and Golgi Plug (BD Biosciences) added after 1 hour, according to 

the manufacturer’s protocols. After stimulation, cells were stained for cell surface 

markers and intracellular cytokine production using the Cytofix/Cytoperm kit (BD 

Biosciences).  

 

Differentiation of #$ T cells from precursors: OP9-DL1 cells (a gift from Juan Carlos 

Zuniga-Pflucker, U. of Toronto) cells were plated in 96 well flat bottom plates prior to 

cell sorting. Thymocytes were pooled from ten (5 to 6 week old) Tcrb-/-
 mice.  DN1 

(CD4
-
CD8

-
CD3

-
CD25

-
CD44

+
cKit

+
), DN2 (CD4

-
CD8

-
CD3

-
CD25

+
CD44

+
cKit

+
) and DN3 

(CD4
-
CD8

-
CD3

-
CD25

+
CD44

-
) cells were sorted using a FACSAria onto confluent OP9-

DL1 monolayer at 1000 and 5000 cells per well, respectively in 200µl of !MEM media 

containing 20% defined FBS (Gibco), PenStrep, 1ng/ml IL-7 (R&D Systems), and 

5ng/ml Flt3L (R&D Systems). During culture, half the media was replaced every 3-4 
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days with fresh media containing cytokines. After 6 days of culture, cells were collected 

from wells and stained with Abs to analyze #$ T cell subset distribution and effector 

differentiation using flow cytometry. All data were acquired on a BD LSRII flow 

cytometer and analysis was performed using FlowJo (Treestar).  

 

Statistical analysis: For the identification of differentially regulated genes, t-test p values 

were generated using Multiplot (Genepattern). Statistical analysis of flow cytometry data 

was performed using Prism (GraphPad Software). Data were tested for normality using F 

tests and then analyzed using unpaired two-tailed t-tests. Pathway analysis was performed 

using Ingenuity Pathway Analysis and statistical significance was determined using the 

program’s built-in Fisher’s exact test.  
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GENERAL DISCUSSION 

 

The work presented in this thesis describes the distinct TF pathways that regulate the 

generation of Th17 and T#$17 cells. We focused on TFs that belong to two key 

morphogen pathways: SMAD2, a TGF" signaling mediator, which we found to be 

essential for Th17 differentiation and SOX13-TCF1, WNT-HMG box TFs, which we 

showed as the central players for the thymic development of T#$17 cells.  

  Research in the past few years has shown that the unique combination of TGF"   

with IL-6 is essential for the generation of proinflammatory Th17 cells (95). Importantly, 

TGF" by itself can upregulate the expression of ROR#t and FOXP3 in CD4 T cells and 

cells co-expressing both of these TFs have been visualized in the LP tissue sections of the 

murine small intestine (78). But, it is the presence of IL-6 that amplifies the 

proinflammatory IL-17 cell differentiation and simultaneously shuts down the 

programming towards the FOXP3 expressing regulatory T cell lineage. Furthermore, 

although ROR#t is thought to be the central TF for IL-17 expression, it mediates the 

expression of Il17a and Il17f by not interacting at the promoter but at the CNS2 region of 

these genes (170). Unlike ROR#t, STAT3 affects Il17a expression by directly binding to 

its promoter (98). Combined, these observations suggest that induction of Il17 

transcription requires parallel actions of both of these TFs, in complex with multiple 

chromatin modifiers and transcriptional activators, and mutual co-operation between 

TGF" and IL-6 pathways.  
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Intriguingly, activation of STAT3 occurs downstream of many other cytokines 

including IL-21 and IL-23. But, these cytokines cannot compensate for IL-6 in inducing 

Th17 cell differentiation. Thus, it seems that the kinetics and magnitude of STAT3 

phosphorylation downstream of IL-6 is critical for inducing the expression of the Th17 

cell cytokines and TFs. IL-6, however, restricts its own signaling by downregulating Il6ra 

expression and by upregulating inhibitory SOCS3 pathways (185), (93).  

