THE CELLULAR CONSEQUENCES OF FUS/TLS DEPLETION: A LOSS OF FUNCTION MODEL FOR AMYOTROPHIC LATERAL SCLEROSIS

A Dissertation Presented

By

Catherine Louise Ward

Submitted to the faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirement for the degree of

DOCTOR OF PHILOSOPHY

July 7, 2014

BIOCHEMISTRY AND MOLECULAR PHARMACOLOGY
THE CELLULAR CONSEQUENCES OF FUS/TLS DEPLETION: A LOSS OF FUNCTION MODEL FOR AMYOTROPHIC LATERAL SCLEROSIS

A Dissertation Presented
By
Catherine Louise Ward

The signatures of the Dissertation Defense Committee signify completion and approval as to style and content of the Dissertation

__
Daryl A. Bosco, Ph.D., Thesis Advisor

__
Melissa J. Moore, Ph.D., Member of Committee

__
Kendall L. Knight, Ph.D., Member of Committee

__
Angela Ho, Ph.D., Member of Committee

The signature of the Chair of the Committee signifies that the written dissertation meets the requirements of the Dissertation Committee

__
Robert H. Brown Jr., D.Phil., MD, Chair of Committee

The signature of the Dean of the Graduate School of Biomedical Sciences signifies that the student has met all graduation requirements of the School

__
Anthony Carruthers, Ph.D.
Dean of the Graduate School of Biomedical Sciences
Biochemistry and Molecular Pharmacology
July 7, 2014
For my family and friends who
I have neglected over the past six years
but continue to love me anyway
ACKNOWLEDGMENTS

There are many people whom I would like to acknowledge for their assistance and guidance throughout the course of my PhD career. First and foremost, my mentor, Daryl Bosco. Little did I know five and a half years ago how lucky I was to be joining your lab. Your ability to be caring, comforting, stern, and intimidating all at the same time is what kept me going throughout this whole process. The knowledge you have instilled in me over the years goes well beyond experimental technique and scientific insight. Thank you so much for everything.

I would also like to thank my lab family who turned every incubator contamination, ugly western blot, and negative result into a good laugh: Melissa Rotunno, Reddy Sama, Laura Kaushansky, Sivakumar Boopathy, Desiree Baron, Kristin Boggio, Maeve Tischbein, and Kiera Sapp. You make this final stage of the PhD process bittersweet. A big thank-you to my extended lab-family as well: the Brown lab and Landers lab, particularly Peter Sapp and John Landers who have always been at the ready with good conversation and helpful advice.

For their mentoring and guidance throughout the years I would also like to thank the members of my thesis advisory committee: Dr. Robert Brown, Dr. Melissa Moore, and Dr. Ken Knight. Additionally, thank-you to Dr. Zuoshang Xu, Dr. Larry Hayward, Dr. Melissa Moore, and Dr. Jill Zitzewitz for serving on my qualifying exam committee. I would also like to think Dr. Angela Ho for being a
part of my dissertation examination committee. Your time is very much appreciated.

Lastly, many thank-you’s to my parents, Wayne and Catherine, and sisters, Christina, Lynn, and Laura. Your love and support throughout the years has been unparalleled and it makes me proud to make you proud. Finally, thank you to my fiancé, Stephen Douthwright for still loving me after every bad day and mood-swing that graduate school has provided me with over the years. I am so lucky to have you to share my life with.
AMYOTROPIC LATERAL SCLEROSIS (ALS) is a fatal neurodegenerative disease characterized by the death of motor neurons, generally leading to paralysis and death within 3-5 years of onset. Over 50 different mutations in the gene encoding FUS/TLS (or FUS) will result in ALS, accounting for ~4% of all inherited cases. FUS is a multifunctional protein with important functions in DNA/RNA processing and stress response. How these mutations affect the structure or function of FUS protein and ultimately cause ALS is not known. The fact that mutations cause the protein to mislocalize from the nucleus to the cytoplasm of cells suggests that ALS pathogenesis may occur through a loss of nuclear function, gain of toxic cytoplasmic function, or both. Several FUS knockout animal models have been utilized for investigating a loss of function hypothesis and show phenotypes such as early lethality, reduced lifespan, and locomotor defects.

To uncover cellular pathways affected by loss of FUS function, I have characterized the knockdown of FUS in a motor neuron-like cell line, NSC-34. In NSC-34 cells, the depletion of FUS severely impacts cellular proliferation and potentially causes increased levels of DNA damage. A quantitative proteomics analysis performed on cells undergoing various degrees of FUS knockdown revealed protein expression changes for known RNA targets of FUS, consistent with a loss of FUS function with respect to RNA processing. Proteins that changed in expression as a function of FUS knockdown were associated with...
multiple processes, some of which influence cell proliferation including cell-cycle regulation, cytoskeletal organization, oxidative stress and energy homeostasis. Importantly, cellular proliferation could be rescued by the re-expression of FUS and by treatment with the small-molecule, rolipram, indicative of potential therapeutic approaches.

Collectively, the work presented in this dissertation demonstrates the importance of FUS for cell health and homeostasis, is suggestive of a role for FUS in DNA damage repair and identifies additional cellular pathways influenced by FUS depletion. Overall, this work provides mechanistic insight into ALS pathogenesis through loss of FUS/TLS function.
TABLE OF CONTENTS

APPROVAL .. ii
DEDICATION ... iii
ACKNOWLEDGMENTS ... iv
ABSTRACT ... vi
TABLE OF CONTENTS ... viii
LIST OF TABLES ... x
LIST OF FIGURES ... xi
LIST OF THIRD PARTY COPYRIGHTED MATERIAL .. xiv
LIST OF ABBREVIATIONS .. xv
PREFACE ... xvi

CHAPTER I: INTRODUCTION

Amyotrophic lateral sclerosis (ALS) ... 1
- Clinical symptoms and diagnosis .. 2
- Genetic and cellular contributions .. 2
- Environmental factors and epidemiology studies 7
- Overlap with FTLD .. 8
- Disease pathogenesis ... 9
Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS) 11
- Functional domains and structure .. 12
- Nuclear and cytoplasmic functions ... 14
- FUS/TLS in disease .. 16
Mechanism of FUS/TLS in ALS ... 20
- Gain of function hypothesis .. 20
- Loss of nuclear function hypothesis .. 22
- Summary ... 29

CHAPTER II: A LOSS OF DNA DAMAGE REPAIR FUNCTION OF FUS/TLS IN AMYOTROPIC LATERAL SCLEROSIS

Preface ... 33
Introduction .. 34
Results ... 36
- FUS depletion induces a defect in cell proliferation 36
- Assessing the functional capacity of mutant FUS 38
- FUS depletion induces elevated levels of γH2AX 41
Discussion ... 46
Conclusion ... 50
Materials and Methods ... 51
CHAPTER III: A LOSS OF FUS/TLS FUNCTION LEADS TO IMPAIRED CELLULAR PROLIFERATION

Preface ... 56
Abstract .. 57
Introduction ... 58
Results ... 60
 Cell number and viability correlate with FUS expression ... 60
 Apoptosis is not activated by FUS knockdown ... 65
 Rolipram partially rescues proliferation defect ... 68
 Proteomic changes resulting from FUS knockdown .. 71
Discussion ... 82
Acknowledgments ... 88
Materials and methods ... 88

CHAPTER IV: DISCUSSION AND CONCLUSIONS ... 99
Cell cycle regulation and ALS ... 101
DNA damage and ALS .. 103
Insights from large screening assays ... 105
G-quadruplexes: a common link between FUS functions? .. 107
A Model for ALS Pathogenesis ... 110
 Protein misfolding ... 111
 Stress response in ALS .. 112
 Tipping the balance of proteostasis in ALS ... 115
 Neuronal vulnerability ... 116
Conclusion ... 117

APPENDIX I: Investigating a Role for FUS/TLS in Suppression of Neuronal Cell Cycle Reinitiation ... 120

APPENDIX II: FUS/TLS Assembles into Stress Granules and is a Prosurvival Factor During Hyperosmolar Stress ... 129

APPENDIX III: Amyotrophic Lateral Sclerosis-Linked FUS/TLS Alters Stress Granule Assembly and Dynamics ... 140

APPENDIX IV: Expression, Purification and Characterization of Activated P38 MAPK from E-Coli ... 159

APPENDIX V: P38 MAPK Preferentially Binds FALS-Linked Mutant and Oxidized Wild-Type SOD1 Proteins .. 184

BIBLIOGRAPHY: ... 204
LIST OF TABLES

Chapter I
Table I-1 – Summary of investigations of FUS knockdown/knockout models
Table I-2 – Summary of investigations of FUS involvement in RNA processes

Chapter III
Table III-1 – Fold change and functional categories of proteins differentially expressed after 24 or 96h of FUS knockdown
Table III-2 – Relative protein fold-changes

Appendix IV
Table AIV-1 – Results of MASCOT database search of phosphorylated p38α peptides

Appendix V
Table AV-1 – Molecular weight of p38 and SOD1 species resulting from crosslinking analysis
Table AV-2 – Mass spectrometry analysis of crosslinked species
LIST OF FIGURES

Chapter I
Figure I-1 – The heterogeneity of ALS pathogenesis
Figure I-2 – The functional domains of FUS
Figure I-3 – FUS directly binds DNA
Figure I-4 – Disease associated mutations in FUS/TLS
Figure I-5 – FUS is recruited to sites of DNA damage and contributes to DNA-damage repair

Chapter II
Figure II-1 – FUS knockdown causes a decrease in cellular proliferation
Figure II-2 – Testing the functional capacity of ALS-linked mutant FUS
Figure II-3 – FUS knockdown causes elevated levels of γH2AX
Figure II-4 – FUS knockdown-induced γH2AX is independent of apoptosis

Chapter III
Figure III-1 – FUS knockdown causes a reduction in cell viability
Figure III-2 – Decreased cell viability correlates with the degree of FUS knockdown
Figure III-3 – Apoptosis is not activated during the cellular response to FUS knockdown
Figure III-4 – Rolipram partially rescues the cell proliferation defect induced by FUS knockdown
Figure III-5 – Quantification of the cellular proteome after FUS depletion
Figure III-6 – Western and qRT-PCR validation of proteins differentially expressed upon FUS depletion
Chapter IV
Figure IV-1 – A Model of ALS Pathogenesis

Appendix I
Figure AI-1 – Knockdown of FUS causes an increase in cyclin D1 expression in RAW264.7 macrophage cells

Appendix II
Figure AII-1 – Endogenous FUS redistributes to the cytoplasm and localizes to cytoplasmic stress granules in response to sorbitol
Figure AII-2 – The recruitment of FUS to cytoplasmic stress granules is stress-specific
Figure AII-3 – The response of FUS to sorbitol is rapid and reversible
Figure AII-4 – An inhibitor of stress granule assembly prevents the cytoplasmic redistribution of FUS, though stress granules still assemble in the absence of FUS
Figure AII-5 – Methylation regulates the nucleo-cytoplasmic distribution of FUS
Figure AII-6 – Methylation does not regulate the incorporation of FUS into stress granules
Figure AII-7 – Reduced FUS expression causes cells to become susceptible to sorbitol induced toxicity

Appendix III
Figure AIII-1 – Mutant-FUS expression delays the assembly and expedites the disassembly of stress granules in human cells
Figure AIII-2 – Expression of the FUS R495X mutant interferes with stress granule assembly in neuronal cells
Figure AIII-3 – GFP-FUS R495X is weakly bound to stress granules and alters binding of stress granule-associated proteins
Figure AIII-4 – Stress granule size and number are increased in GFP-FUS R495X expressing cells
Figure AIII-5 – The RGG domains modulate the incorporation of FUS into arsenite-induced stress granules
Figure AIII-6 – Methylation of mutant-FUS is not required for its assembly into stress granules

Appendix IV
Figure AIV-1 – Expression and purification of p38α MAPK from E. coli
Figure AIV-2 – The activation loop of his-p38α isolated from E. coli is phosphorylated
Figure AIV-3 – Fourier-transform mass spectrometry confirms that p38α MAPK isolated from E. coli is phosphorylated
Figure AIV-4 – MALDI-TOF reveals the presence of two phosphorylated p38α MAPK peptides
Figure AIV-5 – Phosphorylated p38α MAPK expressed in E. coli is catalytically active

Appendix V
Figure AV-1 – Recombinant p38α preferentially binds to fALS-linked mutant SOD1 proteins from N2A cell lysates
Figure AV-2 – Recombinant p38α preferentially binds to recombinant fALS-linked SOD mutant A4V and aberrantly oxidized SOD1 WT (SODox)
Figure AV-3 – Recombinant p38α preferentially binds fALS-linked mutant A4V in crosslinking analyses
Figure AV-4 – Recombinant p38α preferentially binds fALS-linked mutants G85R and G93A in crosslinking analyses
Figure AV-5 – The beta isoform of p38 also binds mutant and modified SOD1 proteins
LIST OF THIRD PARTY COPYRIGHTED MATERIAL

The following material was reproduced from published work:

<table>
<thead>
<tr>
<th>Publisher</th>
<th>License number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix II</td>
<td>John Wiley and Sons 3397800087634</td>
</tr>
</tbody>
</table>

The following material was reproduced from published work with no permission required:

<table>
<thead>
<tr>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure I-1</td>
</tr>
<tr>
<td>Figure I-2</td>
</tr>
<tr>
<td>Figure I-3</td>
</tr>
<tr>
<td>Figure I-5</td>
</tr>
<tr>
<td>Appendix III</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ALS – Amyotrophic lateral sclerosis
EWS – Ewing sarcoma
ET – Essential tremor
fALS – Familial amyotrophic lateral sclerosis
FET – FUS, EWS, TAF15
FTD or FTLD – Frontotemporal lobar degeneration
FUS or FUS/TLS – Fused in sarcoma/Translocated in liposarcoma
G-rich – Glycine-rich
hnRNP – Heterogeneous ribonuclear protein
HR – homologous recombination
NHEJ – non-homologous end-joining
NLS – Nuclear localization signal
NSC-34 – Neuroblastoma x spinal cord hybrid 34
QGSY-rich – Glutamine-glycine-serine-tyrosine-rich
RRM – RNA recognition motif
RGG – Arginine-glycine-glycine
sALS – Sporadic amyotrophic lateral sclerosis
SDS-PAGE – Sodium dodecyl sulfate – Polyacrylamide gel electrophoresis
SOD1 – Cu/Zn superoxide dismutase 1
SYGQ – Serine-tyrosine-glycine-glutamine
TAF15 or TAFII68 – TATA box binding protein associated factor 68 kDa
TARDP or TDP-43 – Transactive response DNA binding protein 43
ZFD – Zinc-finger domain
PREFACE

Parts of this dissertation will appear in:

Parts of this dissertation appeared in:

CHAPTER I: INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS), also referred to as Lou Gehrig's disease, is a neurodegenerative disorder characterized by the specific death of upper and lower motor neurons. This neuronal loss results in impairment of motor abilities causing paralysis and eventually death, resulting from respiratory failure. The disease is rapidly progressive, with death occurring usually 3-5 years after symptom onset (NINDS, 2013). Not only is there no cure for this disease, but treatments are very limited as well with only one in existence, Riluzole, that prolongs life by only a few months (Bensimon et al., 1994; Lacomblez et al., 1996). It is estimated that each year 5,000 people in the United States are diagnosed with ALS (NINDS, 2013). Approximately 90-95% of cases are sporadic, occurring without familial inheritance (Renton et al., 2014). That the disease occurs in people mainly between the ages of 50 and 60, in conjunction with its fast progression and the inability to predict its targets, make it especially devastating and an increasingly important area of research. The following sections provide additional information on the nature of this disease and a theory of its pathogenesis.
Clinical symptoms and diagnosis

Early signs of ALS are subtle and depend on the site and type of onset. Limb onset occurs in the arms or legs and is apparent by difficulty in performing simple tasks, such as writing, or an increased frequency of stumbling while walking (Gordon, 2013). Bulbar onset is the second type, accounting for 25% of cases. These individuals first experience difficulty swallowing or speaking, with a tendency to slur their words (Gordon, 2013). Regardless of the type of onset, symptoms quickly progress to other muscle types within the body and become more pronounced over time. Eventually patients are unable to walk or stand, eat without assistance, or even speak. As many of the symptoms of ALS are common in other disease, such as multiple sclerosis, Lyme disease, and spinal muscular atrophy, physicians must proceed with caution when diagnosing ALS. Since there is currently no biomarker of ALS, diagnosis is typically achieved by tracking the progression of symptoms and using specific tests, such as an electromyography (EMG) or a nerve conduction study (NCS), to rule out the diagnosis of other neurological diseases or disorders (NINDS, 2013).

Genetic and cellular contributions

There are two forms of ALS: familial and sporadic. Familial ALS (or fALS) is defined by inheritance of a mutated gene causative for ALS and accounts for ~10% of cases, while sporadic ALS (or sALS) has no evidence of a genetic linkage and comprises the remaining ~90%. The first gene associated with ALS
was Cu, Zn superoxide dismutase-1 (SOD1) in 1993 (Rosen et al., 1993). There are over 160 mutations in SOD1 that cause ALS and mutations in this gene alone account for ~20% of fALS. Over the past two decades many more genes have been identified, bringing the list to over 30 (Sreedharan and Brown, 2013). Within this list is TDP-43 (TAR-DNA binding protein-43), FUS/TLS (fused in sarcoma/translocated in liposarcoma), and the most recently discovered C9ORF72, which accounts for approximately 30% of fALS. Together, these four genes are credited with causing 60% of fALS cases (Chen et al., 2013). Also important to note, is that while ALS is predominantly a mid-life disease, several genes have been associated with rare cases of juvenile onset, occurring between the ages of 6 and 26. These genes include ALSIN (Hadano et al., 2001), senataxin (SETX) (Chance et al., 1998), spatacsin (SPG) (Hentati et al., 1998; Stevanin et al., 2007), ubiquilin 2 (UBQLN2) (Deng et al., 2011), and FUS/TLS (Baumer et al., 2010).

While all of these genes are clearly involved in the pathogenesis of ALS, it is still unclear whether their involvement is through a common cellular pathway. Several cellular events have been associated with ALS, including protein aggregation, aberrant RNA processing, oxidative stress, axonal dysfunction, mitochondrial disruption, metabolic disturbance, microglia activation, and aberrant activation of the apoptosis pathway (reviewed in (Chen et al., 2013; Sreedharan and Brown, 2013)). Two of the more prominently studied mechanisms are protein aggregation and aberrant RNA processing (reviewed in...
Studies of protein aggregation emerged with the very first identified ALS gene: SOD1. Mutant SOD1 obtains a misfolded conformation and accumulates as oligomers, ultimately becoming aggregates. This misfolded protein disrupts normal function of several cellular events, such as protein degradation (Bendotti et al., 2012; Chen et al., 2012) and axonal transport (Morfini et al., 2013). Wild-type SOD1 purified from sporadic ALS tissue also adopts a misfolded conformation and disrupts axonal transport (Bosco et al., 2010b), suggesting involvement of misfolded SOD1 in both familial and sporadic ALS (reviewed in Rotunno and Bosco, 2013). Other ALS-linked proteins that effect protein degradation and axonal function include ubiquilin 2 and valosin-containing protein (reviewed in Robberecht and Philips, 2013) and profilin-1 (Wu et al., 2012), respectively. Similarly, several ALS-genes have overlapping functions in RNA processing. These genes include TDP-43 (Kabashi et al., 2008; Sreedharan et al., 2008), FUS/TLS (Kwiatkowski et al., 2009; Vance et al., 2009), and C9ORF72 (DeJesus-Hernandez et al., 2011; Renton et al., 2011). How RNA processing is affected by mutations in these genes is not fully understood, but evidence suggests misregulation of transcription, splicing, and RNA editing (Polymenidou et al., 2012).

While several ALS-associated proteins can be linked to a common pathogenic mechanism, not one mechanism can account for every reported ALS gene (Figure I-1). This raises the question of whether ALS is a single disease that can be treated with a specific therapy or rather a more complex disorder.
caused by separate pathogenic events. That age of onset, clinical phenotypes, and progression of the disease vary greatly between patients suggest the latter. Furthermore, progression and clinical phenotypes can be predicted by genetics. For example, mutations in FUS are associated with early age of onset, bulbar onset, and rapid progression while repeat expansions in C9ORF are associated with shorter survival and cognitive and behavioral changes (reviewed in (Al-Chalabi and Hardiman, 2013)). The end result of motor neuron death is the same regardless of genetic factors, but the therapeutic strategy may need to differ based on the genetic and cellular events involved, such as intercepting the downstream effects of protein aggregation for patients harboring SOD1 mutations or correcting RNA processing defects for patients having FUS or TDP-43 mutations.
Figure 1-1. The heterogeneity of ALS pathogenesis. Shown in purple are various ALS-linked genes and the pathogenic mechanisms with which they are associated.

Environmental factors and epidemiology studies

Sporadic ALS cases are rarely (~11%) attributed to mutations in the genes causative for fALS (Renton et al., 2014). As ~90% of all ALS cases are sporadic, this equates to ~10% of all ALS cases being accounted for by known genetic mutations. While studying fALS genes and the associated cellular phenotypes provides valuable insight into the cellular pathogenesis of ALS, efforts have been made to determine the environmental causes or risk factors of sporadic ALS. Most epidemiological studies have been performed on European cohorts and have determined sex and age as the most common risk factors (Al-Chalabi and Hardiman, 2013). Men are diagnosed with ALS more frequently by a factor between 1.2 and 1.5, providing a lifetime risk of 1:350 for men and 1:400 for women (Al-Chalabi and Hardiman, 2013). The risk for ALS increases with age, but only up to an age of 75 where it plateaus and may even decline. This plateau affect however, may be due to the decreased likelihood of ALS being identified in older patients who may accept their symptoms as a normal sign of aging (Al-Chalabi and Hardiman, 2013).

Environmental factors have also been evaluated as risk factors for ALS, but these studies are hard to control as variables cannot be isolated and evidence is often circumstantial. The most frequently evaluated factors include exercise level (Scarmeas et al., 2002), participation in soccer (Chio et al., 2005), smoking (Wang et al., 2011a), occupation and participation in the armed services (McGuire et al., 1997), electric shock, and exposure to heavy metals, pesticides
or cyanotoxins (Armon, 2003). Despite this extensive list, no conclusive evidence of an environmental risk factor has been identified (reviewed in (Al-Chalabi and Hardiman, 2013)).

Overlap with Frontotemporal dementia (FTD)

It has become increasingly apparent that ALS is part of a continuum of neurodegenerative diseases, having overlapping features with frontotemporal dementia (FTD, pathologically known as frontotemporal lobar degeneration or FTLD). FTD accounts for 5-15% of dementia and is caused by degeneration of the frontal and temporal lobes. It is characterized clinically by a decline in behavior, personality, and language and molecularly by inclusions of various disease-specific proteins in neurons and glia, such as hyperphosphorylated tau protein, TDP-43 and FUS (reviewed in (Rademakers et al., 2012)). It is estimated that 15% of ALS patients meet the criteria for FTD (Ringholz et al., 2005) and 15% of FTD patients meet the criteria for ALS. In both instances, protein inclusions are a hallmark of the disease. In FTD, 35% of cases show aggregated microtubule-associated protein tau and the majority of cases negative for tau contain inclusions immunoreactive for ubiquitin (reviewed in (Rademakers et al., 2012)), which is also observed in motor neurons of ALS patients. In 2006, TDP-43 was discovered to be the main protein present in these ubiquitinated inclusions of both ALS and FTD patients (Arai et al., 2006; Neumann et al., 2006). Soon after, mutations in TDP-43 were found to be causative for familial
and sporadic ALS (Kabashi et al., 2008; Sreedharan et al., 2008). Additional evidence of an overlap between these diseases came with the discovery of a genetic link between FUS and ALS (Kwiatkowski et al., 2009; Vance et al., 2009) followed by the identification of FUS as a main component of FTLD inclusions negative for tau or TDP-43 (Neumann et al., 2009b). Most recently, a hexanucleotide repeat expansion in \textit{C9ORF72} was found to account for \~25-50\% of familial ALS, 10-30\% of familial FTD, and also \~80\% of cases having features of both FTD and ALS, further solidifying a relationship between these two disorders (DeJesus-Hernandez et al., 2011; Renton et al., 2011).

\textit{Disease pathogenesis}

When contemplating the development of ALS, a few disease characteristics stand out: onset occurs later in life, the majority of cases are sporadic, and only a very small percentage of cases are attributed to genetic mutations. Clearly genetics is a causative factor, but that genetic mutations can exist since birth and not cause ALS until late adulthood suggests environmental factors are a contributing factor as well. Moreover, the majority of cases are not linked to genetic mutations, which further supports a role for environmental insults in pathogenesis. These facts support the division of ALS development into three scenarios, based on various contributions of cell damage occurring over time, genetics, and environmental factors. These three scenarios, put forth by Drs. Al-Chalabi and Hardiman, are described as monogenic ALS, oligogenic or polygenic
ALS, and gene x environment interaction (Al-Chalabi and Hardiman, 2013). In monogenic ALS, a mutation in a single gene, such as SOD1, accounts for the majority of the risk. To reach a threshold for disease onset, only a small contribution is needed from environmental factors, such as ultraviolet radiation which increases cellular reactive oxygen species (Devasagayam et al., 2004) normally controlled by SOD1. Oligogenic or polygenic ALS, takes into account the 100+ genes identified as risk factors for ALS (Abel et al., 2012). In this scenario, mutations in these genes alone do not cause ALS, but in combination these mutations can put the cell at risk. For instance, several genes associated with protein degradation may be mutated, each slightly affecting the efficiency of this pathway. If these genes are mutated individually the cell can still function normally. In combination however, and in association with environmental factors that contribute to protein aggregation for example, the cell’s protein degradation machinery becomes less efficient. Over time, misfolded protein will accumulate until a threshold for cell death occurs and disease onset ensues. In the final scenario, the presence of a specific genetic predisposition in combination with a specific environmental insult is required for the burden to reach the threshold for disease onset. An example may be a mutation in a gene that is required for DNA damage repair followed by exposure to a toxin that damages DNA. The authors further propose that after disease onset occurs, a self-perpetuating process follows, causing a rapid decline in health. In summary, these three scenarios help
explain the relationship between time, environment, and genetic predisposition that collectively contribute to the onset of ALS.

Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS)

Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS), or FUS, was first discovered in 1993 as a fusion oncoprotein in myxoid liposarcoma (Crozat et al., 1993; Rabbitts et al., 1993). During the remainder of the 20th century, FUS-related research focused on characterizing its involvement in sarcomas and its nucleic acid associations, with a role in RNA splicing being the dominant interest through the mid 2000’s (Lerga et al., 2001; Rapp et al., 2002; Meissner et al., 2003; Delva et al., 2004; Belly et al., 2005). During the 15 years following its discovery in sarcomas, an average of ~2.5 FUS-related publications were produced a year. In February of 2009, mutations in FUS were found to be causative for ALS (Kwiatkowski et al., 2009; Vance et al., 2009) and since then the average number of FUS-associated publications per year has risen to an astounding 50! FUS has proven to be a complex multifunctional protein important for numerous cellular processes fundamental to cell health and homeostasis. The sections below provide a description of the physical properties of FUS, its functions in the nucleus and cytoplasm, and its role in disease with a focus on ALS.
Functional domains and structure

FUS is a 55 kDa protein consisting of 526 amino acids. It is an RNA/DNA binding protein that functions at all stages of gene expression from transcription to protein translation (Sama et al., 2014) and belongs to the FET (formerly TET) family of proteins, also consisting of Ewing’s Sarcoma (EWS) and TATA box binding protein associated factor 68 kDa (TAF15) (Tan and Manley, 2009a). Based on sequence determinants, FUS consists of an N-terminal QGSY-rich (“prion-like”) domain, glycine-rich region, RNA-recognition motif (RRM), zinc-finger domain, C-terminal arginine-glycine-glycine (RGG)-rich domains, and nuclear export and localization signals (Figure I-2). Biochemical and structural studies have determined that overall FUS is highly unstructured with organization apparent only in the zinc-finger and RRM domains (Iko et al., 2004). The flexible nature of the protein may be important in allowing FUS to interact with nucleic acids and various proteins essential for the host of functions it performs. In fact, every domain of FUS contributes to the protein’s myriad of functions performed throughout the cell (Figure I-2).
Figure I-2. The functional domains of FUS. FUS binds DNA, RNA and proteins to perform a diverse array of functions. Summarized here are the known functions of FUS annotated onto the domain structure of the protein. (QGSY-rich, glutamine-glycine-serine-tyrosine-rich or “prion-like” domain; Gly-rich, glycine-rich; RGG, arginine-glycine-glycine-rich; RRM, RNA recognition motif; ZFD, zinc-finger domain; NLS, nuclear localization signal).
Nuclear and cytoplasmic functions

FUS is a multifunctional protein involved in a diverse array of cellular processes. As a resident of the nucleus, FUS binds both DNA and RNA. Interactions with DNA form the basis for several putative functions of FUS in the context of DNA processing (Figure I-3). For example, FUS directly binds both single- and double-stranded DNA (Baechtold et al., 1999; Liu et al., 2013), localizes to RNAPII promoters (Tan et al., 2012) and telomeres (Dejardin and Kingston, 2009; Takahama et al., 2009) and is associated with higher order DNA structures, such as G-quadruplexes (Baechtold et al., 1999; Takahama and Oyoshi, 2013; Takahama et al., 2013). These associations underlie the roles of FUS in modulating transcription, telomere length, and DNA damage repair (Takahama et al., 2013) (reviewed in: (Sama et al., 2014)). Additionally, interactions between RNA and FUS coincide with several important functions of FUS in RNA processing. For example, FUS binds long introns (Hoell et al., 2011; Ishigaki et al., 2012; Lagier-Tourenne et al., 2012; Rogelj et al., 2012) consistent with a role for FUS in pre-mRNA splicing (reviewed in (Ling et al., 2013)). FUS binding sites were also identified within the 3'UTR of target genes (Lagier-Tourenne et al., 2012), which may contribute to mRNA export from the nucleus and localization within the cell for local translation (Barrett et al., 2012). In fact, FUS is also known as hnRNP P2 (heterogeneous ribonucleoprotein P2) (Calvio et al., 1995), and collectively hnRNPs are known to function in mRNA splicing, packaging, trafficking/nuclear export, stability, and translation (Han et al., 2010).
Figure I-3. FUS directly binds DNA.

A) FUS binds the promoters of >1000 genes, indicative of a role in transcriptional regulation. **(B)** FUS binds both single- and double-strand DNA and is important for two critical steps in homologous recombination: D-loop formation and homologous DNA pairing. When a double-strand break occurs in DNA, the 5’ end of the break is trimmed back to create a 3’ overhang of single-stranded DNA. This 3’ single-stranded DNA then binds a complementary sequence within duplex DNA of a homologous chromosome or sister chromatid, a process called strand invasion (reviewed in (Li and Heyer, 2008)). **(C)** FUS binds G-quadruplexes in telomeres. **(D)** Analogous to the role of FUS in D-loop formation, FUS may also be important for T-loop formation at the ends of telomeres. T-loops are formed when a single-strand, G-rich DNA overhang at the end of a chromosome forms a loop and anneals to a complementary 5’ C-rich sequence ((Griffith et al., 1999) and reviewed in (Greider, 1999)).
The classification of FUS as an hnRNP highlights its ability to shuttle between the nucleus and cytoplasm (Zinszner et al., 1997; Fujii and Takumi, 2005) and its importance in both compartments. In the cytoplasm in fact, FUS is found in neuronal dendrites (Belly et al., 2005; Fujii et al., 2005; Yoshimura et al., 2006; Aoki et al., 2012) where it translocates with mRNAs important for the development and function of spines (reviewed in (Dormann and Haass, 2013)).

FUS is also found in translationally active RNA/protein foci (Yasuda et al., 2013) within the cytoplasm, as well as stress granules formed in response to osmotic stress ((Sama et al., 2013) See also Appendix II), further demonstrating the cytoplasmic importance of FUS.

FUS/TLS in disease

As its name implies, FUS is part of an onco-fusion protein that causes malignant myxoid liposarcoma. The N-terminal transcriptional activation domain of FUS is fused to the transcription factor CHOP (also known as DDIT3), forming FUS-CHOP (Crozat et al., 1993; Rabbitts et al., 1993) which accounts for more than 90% of myxoid liposarcoma cases (Antonescu et al., 2000). In some cases of Ewing’s sarcoma family tumors, FUS is fused to the transcription factor ERG (Shing et al., 2003). A similar fusion of FUS and ERG, with inclusion of different exons, has also been found in rare cases of acute myeloid leukemia (Ichikawa et al., 1994; Panagopoulos et al., 1994). Additionally, fusion of FUS with ATF1 and BBF2H7 will cause angiomatoid fibrous histiocytoma (Waters et al., 2000;
Raddaoui et al., 2002) and low-grade fibromyxoid sarcoma (Storlazzi et al., 2003), respectively. Fusion proteins containing FUS, or family members EWS and TAF15, actually participate in nearly half of all sarcomas (Riggi et al., 2007). FUS also has a strong presence in neurological disorders (Figure I-4). In 2009, mutations in FUS were found to be associated with ALS (Kwiatkowski et al., 2009; Vance et al., 2009) with over 40 pathogenic mutations identified to-date (Dormann and Haass, 2013). Additionally, FUS is closely associated with frontotemporal dementia (FTD; pathologically defined as frontotemporal lobar degeneration, FTLD) as a component of pathological protein inclusions (Munoz et al., 2009; Neumann et al., 2009b; Neumann et al., 2009a; Urwin et al., 2010). While all cases of ALS-FUS are associated with genetic mutations, FTLD-FUS is characterized by neuronal FUS inclusions (Rademakers et al., 2012) with only rare cases associated with genetic FUS abnormalities (Van Langenhove et al., 2010). FUS inclusions now define several different subtypes of FTLD (Rademakers et al., 2012), including atypical FTLD-U (Neumann et al., 2009b; Urwin et al., 2010), neuronal intermediate filament inclusion disease (Neumann et al., 2009a), and basophilic inclusion body disease (Munoz et al., 2009); collectively referred to as FTLD-FUS (Mackenzie et al., 2010).

Most recently, several mutations in FUS were linked to essential tremor (ET) (Merner et al., 2012; Rajput et al., 2013; Wu et al., 2013; Zheng et al., 2013), an adult onset movement disorder having clinical overlap with Parkinson’s disease (Benito-Leon and Louis, 2006). Historically, ET has been classified as
monosymptomatic, mainly characterized by a kinetic arm tremor, and it is estimated that 30-50% of cases are misdiagnosed as Parkinson’s disease or other forms of tremor (Benito-Leon and Louis, 2006). More recently however, it was recognized that cognitive symptoms, such as loss of memory, depression, and deficits in executive function are associated with ET (reviewed in (Bermejo-Pareja and Puertas-Martin, 2013)). Pathologically, this disease is associated with cerebellar degeneration, accumulation of Lewy bodies in the brainstem, and accumulation of neurofilament in Purkinje cell axons (Benito-Leon and Louis, 2006). Until recently however, post-mortem brain examinations were uncommon so an exact pathological description of the disease is still unavailable. Genetically, familial inheritance is a risk factor for ET, but other than several mutations in FUS, no clear genetic links to the disease have been made aside from the identification of a few chromosomal susceptibility loci (Benito-Leon and Louis, 2006). The most commonly ET-associated mutation in FUS is G290X, which results in a truncated transcript (Merner et al., 2012). This truncated transcript appears to be degraded by nonsense-mediated decays, effectively decreasing expression of FUS (Merner et al., 2012), suggestive of loss of FUS function contributing to disease pathogenesis. That several other groups have not identified FUS mutations in their ET cohorts however, may imply FUS mutations are causative for ET only in rare cases (Parmalee et al., 2012; Hedera et al., 2013; Labbe et al., 2013; Ortega-Cubero et al., 2013).
Figure I-4. **Disease associated mutations in FUS/TLS.** Mutations in FUS are linked to familial and sporadic amyotrophic lateral sclerosis (fALS and sALS), frontotemporal lobar degeneration, and essential tremor. Summarized here are the known mutations associated with each disease, annotated onto the domain structure of the protein. Mutations identified in a single patient are denoted by asterisks. (QGSY-rich, glutamine-glycine-serine-tyrosine-rich; Gly-rich, glycine-rich; NES, nuclear export signal; RRM, RNA recognition motif; RGG, arginine-glycine-glycine-rich; ZFD, zinc-finger domain; NLS, nuclear localization signal).

Information in this figure was compiled from the following sources:

Mechanism of FUS/TLS in Amyotrophic Lateral Sclerosis

In 2009 two groups simultaneously published the discovery of a genetic linkage between FUS and ALS (Kwiatkowski et al., 2009; Vance et al., 2009). Over the following years, ~25 additional groups published findings of FUS mutations in ALS patients from French, Italian, Belgian, German, Japanese, Dutch, Spanish, Taiwanese and Chinese populations demonstrating the global contribution of mutant FUS to ALS. Currently, over 50 ALS-linked mutations in FUS have been identified, contributing to both sporadic and familial ALS. Overall, FUS mutations account for ~4% of familial ALS, ~1% of sporadic ALS, and is also attributed with being a main contributor of juvenile ALS (Chen et al., 2013). While the mechanism behind FUS pathogenesis in ALS is not known, data is consistent with both a gain of toxic function and a loss of normal function for FUS variants.

Gain of function hypothesis

The fact that mutations in FUS cause the protein to mislocalize to the cytoplasm and the degree of this mislocalization correlates with age of onset (Dormann et al., 2010), makes a gain of toxic function in the cytoplasm an attractive hypothesis. That FUS binds both nucleic acid and proteins could predict aberrant interactions of FUS with various cytoplasmic species, interfering with normal cytoplasmic processes. An aberrant interaction that has drawn considerable attention within the field over the past few years is the assembly of ALS-linked mutant FUS into cytoplasmic puncta called stress granules (reviewed in
Stress granules are stalled translational complexes that form in response to environmental or metabolic stress. The proposed function of stress granules is the triage of mRNAs, dictating their fate for expression, degradation, or suppression in order to express the appropriate repertoire of proteins to re-establish homeostasis (Anderson and Kedersha, 2008; Kedersha et al., 2013). Cytoplasmically localized mutant FUS is consistently detected within stress granules under conditions of protein over-expression, oxidative stress, heat-shock and endoplasmic reticulum (ER)-stress (Bosco et al., 2010a; Dormann et al., 2010; Gal et al., 2011; Kino et al., 2011; Bentmann et al., 2012). The association of FUS with stress granules correlates with its cytoplasmic expression, with variants such as FUS P525L and R495X exhibiting the most robust levels of both cytoplasmic mislocalization and stress granule incorporation (Bosco et al., 2010a; Dormann et al., 2010). Baron et al. demonstrated that the presence of mutant-FUS in stress granules alters several properties that may be important for stress granule function (Baron et al., 2013) see also Appendix III). Under conditions of sodium arsenite, an inducer of oxidative stress, the expression of mutant FUS delays the assembly and expedites the disassembly of stress granules. Furthermore, the size and abundance of stress granules are enhanced by mutant-FUS, which may be an outcome of the increased protein- and/or mRNA load within these structures caused by mutant FUS-specific interactions (Baron et al., 2013). Intriguingly, stress granule marker proteins have been detected in pathological aggregates of
post-mortem tissues from individuals with ALS and FTLD (Dormann et al., 2010; Liu-Yesucevitz et al., 2010; Bentmann et al., 2013; Kim et al., 2013), suggesting that these granules may accumulate during chronic stress and thus serve as precursors to the end-stage pathological aggregates seen in these disorders (Wolozin, 2012).

Loss of nuclear function hypothesis

That not all ALS-causing mutant FUS proteins mislocalize to the cytoplasm argues against a purely gain of toxic cytoplasmic function mechanism for FUS in ALS. A gain of toxic function could also occur in the nucleus, or alternatively, mutations in FUS could mediate disease through a loss of proper FUS function in the nucleus. Suggestive of the latter is the correlation between disease severity and the degree of nuclear FUS depletion (Dormann et al., 2010). Furthermore, FUS is predominantly a nuclear protein and has numerous nuclear functions important for cellular processes fundamental to cell health and homeostasis, such as the repair of damaged DNA and regulation of transcription and splicing (Sama et al., 2014). Disruption of any of these processes could have a detrimental impact on cellular viability.

In vivo models: To assess the effects of a complete loss of FUS function several groups have established *in vivo* models of FUS depletion through targeted knockdown with RNAi or creating null alleles for complete knockout of the protein
(Table I). In *Drosophila* models, knockdown or knockout of *cabeza*, the *Drosophila* homolog of FUS (Stolow and Haynes, 1995), caused temperature dependent pupal lethality, physiological defects such as eye degeneration and wing defects, locomotor defects in both larvae and adult flies, and a shorter adult lifespan (Wang et al., 2011b; Sasayama et al., 2012; Xia et al., 2012). Zebrafish injected with antisense morpholino oligonucleotides targeting FUS showed signs of motor defects in that they lacked a touch-evoked escape response. Additionally, the outgrowth and length of hyperbranched and unbranched axons of motor neurons were reduced with FUS knockdown, supportive of a neurodegenerative phenotype in these animals (Kabashi et al., 2011). To test a loss of function hypothesis, wild-type FUS and mutant FUS variants were expressed in both the *Drosophila* and zebrafish models and assessed for their ability to rescue the phenotypes caused by FUS depletion. While the reintroduction of wild-type FUS rescued pupal lethality, locomotor speed, and adult lifespan in *Drosophila*, expression of FUS variants R522G or P525L was unable to rescue locomotor speed or median lifespan of adult flies (Wang et al., 2011b), demonstrating loss of function of these variants. In the zebrafish model, R521H demonstrated no ability to rescue, R521C only partially rescued, and the S57deletion mutant rescued the phenotypes to a similar degree as the expression of wild-type FUS (Kabashi et al., 2011). The S57deletion mutation is a rare variant identified in only one sporadic ALS case, suggesting it may not be a pathogenic mutant, which could explain its wild-type-like nature in this model.
Variants R521H and R521C however, demonstrated phenotypes consistent with a loss of function model.

Two knockout mouse models of FUS have also previously been studied. Kuroda et al. generated a FUS-/- mouse model that lived to adulthood, but were smaller in size, showed sensitivity to ionizing radiation, and demonstrated male sterility and reduced female fertility (Kuroda et al., 2000). An additional FUS-/- line, created in an inbred background, was perinatal lethal and defective in B-cell development. Furthermore, these mice showed several signs of chromosomal instability, such as chromosome breakage, aneuploidy, and centromeric fusions (Hicks et al., 2000). These lines were created nine years before the discovery of FUS in ALS and therefore it is unlikely that they were monitored for signs of motor-neuron degeneration. Consistent between both lines however, were signs of genomic instability, suggestive of a role for FUS in maintaining DNA integrity.
<table>
<thead>
<tr>
<th>System</th>
<th>Publication</th>
<th>Method of FUS depletion</th>
<th>Summary of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>in vivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flies</td>
<td>(Machamer et al., 2014)</td>
<td>Caz null; or RNAi in neurons</td>
<td>increased synaptic activity</td>
</tr>
<tr>
<td></td>
<td>(Xia et al., 2012)</td>
<td>Caz null; or RNAi</td>
<td>physiological defects, neuromuscular junction structure defects, reduced locomotion, reduced viability</td>
</tr>
<tr>
<td></td>
<td>(Sasayama et al., 2012)</td>
<td>RNAi in neurons</td>
<td>reduced locomotion, shorter lifespan, shorter axon length</td>
</tr>
<tr>
<td></td>
<td>(Wang et al., 2011b)</td>
<td>Caz null</td>
<td>physiological defects, reduced locomotion, shorter lifespan</td>
</tr>
<tr>
<td>Fish</td>
<td>(Kabashi et al., 2011)</td>
<td>antisense morpholino oligonucleotide</td>
<td>reduced locomotion, shorter hyperbranched and unbranched axons</td>
</tr>
<tr>
<td>Mice</td>
<td>(Hicks et al., 2000)</td>
<td>interrupted gene in exon 12 (inbred background)</td>
<td>perinatal death, reduced number of lymphocytes, defective B-cell development, numerous signs of genomic instability</td>
</tr>
<tr>
<td></td>
<td>(Kuroda et al., 2000)</td>
<td>interrupted gene in exon 8 (outbred background)</td>
<td>male sterility due to defective spermatogenesis, reduced female fertility, sensitivity to ionizing radiation</td>
</tr>
<tr>
<td>Neuronal cells in culture</td>
<td>(Fuji et al., 2005)</td>
<td>hippocampal neurons from knockout mice (Hicks et al., 2000)</td>
<td>normal dendritic branching and spine morphology</td>
</tr>
<tr>
<td></td>
<td>(Ishigaki et al., 2012)</td>
<td>lentiviral transduction of shRNA into E15 cortical neurons (6 days, 80% knockdown)</td>
<td>alterations in mRNA expression and pre-mRNA splicing</td>
</tr>
<tr>
<td></td>
<td>(Nakaya et al., 2013)</td>
<td>siRNA transfection of ES cell-derived neurons (3 days, 44% knockdown)</td>
<td>alterations in mRNA expression and pre-mRNA splicing</td>
</tr>
<tr>
<td></td>
<td>(Orozco et al., 2012)</td>
<td>lentiviral transduction of shRNA into rat hippocampal neurons (7 days)</td>
<td>no overt toxicity; lack of exon 10 splicing in Tau; axons were shorter and had enlarged growth cones</td>
</tr>
<tr>
<td>in vitro</td>
<td>(Hoell et al., 2011)</td>
<td>siRNA transfection into HEK cells (3 days)</td>
<td>mRNA expression unchanged</td>
</tr>
<tr>
<td>Non-neuronal cells in culture</td>
<td>(Kim et al., 2010)</td>
<td>siRNA transfection into HEK or HeLa cells (2days)</td>
<td>decreased HDAC6 mRNA and protein levels</td>
</tr>
<tr>
<td></td>
<td>(Tan et al., 2012)</td>
<td>siRNA transfection into HEK cells</td>
<td>altered expression of candidate genes</td>
</tr>
<tr>
<td></td>
<td>(van Blitterswijk et al., 2013)</td>
<td>siRNA transfection into HEK cells (2 days)</td>
<td>alterations in mRNA expression and pre-mRNA splicing</td>
</tr>
<tr>
<td></td>
<td>(Yamazaki et al., 2012)</td>
<td>lentiviral transduction of shRNA into HeLa cells</td>
<td>reduction in SMN nuclear bodies</td>
</tr>
<tr>
<td></td>
<td>(Wang et al., 2013)</td>
<td>siRNA transfection into U2OS cells</td>
<td>reduced efficiency of DNA damage repair pathways</td>
</tr>
</tbody>
</table>

Table I-1. Summary of investigations of FUS knockdown/knockout models.
DNA damage models: Recently, the importance of FUS in the DNA damage repair pathway was firmly established after several groups demonstrated a localization of FUS to sites of DNA damage and a deficiency in DNA damage repair in the absence of FUS. Collectively, six fALS-linked mutant FUS proteins were evaluated in these assays. With the exception of one for which there was conflicting results (Rulten et al., 2013), all of the variants localized to sites of DNA damage to a similar degree as wild-type FUS (Mastrocola et al., 2013; Wang et al., 2013). In assessing the ability of mutant FUS to function in DNA damage repair, mutant FUS protein was expressed in cells devoid of FUS. FUS knockdown decreases the efficiency of two common double-strand break repair pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ). All of the FUS variants tested (R244C, R514S, H517Q, R521C) were unable to rescue the defect in HR-mediated DNA repair observed with FUS knockdown (Wang et al., 2013). Efficiency of NHEJ was also not fully rescued by mutant FUS, although the deficit was greater for HR (Wang et al., 2013). This demonstrates a loss of DNA damage repair function by mutant FUS despite proper localization of the protein to sites of DNA damage (Figure I-5). As damaged DNA accumulates normally as a function of age (Gorbunova et al., 2007), inefficient DNA repair due to FUS mutations could have an additive effect over time, leading to neuronal death later in life as a result of unrepaired DNA. FUS in the DNA damage response is discussed further in Chapter II.
Figure I-5. **FUS is recruited to sites of DNA damage and contributes to DNA-damage repair.** Under normal conditions FUS (green oval) and common repair proteins (triangles) localize to sites of laser induced DNA damage (yellow star). Under conditions of FUS knock-down (KD), these repair proteins are not recruited to sites of DNA damage and the efficiency of both homologous recombination (HR) and non-homologous end joining (NHEJ) is reduced. Mutant-FUS (red ovals) is still able to localize to sites of damage in the absence of endogenous FUS (**discrepancy in the literature for the degree of localization of variant R521G). Exogenous mutant-FUS does not fully rescue DNA-damage repair when endogenous FUS is knocked-down (*exception, FUS H517Q), although mutant-FUS is able to recover NHEJ to a greater extent than HR (*NHEJ is fully recovered by FUS H517Q).
As nuclear functions of FUS also include transcriptional regulation and pre-mRNA splicing, several groups have investigated the effects of FUS depletion on mRNA abundance and splicing events (Table I-2). As a transcriptional co-regulator, FUS interacts with several transcription factors (Hallier et al., 1998; Uranishi et al., 2001; Sato et al., 2005; Kim et al., 2010; Du et al., 2011) as well as RNA Polymerase II (RNAP2) (Immanuel et al., 1995; Bertolotti et al., 1996; Bertolotti et al., 1998; Schwartz et al., 2012) and RNA Polymerase III (RNAP3) (Tan and Manley, 2009b) and regulates the expression of their target genes. The ability of FUS to interact with and regulate the transcriptional activity of RNA polymerases suggests a general role for FUS in cellular transcriptional regulation. In fact, FUS chromatin immunoprecipitation of HeLa lysates followed by promoter microarray analyses revealed that FUS directly binds DNA in promoter regions. This study found that FUS bound to 1,161 promoter regions for genes involved in various cellular processes, including gene expression, cell cycle, and neuronal functions (Tan et al., 2012). Not surprisingly therefore, several groups using genome-wide expression array analyses reported alterations in mRNA abundance upon FUS knockdown in a variety of cell types using different FUS depletion strategies ((Hoell et al., 2011; Ishigaki et al., 2012; Lagier-Tourenne et al., 2012; Rogelj et al., 2012; Nakaya et al., 2013; van Blitterswijk et al., 2013)) and reviewed in (Ling et al., 2013)). Additionally, global effects on alternative splicing has been revealed through genome-wide exon array analyses (reviewed in (Ling et al., 2013)) of FUS depletion in primary
neurons (Ishigaki et al., 2012; Lagier-Tourenne et al., 2012; Rogelj et al., 2012; Nakaya et al., 2013) as well as non-neuronal cells (van Blitterswijk et al., 2013), demonstrating that FUS likely plays a general role in splicing in various cell types. Whether mutant FUS mimics FUS knockdown and exerts the same effects on transcriptional regulation and splicing has yet to be determined.

Summary

Five years after the discovery of FUS mutations in ALS, the question still remains whether these mutations result in a gain of toxic function or a loss of normal function. The work presented in this thesis investigates a loss of function hypothesis, modeled by FUS knockdown in mammalian cells in culture. Chapter II introduces this knockdown system and a reduced cellular proliferation phenotype that results from FUS depletion. As a candidate approach to providing mechanistic insight into this phenotype, DNA damage repair was investigated. Upon FUS knockdown, levels of phosphorylated H2AX, a common marker of DNA damage, are elevated in a FUS dependent manner, demonstrating a correlation between FUS levels and DNA damage accumulation. Chapter III takes a broader approach to providing mechanistic insight and uses quantitative proteomics to identify proteins differentially expressed upon FUS knockdown. Several fundamental cellular pathways were enriched within the functions of differentially expressed proteins, including cell-cycle regulation, cytoskeletal organization, oxidative stress and energy homeostasis. Further, the
work in Chapter III demonstrates therapeutic potential for the treatment of cellular deficiencies associated with loss of FUS function by showing reversal of the phenotype by FUS re-expression or treatment with the small molecule, rolipram. Collectively, the work presented in this dissertation demonstrates the importance of FUS for cell health and homeostasis, supports a role for FUS in DNA damage repair and identifies additional cellular pathways influenced by loss of FUS function as relevant to the pathogenesis of ALS.
| Publication: General description | mRNA Expression (method) | mRNA Splicing (method) | Binding targets (method) | RNA binding specificity | Key categories identified by Gene Ontology (GO) Term analysis³⁴ | Gene Ontology (GO) Term analysis²⁴
|-------------------------------|-------------------------|------------------------|------------------------|------------------------|---|
| Hoell et al., 2011 | Comparison of FET family and mutant FUS RNA targets | FUS knockdown in HEK-293 cells (microarray) | N/A | HA-tagged WT, RS21H or RS21G in HEK-293 cells (PAR-CLIP)³⁵ | Introns; AU-rich stem loops (15-fold higher affinity than GGU repeat) | RNAs uniquely bound by mutant-FUS: endoplasmic reticulum and ubiquitin-proteasome related
| Colombrita et al., 2012 | Comparison of FUS and TDP-43 RNA targets | N/A | N/A | Cytoplasmic fraction of NSC-34 (RIP-ChIP)³⁶ | 3'UTR; limited sequence specificity | RNAs bound by FUS: transcriptional regulation, cell cycle, ribonucleoprotein biogenesis, RNA splicing, stress response/DNA repair, purine ribonucleotide binding and ubiquitin-mediated proteolysis
| Ishigaki et al., 2012 | RNA binding specificity of FUS; expression and splicing regulation by FUS | FUS knockdown in primary cortical neurons (exon array) | FUS knockdown in primary cortical neurons (exon array) | mouse cerebellum (HITS-CLIP)³⁷ | Introns and 3'UTR; regions with secondary structure | Changes in mRNA abundance: signaling cascades and metabolic processes
| Rogelj et al., 2012 | Comparison of FUS and TDP-43 RNA targets; expression and splicing regulation by FUS | FUS /- embryonic mouse brain (splice-junction microarray) | FUS /- embryonic mouse brain (splice-junction microarray) | embryonic mouse brain (ICLIP)³⁸ | Long introns; no preference for stem-loops; limited sequence specificity | Alternatively spliced mRNA: cell adhesion, apoptosis, neuronal development and axonogenesis
| Lagier-Tourenne et al., 2012 | Species comparison of FUS RNA targets; comparison of targets, expression and splicing regulation between FUS and TDP-43 | FUS knockdown in adult mouse brain and spinal cord (RNA-seq) | FUS /- embryonic mouse brain; FUS knockdown in adult mouse brain (splicing-sensitive microarrays) | Naïve mouse brain; non-disease human brain (CLIP-seq)³⁹ | Long introns and 3'UTR; GUGGU is an enriched RNA sequence motif | RNAs bound by FUS: components of the synapse and molecules residing in neuronal projections
| Nakaya et al., 2013 | Species comparison of FUS RNA targets; expression and splicing regulation by FUS | FUS knockdown in embryonic stem cell (ESC) derived mouse neurons (RNA-seq) | FUS knockdown in ESC derived mouse neurons (RNA-seq) | human temporal lobe cortices; ESC derived mouse neurons (HITS-CLIP)³⁵ | Introns; limited sequence specificity | RNAs bound by FUS: synapse, cell adhesion, neuronal projection and neuronal recognition processes
| van Blitterswijk et al., 2013 | Comparison of FUS overexpression, FUS knockdown and expression of mutant-FUS on mRNA expression and splicing | FUS knockdown; overexpression of WT, RS21G or RS22G in HEK-293 cells (RNA-seq) | FUS knockdown; overexpression of WT, RS21G or RS22G in HEK-293 cells (RNA-seq) | N/A | N/A | Changes in mRNA abundance: ribosome, spliceosome, mismatch repair and DNA replication |
Table I-2. Summary of investigations of FUS involvement in RNA processes.

iPAR-CLIP – photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation

iiRIP-Chip - RNA-binding protein immunopurification, microarray

iiiHITS-CLIP - High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation

iviCLIP – individual-nucleotide resolution crosslinking and immunoprecipitation

vCLIP-seq – crosslinking immunoprecipitation, high-throughput RNA sequencing (RNA-seq)

vigene categories that are highlighted in the original work, see original publication for a full list of GO terms
PREFACE TO CHAPTER II:

The work presented in this chapter was performed by Catherine L. Ward with the exception of the immunofluorescence images in figures 2 and 3 which were acquired by Dr. Desiree Baron.