We showed that TGF" signaling mediator SMAD2 is essential for maintaining 

STAT3 phosphorylation downstream of the IL-6 receptor pathway. Smad2 CKO CD4
+
 T 

cells do not efficiently differentiate into Th17 cells. Differentiation of SMAD2-deficient 

CD4
+
 T cells was influenced by the concentrations of both TGF" and IL-6 cytokines, 

suggesting a linked action of SMAD2 on both of these pathways. Our work illustrated 

that activated Smad2 CKO CD4 T cells showed diminished expression of Il6ra as 

compared to their WT counterparts. Further, a reduction in STAT3 phosphorylation was 

observed when Smad2 deficient CD4 T cells were stimulated with IL-6. Thus, we 

propose that lack of sustained STAT3 phosphorylation in the absence of SMAD2 affects 

T cell differentiation towards Th17 cell lineage (Fig. 4.1). 

TGF" affects diverse gene transcription pathways. Though we showed that 

Smad2 deficient T cells have altered IL-6 signaling and that could be a potential reason 

for their reduced IL-17 production, SMAD2 could potentially affect Th17 cell 

differentiation by other mechanisms. The importance of SMAD2 in regulating Th17 cell 

differentiation has been supported by research from two other laboratories (259), (208). 

Chen Dong et al. showed that SMAD2 could interact with ROR#t and enhance the 
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Figure 4.1. SMAD2 enhances STAT3 signaling to increase Th17 cell differentiation. 

A naïve T cell expresses high levels of IL-6R, which undergoes downregulation upon 

TCR activation and by autocrine IL-6 signaling. TGF! in a SMAD2 dependent manner 

increases Il6ra expression and maintains STAT3 phosphorylation to maintain the positive 

loop of Th17 cell generation. 

170



  T cell

activation

IL-6

TGFβ

IL-6Rα

TGFβRI/II

p-STAT3p-SMAD2

Il6ra Rorc

Il17

p-STAT3

Figure 4.1

171



transcriptional function of ROR#t. This is one possible mechanism by which SMAD2 

increases Th17 cell differentiation, but further experimentation is required to show if this 

synergistic interaction happens at the Il17 gene locus. The work from Yoshimura et al. 

(208) also showed a drastic reduction in Th17 cells in a different line of Smad2 CKO 

mice generated in their laboratory. The CD4 T cells from these mice were extremely 

biased to produce IL-2 and IFN#, hence they suggested that SMAD2 is essential to 

suppress Th1 differentiation and thereby indirectly promotes Th17 differentiation. CD4 T 

cells isolated from Smad2 CKO mice maintained in our colony produce normal levels of 

IFN# ex vivo and in Th1 differentiation conditions. This indicates that the increased Th1 

skewing might not be the dominant mechanism for the decreased Th17 cell proportions in 

Smad2 deficient mice. Cumulatively, studies so far have clearly illustrated the 

importance of SMAD2 in the differentiation of Th17 cells, but the underlying 

mechanisms of function are varied, likely reflecting diverse pathways under the control 

of TGF"-SMAD2 signaling.  

In addition to TGF", IL-1" and IL-6 together can also drive IL-17 expression in 

CD4 T cells. Initial studies showed that in IL-1" and IL-6 driven Th17 cell induction 

cultures, blocking TGF" signaling abrogated IL-17 expression (79). This suggested that 

TGF" released at low levels from T cells or TGF" present in the serum in the culture 

media synergizes with IL-1" and IL-6 to support IL-17 expression. A recent study 

however challenged these observations and suggested that IL-1" with IL-6 and IL-23 can 

induce IL-17 transcription independent of TGF" (80).  These conflicting observations 

add to the complexity of Th17 cell differentiation pathway. Most cells secrete some 
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TGF" in homeostatic or inflammatory settings. Hence, it is difficult to   prove that in vivo 

Th17 cell differentiation occurs in the absence of TGF". However, IL-1" is probably 

equally important for inducing and enhancing Th17 cell differentiation, especially in an 

inflammatory environment. Therefore, further research is necessary to show if the Th17 

cells present in the LP are distinct from than the ones induced in autoimmune disorders.  