The work presented in this Chapter intended to uncover a role for FUS in DNA damage repair and investigate the functional capacity of ALS-linked mutant FUS. Despite exhaustive troubleshooting and experimental optimizations, the findings were suggestive, but largely inconclusive and were not pursued for publication. Following the termination of this project, three groups published conclusive evidence of a functional role for FUS in double-strand break repair, which is disrupted when FUS contains ALS-linked mutations. Collectively, investigations of a role for FUS in DNA damage repair are discussed herein.
CHAPTER II: A LOSS OF DNA DAMAGE REPAIR FUNCTION OF FUS/TLS IN AMYOTROPHIC LATERAL SCLEROSIS

Introduction

Over 50 mutations in the gene *Fused in sarcoma/translocated in liposarcoma* (FUS/TLS, or FUS) have been identified as causative for amyotrophic lateral sclerosis, or ALS. FUS is a multifunctional protein involved in a host of cellular processes related to DNA and RNA metabolism and cellular stress response (Sama et al., 2014). Since the discovery of FUS mutations in ALS (Kwiatkowski et al., 2009; Vance et al., 2009) much research has been focused on determining the related pathogenic mechanism(s). An initial observation was the cytoplasmic mislocalization of FUS mutant protein (Kwiatkowski et al., 2009; Vance et al., 2009) which appears to correlate with disease severity (Dormann et al., 2010). This is characteristic of mutations within the nuclear localization signal (NLS) of the protein, which account for nearly half of all mutations (Figure I-4). This observation has led to many researchers investigating a gain of toxic function as a pathogenic mechanism for cytoplasmic variants (Hoell et al., 2011; Huang et al., 2011; Baron et al., 2013). In addition to mutations within the NLS, 25% of mutations are clustered in the glycine-rich region of FUS (Figure I-4) and these proteins retain proper nuclear localization (Dormann et al., 2010). This evidence argues against a purely gain of toxic function in the cytoplasm and instead could predict a loss of nuclear function as
the pathogenic mechanism. FUS is predominantly localized to the nucleus and functions in transcriptional regulation, pre-mRNA splicing, and DNA damage repair (Sama et al., 2014). Loss of function in any of these pathways could have detrimental consequences for cell health and homeostasis. In fact, several in vivo models have demonstrated lethality upon FUS knockout. In mice, FUS knockout is perinatal lethal (Hicks et al., 2000) and Drosophila models exhibit pupal lethality and/or a shortened adult lifespan (Wang et al., 2011b; Sasayama et al., 2012; Xia et al., 2012). To directly assess a loss of function from ALS-linked mutations, Wang et al. expressed mutated FUS in a Drosophila null model and found ALS-linked variants R522G and P525L were unable to fully rescue the lifespan of adult flies as compared to the re-expression of wild-type. These variants were also unable to rescue other loss of function phenotypes, such as locomotor speed (Wang et al., 2011b). This study supported a loss of function hypothesis for mutant FUS in ALS pathogenesis.

While several animal models have demonstrated the necessity of FUS for viability, the necessity of FUS at the cellular level has not been fully elucidated. FUS is involved in numerous cellular pathways, but whether these pathways are dependent on FUS function is not known. To study the influence of FUS depletion on cell health and homeostasis at the cellular level, I characterized an inducible FUS knockdown system in NSC-34 cells (neuroblastoma x spinal cord hybrid) and discovered a defect in cellular proliferation upon FUS depletion. Several nuclear functions of FUS could contribute to this response. As a
candidate approach I chose to investigate a defect in DNA damage repair as a causative factor, as FUS knockout mice demonstrated early lethality associated with exposure to ionizing radiation (Kuroda et al., 2000). Finally, to investigate the functional capacity of ALS FUS variants, I developed a system that allowed for the knockdown of endogenous FUS in cultured mammalian cells with simultaneous expression of exogenous wild-type or mutant FUS.

Results

FUS depletion induces a defect in cell proliferation. To determine the effect of FUS depletion in mammalian cells, I utilized NSC-34 cell lines (neuroblastoma x spinal cord hybrid) containing stable inducible shRNA targeted to either the open reading frame of FUS (shFUS) or a scrambled control sequence (shSC) (Sama et al., 2013). After four days of induction, FUS levels were depleted >90% in the shFUS line while remaining at endogenous levels in the shSC line (*Figure II-1A*). Observation of cell confluency after four days of shRNA induction revealed a striking reduction in cell abundance for the cell line expressing shFUS. Quantification of cell number revealed a 50% decrease in the shFUS line compared to either uninduced cells or cells expressing shSC (*Figure II-1B*). This finding was supported by an MTT assay of cell viability which showed ~50% reduction in viability in shFUS cells compared to only a ~20% reduction in shSC cells (*Figure III-1C*). Together with a lack of observable cell death, this data demonstrates a defect in cell proliferation upon the knockdown of FUS.
Figure II-1. **FUS knockdown causes a decrease in cellular proliferation.** NSC-34 cells stably expressing inducible shRNA targeting exon 5 of FUS (shFUS) or a scrambled control sequence (shSC) were used to model the effects of loss of FUS function. (A) Representative western blot demonstrating >90% FUS knockdown after induction with 1μg/ml doxycycline in cells expressing shFUS. Tubulin serves as a loading control. (B-C) Four days of FUS knockdown by induction of shFUS resulted in ~50% reduction in cell proliferation, compared to uninduced cells or cells expressing shSC, as determined by cell counting (B) or MTT assay (C). Data shown are the average of 3 independent experiments ± standard error. Statistical significance was determined by a student’s t-test (*P <0.05; **P <0.01).
Assessing the functional capacity of mutant FUS. We next sought to determine whether mutant FUS could rescue the proliferation defect produced by knockdown of endogenous wild-type FUS. To this end, I established NSC-34 cells stably expressing exogenous human wild-type FUS or mutant R495X (Baron et al., 2013). R495X is a clinically severe mutation and has a high degree of cytoplasmic mislocalization (Bosco et al., 2010a), making it an ideal variant for studying loss of nuclear function. To knockdown endogenous FUS while simultaneously expressing exogenous FUS, siRNA targeting the 3’ untranslated region (3’UTR) of murine FUS was designed and proved to be more efficient at knocking down endogenous wild-type FUS (endo-WT) than the exogenous human variants (exo-WT or exo-R495X) (Figure II-2A). Four days after siRNA transfection, MTT assays were performed to assess the ability of exogenous wild-type or mutant FUS to inhibit a proliferation defect from occurring during the knockdown of endogenous FUS. In cells expressing exogenous WT- or R495X-FUS, MTT levels were still reduced ~40-50% after knockdown of FUS, compared to transfection of scrambled control siRNA (Figure II-2B).

The lack of rescue by exogenous human wild-type FUS could suggest that the proliferation defect is an off-target effect of siRNA and not truly an effect of FUS depletion. To address this, we knocked-down FUS in two different cell lines using a total of four different siRNA sequences and consistently observed a proliferation defect (Chapter III: Figure III-1). Thus, the lack of rescue could be due to either inefficient expression levels of the exogenous protein or the inability
of human FUS to function as murine FUS. Despite the lack of a 3'UTR in the exogenous constructs, there was a significant degree of knockdown of the exogenous protein (Figure II-2A). This is presumably through the production of siRNA during degradation of the murine transcript that can target human FUS. Despite continued attempts to increase exogenous levels of wild-type FUS, we were never able to maintain near-endogenous levels.

To navigate the possibility of human FUS being unable to rescue the knockdown of mouse FUS, we attempted the same rescue experiment in HEK-293T cell lines stably expressing inducible GFP-tagged human wild-type FUS or mutant R495X (Bosco et al., 2010a). Expression of exogenous protein was induced one day prior to the transfection of siRNA and in this system exogenous levels remained high while endogenous levels of FUS were depleted (Figure II-2C). MTT levels however, were not rescued by either the expression of exogenous wild-type or mutant protein (Figure II-2D). While the exogenous protein was expressed at near-endogenous levels and was the same species as the endogenous protein, the addition of a GFP-tag could have potentially conflicted with the proper folding of FUS or altered relevant FUS interactions within the cell. As a final attempt, I developed HEK-293T cells stably expressing HA-tagged exogenous FUS, but was unable to achieve high levels of the exogenous protein. In the end, despite numerous attempts and extensive troubleshooting, I was unable to produce a reliable model system to study the functional capacity of mutant FUS.
Figure II-2. Testing the functional capacity of ALS-linked mutant FUS. (A) Western blot analysis of the indicated cell lysates. Endogenous wild-type FUS (endo-WT) in NSC-34 cells was knocked-down by the transfection of siRNA targeting the 3'UTR of FUS. Exogenously expressed human wild-type FUS (exo-WT; left) or mutant R495X (exo-R495X; right) is still expressed after the knockdown of endogenous wild-type. (B) Expression of exogenous human FUS protein, wild-type or mutant R495X, was unable to rescue the ~50% proliferation defect caused by knockdown of endogenous mouse FUS. (C) Exogenous GFP-tagged FUS, either wild-type (exo-WT; left) or mutant R495X (exo-R495X; right), was expressed in HEK-293T cells. Transient transfection of siRNA targeting the 3’UTR of FUS caused a specific knockdown of endogenous wild-type FUS, while leaving exogenous protein expression unaffected. (D) Expression of exogenous protein, either wild-type (left) or mutant R495X (right), was unable to rescue the proliferation defect induced by knockdown of endogenous FUS.
FUS depletion induces elevated levels of phosphorylated H2AX (γH2AX), a marker of DNA damage. In addition to FUS-/- mice being sensitive to ionizing radiation (Kuroda et al., 2000), evidence of the importance of FUS in homologous DNA pairing (Akhmedov et al., 1995; Bertrand et al., 1999) and D-loop formation (Baechtold et al., 1999), supports a role for FUS in DNA damage repair, as these are essential steps of homologous recombination. Since cell cycle arrest is a component of the DNA repair process (reviewed in (Zhou and Elledge, 2000)), we investigated whether the FUS knockdown-induced defect in cell proliferation was occurring as a consequence of damaged DNA. To this end, we monitored levels of phosphorylated H2AX (γH2AX), a common marker of DNA damage. Four days after induction of FUS knockdown in NSC-34 cells, γH2AX levels were increased as compared to control cells expressing shSC (Figure II-3A). This finding was recapitulated in HEK-293T cells after transient transfection of siRNA targeting a unique sequence of FUS (Figure II-3B), indicating this result was not an off-target effect or specific to FUS knockdown in NSC-34 cells. Furthermore, γH2AX levels remained elevated over the course of 10 days with continued FUS knockdown, but if FUS levels were allowed to recover by the washout of shRNA induction, γH2AX levels returned to baseline (Figure II-3C). Together, this data demonstrates a direct correlation between FUS levels and γH2AX elevation.
Figure II-3. FUS knockdown causes elevated levels of γH2AX. (A) Representative immunofluorescence images demonstrating increased γH2AX foci in cells with knocked-down FUS expression four days after induction of shFUS. (B) Western blot analysis of HEK-293T lysates after four days of the indicated siRNA treatment. Increased expression of γH2AX is present in lysates having knocked-down expression of FUS. Tubulin serves as a loading control. (C) NSC-34 cells expressing inducible shRNA were either continuously induced or induced for 24h after which induction was washed-out. Western blot analysis of the indicated lysates demonstrates an increase in γH2AX, correlating with FUS knockdown (left; continuous induction), which is recovered as FUS levels return to baseline (right; induction + washout). Tubulin serves as a loading control.
In addition to being a marker of DNA damage, γH2AX is also elevated as a result of DNA fragmentation in the later stages of apoptosis (Rogakou et al., 2000). To determine whether γH2AX was elevated as a result of apoptosis, we probed for early markers of apoptosis, specifically cleaved caspase-3 and cleaved-PARP, for their temporal relationship to γH2AX. While increased γH2AX was evident as early as 48h by immunofluorescence (Figure II-4A) and 60h by western analysis (Figure II-4B), cleaved caspase-3 and cleaved-PARP remained nearly undetectable throughout 96h of FUS knockdown. Furthermore, DNA harvested at 48 and 96h of FUS knockdown had an identical pattern to DNA harvested at 0h of FUS knockdown, differing from that of a positive control demonstrating a typical pattern of fragmented DNA (Figure II-4C). Together, this data suggests γH2AX is elevated upon FUS depletion as a consequence of increased DNA damage, independent of apoptosis.
Figure II-4. FUS knockdown-induced γH2AX is independent of apoptosis. NSC-34 cells were induced to express shFUS for the knockdown of FUS expression and monitored over time for the presence of apoptosis markers. (A) Representative immunofluorescence images demonstrate increased γH2AX foci by 48h of shFUS induction without evidence of cleaved caspase-3. Cells treated with 1μM staurosporine (ST) for 2h serve as a control for positive cleaved caspase-3 staining. (B) Western blot analysis of the indicated lysates reveals increased levels of γH2AX correlating with decreased FUS expression while levels of cleaved-PARP and cleaved caspase-3 remain unchanged. (C) DNA harvested from cells after 0, 48, or 96h of shFUS expression was separated by electrophoresis. DNA fragmentation, as demonstrated by a positive control (+), is not present after FUS knockdown (M = DNA size marker).
Next, we sought to determine the mechanism associated with the elevated levels of DNA damage. Was this phenomenon due to a higher rate of DNA damage, a lower rate of DNA repair, or both? In order to assess physical DNA damage and track levels and repair rates over time, we sought to employ the Comet assay, a gel electrophoresis method used to measure the abundance of double strand breaks in the DNA of individual cells. The Comet assay reports baseline DNA damage as well as tracks the repair of damaged DNA after an insult such as ionizing radiation (Olive and Banath, 2006; Wood et al., 2010). While in the process of establishing this method within the lab, inconsistencies arose in the reproducibility of γH2AX elevation following FUS knockdown. In these experiments, γH2AX reports the level of DNA damage that occurs spontaneously during the normal life of cells in culture, without the addition of DNA damaging agents. It would stand to reason then, that the culture condition of the cells had been altered, leading to less exposure to spontaneous DNA damage. Despite troubleshooting numerous variables, such as components of growth media, incubator conditions and the integrity of our cell lines, we were unfortunately unable to resolve this issue and further investigations were not pursued.
Discussion

While several groups have investigated the effects of FUS knockdown in both neuronal (Ishigaki et al., 2012; Orozco et al., 2012; Nakaya et al., 2013) and replicating cells (Kim et al., 2010; Hoell et al., 2011; Tan et al., 2012; Yamazaki et al., 2012; van Blitterswijk et al., 2013), our work is the first to report an effect on cell health or proliferation. Our knockdown system is unique from other studies in that every cell stably expresses an inducible shRNA construct targeting FUS, ensuring a homogeneous FUS knockdown, in contrast to transient transfections which vary based on transfection efficiencies. The homogenous knockdown of FUS in our system allows for any resulting phenotype to be widespread and more evident. Moreover, our studies were carried out for four days while others were assessed after only two or three when an alteration in cell abundance would be less apparent. That a proliferation defect was detected in our hands using four different FUS RNAi sequences in two different cells lines (data shown in Chapter III) supports this finding as a direct cause of FUS depletion and not an off-target effect of the experimental approach.

To investigate the cellular events leading to the FUS knockdown-induced proliferation defect, we took a candidate approach and measured levels of DNA damage, as several lines of evidence implicate FUS in DNA damage repair (Akhmedov et al., 1995; Baechtold et al., 1999; Bertrand et al., 1999; Kuroda et al., 2000). Although our work remains inconclusive due to a lack of reproducibility in our experimental system, our results are suggestive of an
accumulation of unrepaired DNA as a result of FUS depletion. Shortly after this project was halted, a role for FUS in the DNA damage repair process was firmly established when three independent groups reported the localization of FUS to sites of damaged DNA (Mastrocola et al., 2013; Rulten et al., 2013; Wang et al., 2013). Furthermore, in the absence of FUS the efficiency of DNA double-strand break repair pathways, specifically homologous recombination (HR) and non-homologous end-joining (NHEJ), were decreased 30-50%. This reduction is thought to be significant considering a ~50% reduction in these repair processes is observed when the expression of known DNA-repair proteins is reduced (Mastrocola et al., 2013; Wang et al., 2013). In primary mouse cortical neurons, cells that mainly utilize the NHEJ pathway for DNA double strand break repair ((Sharma, 2007) and reviewed in (Rao, 2007)), FUS depletion resulted in a ~65-80% reduction in repair efficiency as well as an increase in levels of damaged DNA, as determined by the Comet assay (Wang et al., 2013). Together, these findings confirmed FUS is important for efficient DNA damage repair in both proliferating cells and in post-mitotic, non-proliferating cells such as neurons.

In addition to confirming the requirement of FUS in DNA damage repair, Wang et al. determined that FUS functions upstream of many common DNA damage repair proteins. For instance, the redistribution of FUS to sites of DNA damage occurred prior to that of other key DNA-repair proteins, including NBS1 (Nijmegen breakage syndrome-1), p-ATM (phosphorylated-ataxia telanogiectasia mutated), γH2AX (phosphorylated histone 2A.X) and Ku70 (Wang et al., 2013).
Additionally, the abundance of γH2AX foci was reduced when FUS expression was knocked-down, despite an increase in DNA damage reported by the Comet assay (Wang et al., 2013). This finding was in contrast to what we had seen in NSC-34 and HEK cells (Figure II-2), as in our hands the knockdown of FUS resulted in an elevation of γH2AX foci. An important difference between these two studies was in the induction of DNA damage. While Wang et al. elicited the DNA damage response through treatment with etoposide, an inducer of double strand breaks, our study lacked experimental induction of DNA damage. Together these studies may indicate that FUS plays various roles in the DNA damage response depending on the level and type of damage that has occurred.

While the capacity of mutant FUS to function in the models presented here was inconclusive due to the lack of a proper system, several other models have addressed a loss of function hypothesis for mutant FUS. In studies of DNA damage repair, Wang, et al. knocked-down the expression of endogenous FUS in U2OS cells and directly examined the ability of several ALS-linked variants to perform either HR- or NHEJ-mediated DNA repair. All of the FUS variants tested (R244C, R514S, H517Q, R521C) were deficient in HR-mediated DNA repair relative to wild-type FUS. Overall, the impaired role of FUS variants in DNA repair was more pronounced in HR than NHEJ, where in the latter pathway nuclear FUS H517Q fully rescued the loss of WT FUS expression (Wang et al., 2013). With the exception of mutant R521G for which there are conflicting results (Rulten et al., 2013), all FUS variants tested (R244C, R514S, H517Q, R521C,
R521G, and R524S) were recruited to sites of DNA damage (Mastrocola et al., 2013; Wang et al., 2013). Therefore, in the context of DNA damage repair mutant FUS displayed proper localization, but was unable to perform its function, demonstrating a loss of function by mutant FUS.

Accumulating evidence makes a strong case for a role of FUS in the DNA damage response and that ALS-linked mutants are deficient in this function makes defective DNA damage repair a plausible mechanism for ALS. Damaged DNA accumulates normally as a function of age, presumably due to a life-time exposure to DNA damaging agents and a decline in quality control pathways (reviewed in (Gorbunova et al., 2007)). Defects in DNA repair due to FUS mutations are therefore expected to manifest in adulthood, which coincides with the mean age of onset (~55 years) for FUS-ALS. Neurons may be particularly susceptible to accumulated DNA damage, as they lack the ability to replicate and self-renew. In support of this, post-mortem brain sections from the motor cortex of ALS patients harboring either FUS R521C or P525L mutations display increased levels of the γH2AX DNA damage marker relative to control brain sections (Wang et al., 2013). However, it should be noted that γH2AX levels also correlate with apoptosis (Rogakou et al., 2000), which is an established cell-death pathway in both ALS and related disorders (Pasinelli and Brown, 2006). Therefore, an alternative interpretation of these data is that there are increased levels of apoptosis in these end-stage diseased tissues, which is to be expected. A recent transgenic mouse however, that expresses FUS R521C and exhibits
severe motor defects and death 4-6 weeks after symptom onset, exhibited elevated levels of several DNA damage markers (e.g., γH2AX, phosphorylated p53, and ATF3) in the central nervous system in the absence of apoptosis markers (Qiu et al., 2014). Comet assays performed on isolated neurons supported this observation, with >50% of neurons from R521C mice demonstrating comet tails compared to the ~20% from non-transgenic control littermates. These neurons lacked cleaved caspase-3 signal and were TUNEL-negative, indicating that damaged DNA and motor neuron death do not result from apoptosis (Qiu et al., 2014).

Conclusion

Together, this evidence supports a disruption of DNA damage repair as a function of mutant-FUS expression. Whether this is causative for ALS is yet to be determined and perhaps investigating additional FUS variants for DNA repair efficiency in vivo will offer more conclusive evidence. Loss of other nuclear functions of FUS however, could just as easily be the determining factor in ALS pathogenesis. To investigate the cellular effects of FUS depletion outside of this one candidate pathway, we further characterized the FUS knockdown-induced proliferation defect and using quantitative proteomics, identified several other cellular pathways modified by FUS depletion, as discussed in Chapter III.
Materials and Methods

Tissue culture. All cell lines used herein have been described previously: NSC-34 cell lines expressing inducible shFUS1 of shSC (Sama et al., 2013), NSC-34 cell lines constitutively expressing exogenous human wild-type FUS or mutant R495X (Baron et al., 2013), and HEK-293T cells expressing inducible GFP-tagged human FUS, wild-type or mutant R495X (Bosco et al., 2010a). For the induction of shRNA or GFP-tagged FUS in NSC-34 or HEK-293T cells respectively, cells were treated with 1μg/ml doxycycline (Sigma, D9891) or 0.1 μg/ml tetracycline (Fisher Scientific, BP912-100).

siRNA knockdown of FUS

RNA oligonucleotides for FUS (sequences below) and a scrambled control sequence (guide: 5'-aauucuccgaaccgagac-3'; passenger: 5'-gugacacguacggagaaucuu-3') were purchased through Sigma-Aldrich and 10μM annealed stocks were prepared by combining guide and passenger strands in the following buffer: 100mM potassium acetate, 30mM HEPES-KOH pH 7.4, 2mM magnesium acetate. For knockdown in HEK-293T cells, cells were plated in a 24-well plate at 2,000 cells/well and allowed to adhere overnight. Transfection was performed in OPTI-MEM (Invitrogen, 31985070) using 0.4μl Lipofectamine RNAiMax (Invitrogen, 13778030) and 0.2nM siRNA per well (guide: 5'-uugggugacagaggauugg-3'; passenger: 5'-ccauuccugacaccacuu-3'). For knockdown in NSC-34 cells, cells were plated in a 24-well plate at
10,000 cells/well. Transfection was performed as above, but with 0.5μl RNAiMax and 10nM siRNA per well (guide: 5’-uaggguagucagacacacaca-3’; passenger: 5’-ugugugucagacuacccucuu-3’).

Cell proliferation assays. For cell counting experiments, inducible NSC-34 cells were plated in 6-well plates at 40,000 cells/well and induced with 1μg/ml doxycycline the following morning, or left uninduced. Four days later, cells were resuspended in 3ml phosphate buffered saline (Invitrogen, 10010-049) and counted in triplicate using a hemocytometer. For MTT assays, NSC-34 and HEK cells were plated in technical triplicate in a 24-well plate and induced to express shRNA or transfected with siRNA the following morning, as described above. After four days, the media from each well was removed and replaced with 400μl fresh media and 100μl of 5mg/ml MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide; Invitrogen, M-6494). After a 35 min incubation at 37°C, 300μl lysis buffer (10% SDS in 1:1 N,N-dimethylformamide:water/2% acetic acid/2.5% HCl 1M)(Reixach et al., 2004) was added to each well. Plates were covered with a seal and incubated at 37°C overnight followed by OD quantification at 550nm. Results are expressed as % cell viability relative to untreated controls using the following equation: 100 x (OD_{RNAi} – OD_{blank})/(OD_{untreated} – OD_{blank}). The OD_{blank} was determined by wells containing MTT and tissue culture media without cells.
Immunofluorescence. Cells grown on glass coverslips were fixed for 5-10 min with 4% paraformaldehyde and blocked with PBSAT (1X PBS/1% BSA/0.5% Triton-X 100) for 30-60 min at room temperature. Primary antibodies were diluted in PBSAT and added to the coverslips at room temperature for 1 hr. Primary antibody dilutions were as follows: 1:500 for anti-FUS (Bethyl laboratories, A300-293A), 1:500 for γH2AX (Millipore, 05-636), and 1:500 for cleaved caspase-3 (Cell Signaling, 9664). After primary antibody incubation, coverslips were washed with PBSAT and incubated for 45 minutes with Alexa Fluor 488-conjugated donkey anti-rabbit IgG (Jackson ImmunoResearch Labs, 711-545-152) or donkey anti-mouse Cy3 (Jackson ImmunoResearch Labs, 715-165-151), diluted at 1:2000 in PBSAT. Lastly, cells were stained with 34 ng/mL DAPI and coverslips were mounted with ProLong Gold anti-fade reagent (Invitrogen, P36930).

Western blotting. Cells were lysed for 30 min at 4°C with either 50 mM Tris HCl (pH 7.5) containing 0.5M NaCl, 1% NP-40, 1% deoxycholic acid, 0.1% SDS, and 2mM EDTA or RIPA buffer (Boston BioProducts, BP-115-500), supplemented with protease (Roche, 11836170001) and phosphatase (Roche, 4906837001) inhibitors. Concentration of cell lysates was determined using a bicinechonic acid (BCA) assay (Thermo Scientific Pierce, 23227) and samples were prepared in Laemmli SDS-sample buffer (Boston BioProducts, BP-111R). Standard western blotting procedures were followed, using Tris-glycine SDS-PAGE and electrotransfer onto PVDF membrane at 100V for 1 hour at 4°C. Membranes
were blocked for 1h at room temperature with Odyssey Blocking Buffer (LiCor, 927–40003) diluted 1:1 with PBS containing 0.1% tween-20 (PBST), followed by overnight incubation at 4ºC with primary antibodies diluted in PBST. Primary antibody dilutions were as follows: 1:500 anti-FUS (Genscript, generated against C-terminal peptide CKFGGPRDQGSRHDSEQDNSD)(Sama et al., 2013), 1:500 anti-tubulin (Sigma, T9026), 1:500 anti-cleaved PARP1 (Cell Signaling, 9544), 1:500 anti-cleaved caspase-3 (Cell Signaling, 9664), and 1:100 anti-γH2AX (Millipore, 05-636). Following primary antibody incubation, membranes were washed with PBST and incubated for 1h with secondary antibody diluted 1:10,000 in 1:1 Odyssey Blocking Buffer:PBST. Secondary antibodies included anti-mouse IRDye 680 (Licor, 926-68072) or IRDye 800 (LiCor, 926-32210) and anti-rabbit IRDye 680 (LiCor, 926-68023) or IRDye 800 (LiCor, 926-32211). After washing with PBST, membranes were imaged with an Odyssey Infrared Imager (LiCor, Model 9120) and protein band intensities were quantified with the Odyssey Software (LiCor, V3.0).

For separation of human and mouse FUS protein in NSC-34 cell lysates, ~25µg of total protein lysate was loaded per sample onto a 15% Tris-glycine gel, which was run at 215V at 4ºC for ~5 hours, until the 50kDa ladder band reached the bottom of the gel. Electrotransfer onto PVDF membrane and antibody conditions were performed as described above.
DNA electrophoresis. DNA was purified from NSC-34 cells using an Apoptotic DNA Ladder Kit (Roche, 11835246001). DNA samples (2µg) were loaded onto a 1.0% agarose gel containing SYBR Safe DNA stain (Life Technologies, S33102) and run at 75V in TBE buffer (Tris-borate-EDTA) for 1.5hr, followed by imaging with a UV light source.
PREFACE TO CHAPTER III:

The work and analysis presented in this chapter was performed by Catherine L. Ward with the following exceptions:

Mass spectrometry was performed by Dr. Kristin Boggio (mass spectrometry core facility, UMMS), high-throughput small molecule screen was performed and analyzed by Dr. Bethann Johnson with assistance from Drs. Justin Boyd and Marcie Glicksman (Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center), and live-cell imaging was performed by Stephen R. Douthwright (Sluder lab, UMMS).
CHAPTER III: A LOSS OF FUS/TLS FUNCTION LEADS TO IMPAIRED CELLULAR PROLIFERATION

Abstract

Fused in Sarcoma/Translocated in liposarcoma (FUS/TLS or FUS) is a multifunctional RNA/DNA-binding protein that is pathologically associated with cancer and neurodegeneration. To gain insight into the vital functions of FUS and how a loss of FUS function impacts cellular homeostasis, FUS expression was reduced in different cellular models through RNA interference. Our results demonstrate that a loss of FUS expression severely impairs cellular proliferation. A quantitative proteomics analysis performed on cells undergoing various degrees of FUS knockdown revealed protein expression changes for known RNA targets of FUS, consistent with a loss of FUS function with respect to RNA processing. Proteins that changed in expression as a function of FUS knockdown were associated with multiple processes, some of which influence cell proliferation including cell-cycle regulation, cytoskeletal organization, oxidative stress and energy homeostasis. FUS knockdown also correlated with increased expression of the closely related protein EWS (Ewing's sarcoma). We demonstrate that the maladaptive phenotype resulting from FUS knockdown is reversible and can be rescued by re-expression of FUS or partially rescued by the small-molecule rolipram. These results provide insight into the pathways and
processes that are regulated by FUS as well as the cellular consequences for a loss of FUS function.

Introduction

Fused in sarcoma/translocated in liposarcoma, FUS/TLS (or FUS), is a member of the TET family of proteins that also includes Ewing’s sarcoma (EWS) and TATA-binding protein-associated factor 15 (TAF15). TET-proteins carry out RNA/DNA processing activities in the context of diverse cellular functions (Tan and Manley, 2009a). FUS is predominately expressed in the nucleus where it plays a role in transcription, splicing and DNA damage repair (Dormann and Haass, 2013) and also shuttles to the cytoplasm, where it has been found in translationally active RNA/protein foci (Yasuda et al., 2013) as well as stress granules formed in response to osmotic stress (Sama et al., 2013).

With such a broad host of cellular functions, it is not surprising that FUS is associated with several human diseases. For example, FUS is part of an onco-fusion protein that causes malignant myxoid liposarcoma. The N-terminal transcriptional activation domain of FUS is fused to the transcription factor CHOP (also known as DDIT3), forming FUS-CHOP (Crozat et al., 1993; Rabbitts et al., 1993) which accounts for more than 90% of myxoid liposarcoma cases (Antonescu et al., 2000). In fact, onco-fusion proteins containing TET-family proteins cause nearly half of all sarcomas (Riggi et al., 2007). FUS also has a strong presence in neurodegenerative disorders such as adult onset
(Kwiatkowski et al., 2009; Vance et al., 2009) and juvenile amyotrophic lateral sclerosis (ALS), (Baumer et al., 2010) different subtypes of frontotemporal lobar degeneration (FTLD) (Rademakers et al., 2012) including atypical FTLD-U, (Neumann et al., 2009b; Urwin et al., 2010) neuronal intermediate filament inclusion disease (Neumann et al., 2009a) and basophilic inclusion body disease (Munoz et al., 2009) (collectively referred to as FTLD-FUS (Mackenzie et al., 2010)), and polyglutamine diseases such as Huntington’s disease and spinocerebellar ataxia (Doi et al., 2009; Woulfe et al., 2009). The pathological role of FUS in these disorders has not been elucidated, although the observation that FUS is depleted from the nucleus and/or becomes sequestered into aggregates within neurons and glia during the course of neurodegeneration is consistent with a mechanism involving a loss of FUS function (Mackenzie et al., 2011; Rademakers et al., 2012; Dormann and Haass, 2013). FUS is also associated with essential tremor (ET), an adult-onset movement disorder (Merner et al., 2012; Rajput et al., 2013; Wu et al., 2013; Zheng et al., 2013). A loss of FUS function in the context of ET is proposed based on a non-sense mutation in FUS that causes the mRNA to become degraded through the non-sense mediated decay pathway (Merner et al., 2012).

To study the impact of FUS depletion on cell survival and homeostasis, we developed cellular models of FUS knockdown and discovered FUS to be critical for cellular homeostasis. Knockdown of FUS in both HEK-293T and neuronal NSC-34 cells caused a significant defect in cellular proliferation with moderate
signs of cell death. Importantly, the cell proliferation defect induced by FUS depletion is reversible, as both re-expression of FUS and treatment with rolipram, a phosphodiesterase-4 inhibitor that suppresses oxidative stress, ameliorated this phenotype. A quantitative proteomics analysis revealed 61 proteins that changed as a function of FUS knockdown. Interestingly, several of these proteins correspond to known RNA binding targets of FUS. The proteins and pathways uncovered through this analysis not only define the consequences of FUS depletion from the cell, but also serve as potential therapeutic targets for ameliorating adverse phenotypes arising from a loss of FUS function.

Results

Cell number and viability directly correlate with FUS protein expression. To investigate the cellular consequences of a loss of FUS function, FUS expression was knocked down in both NSC-34 (neuroblastoma x spinal cord) (Cashman et al., 1992) and HEK-293T cells. NSC-34 cell lines stably expressed tetracycline inducible shRNA specific for exon 5 of FUS (shFUS1 and shFUS2; Figure III-1A) or a scrambled shRNA control (shSC) (Sama et al., 2013). After shFUS induction for four days, FUS expression was knocked down ~95% (Figure III-1B). In addition, we designed siRNA to target the 3’UTR of either human or mouse FUS (Figure III-1A) as well as a scrambled siRNA control. Transient transfection of 3’UTR siRNA (si3’UTR) for four days resulted in ~85% knockdown of FUS in HEK-293T cells (Figure III-1B). Cell viability as determined by the
MTT assay was reduced 40-50% in NSC-34 cells stably expressing shFUS and HEK-293T cells expressing si3'UTR relative to control cells expressing scrambled RNA sequences (Figure III-1C). Transient transfection of siRNA was less efficient in NSC-34 cells (Figure III-1D), resulting in only ~55% FUS knockdown (Figure III-1B) and a modest 15% decrease in cell viability compared to scrambled control siRNA (Figure III-1C). A reduction in viability (~20%) was also observed upon expression of scrambled control sequences, likely reflecting the toxicity associated with transient transfection, continuous shRNA production and/or doxycycline exposure (Ahler et al., 2013). Nonetheless, these data demonstrate a reduction in cell viability as a consequence of FUS knockdown, achieved by targeting several unique sequences within FUS in two different cell lines.
Figure III-1. FUS knockdown causes a reduction in cell viability. (A) FUS was targeted for knockdown by doxycycline induction of stably expressed shRNA directed at non-overlapping regions in exon 5 (shFUS1, shFUS2) or by transient transfection of siRNA targeting the 3‘UTR of either the human or mouse FUS sequence. (B) Western blot analyses of the indicated cell lysate derived from FUS knockdown experiments. After four days of shFUS induction in NSC-34 cells (top) or transient transfection of 3’UTR FUS siRNA in HEK-293T cells (bottom left), FUS expression was reduced by ~95% and ~85%, respectively, compared to controls. A less efficient FUS knockdown of ~55% was observed for NSC-34 cells (bottom right) transiently transfected with 3’UTR FUS siRNA. Numbers below the blots refer to densitometry measurements of the experimental condition (doxycycline-induced or transfected) relative to the untreated control condition for the respective cell line. SC refers to a scrambled (RNA) control sequence. Tubulin serves as a loading control. (C) MTT analyses revealed a decrease in cell viability upon FUS knockdown after four days compared to SC expressing cells (left, shRNA in NSC-34 cells; middle, 3’UTR FUS siRNA in HEK-293T cells; right, 3’UTR FUS siRNA in NSC-34 cells). All conditions are reported as percent viability relative to untreated cells. Data shown are the average of 3 independent experiments ± standard error. Statistical significance was determined by a student’s t-test (**P <0.01). (D) Representative immunofluorescence images demonstrating the degree of endogenous FUS (green) knockdown in NSC-34 cells induced to express shFUS1 versus transiently transfected with 3’UTR FUS siRNA for four days. Nuclei are stained with DAPI (blue). Arrow = detectable FUS knockdown, arrowhead = no detectable knockdown. Scale bar = 10 μm.
To further investigate the relationship between FUS expression and cellular homeostasis, we quantified cell number and cellular viability as a function of FUS depletion over time using the inducible shFUS1 NSC-34 cell line (unless otherwise noted, this line was used for all subsequent experiments). With continuous induction of shFUS with tetracycline in NSC-34 cells, FUS protein levels gradually decreased over time relative to uninduced cells and remained low for 10 days (Figure III-2A). Uninduced cells exhibited an exponential growth rate with a 3.5-4-fold increase in cell number every two days, whereas this growth rate decreased to 2-fold in cells subjected to continuous FUS knockdown (Figure III-2B). Plotting cellular viability by the MTT assay as a function of FUS expression across multiple experiments further demonstrates the direct correlation between FUS expression and cellular homeostasis (Figure III-2C). Tetracycline was removed from shFUS expressing cells after 24h in a 'wash-out' experiment, wherein FUS levels returned to baseline within six days (Figure III-2A). It is noted that FUS expression was not restored when cells were induced with doxycycline due to the longer half-life of doxycycline relative to tetracycline. Interestingly, re-expression of FUS rescued the defect in cellular proliferation; the rate of cell growth was the same in shFUS cells under the wash-out condition as uninduced cells between days 8 and 10 (Figure III-2B). Therefore, the adverse effects of FUS knockdown are reversible.
Figure III-2. Decreased cell viability correlates with the degree of FUS knockdown. (A) NSC-34 cells expressing shFUS1 were uninduced, induced with tetracycline for 24h after which tetracycline was removed (induction + wash-out) or subjected to continuous induction and FUS knockdown. Western blot analyses of the indicated FUS knockdown experiment reveal FUS expression is restored in the wash-out condition by day six. Numbers below the blots refer to densitometry measurements that were normalized to ‘day zero’, which represents the starting-point of the experiment. Tubulin serves as a loading control. (B) Quantification of cell number as a function of time for the indicated conditions. Cells with continuous FUS knockdown exhibited the slowest growth rate between days 2 and 4 (inset) and throughout the 10-day experiment. Upon re-expression of FUS, the growth rate for cells in the wash-out condition was accelerated and became similar to that of the uninduced condition. Data shown are the average of 3 independent experiments ± standard error. Statistical significance was determined by a student’s t-test (*$P<0.05$; **$P<0.01$; ***$P<0.001$; day 6 significance is for the continuous induction condition). (C) Cell viability, as determined by the MTT assay, correlates with the level of FUS protein expression, as determined by western/densitometry analyses. Data are compiled from three independent FUS knockdown experiments, where shSC or shFUS1 was induced in NSC-34 cells for 1-5 days. An exponential fit of this data was created with GraphPad prism.
Apoptosis is not activated during the cellular response to FUS knockdown. Several factors influence the rate of cellular proliferation: the rate of cell division, the percentage of cells undergoing cell division, and cell death (Andreeff M GD, 2000). Overt cell death (i.e., a large percentage of cells detaching from the culture dish) was never observed during FUS knockdown experiments. Western blot analyses confirmed that levels of the apoptosis markers cleaved-PARP1 and cleaved-caspase 3 remained unchanged throughout a 96h FUS knockdown time-course and were markedly lower than cells treated with staurosporinone, an initiator of apoptosis (Figure III-3A). To rule-out apoptosis occurring through a caspase-independent pathway, we probed for nuclear translocation of apoptosis inducing factor (AIF) (Joza et al., 2001) at 24h intervals of FUS knockdown. Cells treated with ethacrynic acid (EA) as a positive control exhibited a robust nuclear translocation of AIF, whereas AIF nuclear translocation was not detected at any time point for FUS knockdown cells (shown for FUS knockdown cells after 96h, Figure III-3B).

Time-lapse video microscopy was employed next to track the fate of a single population of cells during FUS knockdown. Imaging was initiated 24h after shRNA induction and continued for the duration of a 4 day induction. A normal frequency of cell division was observed in shSC cells, with cells nearing confluency by the end of the experiment (Figure III-3C). A lack of cell division events was observed in cells expressing shFUS. Quantification of cell number in still frame images revealed a consistent ~1.7-fold increase in cell number every
24h for control cells, whereas the relative change in cell number decreased over time for shFUS cells (Figure III-3D), consistent with a reduction in cell proliferation (Figure III-2). Live-cell imaging also allowed us to address the occurrence of cell death, which was detected when cells lifted from the coverslip. The total number of cells decreased for the shFUS line between days 3 (195 cells) and 4 (165 cells), providing evidence of cell death during FUS depletion. These data demonstrate that a modest level of cell death occurred as a function of FUS knock down, possibly through a necrosis pathway as there was no evidence of apoptosis (Figure III-3A and III-3B). Rather than cell death, our data point to a decrease in the frequency of cell division as the main factor that leads to reduced cell number and viability upon FUS knockdown.
Figure III-3. Apoptosis is not activated during the cellular response to FUS knockdown. (A) Levels for apoptosis markers, cleaved-PARP1 and cleaved-caspase-3, do not change with FUS knockdown as determined by western blot analyses of cell lysates derived from the indicated time points. As a positive control for apoptosis, NSC-34 cells were treated with 1μM staurosporine (ST) for 2 hours. Tubulin serves as a loading control (B). Representative immunofluorescence images demonstrating localization of apoptosis inducing factor (AIF; green) in NSC-34 cells. AIF translocates to the nucleus in cells treated with 100μM ethacrinic acid (EA) for 8h but not upon shFUS1 induction for 96h. Images are representative of 2 independent experiments. Nuclei are stained with DAPI (blue). Scale bar = 10μm. (C) Still frame images from time-lapse video microscopy obtained every 24h. One day after the induction of shSC (top) or shFUS1 (bottom), cells were filmed using time-lapse microscopy for the duration of a 4d knockdown. The average number of cells from three independent counts of each image is indicated at the bottom right. Scale bar = 100μm. (D) The change in cell number at 24h time points relative to the previous time point, where ratios >1.0 are indicative of cell growth and ratios <1.0 of cell death. Data shown are the average of three independent counts of the still frame images ± standard deviation. Statistical significance was determined by a student’s t-test (**P <0.01; ****P <0.0001).
A phosphodiesterase-4 inhibitor, rolipram, partially rescues the cell proliferation defect induced by FUS knockdown. In addition to rescuing the proliferation defect by re-expressing FUS (Figure III-2), we sought to determine whether small molecules could exert a similar protective effect. To test this possibility, a small-molecule screen was performed to identify compounds that prevented the FUS knockdown phenotype. The assay was first converted from a 24-well to a 384-well format and high-content imaging of Hoechst stained nuclei was used to count viable cells (see Methods). Using this platform, the effect of FUS knockdown on cell viability was reduced from ~40% (Figure III-1C) to ~25% (Figure III-4), perhaps due to the reduced plate format and cell plating. This small signal window was a challenge for high throughput screening and therefore compounds were screened in triplicate. Nonetheless, we were able to screen a chemical library consisting of 1086 small molecules, 606 of which were drugs approved by the Food and Drug Administration (FDA) and 480 of which were purified natural products. Eight compounds were initially identified (0.74% hit rate) that reversed the FUS knockdown phenotype, and five-point dose-response curves in the range of 0.1 to 30 μM were generated for each. Although seven compounds were not confirmed after retesting by this analysis (data not shown), one compound, rolipram (Figure III-4A), was found to partially restore the 25% decrease in cell number induced by FUS knockdown; rather than a 25% decrease in cell number upon FUS knockdown there was only ~10% decrease with rolipram doses between 0.1 and 10 μM. Therefore, rolipram conferred a
protective effect (Figure III-4B). Rolipram is an inhibitor of cAMP specific phosphodiesterase-4 with antidepressant and anti-inflammatory functions, (Zhu et al., 2001) including suppression of nitric oxide production (Beshay et al., 2001). The protective effect was less pronounced at 30 μM, suggesting rolipram might exert toxicity at higher doses. Rolipram also recovered the slight cell number deficit caused by shSC expression, indicating rolipram may exert a general effect on cell proliferation. However, this effect was modest relative to shFUS1 cells and was not statistically significant (Figure III-4B). A western blot analysis demonstrated that the protective effect of rolipram was not due to re-expression of FUS (Figure III-4C). These data suggest that rolipram or related compounds could be further explored in the context of therapeutics for disorders arising from a loss of FUS function.
Figure III-4. Rolipram partially rescues the cell proliferation defect induced by FUS knockdown. (A) Molecular structure of rolipram. (B) NSC-34 cells were induced to express shSC or shFUS1 followed by the addition of rolipram at various concentrations (0 - 30μM). After four days, cell number was quantified relative to uninduced controls by Hoechst staining. In the absence of rolipram, cell number was reduced 25% by shFUS1 induction and 8% by shSC (n = 28 replicate wells from two independent experiments). This defect was significantly reversed at all rolipram concentrations in shFUS1 cells (n = 20 replicate wells from two independent experiments; **P <0.01, ***P <0.001). To a lesser extent, rolipram also recovered the deficit in shSC cells (n = 20 replicate wells from two independent experiments). Error bars represent ± standard error. Statistical significance was determined by comparing cells (shSC or shFUS1) treated with rolipram to the untreated (0 μM rolipram) condition using the Student’s t-test. (C) Western blot analysis of cell lysates corresponding to the indicated conditions. FUS was knocked down only in cells induced with doxycycline to express shFUS1 and remained knocked down in the presence of 1μM rolipram. Tubulin serves as a loading control.
Proteomic changes resulting from FUS knockdown. Next we sought to better understand the pathways involved in the reduced cellular proliferation phenotype observed upon FUS depletion. To this end, we performed quantitative proteomics using tandem mass tags (TMT) and mass spectrometry to assess changes in the proteome at both an early (24h) and late stage (96h) of FUS knockdown (Thompson et al., 2003; Dayon et al., 2008). This approach labels peptides from each cell lysate condition with unique isobaric tags. The samples are then combined and processed simultaneously allowing for an accurate comparison of protein levels between conditions (Figure III-5A). The 24h time point is expected to reveal initial cellular changes occurring relatively early in response to FUS knockdown, when FUS protein expression was reduced by only ~55% (Figure III-5B) and cell viability by only ~25% (Figure III-2C). The 96h time point was expected to reveal more robust changes, in part because the FUS knockdown phenotype is more severe (Figure III-5B and Figure III-1C) and also because this later time point allows for an accumulation of protein expression changes, which depend on the timescale of both protein translation and turnover. Although it is standard to only compare cells with a specific gene knocked down to cells expressing a scrambled RNA sequence, we also included the uninduced condition in the quantitative proteomics pipeline (Figure III-5A) to ascertain whether a particular protein changed in expression solely as a consequence of FUS knockdown, or whether the process of shRNA induction also influenced the expression of that protein.
Figure III-5. Quantification of the cellular proteome after FUS depletion.

(A) Schematic of mass spectrometry pipeline. Briefly, NSC-34 cells were induced with doxycycline for 24 or 96h to express either scrambled control shRNA (shSC) or shRNA targeting FUS (shFUS1). Uninduced cells were included as an additional control. Denatured lysates were digested and the resulting peptides were labeled with unique isobaric mass tags (tandem mass tags: TMTs 126-131) and combined for mass spectrometry (MS) analysis. (B) Western blot analysis confirmed FUS knockdown in lysates used for proteomics. Three biological replicates (BR 1, green; BR 2, blue; BR 3, red) were included. Tubulin serves as a loading control. (C) A total of 2,355 proteins were quantified by mass spectrometry over three biological replicates (BR 1-3). (D) Proteins differentially expressed between the shSC and shFUS1 samples by a fold change of at least ±0.25 in two of three replicates were grouped into functional categories based on the literature (Table 1).
First, changes in the proteome arising from a loss of FUS were assessed by comparing shFUS and shSC samples, as shSC cells control for expression changes resulting from shRNA expression and doxycycline exposure. A total of 2,355 proteins were quantified, with ~60% (1,370 proteins) overlap between the three biological replicates (Figure III-5C). Only those proteins differentially expressed between the shFUS and shSC samples by a fold change of at least 0.25 in two of three replicates with a p-value < 0.05 were included in our final analysis. Sixty-one proteins, in addition to FUS, met this criterion at either 24 or 96h (Table III-1). Interestingly, 16 of these hits were previously identified as RNA binding targets of FUS, raising the possibility that these expression changes stem from a loss of FUS function and/or interaction with the corresponding transcripts (Table III-1, asterisks).(Hoell et al., 2011; Colombrita et al., 2012; Nakaya et al., 2013) Of the 61 hits, 31 were various histone variants which we grouped into five main histone clusters (H1, H2A, H2B, H3 and H4) due to the redundancy of the peptides used to identify each protein. Similarly, KAP0 and KAP1, the regulatory subunits of protein kinase A, were counted as a single hit due to a lack of unique peptides identified for each protein. With this condensed list of only 34 proteins, DAVID analysis (Database for Annotation, Visualization, and Integrated Discovery) could not identify significant enrichment of GO terms or functional categories. Thus, hits were assigned categories manually based on information provided by UniProtKB, the National Center for Biotechnology Information (NCBI) and GeneCards (Figure III-5D and Table III-1). Chromatin
organization represented the most common category for proteins differentially expressed between shFUS and shSC cells at 24h. Categories for which there were at least four differentially expressed proteins at either 24 or 96h included cellular proliferation, kinases/phosphatases, cytoskeletal organization, energy homeostasis, calcium-related and metal ion binding. Of these, energy homeostasis, calcium-related and metal ion binding were more prominent at 96 than 24h, suggesting changes in these proteins and/or pathways are triggered by FUS knockdown and become more pronounced during the cellular response to FUS depletion.
<table>
<thead>
<tr>
<th>ID</th>
<th>Protein Name</th>
<th>24h Fold-change</th>
<th>96h Fold-change</th>
<th>Calcium-associated</th>
<th>Cell proliferation</th>
<th>Glycolysis</th>
<th>Energy Homoeostasis</th>
<th>Chromatin organization</th>
<th>Lipid metabolism</th>
<th>Ras-GTP binding</th>
<th>Protein folding</th>
<th>RNA processing</th>
<th>Translation</th>
<th>Telomere-related</th>
<th>Vira-associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT2</td>
<td>Metallothionein-2</td>
<td>++ ++ ++</td>
<td>++ ++ ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MARCS</td>
<td>Myristoylated alanine-rich C-kinase substrate</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>REEP2</td>
<td>Receptor expression-enhancing protein 2</td>
<td>++ ++</td>
<td>++ ++</td>
<td></td>
</tr>
<tr>
<td>AXL</td>
<td>ADAM17 translocase 4</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EWS</td>
<td>RNA-binding protein EWS</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>USP1</td>
<td>16 kDa US small nuclear ribonucleoprotein component</td>
<td>++ ++</td>
<td>++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T المل 3</td>
<td>Telokin alpha chain-like 3</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TOPK</td>
<td>Lymphokine-activated kinase T-cell-originated protein kinase</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FPR8</td>
<td>Farnesyl pyrophosphate synthase</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CHSP</td>
<td>Calcium-regulated heat stable protein 1</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>KX2</td>
<td>Adenylate kinase isoenzyme 1</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SYXIC</td>
<td>Alkaline-RNA ligase, cytoplasmic</td>
<td>++ ++</td>
<td>++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>IDHC</td>
<td>Isocitrate dehydrogenase (NADP) cytoplasmic</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PKB10</td>
<td>Peptidyl-prolyl cis-trans isomerase PKB10</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ENV2</td>
<td>Retinoic-related Env polypeptide from Fv-4 locus</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OSBP1</td>
<td>Cholesterol-binding protein 1</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ENV1</td>
<td>MVL-related proline Env polypeptide</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COX3A</td>
<td>Cyclooxygenase c oxidase subunit 5A, mitochondrial</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TYB10</td>
<td>Thymosin beta-10</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RAP1</td>
<td>Ras-related protein Rap-1A</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RL29</td>
<td>60S ribosomal protein L29</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TEBr</td>
<td>Prostaglandin E synthase 3</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RBBP7</td>
<td>Histone-binding protein RBBP7</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ROA3</td>
<td>Heterogeneous nuclear ribonucleoprotein A3</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>KAP0</td>
<td>KAP1</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PPB1</td>
<td>Alkaline phosphatase, tissue-specific enzyme</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NPM</td>
<td>Nucleophosmin</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ST100A6</td>
<td>Protein ST100-A6</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RBBP1</td>
<td>Histone-binding protein RBBP1</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>H2A2</td>
<td>Histone H2A (H2A,2,1,2-A,G, 3)</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>H14</td>
<td>Histone H1 (1,1,1,5, 10)</td>
<td>++ ++</td>
<td>++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>H2B1B</td>
<td>Histone H2B (type A,B,C,EG, FUL,1,KMP, 2,B,E, 3-A,B)</td>
<td>++ + + +</td>
<td>++ ++ ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>H3C</td>
<td>Histone H3 (3.1,3,3,3G)</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>Histone H4</td>
<td>+ + + ++</td>
<td>+ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FUS</td>
<td>RNA-binding protein FUS</td>
<td>++ + + ++</td>
<td>++ + + ++ ++</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Fold-change: -1.50 -1.25 -1.0 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.0 1.25 1.50
Table III-1. Fold change and functional categories of proteins differentially expressed after 24 or 96 hours of FUS knockdown in at least 2 of 3 biological replicates. Due to a lack of unique peptides identified between histone variants, these hits were combined into the five major histone families (H1, H2A, H2B, H3, and H4). Similarly, KAP0 and KAP1 were grouped due to a lack of unique peptides identified for each protein. Asterisks denote transcripts previously determined to be bound by FUS; FC = fold change
+ denotes FC between 0.25 and 0.50
++ denotes FC between 0.50 and 1.0
+++ denotes FC between >1.0
Next we sought to validate protein-hits that exhibited the largest changes in expression upon FUS knockdown. The 96h time point revealed the most robust expression changes, and therefore we focused first on proteins with the largest expression changes at 96h. S100A6, also known as calcyclin due to roles in both calcium binding and the cell cycle,(Lesniak et al., 2009) exhibited a relatively large decrease in expression in shFUS cells compared to shSC cells at 96h (Table III-1). By comparing both lines to the uninduced condition, it became apparent that this difference is due in part to an increase in expression of S100A6 in shSC cells (Table III-2). Differential expression of S100A6 was validated by both western blot (Figure III-6A) and qPCR analyses at 96h (Figure III-6B) and qPCR at 24h (Figure III-6C). Metallothionein-2 (MT2), a multifunctional protein involved in zinc homeostasis and antioxidation,(Vasak and Meloni, 2011) exhibited a large increase in expression in shFUS cells relative to shSC cells at 96h (Table III-1). The differential expression of MT2 in shFUS and shSC cells was validated by qPCR at 96h (Figure III-6B) and 24h (Figure III-6C), however we were unable to quantify the expression of this protein by western blot analysis, presumably due to the relatively small size of this protein (6kDa). The RNA-binding protein EWS, which like FUS is a member of the TET-family of proteins, also increased in expression in shFUS cells (Table III-1, Figure III-6B and Figure III-6D) as well as in HEK-293T cells transiently transfected with si3’UTR for FUS knockdown (Figure III-6D). This appears to be a specific relationship between FUS and EWS expression as FUS knockdown
did not influence the expression of other related RNA binding proteins such as TDP43 and hnRNPA1, or the other TET-family member TAF15 (data not shown). Similar to EWS, thymosin beta-10 (TYB10), a monomeric-actin binding protein that inhibits actin polymerization, (Sribenja et al., 2009) also increased in expression upon FUS knockdown (Table III-1 and Figure III-6B), but could not be validated by western blot presumably due to the small size of the protein (5kDa).