Similar to Th17 cells, IL-1R activation also stimulates IL-17 production from 

T#$17 cells (121). T#$17 cells in fact express many of the Th17 cell markers like IL-23R, 

TLR2, CCR6 and ROR#t (3). However, unlike Th17 cells, the development of T#$17 

cells occurs in the thymus where they acquire the expression of Th17 lineage markers. 

Upon migration to the peripheral tissues, the stimulation of their cytokine receptors IL-

1R and IL-23R, without TCR engagement, leads to rapid IL-17 production. Thus, during 

the earliest inflammatory setting T#$17 cells are an innate source of IL-17. 

Although we showed that SMAD2 is required for Th17 cell differentiation it is 

not essential for T#$17 cell differentiation. Furthermore, development of T#$17 cells does 

not require TFs IRF4 (TCR activated) and STAT3 (IL-6 activated) demonstrating that 

distinct TF networks guide the development of innate and adaptive IL-17 producing cells 

(180), (159). In contrast to Smad2 CKO, proportions of T#$17 cells were decreased in 

Smad3-/-
 and Tgfb-/-

 mice suggesting that TGF" could affect the generation or survival of 

T#$17 cells via a mechanism distinct from Th17 cells (110). However, both these models 

are associated with inflammatory disorders, raising the possibility that the decrease in 

T#$17 cells is environmentally driven. 
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Instead of the components of TCR and cytokine receptor signaling HMG TF 

SOX13 programs the thymic development of T#$17 cells. Among all #$ subsets, V2 cells 

are the major IL-17 producing #$ T cells that are constantly produced by the adult murine 

thymus. SOX13 is expressed in all #$ subsets but its expression is highest in the 

immature V2 cells. Whether the quantity of SOX13 affects #$ effector cell differentiation 

remains to be determined. To answer this important question, we are generating Sox13 

reporter mice with the dual ECFP reporter-Cre knocked in to Sox13 locus. These mice 

would potentially allow us to sort cells expressing different levels of Sox13 at the 

precursor level and track their differentiation in vitro (the OP9-DL1 stromal culture 

system) or in vivo (intrathymic injection assays). The ex vivo analysis of T#$17 cell 

markers (BLK and ROR#t) in these discrete populations will test whether the intensity of 

SOX13 expression correlates with T#$17 programming.   

To determine SOX13 regulated gene networks specifying the T#$17 fate we 

showed that the expression of known T#$17 cell associated signaling molecule BLK is 

substantially reduced in the Sox13 deficient V2 cells. Moreover, we observed a 

significant loss of ROR#t+
BLK

+
 cells immature V2 cells in the absence of SOX13.  A 

previous study in our lab showed that ectopic Sox13 expression in developing !" T cells 

leads to Blk expression (134). Subsequently, T#$17 cell numbers were found to be 

severely reduced in the Blk-/- 
mice (156). Thus, SOX13 controls T#$17 cell development 

by regulating BLK expression (Fig.4.2). Interestingly, both SOX13 and BLK are 

expressed at intermediate levels in thymic DN1, DN2 and DN3 precursor cells, raising 
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Figure 4.2. T!"17 cell development is programmed in different stages in the thymus 

Early thymic c-Kit
+
 precursors that potentially express SOX13 and BLK give rise to 

immature V2 !" cells that are biased to develop into T!"17 cells. At the immature stage 

itself the V2 cells express intermediate levels of ROR!t and BLK. V2 cell maturation 

characterized by CD24 downregulation, is associated with an increase in the expression 

of intranuclear ROR!t and BLK, chemokine receptor CCR6 and cytokine receptors for 

IL-1# and IL-23 among other markers. These mature, programmed cells subsequently 

migrate from the thymus and home to specific tissues in the periphery.  
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the possibility that distinct signaling properties of T#$17 cells are set prior to TCR 

expression.  

Recent experiments performed in our lab (K. Narayan) showed that the early 

cKit
+
 (DN1+DN2) thymic precursors are biased to give rise to T#$17 cells in the in vitro 

OP9-DL1 cultures. Studies from other laboratories have also noted distinct #$ versus !" 

thymocyte generative capacities of early vs. late T cell precursors (130). This cell 

intrinsic, developmental stage-specific bias in effector differentiation correlates with the 

higher expression of SOX13 and BLK in cKit
+
 DN subsets, suggesting that SOX13 

induction of BLK may be a key effector lineage commitment event. This hypothesis will 

be tested using the Sox13 reporter mice described previously. Though we have identified 

that the regulation of BLK by SOX13 could affect the generation of T#$17 cells, the 

underlying BLK function in #$ T cells is not well understood. BLK in association with 

other Src family kinases, Lyn and Fyn, helps in the transition of pro-B cells to pre-B cells 

(260). Moreover, constitutive activity of BLK can bypass the requirement of BCR 

signaling (249). This suggests that its high expression in #$ T cells could potentially serve 

TCR independent regulation of antigenically naïve T#$17 cells. Identifying upstream 

activators of BLK and unique biochemical contributions of BLK to T#$17 differentiation 

will be essential for complete mapping of SOX13 regulated gene networks. 

 Given that many HMG TFs other than SOX13, TCF1 and LEF1 are expressed in 

developing T cells it was hypothesized that cell type-specific networks of these TFs 

constitute the primary determinant of cell lineage fate and function. For T#$17 

differentiation SOX4 has been identified as the second essential HMG TF (N. Malhotra, 
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data not shown). Unlike SOX13, SOX4 expression is not restricted to #$ T cells and it is 

highly expressed in DN thymocytes, !" lineage committed DP cells as well as in all #$ T 

cells. Our preliminary observations suggest that SOX4 affects the expression of Rorc by 

binding to its promoter (O. Cho). Further, the expression of ROR#t is highly reduced in 

V2 cells of Sox4 CKO mice (CD2-Cre-Sox4fl/fl
). Importantly, no significant impairment 

in the generation of Th17 cells was observed in Sox4 CKO mice. Thus, SOX4 is likely be 

the primary regulator of Rorc expression for innate T#$17 cell programming. We propose 

that SOX4 and SOX13 act in a parallel manner, each with its own gene network, to 

program the development of T#$17 cells. 

The effector functions of #$ T cells segregate with their germline encoded V# 

genes. The basis for this association is unclear. To address this issue, we bred TcrVg2 

transgenic mice in the WT or Sox13 deficient background. We observed that the 

expression of the V#2 TCR by all #$ T cells did not lead to an increased generation of 

T#$17 cells, illustrating that the V#2 TCR-specific signals do not direct T#$17 cell 

differentiation. SOX13 was shown to enhance TcrVg2 transcription and it was possible 

that the block in T#$17 differentiation in Sox13-/-
 mice was caused by a decrease in Vg2 

TCR expression.  T#$17 cell development was not restored in the TcrVg2 transgenic 

Sox13-/- 
mice, ruling out the possibility that altered TCR expression per se contributes to 

the loss of T#$17 development in the absence of SOX13. For Th17 generation TCR 

signal induced ITK-NFAT and IRF4 control Il17 and Rorc transcription, respectively. 