Lastly we validated the differential expression of histones, which decreased in expression by 20-65% after 24h of FUS but appeared to recover by 96h. This difference arises from an increase in expression of histones in shSC cells relative to both shFUS and uninduced cells (Table III-2), which was validated by western blot analysis for histones H2B and H3 (Figure III-6E). Histones H2A and H4, which were investigated based on availability of PCR primers, were not significantly different between lines by qPCR analysis (Figure III-6C) suggesting that the change in histone expression may predominately occur at the protein rather than mRNA level.
<table>
<thead>
<tr>
<th>4th</th>
<th>Protein Name</th>
<th>shFUS/shSC</th>
<th>shSC/uninduced</th>
<th>shFUS/uninduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARCS</td>
<td>Myristoylated alanine-rich C-kinase substrate</td>
<td>0.32</td>
<td>-0.07</td>
<td>0.25</td>
</tr>
<tr>
<td>REEP2</td>
<td>Receptor expression-enhancing protein 2</td>
<td>0.34</td>
<td>-0.14</td>
<td>0.19</td>
</tr>
<tr>
<td>ADT4</td>
<td>ADP/ATP translocase 4</td>
<td>0.36</td>
<td>-0.24</td>
<td>0.13</td>
</tr>
<tr>
<td>USP5</td>
<td>H6 kDa USP small nuclear ribonucleoprotein component</td>
<td>0.33</td>
<td>-0.12</td>
<td>0.21</td>
</tr>
<tr>
<td>TUBG1</td>
<td>Tubulin alpha chain-like 3</td>
<td>0.31</td>
<td>-0.19</td>
<td>0.12</td>
</tr>
<tr>
<td>TPK</td>
<td>Lymphokine-activated killer T-cell-derived protein kinase</td>
<td>0.29</td>
<td>-0.11</td>
<td>0.18</td>
</tr>
<tr>
<td>RL29</td>
<td>60S ribosomal protein L29</td>
<td>-0.25</td>
<td>-0.04</td>
<td>-0.30</td>
</tr>
<tr>
<td>RBBP7</td>
<td>Histone-binding protein RBBP7</td>
<td>-0.31</td>
<td>0.10</td>
<td>-0.21</td>
</tr>
<tr>
<td>ROA3</td>
<td>Heterogeneous nuclear ribonucleoprotein A3</td>
<td>-0.32</td>
<td>0.07</td>
<td>-0.25</td>
</tr>
<tr>
<td>KAP1</td>
<td>cAMP-dependent protein kinase type I regulatory subunits</td>
<td>-0.26</td>
<td>0.12</td>
<td>-0.15</td>
</tr>
<tr>
<td>PPP1</td>
<td>Alkaline phosphatase, tissue nonspecific isozyme</td>
<td>-0.32</td>
<td>-0.01</td>
<td>-0.33</td>
</tr>
<tr>
<td>NPM</td>
<td>Nucleophosmin</td>
<td>-0.25</td>
<td>0.17</td>
<td>-0.08</td>
</tr>
<tr>
<td>RBBP1</td>
<td>Ribosome-binding protein 1</td>
<td>-0.42</td>
<td>0.04</td>
<td>-0.38</td>
</tr>
<tr>
<td>FUS</td>
<td>RNA-binding protein FUS</td>
<td>-0.61</td>
<td>0.04</td>
<td>-0.57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9th</th>
<th>Protein Name</th>
<th>shFUS/shSC</th>
<th>shSC/uninduced</th>
<th>shFUS/uninduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT2</td>
<td>Metallothionein-2</td>
<td>0.55</td>
<td>-0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>S100A6</td>
<td>Protein S100-A6</td>
<td>-0.47</td>
<td>0.42</td>
<td>-0.05</td>
</tr>
<tr>
<td>H1</td>
<td>Histone H1 (nucleosome core)</td>
<td>-0.59</td>
<td>0.50</td>
<td>-0.09</td>
</tr>
<tr>
<td>H2A</td>
<td>Histone H2A (type 1, 1-F,H,K,2-A,C,3-J)</td>
<td>-0.29</td>
<td>0.56</td>
<td>0.27</td>
</tr>
<tr>
<td>H2B</td>
<td>Histone H2B (type 1-A,B,C,D,E,F,H,J,K,M,P,R,S,T)</td>
<td>-0.47</td>
<td>0.45</td>
<td>-0.02</td>
</tr>
<tr>
<td>H3</td>
<td>Histone H3 (nucleosome core)</td>
<td>-0.26</td>
<td>0.33</td>
<td>-0.16</td>
</tr>
<tr>
<td>H4</td>
<td>Histone H4</td>
<td>-0.34</td>
<td>0.30</td>
<td>-0.22</td>
</tr>
<tr>
<td>EN5</td>
<td>RNA-binding protein EN5</td>
<td>0.52</td>
<td>-0.33</td>
<td>0.19</td>
</tr>
<tr>
<td>CHS8</td>
<td>Calcium-regulated heat stable protein 1</td>
<td>0.32</td>
<td>-0.14</td>
<td>0.17</td>
</tr>
<tr>
<td>TYB10</td>
<td>Thymosin beta-10</td>
<td>0.27</td>
<td>0.19</td>
<td>0.46</td>
</tr>
<tr>
<td>SYAC</td>
<td>Alanine-RNA ligase, cytoplasmic</td>
<td>0.26</td>
<td>-0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>OSP1</td>
<td>Oxytocin-binding protein 1</td>
<td>0.30</td>
<td>-0.68</td>
<td>-0.26</td>
</tr>
<tr>
<td>RAP1</td>
<td>Ras-related protein Rap-1A</td>
<td>-0.27</td>
<td>0.26</td>
<td>-0.01</td>
</tr>
<tr>
<td>ENV2</td>
<td>Retrovirus-related Env polyprotein from Fv-4 locus</td>
<td>-0.25</td>
<td>0.07</td>
<td>-0.23</td>
</tr>
<tr>
<td>H281A</td>
<td>Histone H2A type 1-A</td>
<td>-0.25</td>
<td>0.34</td>
<td>-0.09</td>
</tr>
<tr>
<td>ENV1</td>
<td>Mv-LV-related proviral Env polyprotein</td>
<td>-0.27</td>
<td>0.04</td>
<td>-0.23</td>
</tr>
<tr>
<td>RBBP7</td>
<td>Histone-binding protein RBBP7</td>
<td>-0.28</td>
<td>0.15</td>
<td>-0.13</td>
</tr>
<tr>
<td>TEBP</td>
<td>Prostaglandin E synthase</td>
<td>-0.31</td>
<td>0.21</td>
<td>-0.10</td>
</tr>
<tr>
<td>COX5A</td>
<td>Cytochrome c oxidase subunit 5A, mitochondrial</td>
<td>-0.27</td>
<td>0.34</td>
<td>-0.07</td>
</tr>
<tr>
<td>PFP1</td>
<td>Alkaline phosphatase, tissue nonspecific isozyme</td>
<td>-0.81</td>
<td>0.09</td>
<td>-0.52</td>
</tr>
<tr>
<td>KAP1</td>
<td>cAMP-dependent protein kinase type I regulatory subunits</td>
<td>-0.53</td>
<td>0.31</td>
<td>-0.22</td>
</tr>
<tr>
<td>S100A6</td>
<td>Protein S100-A6</td>
<td>-0.83</td>
<td>0.05</td>
<td>-0.18</td>
</tr>
<tr>
<td>FUS</td>
<td>RNA-binding protein FUS</td>
<td>1.39</td>
<td>0.53</td>
<td>-0.65</td>
</tr>
<tr>
<td>FPPS</td>
<td>Farnesyl pyrophosphate synthase</td>
<td>0.42</td>
<td>-0.74</td>
<td>-0.32</td>
</tr>
<tr>
<td>IDHC</td>
<td>Isochore dehydrogenase [NADP] cytoplasmic</td>
<td>0.28</td>
<td>-0.48</td>
<td>-0.19</td>
</tr>
<tr>
<td>FKB10</td>
<td>Peptidyl-prolyl cis-trans isomerase FKB10</td>
<td>0.26</td>
<td>-0.26</td>
<td>-0.01</td>
</tr>
<tr>
<td>KAD1</td>
<td>Adenylosuccinate kinase isoenzyme 1</td>
<td>0.33</td>
<td>-0.48</td>
<td>-0.13</td>
</tr>
</tbody>
</table>
Table III-2. Relative protein fold-changes. Three comparisons were made: cells expressing shFUS1 compared to cells expressing shSC, cells expressing shSC to uninduced cells, and cells expressing shFUS1 to uninduced cells. Values highlighted in red and green show a positive or negative fold change of at least 0.25, respectively, between shFUS1 and shSC cells. Proteomic analysis was performed on three biological replicates however, only those replicates having a significant expression change between shFUS and shSC are shown for clarification (for full heatmap see Table III-1). Differential expression for those proteins below the double line at 24h and 96h is due to a change in the shSC cells that is lacking in shFUS1 cells. Transcripts bound by FUS are denoted by an asterisk. Due to a lack of unique peptides identified between histone variants, these hits were combined into the five major histone families (H1, H2A, H2B, H3, and H4). Similarly, KAP0 and KAP1 were grouped due to a lack of unique peptides identified for each protein.
Figure III-6. Western and qRT-PCR validation of proteins differentially expressed upon FUS depletion. (A) Western blot analysis of lysates from uninduced NSC-34 cells (-) and cells induced to express scrambled control shRNA (S) or shRNA targeting FUS (F) for 96h. Numbers below the blots refer to densitometry measurements relative to uninduced cells and demonstrate increased expression of S100A6 in shSC cells with a concomitant decrease in shFUS1 cells. Tubulin serves as a loading control. (B-C) Quantitative RT-PCR analysis after 96h (B) or 24h (C) of shRNA induction. mRNA expression relative to uninduced cells was determined for the indicated genes after shSC or shFUS1 induction in NSC-34 cells. Data shown are the average of 3 independent experiments ± standard error. Statistical significance was determined by a Student’s t-test (*P <0.05; **P <0.01; ***P <0.001). (D) Representative western blot analysis of lysates from NSC-34 cells or HEK-293T cells after 96h demonstrating increased expression of EWS with FUS knockdown relative to controls. (E) Representative western blot analysis of lysates from NSC-34 cells induced to express shRNA for 24h demonstrating increased histone expression in shSC cells with a concomitant decrease in shFUS1 cells.
Discussion

Elucidating the vital functions of FUS is a complex but important objective. Genetic alterations in FUS cause human diseases such as cancer and neurodegeneration. A loss of FUS function has been suggested to cause the neurodegenerative diseases ALS, FTLD and ET, however the multifunctional nature of FUS has made it difficult to discern which functions of FUS are relevant to these disorders (Dormann and Haass, 2013). The effect of FUS knockdown or knockout in vivo has produced conflicting results, as some reports describe animal lethality (Hicks et al., 2000; Huang et al., 2011; Sasayama et al., 2012; Xia et al., 2012) whereas others report no effect of FUS knockdown on survival.(Kuroda et al., 2000; Kabashi et al., 2011; Lagier-Tourenne et al., 2012) Consistent with the latter, signs of apoptosis or gross cellular death were not observed here upon knockdown of FUS in cultured mammalian cells (Figure III-3). Rather, we demonstrate for the first time that a reduction in FUS expression impairs cell proliferation (Figure III-1,2,3). To gain insight into the mechanism for FUS-mediated inhibition of cell proliferation, quantitative proteomics was performed on cells undergoing various degrees of FUS knockdown, as no other study to date has performed a comprehensive analysis of protein expression changes as a function of FUS knockdown or knockout.

As one might expect, proteins associated with cell proliferation changed in expression upon FUS knockdown at 24 and 96h (Figure III-5D, Table III-1). One of these proteins, S100A6, exhibited reduced expression in shFUS lines after
96h (Table III-1, Figure III-6). This finding is consistent with previous observations of S100A6 knockdown correlating with reduced cell-proliferation in other cell types. (Ohuchida et al., 2005; Lesniak et al., 2009) Moreover, FUS binds the promoter of S100B, (Tan et al., 2012) a family member of S100A6, raising the possibility that S100A6 expression is directly modulated by FUS. FUS also binds the CCND1 promoter and inhibits expression of the cell-cycle protein cyclin D1 in response to DNA damage signals (Wang et al., 2008). A general role for FUS in cell-cycle regulation is also suggested by RNA binding targets of FUS identified through RIP/CHIP experiments (Colombrita et al., 2012). However, we did not detect expression changes for these targets or any other classical cell-cycle related proteins through our proteomics analysis, suggesting that additional factors contribute to the observed cell proliferation defect.

Cytoskeletal dynamics is another factor that is fundamentally important for cell proliferation (Provenzano and Keely, 2011). Proteins belonging to the cytoskeletal organization category changed in expression upon FUS knockdown at 24 and 96h (Figure III-5D), including RAP1A and the actin binding proteins MARCS and TYB10 (Table III-1). TYB10 binds and sequesters actin monomers thereby inhibiting actin polymerization and has been implicated in neurite formation (Sribenja et al., 2009). Altered expression of these cytoskeletal proteins upon FUS knockdown could therefore contribute to the cell proliferation defect observed here, and is also consistent with impaired neurite outgrowth...
upon FUS depletion reported by others (Kabashi et al., 2011; Orozco et al., 2012).

MT2 exhibited one of the largest changes in expression between shFUS and shSC cells (Table III-1). MT2 plays a protective role against metal toxicity, oxidative stress and ionizing radiation. Accordingly, levels of this protein were shown to increase in response to these stressors (Aschner et al., 2006; Vasak and Meloni, 2011). That expression of MT2 was higher in shFUS cells relative to shSC cells at 24h, a difference that became more pronounced at 96h (Figure III-6, Table III-1), implicates a role for one of the aforementioned stressors in the FUS knockdown-induced proliferation defect. We speculate that oxidative stress may be the relevant stressor, as FUS regulates the transcription of oxidative-stress protection genes and a loss of this function leads to elevated ROS (Sanchez-Ramos et al., 2011). In support of this notion, rolipram partially rescued the proliferation defect upon FUS knockdown through a mechanism that did not involve increased expression of FUS (Figure III-4). Rolipram has been shown to boost expression of antioxidizing enzymes, (Gorur et al., 2008) suppress nitric oxide levels (Beshay et al., 2001; Gorur et al., 2008) and exert a protective effect in animal models of spinal cord injury (Nikulina et al., 2004) and neurodegeneration (Gong et al., 2004; Yang et al., 2008; Smith et al., 2009). While the impact of rolipram on cellular proliferation was strongest for shFUS cells, we note an increase in cell number for the control line in response to certain doses of rolipram that may signify a general effect of rolipram on cell
proliferation. (Nakagawa et al., 2002; Xiao et al., 2011) Therefore, rolipram would need to be further assessed in additional in vitro and appropriate in vivo models of loss of FUS function.

We also detected an increase in EWS expression upon FUS knockdown (Table III-1, Figure III-6). EWS and FUS are both members of the TET family of proteins and exhibit overlapping functions (Tan and Manley, 2009a), raising the intriguing possibility that increased EWS expression serves as a compensatory mechanism for the loss of FUS function in cells. It follows that exogenous expression of this protein could ameliorate the proliferation defect observed upon FUS knockdown, analogous to the re-expression of FUS (Figure III-2). An alternative, though not mutually exclusive, explanation for elevated levels of EWS is that regulation of EWS at the RNA level is directly impacted by FUS knockdown, as discussed below.

In agreement with previous studies, our proteomics analysis revealed protein expression changes induced by doxycycline and/or shRNA expression (i.e., proteins that changed in shSC cells relative to uninduced cells; Table III-2) (Khan et al., 2009; Jackson and Linsley, 2010; Ahler et al., 2013). In fact, a recent study reported that expression of genes involved in glycolysis and cellular metabolism were altered upon doxycycline treatment. (Ahler et al., 2013) We also detected differential expression for proteins associated with energy homeostasis (FPPS, IDHC, and KAD1) upon shSC induction at 96h. Intriguingly, these same changes were not detected in shFUS cells (Table III-2). Thus,
doxycycline exposure and/or shRNA expression elicited changes in gene expression, possibly in response to a stress associated with these stimuli (Grimm et al., 2006; Jackson and Linsley, 2010; Ahler et al., 2013), but under conditions of FUS knockdown this response was impaired. In other words, cells lacking FUS failed to respond as expected. These results underscore the importance of including an untreated control condition to assess the direction of change for the experimental condition, shFUS in this case. For example, without the untreated condition we would have reported a decrease in histones for shFUS cells at 24h, when in fact there was an increase in shSC and no response in shFUS cells (Table III-2). The reason histones are increased in shSC cells at 24h is unclear, however the association of FUS with different histone-related processes may explain the lack of response in shFUS cells (Wang et al., 2008; Kim et al., 2010; Colombrita et al., 2012; Takahama et al., 2013).

Which protein expression changes are directly triggered by a loss of FUS, and which reflect downstream consequences to these initial triggers? Of the sixty-one proteins identified here, none have been reported to have differential mRNA expression upon FUS knockdown. (Hoell et al., 2011; Ishigaki et al., 2012; Lagier-Tourenne et al., 2012; Rogelj et al., 2012; Nakaya et al., 2013) Sixteen, however, correspond to reported RNA binding targets of FUS (Table III-1, asterisks). (Hoell et al., 2011; Colombrita et al., 2012; Nakaya et al., 2013) We posit that the protein expression changes for these targets are a direct consequence of a loss of FUS function with respect to RNA processing. For
example, FUS binds RNA corresponding to several differentially expressed proteins discussed above including EWS, cytoskeletal-related proteins (RAP1A and MARCS) and energy homeostasis-related proteins (IDHC, Kap0, Kap1 and Cox5A) (Hoell et al., 2011).

The results of our study have important implications for disease, particularly neurodegenerative disorders that may be mediated through a loss of FUS function. Although mature neurons are post-mitotic and do not proliferate, the loss of FUS function may adversely impact neurodevelopment during a stage when cellular proliferation is critical. Moreover, the processes and proteins that are altered here upon FUS knockdown, particularly those relating to cytoskeletal organization, oxidative stress and calcium handling, are relevant to the homeostasis of mature neurons (Mattson and Magnus, 2006). We also note that glia cells, which do proliferate, play both neuroprotective and pathogenic roles in neurodegeneration (Aguzzi et al., 2013). That FUS is aggregated and depleted from the nucleus of glia cells in some neurodegenerative disorders (Mackenzie et al., 2011; Suzuki et al., 2012) raises the possibility that glial proliferation and function may also be impaired. Importantly, our data demonstrate it is possible to reverse the adverse effects of FUS depletion by replacing the FUS protein or by small-molecule intervention. Proteins that exhibit differential expression upon FUS knockdown (Table III-1) may also serve as therapeutic targets for ameliorating the loss of FUS function in disease.
Acknowledgements

We thank Dr. Zuoshang Xu for critical review of the manuscript. We thank Dr. Shinsuke Ishigaki (Nagoya University) for the inducible shRNA NSC-34 cell lines and many helpful discussions; Dr. Desiree Baron (University of Massachusetts Medical School; UMMS), Dr. Miguel Sena-Esteves (UMMS) and Kiera Sapp (UMMS) for their assistance with experiments; Dr. Jennifer Broderick (UMMS) for assistance in designing siRNA constructs; Dr. Greenfield Sluder (UMMS) for use of live-cell imaging equipment, Dr. Craig Peterson (UMMS) for use of histone antibodies, and the Proteomics and Mass Spectrometry Facility (UMMS) for assistance with the proteomics analyses. We acknowledge financial support from the ALS Therapy Alliance-CVS Pharmacy (DAB, MAG), ALS Association (DAB), the US National Institutes of Health/ National Institute on Neurological Disorders and Stroke (R01NS078145 and R01NS067206 DAB; R01NS079836 DAB and MAG), the Harvard NeuroDiscovery Center (MAG), and General Medicine (R01GM30758 to Dr. Greenfield Sluder).

Materials and Methods

Tissue culture. The creation of and culture conditions for NSC-34 cell lines expressing shFUS1 or shSC have been described previously. (Sama et al., 2013) The tetracycline-inducible shFUS2 line was created and cultured in the same manner (shFUS2: 5’-GAGTGGAGGTTATGGTCAA-3’). For the expression of shRNA, cells were treated with 1μg/ml doxycycline (Sigma, D9891) or 0.1
µg/ml tetracycline (Fisher Scientific, BP912-100). Naïve NSC-34 cells (a kind gift from Dr. Neil Cashman) were cultured in Dulbecco’s modified Eagle’s medium with sodium pyruvate (Invitrogen, 10313) supplemented with 10% fetal bovine serum (Sigma-Aldrich, F4135), 2mM L-glutamine (Invitrogen, 25030081) and 1% penicillin and streptomycin solution (Invitrogen, 15140122). HEK-293T cells were maintained in Minimum Essential Media (Invitrogen, 10370) supplemented with 10% fetal bovine serum (Sigma-Aldrich, F4135) and 1% penicillin and streptomycin solution (Invitrogen, 15140122).

siRNA knockdown of FUS. RNA oligonucleotides for FUS (sequences below) and a scrambled control sequence (guide: 5’-aauucuccgaacgugacgcu-3’; passenger: 5’-gugacacguucggagaaucuu-3’) were purchased through Sigma-Aldrich and 10µM annealed stocks were prepared by combining guide and passenger strands in the following buffer: 100mM potassium acetate, 30mM HEPES-KOH pH 7.4, 2mM magnesium acetate. For knockdown in HEK-293T cells, cells were plated in a 24-well plate at 2,000 cells/well and allowed to adhere overnight. Transfection was performed in OPTI-MEM (Invitrogen, 31985070) using 0.4µl Lipofectamine RNAiMax (Invitrogen, 13778030) and 0.2nM siRNA per well (guide: 5’-uugggugaucaggauugga-3’; passenger: 5’-ccaauuccugaccaaccacu-3’). For knockdown in naïve NSC-34 cells, cells were plated in a 24-well plate at 10,000 cells/well. Transfection was performed as
above, but with 0.5μl RNAiMax and 10nM siRNA per well (guide: 5'-uaggguagucugacacacaca-3'; passenger: 5'-ugugugucagacuacccucuu-3').

MTT viability assay. Cells were plated in technical triplicate in a 24-well plate and induced to express shRNA or transfected with siRNA to initiate FUS knockdown. After the desired duration of knockdown, the media from each well was removed and replaced with 400μl fresh media and 100μl of 5mg/ml MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide; Invitrogen, M-6494). After a 35 min incubation at 37ºC, 300μl lysis buffer (10% SDS in 1:1 N,N-dimethylformamide:water/2% acetic acid/2.5% HCl 1M)(Reixach et al., 2004) was added to each well. Plates were covered with a seal and incubated at 37ºC overnight followed by OD quantification at 550nm. Results are expressed as % cell viability relative to untreated controls using the following equation: 100 x (ODRNAi – ODblank)/(ODuntreated – ODblank). The ODblank was determined by wells containing MTT and tissue culture media without cells.

Immunofluorescence. Cells grown on glass coverslips were fixed for 5-10 min with 4% paraformaldehyde and blocked with PBSAT (1X PBS/1% BSA/0.5% Triton-X 100) for 30-60 min at room temperature. Primary antibodies were diluted in PBSAT and added to the coverslips at room temperature for 1 hr. Primary antibody dilutions were as follows: 1:500 for anti-FUS (Bethyl laboratories, A300-293A) and 1:100 for anti-Apoptosis Inducing Factor (Cell Signaling, 4642). After
primary antibody incubation, coverslips were washed with PBSAT and incubated for 45 minutes with Alexa Fluor 488-conjugated donkey anti-rabbit IgG (Jackson ImmunoResearch Labs, 711-545-152), diluted at 1:2000 in PBSAT. Lastly, cells were stained with 34 ng/mL DAPI and coverslips were mounted with ProLong Gold anti-fade reagent (Invitrogen, P36930).

Western blotting. Cells were lysed for 30 min at 4°C with either 50 mM Tris HCl (pH 7.5) containing 0.5M NaCl, 1% NP-40, 1% deoxycholic acid, 0.1% SDS, and 2mM EDTA or RIPA buffer (Boston BioProducts, BP-115-500), supplemented with protease (Roche, 11836170001) and phosphatase (Roche, 4906837001) inhibitors. Concentration of cell lysates was determined using a bicinchoninic acid (BCA) assay (Thermo Scientific Pierce, 23227) and samples were prepared in Laemmlı SDS-sample buffer (Boston BioProducts, BP-111R). Standard western blotting procedures were followed, using Tris-glycine SDS-PAGE and electrotransfer onto PVDF membrane at 100V for 1 hour at 4°C. For detection of S100A6, Tris-tricine SDS-PAGE was used (BioRad, 456-3066) followed by electrotransfer onto 0.22 µm nitrocellulose at 100V for 30 min at 4°C. Membranes were blocked for 1h at room temperature with Odyssey Blocking Buffer (LiCor, 927–40003) diluted 1:1 with PBS containing 0.1% tween-20 (PBST), followed by overnight incubation at 4°C with primary antibodies diluted in PBST. Primary antibody dilutions were as follows: 1:500 anti-FUS (Genscript, generated against C-terminal peptide CKFGGPRDQGSRHDSEQNSD)(Sama et al., 2013), 1:500
anti-tubulin (Sigma, T9026), 1:500 anti-cleaved PARP1 (Cell Signaling, 9544), 1:500 anti-cleaved caspase-3 (Cell Signaling, 9664), 1:500 anti-EWS (Santa Cruz, sc-28327), 1:1000 anti-H2B (Active motif), 1:1000 anti-H3 (Abcam, 1791), and 1:200 anti-S100A6 (Cell Signaling, 13162). Following primary antibody incubation, membranes were washed with PBST and incubated for 1h with secondary antibody diluted 1:10,000 in 1:1 Odyssey Blocking Buffer:PBST. Secondary antibodies included anti-mouse IRDye 680 (Licor, 926-68072) or IRDye 800 (LiCor, 926-32210) and anti-rabbit IRDye 680 (LiCor, 926-68023) or IRDye 800 (Licor, 926-32211). After washing with PBST, membranes were imaged with an Odyssey Infrared Imager (LiCor, Model 9120) and protein band intensities were quantified with the Odyssey Software (LiCor, V3.0).

Time-lapse video microscopy. Stable NSC-34 cells were plated on glass coverslips and induced to express either shSC or shFUS1. Twenty-four hours later, coverslips were assembled into chambers as previously described (Uetake Y, 2012) and imaged at 37°C with BH2 (Olympus) microscopes equipped with phase-contrast optics using 10X objectives/ 0.3–0.32 NA. Image sequences were gathered using Retiga EX (Qimaging, Corp.) or Retiga EXi Fast (Qimaging, Corp.) cameras. Images were acquired every 3 min with C-imaging software (Hamamatsu Photonics) and were exported as QuickTime videos using CinePak compression (Apple).
Small-molecule high-content screen. shFUS1 NSC-34 cells were plated onto 384-well plates (Corning 3712) at 500 cells/well in 40 µL of culture media (described above) using a Multidrop automated liquid handler (Thermo Fisher Scientific). Gas-permeable seals were used to reduce any uneven evaporation effects. After overnight incubation, 5 µl doxycycline was transferred using a Biomek NX robotic liquid handler (Beckman Coulter) into each experimental well to attain a final concentration of 1 µg/ml. An equal volume of doxycycline solvent (dd H₂O) was added to control wells. Four hours after doxycycline addition, 5 µl of compounds from the LDDN library (described below) were transferred using the robotic liquid handler into experimental wells to attain a final concentration of 1 µM and 0.1% DMSO. An equal volume of DMSO in media was added to control wells. Plates were incubated for 96h. Screening of compounds was performed in triplicate due to the small activity window (25%) as determined during assay development using this format.

A subset of the Laboratory for Drug Discovery in Neurodegeneration (LDDN) chemical library was used, consisting of 606 compounds approved by the Food and Drug Administration (Prestwick) and 480 purified natural products. Compounds for high-throughput screening were stored as DMSO stocks at -20°C and assay-ready 384-well plates with 1.67 mM compound concentration in 100% DMSO were diluted in media to attain a final concentration of 1 µM in 0.1% DMSO just before use.
After 96h, cells were fixed with 4% paraformaldehyde for 20 min and washed three times with phosphate-buffered saline (ELx405 plate washer, BioTek). The cells were labeled with 1 μg/ml Hoechst stain to visualize nuclei. Images were captured on the IN Cell Analyzer 2000 (GE Healthcare). The entire well was imaged in 4 fields at 25 ms exposure time using excitation filter D360/40 and emissions filter HQ460/40 in combination with a 10X/.45 NA objective. Image stacks were batched and analyzed using IN Cell Workstation software (GE Healthcare). For the feature extraction protocol, cells were segmented using the multi-target analysis algorithm and nuclei were segmented as defined with a minimum area of 50 µm² with a sensitivity setting of 70. Total nuclei per well was used as a measure of cell count.

A compound was considered a “hit” and selected for confirmation if it rescued the shFUS1 knockdown-induced decrease in cell number by >3 standard deviations (SD) from the mean of the shFUS1 knockdown control wells (shFUS1 +doxycycline) on each of the three replicate plates. Hits were confirmed via a 5-point dose-response curve (0.1 to 30 µM) using compounds that were re-ordered from the commercial suppliers. For confirmation studies, compounds were added to both shSC and shFUS1 expressing cells in the presence of doxycycline. Western blot analysis of FUS expression after 96h of 1 µM compound incubation was performed using a similar protocol to that described above.
Quantitative Proteomics. NSC-34 cells were either uninduced, or induced to express shSC or shFUS1 for 24 or 96h (for a total of 6 samples), followed by lysis with RIPA buffer (Boston Bio Products) supplemented with protease inhibitors (Roche). Protein content was measured using a standard BCA Assay (Thermo Scientific) and lysates were treated according to manufacturers' instructions, with slight method alteration in the detergent removal step. Briefly, 100 µg of lysate was diluted to a final concentration of 1 µg/µL with 100 mM triethyl ammonium bicarbonate (TEAB). Disulfide bonds were reduced with 0.5 M tris(2-carboxyethyl)phosphine (TCEP) for 1 hour at 55°C and cysteine residues were alkylated with 375 mM iodoacetamide (IAA) for 30 minutes at ambient temperature, protected from light. Lysates were then treated for detergent clean up using Detergent Removal Spin Columns (Thermo Scientific) according to manufacturers' instructions and digested overnight at 37°C with Trypsin (Promega, sequencing grade) in a 1:25 enzyme:protein digest ratio. Amine reactive TMT reagents (Thermo Scientific, 6-plex kit) were dissolved in acetonitrile and allowed to react with peptides for 1 hour at ambient temperature. After 1 hour, the reaction was quenched upon addition of 5% hydroxylamine hydrochloride and a 15 minute incubation at room temperature. Following labeling, the samples were combined in an equi-volume ratio (1:1:1:1:1:1) and dried down prior to reconstitution in 5% acetonitrile, 0.1% trifluoroacetic acid (TFA) for mass spectrometric analysis. The assignment of TMT tag (126 to 131) to each sample was random (www.random.org) to guard against bias.
Assignments were made such that no sample had the same tag identity between three independent experiments.

Three independent experiments were tested, with each experiment analyzed in technical triplicate. LC-MS/MS experiments were performed on a QExactive hybrid mass spectrometer (Thermo Scientific) equipped with a nanoAcquity UPLC (Waters). Run conditions match those of the “sensitive” conditions previously recommended (Kelstrup et al., 2012). Briefly, approximately 1 µg of labeled peptides were loaded on a 100 µm i.d. fused-silica precolumn packed with 2 cm of Magic C18AQ resin (5 µm, 200Å, Michrom Bioresources) at a flow rate of 4.0 µL/min for 4 min in 5% acetonitrile, 0.1% formic acid (FA) and eluted using a gradient at 300 nL/min onto a 75 µm i.d. analytical column packed with 25 cm of Magic C18AQ resin (3 µm, 100 Å, Michrom Bioresources) to a gravity-pulled tip. Separation was achieved by applying a 5%-35% acetonitrile gradient in 0.1% FA over 180 minutes at 300 nL/min. In detail, the time program was: 0−180 min, 5−35% B; 180−181 min, 35-90% B; 181-191 min, 90% B; 191-192 min, 90-5% B; 192-210 min, 5% B; 210 min, stop. Solvent A was water with 0.1% FA and solvent B was acetonitrile with 0.1% FA. Electrospray ionization was enabled via liquid junction into a QExactive hybrid mass spectrometer (Thermo Scientific). Mass spectra were acquired over m/z 300-1750 at 70,000 resolution (m/z 200) and data-dependent acquisition selected the top 12 most abundant precursor ions for tandem mass spectrometry by HCD fragmentation.
using an isolation width of 1.2 m/z, collision energy of 30, and a resolution of 35,000.

Mass spectra were submitted to MASCOT (Matrix Science, v2.4.1) and searched against the Mouse SwissProt database (16627 entries). Search specifications included: allow up to two missed cleavage sites, enzyme specified as trypsin, MS tolerance – 10 ppm, and MS/MS tolerance – 0.05 Da. Specified fixed modifications include Carbamidomethyl and TMT6plex. Specified variable modifications include Gln→pyro-Glu, Oxidation, and N-term Acetyl. ProteoIQ (Premier Biosoft, v2.6.03) was used to quantify reporter ion signals. Search specifications included: reporter ion tolerance – 0.05 Da; minimum peptide length – 6 amino acids; minimum # of spectra – 2; minimum # of peptides – 2; minimum peptide probability – 0.05; minimum protein probability – 0.5; maximum p-value – 0.05; minimum fold change - |0.25|; 3 external replicates; data centroided. Reporter ions were normalized by total labeling of each species and relative expression was weighted by species intensity.

Quantitative real-time PCR (qRT-PCR). RNA was harvested from cells (BioRad, 732-6820) and converted to cDNA (BioRad, 170-8841), according to the manufacturer's instructions. Quantitative real-time PCR was performed in technical triplicate using PrimePCR primer assays (BioRad, 100-25636) and SYBR Green Supermix (BioRad, 172-5121) according to manufacturer's guidelines and using the following PCR program in a CFX384 Touch Real-Time
PCR Detection System (BioRad): 95°C for 2 min, 40 cycles of 95°C for 5 sec and 60°C for 30 sec, and a melt-curve of 65-95°C (0.5°C increments/5 sec). Quantification of differential mRNA expression was calculated by the comparative Ct method using Bio-Rad CFX Manager 3.1 software. Briefly, threshold cycle (Ct) values were normalized to the B2M reference gene Ct value to obtain ΔCt values. The ΔCt value for the control condition was subtracted from the ΔCt of the experimental condition to calculate a ΔΔCt. Fold change relative to the control samples was then calculated by $2^{-\Delta\Delta Ct}$.
CHAPTER IV: DISCUSSION AND FUTURE DIRECTIONS

ALS is a devastating neurodegenerative disease that results in death for 2 out of every 100,000 people a year. Disease onset is nearly unpredictable, treatments are limited and ineffective, and a cure is nonexistent. After onset, the disease progresses very quickly with survival typically only 3-5 years, during which time the affected individual loses all motor function until they are unable to speak, eat, move, or even breathe on their own. While statistics report “ALS affects about 1-2 individuals per 100,000 per year” (Robberecht and Philips, 2013), this number is far greater when considering the impact ALS has on friends and families of an ALS patient. As the patient’s motor abilities quickly decline their need for assistance quickly increases and it is estimated that for every year a person lives with ALS, an average of $63,000 is required for their care (study by the Muscular Dystrophy Association, 2013). So while ALS is a ‘rare’ disease with only 30,000 people living with ALS in the United States, the impact ALS has on the human population far exceeds this number.

Despite the urgent need for a treatment and the large amount of research being conducted, little is known about the definitive causes of ALS. This can be attributed to the sporadic nature of the disease. Only 5-10% of cases can be tracked by familial inheritance and of these only ~60% have been linked to specific genetic mutations (Sreedharan and Brown, 2013; Renton et al., 2014). Studying genes associated with familial ALS, however, has provided valuable
insight into the cellular mechanisms of this disease. The discovery of FUS mutations for example, has led to several important advances in the field, particularly adding support for defective RNA processing as a pathogenic mechanism and strengthening the link between ALS and FTD.

Here, I have investigated a loss of function hypothesis for mutant FUS in ALS pathogenesis. To this end, I developed several FUS knockdown mammalian cell culture models and assessed the cellular effects of FUS depletion. The models displayed a defect in cell abundance and suggested a link between FUS function and DNA damage repair (Chapter II). This link has been supported by several recent reports demonstrating inefficient DNA damage repair in the absence of FUS (Mastrocola et al., 2013; Wang et al., 2013). Upon further characterization, the model revealed a FUS knockdown-induced reduction in cell proliferation, highlighting that FUS is essential for cell health and homeostasis (Chapter III). This defect in proliferation was accompanied by expression changes of proteins associated with multiple processes, such as cell-cycle regulation, cytoskeletal organization, oxidative stress and energy homeostasis. Together, this work demonstrates that an array of cellular pathways respond to, or are influenced by, a loss of FUS function. The way in which a loss of FUS function in these pathways may be important for ALS pathogenesis is discussed below.
Cell cycle regulation and ALS

As investigated in both Chapters II and III, depletion of FUS results in decreased cellular proliferation. This response may be indirect, occurring as a result of other cellular events, such as increased DNA damage (Chapter II), oxidative stress, cytoskeletal disorganization, or energy homeostasis (discussed in Chapter III). Several reports however, demonstrate a direct role for FUS in cell cycle regulation. For example, RIP/CHIP experiments (RNA-binding protein immunoprecipitation-microarray) identified an enrichment of cell cycle-related RNA binding targets of FUS (Colombrita et al., 2012). FUS also binds the \textit{CCND1} promoter and inhibits expression of the cell-cycle protein cyclin D1 in response to DNA damage signals (Wang et al., 2008). Additionally, in prostate cancer cells FUS mediates cell proliferation stimulated by androgen (Brooke et al., 2010; Haile et al., 2011), seemingly through transcriptional regulation of several important cell cycle proteins (Brooke et al., 2010).

These findings seem to suggest an important role for FUS in regulating the cell cycle in proliferating cell types. Motor neurons however, are post-mitotic and are a non-proliferating cell type. Thus, how could regulation of cell proliferation by FUS be important for ALS pathogenesis? Accumulating evidence suggests that inappropriate cell cycle re-entry in neurons induces apoptosis and may therefore be a relevant mechanism in neurodegeneration (Herrup and Yang, 2007; Bonda et al., 2010b). For instance, the cyclin D/CDK4,6 complex is responsible for reinitiating the cell cycle in non-proliferating cells (Sherr, 1994).
and interestingly, increased expression of cyclin D and cdk4 is evident in motor neurons of ALS mice and patient tissue (Nguyen et al., 2003; Ranganathan and Bowser, 2003). Furthermore, FUS has been shown to regulate cyclin D expression (Wang et al., 2008). Thus, one could speculate that loss of FUS function from ALS-mutations leads to re-expression of cyclin D1 and re-initiation of the cell cycle, causing neuronal cell death. In support of this, ALS mutations cause nuclear FUS depletion or alternatively, are located in a domain of FUS responsible for transcriptional activity (Figure I-2), either of which could disrupt FUS-mediated repression of cell cycle-related transcription.

To date, the regulation of cyclin D1 expression by FUS has only been demonstrated in macrophage (Wang et al., 2008) and prostate cancer cells (Brooke et al., 2010; Haile et al., 2011). Preliminary steps towards investigating this function in neurons are discussed in Appendix I, but this work was not pursued as part of this dissertation. Briefly in sum, I recapitulated the effect of FUS knockdown on cyclin D1 expression in macrophage cells, but did not detect increased cyclin D1 immunofluorescence in cortical neurons after FUS depletion. My investigations however, were only preliminary and were not performed in a rigorous manner. Therefore, a role for FUS in neuronal cell cycle control remains to be fully investigated. Additionally, the effect of mutant FUS expression on cell cycle regulation has not been addressed, in either neurons or mitotic cells.

While re-expression of cell cycle proteins in neurons seems to correlate with apoptosis, it is still unclear whether this is an upstream event in ALS
pathogenesis, or just a misregulation that occurs at the final stages of the cell’s life. Thus, investigations of this phenomenon may advance our understanding of how motor neurons die, but may not answer the question of why motor neurons die and therefore provide little therapeutic insight.

DNA damage and ALS

Accumulating evidence within the literature firmly establishes the importance of FUS in DNA damage repair. FUS binds both single- and double-stranded DNA (Baechtold et al., 1999; Liu et al., 2013), is important for homologous DNA pairing (Akhmedov et al., 1995; Bertrand et al., 1999) and D-loop formation (Baechtold et al., 1999), localizes to sites of DNA damage (Mastrocola et al., 2013; Rulten et al., 2013; Wang et al., 2013), and is required for efficient DNA damage repair (Mastrocola et al., 2013; Wang et al., 2013). Furthermore, evidence shown here (Chapter II) suggests an accumulation of DNA damage in cells depleted of FUS. As a normal result of aging, DNA damage accumulates in neurons, presumably due to a decline in quality control pathways (reviewed in (Gorbunova et al., 2007)). That mutations in FUS cause inefficient DNA damage repair in neurons (Wang et al., 2013), could worsen this problem, resulting in a faster accumulation of damaged DNA and neuronal apoptosis. In support of this, post-mortem brain sections from the motor cortex of ALS patients harboring either FUS R521C or P525L mutations display increased levels of the γH2AX DNA damage marker relative to control brain sections (Wang et al., 2013).
Furthermore, a transgenic mouse expressing FUS R521C also exhibits elevated levels of DNA damage markers (e.g., γH2AX, phosphorylated p53, and ATF3) in the central nervous system (Qiu et al., 2014). Together, this evidence points towards inefficient DNA damage repair as a relevant model for FUS-mediated ALS.

While no other ALS-linked proteins have been directly linked to DNA damage repair, more general evidence of DNA damage as a pathogenic mechanism in ALS exists. Post-mortem patient tissue of ALS show elevated levels of DNA damage, including 8-hydroxy-2’-deoxy-guanosine (8-oxo-G), and decreased activity of DNA repair enzymes (Coppede, 2011). 8-oxo-G results from oxidation of nucleic acids and is one of the most common DNA lesions in neurons (reviewed in (Coppede, 2011)). That oxidative stress is a pathological hallmark of ALS suggests that DNA damage arising from reactive oxygen species (ROS) may represent a general mechanism of ALS pathogenesis. FUS appears to also play a role in controlling ROS levels as a co-transcriptional regulator of oxidative stress protection genes, as knockdown of FUS resulted in decreased transcription of these genes with a concomitant increase in ROS levels (Sanchez-Ramos et al., 2011). Therefore, FUS appears to function both upstream and downstream of DNA damage, as a transcriptional regulator stimulating expression of oxidative stress protection genes and as a member of the DNA damage repair pathway. As FUS animal models continue to be investigated and additional neuronal models are created, I predict an important
link between mutant-FUS and DNA damage repair will come to light and prove to be important for understanding ALS pathogenesis.

Insights from gene expression studies

FUS is a multifunctional protein with roles in numerous fundamental processes (Figure I-2). A challenge is to determine which of these functions is affected by ALS-linked mutations. As an hnRNP protein (heterogeneous ribonucleoprotein) and part of the FET family, it is well established that FUS is involved in mRNA splicing and transcriptional regulation. In fact, several large gene expression studies have been performed (Table I-1) and collectively show that FUS binds thousands of mRNA targets and depletion of FUS alters transcriptional regulation and alternative splicing (reviewed in (Ling et al., 2013)). Similarly, overexpression of mutant FUS affects these same processes. Mutant FUS lacked an interaction with ~3,000 targets shown to bind wild-type FUS and gained ~900 unique interactions (Hoell et al., 2011). Furthermore, mutant-FUS preferentially bound the 3'UTR of its targets while wild-type FUS preferred intronic regions (Hoell et al., 2011). The implications of these observations are that thousands of transcripts could be irregularly spliced in disease or have altered stability, affecting numerous cellular pathways.

While these studies clearly demonstrate that both FUS depletion and expression of mutant FUS affect mRNA processing, none of these studies addressed whether similar alterations occurred at the protein level or whether
these alterations had any effect on cell health. To this end, my work demonstrated a decline in cell health and homeostasis upon FUS depletion and investigated changes in the proteome (Chapter III). Differentially expressed proteins were grouped into functional categories, revealing enrichment for proteins involved in chromatin organization, cytoskeletal organization, energy homeostasis, calcium and metal ion binding, and cellular proliferation (Table III-1). Consistent with oxidative stress being a hallmark of ALS, metallothionein-2 (MT2), a multifunctional protein involved in zinc homeostasis and antioxidation (Vasak and Meloni, 2011), was increased 85% after FUS knockdown. That levels of MT2 are known to increase in response to metal toxicity, oxidative stress, and ionizing radiation (Aschner et al., 2006; Vasak and Meloni, 2011), suggests one of these stressors is induced by FUS knockdown. Likely, this stressor is oxidative stress, as FUS depletion has previously been shown to increase reactive oxygen species (Sanchez-Ramos et al., 2011). Also changing significantly with FUS depletion was protein S100A6, which decreased by 36%. This protein is a calcium binding protein whose levels correlate with cellular proliferation status and is suggested to function in cytoskeletal organization (Lesniak et al., 2009). While the exact functions of this protein have not been fully elucidated, evidence from ALS SOD G93A mice suggests it is up-regulated specifically in mutant SOD1 animals as a calcium buffering protein (Hoyaux et al., 2000). That FUS binds the promoter of S100B (Tan et al., 2012), a family member of S100A6, raises the possibility that FUS may directly regulate
expression of S100A6. Loss of FUS function mutations in ALS therefore may affect the expression of S100A6, as shown here for FUS depletion, thereby limiting the calcium buffering ability of the cell and causing excitotoxicity and neuronal death.

While providing valuable insight into potential ALS-related FUS functional pathways, the large gene expression studies discussed above and proteomics analysis presented here in Chapter III, do little to confirm which altered FUS functions or affected pathways are actually leading to neuronal death. Moving forward more studies need to be performed in neuronal models with relevant levels of mutant protein as opposed to overexpression. Additionally, a complete loss of FUS function in ALS is unlikely, although several in vivo studies suggest mutant FUS may affect the levels and/or activity of wild-type (Machamer et al., 2014; Qiu et al., 2014). With the recent development of human induced pluripotent stem cells (iPSC) it is now possible to study motor neurons derived from patient cells expressing disease relevant copies of these ALS-linked proteins. Utilizing iPS cells will undoubtedly provide important insight into the question of whether a loss of function or gain of function mechanism is contributing to FUS-mediated ALS pathogenesis.

G-quadruplexes: a common link between FUS functions?

As FUS is a multifunctional protein with links to numerous cellular pathways, it is difficult to determine which functions are most relevant to study in terms of ALS
pathogenesis. That ALS-linked mutations affect several FUS functions, such as DNA damage repair, transcription, and splicing, makes this task even more difficult and suggests disruption of any FUS-associated process is detrimental. For this reason, finding a common link between how FUS performs these specific functions could be of great value.

One noteworthy property of FUS that spans several functions is the binding of FUS to G-quadruplex nucleic acid structures. In a study that determined RNA polymerase II promoters bound by FUS, it was noted that many FUS-bound promoters are predicted to contain G-quadruplex structures (Tan et al., 2012). Furthermore, the complementary strand of the consensus motif most strongly bound by FUS is expected to form a G-quadruplex (Tan et al., 2012), suggesting a correlation between G-quadruplexes and the function of FUS in RNA polymerase II-mediated transcription. In addition to transcription start sites, G-quadruplexed DNA is common within telomeres. Recently, FUS overexpression was found to affect telomere histone methylation and telomere length and interestingly, the localization of FUS to telomeres required binding to G-quadruplexed DNA (Takahama et al., 2013). FUS also binds telomeric RNA (termed TERRA), specifically through a G-quadruplex dependent interaction (Takahama et al., 2013). The importance of telomeres in genome stability and cellular aging is well known. That FUS appears to play a role in regulating telomere length establishes an interesting area of research for FUS in cell aging with potential importance to neurodegeneration.
More well-studied than transcriptional regulation and genomic maintenance is the role of FUS in RNA processing. Several genome-wide studies have been conducted to determine the RNA targets of FUS and whether they can be predicted through sequence motifs. While early studies suggested a GGUG motif preference for FUS binding (Lerga et al., 2001) which is generally accepted and has been confirmed by a subsequent study (Lagier-Tourenne et al., 2012), others propose that FUS is more selective for a conformational motif (Hoell et al., 2011; Colombrita et al., 2012; Ishigaki et al., 2012; Nakaya et al., 2013; Takahama and Oyoshi, 2013). As demonstrated for telomeric RNA, this secondary structure could potentially be a G-quadruplex, however this possibility was not investigated in these studies.