Neither IRF4 nor ITK is necessary for T#$17 generation. Together, this data suggests that 

conventional TCR signaling is unlikely to specify T#$17 cell fate. Given our data that 
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T#$17 cell differentiation is strongly biased to be initiated from the earliest thymic 

progenitors we favor the model that the association of germline encoded #$TCR 

repertoire and effector function arises from developmental specific biases on the onset of 

specific Tcrg and Tcrd gene rearrangements. For instance, relatively early productive 

rearrangements of V#2 vs. V#1.1 locus would endow T#$17-biased progenitors with V#2 

TCR, whereas a late assembly of V#1.1 TCR in more T cell lineage committed late 

precursors (DN3) would limit the production of V#1.1
+
T#$17 cells. This developmentally 

staged rearrangement is built on the temporally ordered V# gene segment activation for 

rearrangement during fetal #$ T cell production. Thus, two developmental processes are 

proposed to establish the #$TCR repertoire-dependent #$ effector subset production in the 

thymus: cell intrinsic developmental stage dependent biases in effector lineage 

differentiation coupled to asynchronous V gene rearrangement in the Tcrg/d loci. 

Additional differentiation checkpoints such as SOX13 induced BLK or generic #$TCR 

signaling itself are predicted to further guide proper stepwise differentiation of effector-

biased immature #$ thymocyte subsets.  

 Additional complexities in developmental requirements of T#$17 cells arise from 

the observation that fetal-derived T#$17 cells are programmed distinctly. Similar to V2 

T#$17 cells, which originate in late fetal stages (E17 onwards) and continue to develop in 

adult thymus, V4 #$ T cells that predominantly develop in the fetal thymus (E15 

onwards) also contain dedicated IL-17 producing subsets. Further, V4 cells persist in low 

numbers in the thymus and periphery throughout adulthood. By gene expression analysis, 

we observed that fetal V2 and V4 #$ T cells are virtually identical at their immature 
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developmental stages. However, while the absence of Sox4 or Sox13 resulted in a 

complete abrogation of development of V2 T#$17 cells, the V4 T#$17 cells analyzed in 

the adult mouse thymus and peripheral LNs of these gene mutant mice remained largely 

unaffected. Instead, HES1, a transcriptional repressor and Notch target gene has been 

shown to be important for fetal V4 T#$17, but not for IFN# producing #$ effector, cell 

development (180). HES1 appears to also be playing a role in adult V2 T#$17 cell 

differentiation and/or maintenance. HES1 has been shown to be necessary for DN1 and 

DN2 differentiation but is dispensable for later maturation processes controlled by Notch 

(261). Notch signaling has been shown to induce TCF1 for T cell lineage specification 

and it is possible that HES1 is required in this event and in regulating other modulators of 

WNT signaling and/or TCF1 function (231). Notch and WNT pathways cross-regulate 

the expression of their target genes and Hes1 expression can also be promoted by WNT 

signaling (240), which adds to the complexity of the developmental design of effector #$ 

T cells. 

One of the reasons for this disparate effector programming could be that distinct 

hematopoietic precursors give rise to V2 and V4 #$ T cells. V3 and V4 #$ T cells 

constitute the first wave of fetal thymic #$ T cells. The precursors of these cells are 

considered to be fetal liver hematopoietic stem cells (HSCs) (141). Moreover, the 

development of these #$ T cells cannot be supported by adult thymic microenvironment 

or by repopulating adult thymic progenitors into fetal thymic lobes. V2 T#$17 cells 

originate from HSCs in the bone marrow.   
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  We demonstrated that the SOX13 regulated positive loop for the generation of 

T#$17 cells is counterbalanced by TCF1 and LEF1. In Th17 cultures TCF1 has been 

shown to inhibit the expression of Il17a by binding to its promoter (253). Previously, we 

have shown that SOX13 interacts with TCF1 and LEF1 and can inhibit their 

transcriptional activities (134). We propose that a proper balance of TCF1/LEF1 with 

SOX13 is necessary for the generation of T#$17 cells. Despite being a repressor for IL-17 

producing V2 cells, TCF1 is highly expressed in all immature V2 cells suggesting it is 

important for other facets of #$ T cell development. Consistent with this adult Tcf7-/-
 

mice generate #$ thymocytes with deregulated #$TCR repertoire, with aberrant 

development of normally fetal restricted V3 cells and overt production of V6 cells. 

Overexpression of Sox13 in Tcf7-/-
 mice leads to a complete block in #$ thymocyte 

differentiation, supporting a central function of SOX13 modulated TCF1 in #$ T cell 

development (K. Sylvia, unpublished data). Also, a recent publication showed that TCF1 

is necessary for the maintenance of memory Th17 cells
 
(262). Whether the strong 

expression of TCF1 in T#$17 cells helps in maintaining their terminally differentiated 

state is not known.   

Importantly, TCF1 expression is not limited to T cells, as we found it to be highly 

expressed in the developing LTi cells and LTi-related ROR#t+
 ILCs generated in the gut 

and spleen that are capable of IL-17 and IL-22 production (N. Malhotra, data not shown). 

These ILCs originate from the fetal liver or BM derived CLPs (Lin
-
Sca1

lo
cKit

int
IL-7R

+
) 

in a Notch2-dependent manner and are critical for maintaining mucosal epithelial 

homeostasis and integrity during infections (250). The early LTi and ILC precursors 
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express !4"7 integrin and they subsequently upregulate the expression of ROR#t (165). 

Our data shows that TCF1 is co-expressed in !4"7
+
ROR#t-

 and !4"7
+
ROR#t+

 ILC 

precursors but not by !4"7
-
ROR#t+

 mature ILCs, suggesting its requirement at early 

stages of ILC differentiation. In support of this possibility, we observed a drastic 

reduction in the proportions and numbers of !4"7
+
 ILC precursors in Tcf7-/-

 mice. This 

suggests that TCF1 is required for the development and/or maintenance of ILCs.  

Interestingly, the remaining ILCs in Tcf7-/-
 mice had a significantly higher expression of 

ROR#t. Moreover, upon stimulation with the TLR2 ligand- Zymosan, these cells showed 

a much stronger capacity to secrete IL-17. While peripheral ILCs do not express SOX13, 

they express other HMG TFs SOX4 and TOX   (Kang J and M. Coles, York University, 

personal communication), which are also expressed in the immature V2 thymocytes. Tox-

/-
 mice have defective LTi development (263). We are currently generating appropriate 

Sox4 CKO mice to assess its functions in ILC differentiation. Collectively, our results 

suggest that TCF1 is important not only for the development of T cells and T effectors, 

but also for and ILCs in peripheral tissues that do not express antigen receptors akin to T 

and B cells. Furthermore, we propose that TCF1 acts as a suppressor of IL-17 production 

in all lymphoid cells. Although there are multiple known inhibitors for Th17 cell 

differentiation, TCF1 is so far the only suppressor for IL-17 production from innate 

lymphocytes. Also, unlike Tcf7-/- CD4 T cells, which show an increased bias to convert 

to Th17 cells only when cultured with IL-17 inducing cytokines, the #$ T cells and the 

peripheral ILCs from Tcf7-/- mice show an extremely potent IL-17 production from 

subsets that normally do not produce IL-17, suggesting more prominent function of TCF1 
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in ILC effector programming. Given the central importance of HMG TF network in 

innate #$ effector cell programming we propose that a similar network, with distinct but 

related members, is responsible for programming LTi-related ROR#t+
 ILCs. If proven to 

be true, it will provide an answer to how the repertoire of innate effector function is 

established prior to foreign antigen recognition would be obtainable. 

So far I have focused on cell intrinsic genetic programs that specify innate 

effector function. Given that #$ T cell development occurs in the presence of multiple 

interacting cell types, it is likely that the thymic environment plays an important role. The 

development of effector #$ T cells has also been proposed to be affected by the thymic 

microenvironment and intrathymic cross-lineage trans-conditioning. Hayday’s lab 

proposed that Lymphotoxin (LT) released from !" DP thymocytes activates the LT"R 

expressed on #$ T cells (255). This activation was suggested to be important for IFN# 

production by #$ T cells. Further, recent studies concluded that LT"R signaling activated 