Binding to both telomeric DNA- and RNA- G-quadruplexes requires the arginine-glycine-glycine (RGG) domain at the C-terminus of FUS (Figure I-2) (Takahama and Oyoshi, 2013; Takahama et al., 2013). Similarly, the FUS-related protein EWS has also been reported to bind G-quadruplexed DNA and RNA (Takahama et al., 2011b) via a similar RGG domain (Takahama et al., 2011a), suggesting this binding specificity may be important for functions common between these two proteins. The effect of mutating residues in the RGG domain on binding affinity has not been determined, but several ALS-linked mutations in FUS are present in this domain (Figure I-4) which could conceivably affect binding.
Recently an abnormal hexanucleotide GGGGCC repeat expansion in C9ORF72 was determined to be the most common cause of familial and sporadic ALS (DeJesus-Hernandez et al., 2011; Renton et al., 2011). One theory as to how this leads to disease is that this repeat expansion sequesters RNA binding proteins, thereby inhibiting them from performing their normal functions (Taylor, 2014). There have been several attempts to determine the RNA-binding proteins associated with this repeat expansion and numerous hits have been identified in vitro that co-localize with C9ORF72 RNA-foci in diseased patient cells (Donnelly et al., 2013; Lee et al., 2013; Mori et al., 2013; Sareen et al., 2013; Xu et al., 2013). That both the DNA and RNA of this repeat expansion form G-quadruplexes (Fratta et al., 2012; Reddy et al., 2013; Haeusler et al., 2014) predicts an association of FUS with this expanded repeat which may come to light as more comprehensive analyses are performed.

A Model for ALS Pathogenesis

Understanding the normal functions of FUS and how these functions are altered by ALS-linked mutations is important for understanding the pathogenesis of FUS-mediated ALS. An equally important and even more challenging question to consider is how mutations in so many diverse genes can cause the same disease. There are over 100 genes associated with ALS with several having a relatively high incidence, such as SOD1, TDP-43, FUS, and C9ORF72, with firm genetic support of their involvement in ALS pathogenesis. How does
one make sense of disease pathogenesis with so many seemingly diverse players involved? To this end, much research has been focused on identifying functional overlap between ALS-associated proteins. Presented below is a discussion of two related cellular processes in which several ALS-associated proteins function, followed by a description of a potential pathogenic mechanism involving these fundamental processes.

Protein misfolding

A main suspect in ALS pathogenesis is misfolded protein. This stems from investigations of mutant superoxide dismutase-1 (SOD1), the first genetic link to ALS (Rosen et al., 1993). Mutant SOD1 misfolds and oligomerizes, leading to the induction of several cellular stresses, including proteasomal disruption and endoplasmic reticulum (ER) stress (Sreedharan and Brown, 2013). Wild-type SOD1 can also obtain a misfolded conformation which has been identified in cases of sporadic ALS, further implicating this misfolded species in disease pathogenesis (Rotunno and Bosco, 2013). Other ALS-associated proteins that adopt a misfolded or less stable conformation include TDP-43 (Mackness et al., 2014), FUS/TLS, and Pfn-1 (Bosco lab, unpublished).

When a cell detects misfolded protein it initiates the unfolded protein response (UPR). The UPR is a three pronged approach to dealing with the stress of protein misfolding: 1) translation of new protein is halted, 2) production of molecular chaperones is increased, and 3) proteins that cannot be refolded
are degraded by the proteasome or autophagosome. Evidence of UPR activation has been seen in ALS human samples as well as ALS mouse models, implicating stress from misfolded proteins in ALS (Matus et al., 2013). That several ALS-associated proteins have known functions in protein degradation pathways may help provide a link between protein homeostasis and ALS pathogenesis. These proteins include ubiquilin-2 (UBQLN2), optineurin (OPTN), p62/sequestosome 1 (p62/SQSTM1), valosin-containing protein (VCP), chromatin modifying protein 2B (CHMP2B), factor induced gene 4 (FIG4), Alsin, vesicle associated membrane protein associated protein B (VAPB), and C9ORF72. VAPB associates with the endoplasmic reticulum and is thought to be important for activation of the UPR (Kanekura et al., 2006). The remaining proteins assist in protein degradation by fulfilling important functions in the proteasome pathway (UBQLN2, VCP, p62/SQSTM1) or autophagy (UBQLN2, VCP, p62/SQSTM1, CHMP2B, OPTN, FIG4, Alsin, C9ORF72) (Farg et al., 2014) reviewed in (Chen et al., 2013; Ling et al., 2013; Robberecht and Philips, 2013).

Stress response in ALS

Misfolded proteins and ALS-linked mutant proteins, such as SOD1 (Nishitoh et al., 2008), TDP-43 (Walker et al., 2013), and FUS (Farg et al., 2012), initiate the UPR by causing ER-stress, which is a cellular response strongly associated with the pathogenesis of ALS (Matus et al., 2013). As such, investigations of potential biomarkers and therapeutic strategies have been
centered on key features of the ER-stress response (Matus et al., 2013). One effect of ER-stress is the formation of stress granules, which are protein/RNA structures that are thought to occur as a means of halting translation of proteins unnecessary to overcome the stress at hand (Kedersha and Anderson, 2007; Anderson and Kedersha, 2008; Kedersha et al., 2013). One response of ER-stress is the inhibition of protein translation through phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) (Hetz, 2012), a key event in stress granule formation (Kedersha et al., 1999).

In addition to being a product of ER-stress, the relevance of stress granules in ALS pathogenesis came to light with the discovery that ALS-linked mutant FUS associates with stress granules (Bosco et al., 2010a). Furthermore, wild-type FUS incorporates into stress granules under conditions of hyperosmolar stress (Sama et al., 2013), as does TDP-43 (Dewey et al., 2010), which has also been seen in stress granules formed from various other stressors (Colombrita et al., 2009; Liu-Yesucevitz et al., 2010; Aulas et al., 2012), including ER-stress (Walker et al., 2013). The effects of mutant FUS and TDP-43 on stress granule function are in the early stages of investigation, but have so far been determined to affect several characteristics of stress granules, such as size, number, and assembly rate (Dewey et al., 2010; Baron et al., 2013). FUS and TDP-43 are two RNA-binding proteins that are genetically linked to ALS and share similar domain structures, are both components of inclusions in ALS and
FTLD, and share many functions, such as transcription, RNA splicing, and transport of mRNA.

Recently, a third ALS-linked protein, profilin-1, was found to associate with stress granules and mutations in this protein may also affect stress granule dynamics (Figley et al., 2014). Profilin-1 is an important protein in the regulation of actin polymerization making this finding intriguing as cytoskeletal organization is key for stress granule formation and disassembly (Bartoli et al., 2011). It has yet to be determined whether actin assembly is altered by ALS-linked profilin-1 mutations, however one could speculate that if this were the case, stress granule function would be disturbed as a result. Several other ALS-linked proteins are also associated with stress granules: hnRNPA1, hnRNPA2, and ataxin-2. Mutations in these proteins do not account for very many ALS cases, however, they are implicated as risk factors for the disease.

While it is significant that six different ALS-associated proteins are all components of stress granules, it has also been proposed that stress granules could be precursors to the pathological aggregates found in ALS patient tissue (Dewey et al., 2012). Several stress granule nucleating factors, such as T cell intracellular antigen 1 (TIA 1), nucleolysin, TIAR and eukaryotic translation initiation factor 3 subunit (eIF3), are present in TDP-43 containing aggregates in patient ALS tissue (Liu-Yesucevitz et al., 2010). The implications of this observation are that stress granules, containing TDP-43, formed in response to a cellular stress and persisted long enough to further incorporate TDP-43 to the
point of forming an aggregate. Persistent stress granules could be the result of a heightened state of cell stress that does not get resolved. Alternatively, the incorporation of ALS-linked mutant protein, such as FUS or TDP-43, may impair the function of stress granules such that homeostasis is not re-established, resulting in a vicious cycle in which the system put in place to deal with stress actually causes more stress, worsening over time.

Tipping the balance of proteostasis in ALS

That numerous ALS-associated proteins are involved in stress granules and protein degradation pathways suggests that these processes contribute to ALS pathogenesis through a common cellular event, such as the maintenance of protein homeostasis, also known as proteostasis (Ong and Kelly, 2011). To maintain proteostasis, the cell responds to misfolded protein and ER-stress by eliciting a stress signal that induces stress granule formation and the stalling of translation while also utilizing protein degradation machinery to rid the cell of protein that cannot be refolded (Figure IV-1 top). As the efficiency of the proteasome and autophagy systems normally decline with age, mutations in proteins involved in these pathways may exacerbate this effect, causing the system to surpass a threshold for which it can handle defects in proteostasis. This in turn may cause an accumulation of misfolded proteins which leads to a heightened level of cell stress, persistent stress granules, and eventually protein aggregates. In support of this theory, many disease-associated aggregates are
ubiquitinated (Blokhuis et al., 2013), indicating activation of the UPR. Furthermore, inhibition of the proteasome has been shown to induce stress granule formation (Mazroui et al., 2007), demonstrating a link between these two cellular processes. Whether (Figure IV – 1 bottom). As stress granule function and protein degradation are intimately linked, disruption of either would be detrimental, leading to cell death and neurodegeneration, as supported by the fact that many ALS-linked proteins are associated with these processes.

Neuronal vulnerability

All cells maintain protein homeostasis using these fundamental processes and mutant ALS-associated proteins are expressed ubiquitously in all cell types. Why then are neurons susceptible to disturbances in these processes while other cell types appear to be impervious? The difference is the post-mitotic status of neurons. Neurons do not replicate and once a neuron is differentiated and established within an organism, it will remain there for the duration of the organism’s life. Mitotic cells however, are turned-over as new cells are continuously being produced. This is necessary as mitotic cells have a limit to the number of times they can divide before they are destined for apoptosis. That disease onset for ALS occurs later in life implies there is a temporal factor involved in the development of the disease. If protein homeostasis is compromised in a neuron, the level of misfolded proteins and cellular stress will accumulate over time. Eventually, a threshold is reached at which the cell can no
longer survive. It could take decades to reach this threshold, which for a neuron is within its lifetime while mitotic cells reach the end of their life long before enough stress is accumulated to create a problem. In this way, neurons become more susceptible over time to stress, eventually leading to neurodegeneration.

Conclusion

The multifunctional nature of FUS makes its role in ALS pathogenesis difficult to ascertain. Investigating ALS-linked FUS mutant protein has revealed disruptions in the DNA damage repair, transcriptional regulation, and RNA splicing functions of FUS. Additionally, mutant protein mislocalizes to the cytoplasm and causes abnormal stress granule formation and dissolution, having implications of an altered cellular stress response. Which of these abnormal properties of mutant FUS protein is most relevant to ALS pathogenesis? Is association with G-quadruplexes an important connection between FUS function and C9ORF72-mediated ALS? Since the discovery of FUS in ALS in 2009, over 250 studies of FUS have been published. With this expansive interest and the development of animal and induced pluripotent patient stem cell models, determining the role of FUS in ALS pathogenesis will surely come to fruition.
Figure IV-1. A model of ALS pathogenesis. The normal cellular response to naturally occurring protein misfolding is the initiation of the unfolded protein response, resulting in the formation of stress granules for translation inhibition, and the upregulation of protein degradation machinery, such as the proteasome and autophagosome (top). In a diseased state, the balance between these systems may be altered. Mutations in various proteins could lead to higher levels of misfolded protein and aggregates, increased levels of ER-stress, accumulation and improper function of stress granules, and inefficient protein degradation by autophagy and the proteasome, which are already known to be less efficient with age. Over time the cell reaches a threshold of stress at which it can no longer survive, culminating in neuronal loss and disease onset.
PREFACE TO APPENDIX I:

All of the work presented in this appendix was performed by Catherine L. Ward.
APPENDIX I: INVESTIGATING A ROLE FOR FUS/TLS IN SUPPRESSION OF NEURONAL CELL CYCLE REINITIATION

The Cell Cycle

The cell cycle is a vital process that is fundamental to all life. It is crucial during development and for the replenishment of cells that have undergone apoptosis. The cell cycle is composed of two main stages: interphase and mitosis. Interphase is broken up into three phases, Growth1 (G1), S-phase, and Growth 2 (G2) which each play specific roles in preparing the cell for mitosis. During G1, the cell grows in size and produces the proteins and nucleic acids necessary for undergoing DNA replication, which occurs during S-phase. After S-phase is complete and the cell contains two copies of DNA, the cell enters G2 where it rapidly grows in size and increases protein synthesis. After G2, the cell undergoes mitosis and it divides into two daughter cells, with each containing one copy of DNA (reviewed in (Vermeulen et al., 2003)).

Cell cycle progression. Progression through each stage of the cell cycle is regulated by the interactions of several specific proteins: cyclins and cyclin-dependent kinases. As their name implies, levels of cyclins fluctuate, correlating with specific phases of the cell cycle. Cyclin E for example, increases throughout G1, is highest during the G1-S transition and decreases throughout S phase. Cyclin A, on the other hand, increases during S-phase and reaches its peak
during G2. Regulating the levels of cyclins is important as these proteins are required during specific cellular stages for the function of cyclin-dependent kinases (CDKs). Cyclin D1 for example, starts being expressed in G1 and forms a complex with cyclin-dependent kinases 4 (CDK4), which is turn phosphorylates retinoblastoma, allowing for the transcription of genes required for S-phase. As a complex, cyclins are the regulatory subunits while CDKs are the catalytic subunits, inactive until bound to their corresponding cyclin.

In addition to cyclins and cyclin-dependent kinases which promote cell cycle progression, there are additional proteins that inhibit cell cycle progression. There are two families of inhibitory proteins: the cip/kip (CDK interacting protein/kinase inhibitory protein) and the INK4a/ARF (inhibitor of kinase 4/alternative reading frame) families. As their name implies, the INK4a/ARF family inhibits the activity of CDK4, arresting the cell cycle in G1. The cip/kip family on the other hand, is active throughout the entire cell cycle, inhibiting the activity of numerous cyclin/CDK complexes (reviewed in (Vermeulen et al., 2003)).

Checkpoints: maintaining DNA integrity. Throughout the cell cycle, several quality control checkpoints exist to ensure DNA integrity is maintained before the cell progresses to the next phase. Before leaving S-phase, DNA is assessed to ensure complete replication and in mitosis there is a checkpoint to ensure spindles are formed properly before the two sets of DNA are separated. The
two growth phases, G1 and G2, each contain a checkpoint to determine whether any DNA damage has occurred prior to allowing the cell entry into S-phase or mitosis, respectively, where the integrity of DNA is crucial. If any abnormalities are discovered during these checkpoints, the cell cycle will arrest until the error has been corrected. Cell cycle arrest is achieved by the rapid induction of inhibitors and signaling cascades which ultimately shut down expression of proteins required for cell cycle progression (reviewed in (Vermeulen et al., 2003)).

FUS and cell cycle regulation. Several pieces of literature exist demonstrating a role for FUS in cell cycle regulation. Presented here in Chapter III, in response to FUS knockdown, proliferation of NSC-34 cells was reduced and could be recovered with FUS re-expression, demonstrating a direct correlation between FUS levels and cell proliferation status. The expression of several proteins associated with cellular proliferation was also altered upon FUS knockdown. That a previous study demonstrated an enriched binding of FUS to mRNAs encoding for cell cycle related proteins (Colombrita et al., 2012) suggests FUS affects cellular proliferation through its role in RNA processing. In support of this, a study in RAW264.7 macrophage cells showed that FUS is recruited to the promoter of cyclin D1 in response to ionizing radiation and inhibits its expression (Wang et al., 2008). This finding is an example of how FUS may be important for cell cycle arrest after the induction of DNA damage. This study further
demonstrated that knockdown of FUS in RAW264.7 cells resulted in an increase in cyclin D1 mRNA expression (Wang et al., 2008); a finding which was reproduced in our lab at both the mRNA (Figure AI-1A) and protein level (Figure AI-1B,C). While appropriate experiments were not performed to test this, this increase in cyclin D1 expression would suggest active cell proliferation in the absence of FUS, whereas in NSC-34 cells, knockdown of FUS caused a defect in cell proliferation (Chapter III). This could be suggestive of FUS having a bi-directional role in cell cycle regulation; normally FUS promotes cell cycle progression whereas under conditions of cell stress, FUS promotes cell cycle arrest.

Two other studies have suggested a role for FUS in cell cycle regulation, specifically in terms of androgen stimulated proliferation of prostate cancer cells. In a study by Haile et al., a four day knockdown of FUS in prostate cancer cells reduced cellular proliferation stimulated by androgen (Haile et al., 2011). In contrast however, Brooke et al. show that a three day knockdown of FUS increased androgen-dependent cell cycle progression (Brooke et al., 2010). Moreover, they show FUS promotes cell cycle arrest by reducing levels of CDK6 and cyclin D1 and by increasing inhibitors of proliferation, such as the CDK inhibitor, p27 (Haile et al., 2011). The discrepancy between these two studies has not been explained. Together however, in addition to the study by Wang et al. and the work presented in Chapter III, it is evident that FUS may have important functions in controlling proper activity of the cell cycle.
Figure Al-1. Knockdown of FUS causes an increase in cyclin D1 expression in RAW264.7 macrophage cells. RAW264.7 macrophage cells were transfected with 20pmol of siRNA specific for FUS. (A) Twenty-four hours post-transfection, RNA was harvested and levels of FUS and cyclin D1 mRNA were measured by qRT-PCR. Data shown is the average of two independent experiments run in technical quadruplicate ± standard error. (B) Representative western blot of the indicated cell lysates demonstrating increased expression of cyclin D1 after knockdown of FUS. Tubulin serves as a loading control. (C) Western blot densitometry analysis demonstrating a decrease in FUS expression at 24h of siRNA transfection with a concomitant increase in cyclin D1. Data shown is the average of four independent experiments ± standard error. Statistical significance was determined by a student's t-test (**P <0.01; ***P <0.001).
The post-mitotic neuron

Neurons are specialized cell types that differ from non-neuronal cells in a number of ways. One characteristic that sets them apart is their post-mitotic status. During development and neuronal differentiation, neurons exit the cell cycle and enter a phase called G₀ (Herrup and Yang, 2007). Very little is known about how neurons exit the cell cycle after development, but accumulating evidence suggests keeping the cell cycle suppressed is essential for neuronal health and viability.

Cell cycle re-initiation and neurodegeneration. It is widely established that neurons do not proceed through the cell cycle once the developmental process is complete and neurons are considered matured. Cell cycle proteins are almost undetectable in adult neurons and machinery for DNA replication is non-existent. However, accumulating evidence demonstrates that neuronal tissue from various neurodegenerative disease cases have elevated levels of numerous cell cycle proteins (Herrup and Yang, 2007). This is suggestive of loss of neuronal cell cycle control in late onset neurodegeneration. For instance, in patient tissue from Alzheimer’s disease (AD), re-expression of several cell cycle proteins has been observed including, cyclin A, B, D, and E, as well as CDKs, CKD inhibitors, and the proliferating cell nuclear antigen protein (PCNA) indicative of S-phase (reviewed in (Herrup and Yang, 2007)). Furthermore, these proteins were only expressed in neuron types susceptible in AD and were present before any signs
of classic AD pathology, such as amyloid β deposition (reviewed in (Bonda et al., 2010a; Herrup, 2012)). There have also been reports of cell cycle protein re-expression in other neurological conditions including, ataxia telangiectasia, Parkinson’s disease, stroke, and ALS (Herrup and Yang, 2007). In ALS mice and patient tissue, evidence of increased cyclin D and CDK4 expression has been noted in motor neurons, the cell type susceptible in ALS (Nguyen et al., 2003; Ranganathan and Bowser, 2003). That the cyclin D/CDK4 complex is responsible for reinitiating the cell cycle in cells maintaining a resting G\textsubscript{0} state (Sherr, 1994) it follows that cell cycle reinitiation could be occurring in ALS motor neurons. Interestingly, experimental expression of cell cycle proteins in neurons initiates apoptosis, further supporting a link between these two events.

Conclusion

While cell cycle reinitiation is an interesting model for neurodegeneration-associated neuronal death, the hypothesis is still in its early stages and is not currently a widely accepted model. Furthermore, it is not certain whether this reinitiation is an upstream event, or a downstream event occurring as an early stage of apoptosis. As several reports have demonstrated a role for FUS in maintaining cyclin D1 levels and regulating cellular proliferation, one could speculate that FUS may also play a role in suppressing the cell cycle in neurons. Thus, the nuclear depletion of FUS by ALS-linked mutations, could potentially lead to expression of cyclin D1 and an aberrant cell cycle reinitiation. To date,
the regulation of \textit{CCND1} by FUS has only been demonstrated in macrophage cells (Wang et al., 2008) and prostate cancer cells (Brooke et al., 2010; Haile et al., 2011), and remains to be investigated in neurons. Further studies of the role of FUS in neuronal gene expression are necessary for concluding whether FUS plays a role in cell cycle-related neuronal death.
PREFACE TO APPENDIX II:

The following chapter is a manuscript published in the Journal of Cellular Physiology (Publisher: John Wiley and Sons; License #3397800087634).

My contributions to this manuscript included intellectual input, experimental design strategies, and the establishment of the cell viability protocol (MTT assay) used herein. Additionally, I performed preliminary MTT assays and aided in the analysis of MTT assay results and provided reagents and consulting for the culture of NSC-34 cells stably expressing inducible shRNA.
FUS/TLS Assembles Into Stress Granules and Is a Prosurvival Factor During Hyperosmolar Stress

REDDY RANJITH K. SAMA,1 CATHERINE L. WARD,1 LAURA J. KAUSHANSKY,1 NATHAN LEMAY,1 SHINSUKE ISHIHAKI,2 FUMIHIKO URANO,3 AND DARYL A. BOSCO1,4

1Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts
2Department of Neurology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
3Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
4Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts

Abnormal striated translocated in liposarcoma (FUS/TLS or FUS) is an RNA/DNA-binding protein that is implicated in a diverse array of cellular processes. FUS is also known as heterogeneous nuclear ribonucleoprotein P2 (hnRNP P2) (Calvio et al., 1995), a member of the Tet family of proteins that also includes EWS (Ewing’s sarcoma) and TAF15 (TATA-binding protein-associated factor 15) (Tan and Manley, 2009). FUS was originally discovered in the context of a fusion oncprotein in myxoid liposarcoma cells (Crozat et al., 1993). Since then, this multifunctional protein has been linked to various aspects of RNA and DNA processing, including mRNA splicing (Ishihaki et al., 2012), transcription (Wang et al., 2008), and DNA repair (Kuroda et al., 2008). Recently, mutations in FUS have been linked to the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS; Kwon et al., 2009; Yance et al., 2009). FUS is predominantly expressed in the nucleus of most cells (Anderson et al., 2008), although it shuttles between the nucleus and cytoplasm during mRNA transport (Zimzen et al., 1997; Fujii and Takumi, 2005). Several reports have shown that ALS-linked FUS mutants associate with cytoplasmic stress granules under conditions of oxidative stress and heat shock (Boccali et al., 2010; Dornemann et al., 2010; Gal et al., 2010). Stress granules are stress-induced translational complexes comprised of mRNA, ribosomes, and RNA-binding proteins that form in response to induced stress, such as hyperosmolar stress, oxidative stress, heat shock, atriatesion irradiation and viral infection (Anderson and Kedersha, 2009). These dynamic complexes are thought to play a role in sorting mRNAs for expression, storage, or degradation (Kedersha and Anderson, 2002). More recently, stress granules have also been shown to directly regulate protein activity in the context of...

Accepted manuscript online in Wiley Online Library

Contract grant sponsor: Worcester Foundation (DAB).
Contract grant sponsor: US National Institutes of Health/National Institute on Neurological Disorders and Stroke.
Contract grant number: 1R01NS078341-01.
Correspondence to: Daryl D. Boccali, Department of Neurology, Albert Einstein College of Medicine, 770 E. 180th Street, New York, NY 10461. E-mail: daryl.boccali@aecom.edu
Manuscript received 11 April 2013
Manuscript accepted 7 April 2013
Advance online publication in Wiley Online Library
Web of Science Citation ID: 000318129800001
© 2013 WILEY PERIODICALS, INC.
FUS/TLS responds to hyperosmolar stress

Materials and Methods

Cell culture and induced stress

HEK293 cells and MESC34 cells were cultured in minimal essential medium (MEM, Gibco, Grand Island, NY) supplemented with 10% fetal bovine serum (FBS, Sigma, St. Louis, MO) and 1% penicillin and streptomycin (PS, Gibco) under standard culture conditions (37°C, 5% CO2/95% air). NCS-34 cells and mouse embryonic fibroblasts (MEFs) were cultured in Dulbecco’s MEM (DMEM, Gibco) supplemented with 10% FBS and 1% PS under standard culture conditions. MESC34 cells with stably integrated GFP-FUS-GS15X were cultured as described previously (Boixo et al., 2010). Sorbital (Sigma) was dissolved directly into the media to obtain a final concentration of 0.4 M and added to the cells (Behlouche and Anderson, 2007). Sucrose (Eikonon Microscopy Sciences, Fort Washington, PA) was dissolved into media to obtain a final concentration of 0.8 M and added to the cells (Behlouche et al., 2010). Stock solutions of 150 mM sodium arsenite (Sigma) in DMSO (Sigma), 10 mM t-butyl glycine (Sigma) in DMSO, 1 M hydrogen peroxide (Sigma) in media, 30 mM sodium arsenite (Sigma) in water and 32 mM hydrochloric acid-2,2-dimethoxypropane (DMP) in water were prepared and added to the media to obtain the final concentrations of 0.5 M arsenite, 1.5 M t-butyglycine, 100 μM hydrogen peroxide and 20 μM arsenite, respectively. 2,2-Dimethoxypropane (Sigma) was used as a control for subtracting the background signal as described previously (Boixo et al., 2010). The integrated morphometry analysis tool was used to calculate the percent of nuclear FUS, Statistical significance between conditions was determined by ANOVA and Tukey’s post hoc pairwise test.

Western blots

Western blots were performed essentially as described in (Boixo et al., 2010). Briefly, blot were incubated at 4°C with shaking overnight in the presence of primary antibodies as per the following dilutions: 1:500 anti-α-tubulin (Sigma), 1:500 anti-FUS (in house antibody created against 264-284 peptide sequence of FUS, QIAGEN, Piscataway, NJ), 1:500 anti-FUS (47711,Santa Cruz, Santa Cruz, CA) and 1:1,000 anti-α-tubulin (1148, Millipore). Densitometry was performed using the Odyssey infrared imaging system software (LI-COR Biosciences, Lincoln, NE).

Immunoprecipitation

Cells resuspended in 50 mM Tris pH 7.5, supplemented with 1% NP-40, 150 mM NaCl, 0.5% EDTA, 10% glycerol and protease inhibitor (lysis buffer) were briefly sonicated and incubated at 4°C with shaking for 30 min. The lysates were centrifuged for 15 min at 13,000 rpm and 4°C. Pre-clearing of the supernatant was achieved by incubation with 100 μl of BSA-protein A beads (Invitrogen) at 4°C with shaking for 2 h. The beads were removed with a magnet and the protein concentration of the supernatant was determined using a bicinchoninic assay (ThermoScientific, Biloxi, MA). Anti-FUS (Invitrogen) or anti-GFP antibody (Abcam, Cambridge, MA) was bound to fresh beads with shaking for 2 h at 4°C. A total of 1 μg of the pre-cleared supernatant was then added to 100 μl of antibody-bound beads.
and incubated overnight with shaking at 4°C. The lysate was removed and beads were washed three times with lysis buffer. Proteins bound to the beads were eluted with 1X SDS sample buffer at 95°C for 5 min, and probed by western as described above.