RelA and RelB in the classical NF-kB pathway are also essential for the development 

and/or maintenance of T#$17 (159). Using Tcrb-/- 
mice, which lack the DP cells and LT 

source from the cells, we and others (264) showed that the development of T#$17 cells is 

not affected in the absence of trans-conditioning but there is an increase in the IL-4 and 

IFN# producing V6 cells and IFN# producing V1 and V2 cells. Further, the proportions of 

#$ subsets are altered in the Tcrb-/- 
mice with an increase in the V6 cells and a reduction 

in the V2 cell compartment. Overall, we showed that global gene expression profiles of 

immature #$ cell subsets in Tcrb-/-
 mice are not different from their counterparts in WT 

mice and all functional #$ subsets can be generated in the absence of !" cells. This result 
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is in conflict with data published from Hayday’s and Silva-Santos labs. One reason for 

these different observations could be that their results were based on the analysis of total 

#$ cells, not #$ cell subsets (255), (151). 

Thus, we propose that DP thymocytes do not impact #$ effector subset 

differentiation. While growth factors such as LT might be essential for maintaining the 

numbers of T#$17 cells their roles in the development are not firmly established. In 

addition, the nature of stromal cells and defined thymic niches required for different #$ 

effector subset differentiation is unknown, leaving open multiple research areas for 

further exploration   

Il17 and Rorc genes are highly conserved in ontogeny. IL-17 homologs have been 

cloned from the nematode Caenorhabditis elegans and the mollusk Crassostrea gigas 

(265). Similarly ROR#t has been cloned from vertebrates including rodents, primates and 

even zebra fish Danio rerio (266). The conservation of this cytokine and TF during 

evolution suggests they are indispensable for maintaining mucosal homeostasis and for 

development of the immune system.  The pre-programmed innate #$ T cells and ILCs 

safeguard the epithelial lining of mucosal areas such as reproductive organs, oral cavity, 

respiratory tracts and gut associated lymphoid tissues. Not only do these cells and 

cytokines (IL-17 and IL-22) defend against pathogenic microbes, but also it is likely that 

they sample the microbiota to select the commensals and symbionts that form the 

intestinal milieu. The selected commensals would further help in the induction of IL-17 

producing adaptive cells such as the microbe SFB, which helps in the differentiation of 

Th17 cells in the LP.  
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Thus, the cooperative network of innate and adaptive IL-17 producing 

lymphocytes shapes the development of immune system and maintenance of homeostasis 

at the mucosal sites. The supervision of the generation, functioning and maintenance of 

these cells is largely an output of the TFs of TGF" and WNT morphogenic signaling 

pathways. Although all IL-17 producing cells are invariably linked to destructive 

inflammatory responses towards self or non-self, another perspective on their constant 

presence from fetal stages to adulthood is the potential existence of “physiological 

inflammation” that potentially requires release of IL-17 family cytokines. This low level 

inflammation might drive the pro-active innate #$ cells and ILCs and could help in their 

self-renewal. At the same time these innate and adaptive cells would keep the commensal 

association of the mucosal and gut microbiota in check, which if uncontrolled has the 

ability to invade and acquire pathogenic status as observed in immunodeficient hosts. 

Finally, although ROR#t is recognized as an indispensable conserved TF in all IL-17 

secreting lymphoid lineages, distinct morphogen pathways act in parallel or upstream of 

ROR#t to control the IL-17 production from innate and adaptive lymphocyte populations. 

This division of labor employing distinct cell types for IL-17 production and their 

discrete regulation could be an outcome of the time of generation of these cell types: 

early emergence of the innate-like T#$17 cells and the ILCs vs. late origin of gut-flora 

dependent Th17 cells. Further, there is a requirement to yield epigenetically stable IL-17 

producing innate cells versus plastic adaptive Th17 cells more tuned to inflammatory 

milieu and this branching in their distinct regulation could ensure a protection plan where 

at all times, some IL-17 is made availa 
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