Cell toxicity assays

NSC-34 cell lines siSC and siFUS were plated in 24 well dishes. 48h after induction with doxycycline, cells were treated with 0.4 M sorbitol or 0.25 mM sodium arsenite for 8h. For the MTT (3(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay 100 μl of 5 mg/ml MTT (in nitrogene) was added to the wells for 35 min followed by cell lysis overnight with 300 μl lysis buffer (10% SDS in 1:1 N,N-dimethylformamide:water/2% acetic acid/0.5% HCl 1 M) and absorbance measurement at 550 nm using the VICTOR V plate reader (Perkin Elmer, Waltham, MA). Cell viability for each sample was calculated using the formula: % viability = 100 × (OD_{sample} - OD_{baseline})/(OD_{max} - OD_{baseline}).

Lactate dehydrogenase (LDH) assay was performed as per manufacturer’s protocol (CytoTox 96 Non-radioactive Cytos assay, Promega, Madison, WI). After the 8h treatment, 50 μl of media from each well was transferred to wells of 96 well plate. 50 μl of substrate mix was then added to each well and the plates were covered and incubated at ambient temperature, protected from light for 30 min. After the incubation, 50 μl stop solution was added to each well and absorbance was recorded at 490 nm using the above plate reader. Percentage (%) cytotoxicity was determined for each experimental condition (Exp0) using the formula: % cytotoxicity = 100 × (OD_{sample} - OD_{baseline})/(OD_{max} - OD_{baseline}), where OD_{max} represents the absorbance of the media from a well with complete lysis of cells releasing maximum LDH. All assays were performed at least three independent times. Statistical significance was determined by a two-tailed Student’s t-test.

Results

Endogenous FUS redistributes to the cytoplasm and assembles into stress granules in response to hyperosmolar stress.

In order to investigate the role of FUS in stress response, we examined the nucleo-cytoplasmic distribution of FUS in response to various cellular stressors. Hyperosmolar stress induced by the administration of 0.4 M sorbitol to HeLa cells for 1 h resulted in a striking redistribution of FUS from the nucleus to the cytoplasm, where FUS assembled into numerous puncta. A majority of FUS-positive puncta co-localized with the stress granule marker proteins, G3BP (Fig. 1A; supplementary material Movie M1) and TIAR (Fig. 1B; supplementary material Movie M2; Kedersha and Anderson, 2007). The redistribution and incorporation of FUS into stress granules in response to sorbitol is reminiscent of other nuclear hnRNP, such as hnRNP A1 (Giulii et al., 2006) and TDP-43 (Dewey et al., 2011). However, not all hnRNP proteins redistribute to stress granules in response to sorbitol (van der Houwen van Gorkom et al., 2000), suggesting a functional role in stress response for those hnRNP that do localize to these structures. In addition to sorbitol, hyperosmolar stress induced by sucrose also caused FUS to redistribute to the cytoplasm and incorporate into stress granules (supplementary Fig. S1).

Since stress granules are functionally related to processing bodies (P-bodies), which are cellular sites of mRNA degradation (Moore, 2005), we also probed for the co-localization of endogenous FUS with GE-1/7/88, a constituent of P-bodies but not stress granules (Kedersha and Anderson, 2007). The majority of P-bodies did not co-localize with FUS-positive granules. However, some P-bodies appeared to associate with and/or dock onto FUS-positive granules (Fig. 1C; supplementary material Movie M3), consistent with the physical association between P-bodies and stress granules that has been previously described (Kedersha et al., 2005; Bosco et al., 2010).

Next, we investigated the effect of sorbitol in other cell lines. Administration of sorbitol to HEK (human embryonic kidney)-293T, MEFs, and NSC-34 (neuroblastoma × spinal cord hybrid; Cashman et al., 1992) cell lines recapitulated the results from HeLa cells: FUS redistributed from the nucleus to the cytoplasm, where it assembled into G3BP- and TIAR-positive stress granules (supplementary material Fig. S2). Therefore, the response of FUS to hyperosmolar stress is not a cell-type specific phenomenon, but rather is detected in several different mammalian cell lines.
In contrast to sorbitol and sucrose, FUS did not redistribute to the cytoplasm when HeLa cells were exposed to inducers of oxidative stress (e.g., sodium arsenite and hydrogen peroxide), endoplasmic reticulum (ER) stress (e.g., thapsigargin) or heat shock, all of which induce the formation of stress granules in a majority of cells (Fig. 2; Kedersha and Anderson, 2007; Errana et al., 2012). Endogenous FUS was not detected in any of the G3BP-positive stress granules that formed under these conditions; we did not detect any cells with elevated cytoplasmic FUS or FUS-positive stress granules under these conditions. Similarly, exogenously expressed wild-type FUS did not redistribute nor assemble into stress granules under the aforementioned conditions (Bosco et al., 2010; Dormann et al., 2010; Biermann et al., 2012; Daigle et al., 2013), although the effect of sorbitol on endogenous or exogenous FUS has not been reported. Thus our results demonstrate that the formation of stress granules by various stressors is not sufficient to cause a redistribution of FUS to the cytoplasm, indicating that there are specific factors associated with hyperosmolar stress that elicit this response for endogenous FUS.

The assembly of FUS into stress granules is rapid and reversible

The formation of stress granules represents a fast, almost immediate, response of cells to induced stress. To determine the time frame in which FUS responds to sorbitol, we monitored the cellular redistribution of FUS by immunofluorescence microscopy over a 1 h time course of sorbitol exposure. G3BP is an effector of stress granule assembly (Toungier et al., 2003; Aulas et al., 2012) and was therefore used as a marker to monitor the assembly process. The cytoplasmic redistribution of FUS was detected within 10 min of sorbitol treatment, a time point that preceded the appearance of discrete G3BP-positive cytoplasmic foci, demonstrating that FUS starts to accumulate in the cytoplasm before stress granules are fully formed (Fig. 3A). Within 20 min of sorbitol treatment, discrete G3BP-positive stress granules containing FUS were detected. Therefore FUS appears to incorporate into stress granules on the same time scale that

Fig. 2. The recruitment of FUS to cytoplasmic stress granules is stress-specific. HeLa cells were treated with either 0.5 mM sodium arsenite (NaAsO$_2$) for 1 h, 1.5 mM hydrogen peroxide (H$_2$O$_2$) for 2 h, 50 mM thapsigargin for 30 min, or heat shock at 43°C for 30 min. Immunofluorescence revealed that G3BP-positive stress granules (red) formed under all stress conditions. FUS (green) remained nuclear and absent from stress granules under these stress conditions, similar to the untreated condition (top part). Nuclei were stained with DAPI (blue). All images are representative of n 3 independent experiments. Scale bar represents 10 μm.

Fig. 3. The response of FUS to sorbitol is rapid and reversible. A: A representative time-course for the cytoplasmic redistribution of FUS into stress granules upon exposure to hyperosmolar stress. HeLa cells were treated with 0.4 M sorbitol for the indicated time points, fixed, and assessed by immunofluorescence with anti-FUS (green) and anti-G3BP (red) antibodies, and the nuclear marker DAPI (blue). Elevated levels of cytoplasmic FUS were detected as early as 10 min. FUS accumulated into discrete stress granules by 20 min. The nuclear-cytoplasmic distribution of FUS continued to shift towards the cytoplasm over the remaining time course. B: A representative time-course for the return of FUS to the nucleus and the concomitant disassembly of stress granules upon withdrawal of sorbitol. HeLa cells were treated with 0.4 M sorbitol for 1 h, after which the sorbitol was replaced with fresh media and the cells were processed as described in (A). A majority of FUS re-localized to the nucleus within 10 min. Some G3BP-positive stress granules persisted for up to 1 h. Images are representative of at least n 3 experiments. Scale bar represents 10 μm.
these foci are being formed. G3BP- and FUS-positive stress granules appear fully formed by 60 min, at which time a substantial fraction of FUS was redistributed to the cytoplasm. The formation of stress granules is a reversible process (Anderson and Kedersha, 2008). After the induced stress is removed, stress granules disassemble as the cell re-establishes homeostasis. We monitored the disassembly of stress granules in HeLa cells pre-treated with sorbitol to determine the subcellular fate of FUS as cells re-established homeostasis. The disassembly of stress granules was initiated by replacing media containing sorbitol with fresh media lacking sorbitol, and cells were monitored for 60 min by immunofluorescence microscopy as described above. Within 10 min of removing sorbitol from the media, FUS dissociated from stress granules and redistributed to the nucleus in virtually all (~90%) cells. However, G3BP-positive, FUS-negative foci persisted in approximately one third of cells at this time point (Fig. 3B). For the remainder of the time course, FUS was localized to the nucleus while G3BP-positive stress granules gradually continued to disassemble until the 60 min time point, when ~20% of cells contained G3BP-positive stress granules. These data show that FUS exhibits a rapid response not only to the administration of sorbitol (Fig. 3A), but also to the removal of this stressor (Fig. 3B). Stress granule assembly is required for robust cytoplasmic redistribution of FUS FUS is a nucleo-cytoplasmic shuttling protein. Therefore, the accumulation of FUS in the cytoplasm can result from increased export of the protein from the nucleus and/or decreased import to the nucleus from the cytoplasm. The nucleo-cytoplasmic equilibrium of FUS may be shifted towards the cytoplasm through FUS binding interactions. For example, injection of anti-FUS antibodies into cells trapped the majority of FUS in the cytoplasm within 2 h (Zinszner et al., 1997). Since the timescale of FUS redistribution from the nucleus to the cytoplasm under conditions of hyperosmolar stress (1 h, Fig. 3) is similar to that in aforementioned antibody study (2 h, Zinszner et al., 1997), we asked whether or not stress granules serve as a “cytoplasmic sink” that effectively traps FUS in the cytoplasm through mass action. Stress granule assembly was inhibited by the addition of 50 μg/ml emetine, which stabilizes polyribosomes and blocks translation elongation (Kedersha et al., 2000), for 1 h prior to the administration of hyperosmolar stress. As expected, only diffuse G3BP signal (i.e., no G3BP-positive stress granules) was observed under these conditions (Fig. 4A). Interestingly, emetine treatment also markedly attenuated the cytoplasmic redistribution of FUS.

Fig. 4. An inhibitor of stress granule assembly prevents the cytoplasmic redistribution of FUS, though stress granules still assemble in the absence of FUS. A: HeLa cells were treated with 0.4 M sorbitol for 1 h, 50 μg/ml emetine for 1 h or pre-treated with emetine followed by sorbitol treatment. Cells were then fixed and probed by immunofluorescence for DAPI (blue), FUS (green), and G3BP (red). Emetine pre-treatment inhibited both stress granule assembly, as evidenced by the diffuse G3BP signal, and the cytoplasmic redistribution of FUS in the presence of sorbitol. B: HeLa cells were transfected with non-targeting siRNA (siNT) or siRNA against FUS (siFUS) for 48 h, subsequently treated with 0.4 M sorbitol for 1 h, and then processed for immunofluorescence as described above. Cells treated with either siFUS or siNT exhibited normal stress granule formation (B, red) in response to sorbitol, despite a significant reduction in FUS protein levels in siFUS treated cells as evidenced by immunofluorescence (green, B) and Western blot (C). All images are representative of at least n = 3 independent experiments. Scale bar represents 10 μm.
FUS/TLS responds to hyperosmolar stress

Next, we investigated the roles of FUS in stress granule assembly under conditions of hyperosmolar stress. HeLa cells were first treated with either siRNA specific for FUS or non-targeting siRNA as a control for 48 h, and were then exposed to 0.4M sorbitol for 30 min to induce the formation of stress granules (Fig. 4g). Although cells treated with FUS siRNA exhibited a ~90% reduction in FUS protein levels (Fig. 4c), these cells produced G3BP-positive stress granules in response to sorbitol that were indistinguishable from control cells (Fig. 4d). While the physical response of FUS to hyperosmolar stress depends on the stress granule assembly pathway (Fig. 4a), FUS does not appear to dictate the ability of stress granules to form.

Methylation regulates the nucleo-cytoplasmic distribution of FUS under hyperosmolar stress

Next, we investigated the mechanisms by which FUS relocates to the cytoplasm and incorporates into stress granules in response to hyperosmolar stress. Methylation of arginine residues is a post-translational modification that modulates the nucleo-cytoplasmic distribution of histone proteins, such as the cold-inducible RNA-binding protein (CIRP) (D'Eiloo et al., 2007). Some reports implicate a link between the arginine methylation status of ALS-linked FUS and its subcellular localization (Trudeau et al., 2012; Yamaguchi and Kitajo, 2012). In fact, mass spectrometry analyses demonstrate that up to 70% of arginine residues are dimethylated in FUS (Rappaport et al., 2003). The protein arginine N-methyltransferase-1 (PRMT1), which accounts for ~80% of arginine methylation in the cell (Bedford and Clarke, 2009), and FUS interact suggests that the methylation of FUS is catalyzed by PRMT1 (Ture et al., 2011; Trudeau et al., 2012; Yamaguchi and Kitajo, 2012). Interestingly, stress granules contain arginine methylated histone proteins, raising the possibility that this post-translational modification influences stress granule dynamics (Kle and Donnai, 2011). This notion is supported by an attenuation of fragile X mental retardation protein (FMRP) in stress granules upon exposure to adenine-2, 3'-diphosphate (AdoCp) (Dutkevitch et al., 2005), a general inhibitor of methyltransferases (O'Day et al., 1997).

To determine whether or not the methylation status of FUS regulates its subcellular localization under conditions of hyperosmolar stress, we examined the nucleo-cytoplasmic distribution of FUS after treatment of HeLa cells with AdoCp. FUS remained predominantly nuclear in the presence of AdoCp alone (data not shown). However, when cells were pre-treated with AdoCp prior to sorbitol exposure, there was a significant effect on the nucleo-cytoplasmic partitioning of FUS compared to cells treated with sorbitol alone (Fig. 4a,b). While sorbitol treatment resulted in a ~50% reduction of nuclear FUS compared to control cells, post-treatment with AdoCp restored ~50% of FUS to the nucleus (Fig. 4b). To quantify the methylation status of the FUS protein itself, FUS was immunoprecipitated from untreated cells or from cells treated with AdoCp in combination with sorbitol and probed for asymmetrically dimethylated arginine residues with the ASY2M4 antibody (Trudeau et al., 2012). Arginine methylation of FUS in untreated cells was detected by ASY2M4 (Fig. 4c), which is expected since FUS is reportedly arginine methylated under homostatic conditions (Rappaport et al., 2003). The level of methylated FUS was not significantly altered by the addition of sorbitol (data not shown). However, the arginine methylation status of FUS decreased by more than 50% in cells pre-treated with AdoCp (data not shown) or AdoCp in combination with sorbitol (Fig. 4c,d). Since AdoCp is a general methyltransferase inhibitor, we cannot exclude the possibility that other methylation events influence the nucleo-cytoplasmic distribution of FUS, including endosomatic stress granules.

Cells are susceptible to sorbitol toxicity and death when FUS expression is reduced

Given that the full response of FUS to hyperosmolar stress includes its assembly into stress granules (Fig. 4) and that the level of stress granules is to overcome stress and re-establish cellular homeostasis, we investigated whether the expression of FUS is important for cellular viability under conditions of hyperosmolar stress. The normal cellular response to hyperosmolar stress includes cell cycle arrest, during which time cells may adapt to stress and resume proliferation (Burg et al., 2007). However, severe hyperosmolar stress induces apoptosis and cell death (Burg et al., 2007; Bevilacqua et al., 2010). To address the susceptibility of cells to hyperosmolar toxicity in the absence of FUS, we employed inducible NICE-34 cell lines that stably express either siRNA specific for FUS (siFUS) or a scrambled control siRNA (siSC). These cell lines are advantageous for cell viability measurements since cell death resulting from chemical transfection protocols is eliminated. NICE-34 cells were induced with doxycycline for 48 h, resulting in ~70% knock...
Fig. 5. Methylation regulates the nucleo-cytoplasmic distribution of FUS. A,B: HeLa cells were treated with 0.4 M sorbitol for 1 h, or pretreated with 50 µM AdOx for 24 h prior to sorbitol treatment (AdOx + sorbitol) and subjected to confocal immunofluorescence imaging with anti-FUS (green) and anti-G3BP (red) antibodies. Sorbitol decreased the percentage of cellular FUS in the nucleus from 73.6 ± 7.8% in untreated cells to 46.6 ± 9.8%. Pre-treatment of cells with AdOx prior to sorbitol increased the percentage of cellular FUS in the nucleus to 73.6 ± 7.8%. Data shown are the average of three independent experiments ± standard deviation. Statistical significance was determined by ANOVA and Tukey’s post hoc pairwise test (*P < 0.05, **P < 0.005). No other comparisons were statistically significant. Scale bar represents 10 µm. C: FUS was immunoprecipitated from untreated HeLa cells or from AdOx + sorbitol cells and probed with the ASYM24 antibody by Western blot. FUS was used as a loading control. D: Dot blot analysis of (C) revealed a 48.6 ± 7.8% decrease in the amount of FUS that is arginine dimethylated when cells were pre-treated with AdOx compared to untreated cells. Data shown are the average of three independent experiments ± standard deviation. Statistical significance was determined by Student’s t-test (*P < 0.005).

Down of FUS in the shFUS line (Fig. 7A) but not a loss of cell viability in either shFUS or shSC cells (data not shown). Cells were then treated for 8 h with either 0.4 M sorbitol or 0.25 mM sodium arsenite as a negative control. Sodium arsenite induces stress granule assembly, however endogenous FUS does not associate with stress granules under this condition (Fig. 2). Moreover, others have reported that mammalian cells with knock-down FUS expression are not susceptible to sodium arsenite (Aulas et al., 2012). In agreement with this report, we did not detect a difference in percentage cell viability (Fig. 7B) or cell death (Fig. 7C) between shFUS and shSC cells in response to sodium arsenite using the MTT and LDH assays, respectively. In contrast, the percentage of viable cells was approximately twofold lower in the shFUS cells compared to shSC cells after sorbitol treatment (Fig. 7B). That shFUS cells are more susceptible to sorbitol-induced toxicity was confirmed by the LDH cell death assay, which revealed threefold greater cell death in shFUS cells treated with sorbitol compared to shSC cells under the same conditions. Therefore, while the expression of FUS is not required for the assembly of stress granules (Fig. 4B), cellular homeostasis and survival during hyperosmolar stress is mediated by the expression of FUS.

Discussion
Although FUS is predominately expressed in the nucleus of most cell types (Andersson et al., 2008), it can shuttle between the nucleus and the cytoplasm during mRNA transport (Zinszner et al., 1997; Fuji and Takumi, 2005). The equilibrium of FUS expression can be shifted towards the cytoplasm using inhibitors against RNA polymerase II (Pol II; Zinszner et al., 1994) or against the nuclear import receptor Transportin-1 (Trp), also known as Karyopherin β2 (Dormann et al., 2010). Genetic perturbations of its NLS also increase the cytoplasmic expression of FUS in the neurodegenerative disease ALS (Kwiatkowski et al., 2009; Vance et al., 2009). Herein we demonstrate a novel and
A role for FUS in hyperosmolar stress response is further supported by its association with stress granules under this condition. Stress granules are stalled translational complexes; as such, they are thought to regulate mRNAs processing during stress (Anderson and Kedersha, 2008). Recently, the activity of mTORC1 was shown to correlate with its sequestration inside stress granules, suggesting that these complexes also regulate cell signaling at the protein level (Wippich et al., 2013). Importantly, no other chemical or environmental stressor has been shown to cause endogenous FUS to redistribute from the nucleus into the cytoplasm and enter into stress granules. While different stressors, such as oxidative stress and heat shock, have been shown to influence the association of ALS-linked mutant forms of FUS with stress granules, the nature of the NLS mutations causes FUS to accumulate in the cytoplasm in a manner of stress (Bosco et al., 2010; Dornemann et al., 2010). In contrast, hyperosmolar stress triggers both the cytoplasmic redistribution of FUS and its assembly into stress granules. Therefore, the response of endogenous FUS to hyperosmolar stress represents an altogether different mechanism compared to the previously described mutant forms of FUS. Further, our data support a normal and important role for endogenous FUS in stress response (discussed further below), whereas the association of ALS-linked FUS with stress granules is thought to represent a pathogenic mechanism in disease (Wolozin, 2012).

In order to dissect the processes governing the cytoplasmic redistribution of FUS from its incorporation into stress granules, we employed the GFP-FUS GS15X construct, which lacks the nuclear localization domain. This allowed us to investigate the role of methylation as a post-translational modification in both events. Inhibition of methyltransferases with AdOx significantly reduced the cytoplasmic redistribution of FUS during hyperosmolar stress (Fig. 5). Moreover, analysis with the ASYM24 antibody revealed that FUS is asymmetrically dimethylated at arginine residues under homeostatic conditions but is hypomethylated in the presence of AdOx (Figs. 5 and 6). These observations, together with a mass spectrometry study demonstrating that ~20 arginine residues within FUS are asymmetrically dimethylated (Roppert et al., 2003), support the possibility that methylation of the FUS protein itself dictates its subcellular localization during hyperosmolar stress. Conversely, the methylation status of FUS, or other cellular factors for that matter, does not appear to regulate the association of FUS with stress granules (Fig. 6). A remaining possibility is that

Fig. 6. Methylation does not regulate the incorporation of FUS into stress granules. HeLa cells were transiently transfected to express GFP-FUS GS15X. Cells were exposed to 4 M sorbitol for 1 h either (A) in the absence of AdOx or (B) after cells had been pre-treated with 35 mM AdOx for 6 h. A: Confocal imaging showed that GFP-FUS GS15X (green) assembles into G3BP-positive stress granules (red) upon sorbitol treatment (top panel). Co-staining with the ASYM24 antibody (a far-red fluorescence probe was employed; green is used in the images for clarity) revealed that these stress granules contained asymmetrically dimethylated proteins (bottom panel). B: While the ASYM24 signal is dramatically decreased within stress granules and cells pre-treated with AdOx (bottom panel), there is still a robust association of GFP-FUS GS15X with stress granules under the same conditions (top panel). Scale bar represents 10 μm. C: Immunoprecipitation of GFP-FUS GS15X with an anti-GFP antibody and a subsequent Western blot analysis with ASYM24 revealed that FUS is hypomethylated due to AdOx pre-treatment. The ratio of the ASYM24 signal intensity to that of GFP was determined by densitometry and normalized to the untreated condition. Ratios are shown below the blot for each condition. All data are representative of n = 3 independent experiments.
other post-translational modifications of FUS influence its association with stress granules.

What are the biological implications of FUS in hyperosmolar stress response? Hyperosmolar stress is implicated in a myriad of disease conditions in humans, including renal failure, diabetes, neurodegeneration, and inflammation, as well as disorders of the eye, heart, and liver (Brocker et al., 2012). Moreover, the cell shrinkage caused by hyperosmolar stress triggers many adverse subcellular events, such as mitochondrial depolarization, inhibition of DNA replication and transcription, damage to DNA and proteins, and cell cycle arrest, all of which can ultimately lead to cell death (Alfeta and Petrovitz, 2007; Burg et al., 2007; Brocker et al., 2012).

Our results are consistent with a prosurvival mechanism for endogenous FUS in human conditions that involve hyperosmolar stress. First, the response to hyperosmolar stress is specific, since alternative stressors that induce stress granule assembly such as oxidative stress and heat shock fail to elicit a similar response from endogenous FUS (Figs. 1–3). This data suggests a potentially distinct cellular response to hyperosmolar conditions compared to other stressors. Second, cells are more susceptible to hyperosmolar toxicity when FUS expression is reduced (Fig. 7), supporting a prosurvival role for FUS in this type of stress response.

Other nuclear hnRNP, such as hnRNP A1, also respond to hyperosmolar stress by redistributing to the cytoplasm and assembling into stress granules. When localized to stress granules, hnRNP A1 is thought to specifically suppress the translation of anti-apoptotic factors and in turn initiate apoptosis under conditions of severe hyperosmolar stress (Benmacra et al., 2010). An intriguing possibility is that FUS sequesters specific mRNAs and proteins into stress granules, thereby altering their expression and/or function in response to the hyperosmolar stress. Indeed, recent PAR-CLIP (Hoell et al., 2013) and RIP-Chip (Colombrita et al., 2012) analyses have identified thousands and hundreds, respectively, of mRNA transcripts that are bound by FUS in the cell under homeostatic conditions. Interestingly, FUS binds mRNAs that encode genes involved in DNA damage repair and cell cycle regulation (Colombrita et al., 2012), two pathways that are altered during hyperosmolar stress (Burg et al., 2007).

In summary, our results support a prosurvival function for endogenous FUS during hyperosmolar stress. These findings have implications for human disorders with an etiology that involves hyperosmolar stress, identifying the factors that regulate the response of FUS to hyperosmolar stress, as well as the pathways affected by FUS under this stress condition, will be critical to further our understanding of this prosurvival role of FUS.

Acknowledgments
We acknowledge the assistance from Dr. Paul Fucini of the UMass Medical School Core Digital Imaging Facility. We would like to thank Maeva Tschibben for her assistance with the immunofluorescence experiments, and Dr. Neil Cashman from University of British Columbia for naive NSC-34 cell lines. We acknowledge financial support from the Worcester Foundation (D.A.B.) and the US National Institutes of Health National Institute of Neurological Disorders and Stroke (RO1NS078145-01 to D.A.B.) for this work.

Literature Cited

Acknowledgments
We acknowledge the assistance from Dr. Paul Fucini of the UMass Medical School Core Digital Imaging Facility. We would like to thank Maeva Tschibben for her assistance with the immunofluorescence experiments, and Dr. Neil Cashman from University of British Columbia for naive NSC-34 cell lines. We acknowledge financial support from the Worcester Foundation (D.A.B.) and the US National Institutes of Health National Institute of Neurological Disorders and Stroke (RO1NS078145-01 to D.A.B.) for this work.

Fig. 7. Reduced FUS expression causes cells to become susceptible to sorbitol induced toxicity. A: Expression of either a non-targeting scrambled shRNA (shSC) or shRNA against FUS (shFUS) was induced by doxycycline for 48h in NSC-34 cell lines, resulting in ~70% knock-down of the FUS protein as determined by Western blot. Tubulin was used as a loading control. Cells were then treated with 0.4 M sorbitol or 0.15 M sodium arsenite for 4h and subjected to the (B) MTT cell viability assay or (C) LDH cell toxicity assay. B: A significant decrease in cell viability was detected in shFUS cells (34 ± 6%) compared to shSC cells (76 ± 11%) when treated with sorbitol, whereas shFUS cells did not exhibit an analogous susceptibility to sodium arsenite (59 ± 4% for shFUS vs. 57 ± 4% for shSC). C: A higher percentage of cell death was detected in shFUS cells (13 ± 2.4%) compared to shSC cells (4.2 ± 1.4%) in response to sorbitol, whereas no difference in cell death was detected when those lines were stressed with sodium arsenite (7.4 ± 2.2% for shFUS vs. 4.3 ± 0.1% for shSC). Data shown are an average from n = 3 independent experiments ± standard deviation. Statistical significance was determined by Student's t-test (**P < 0.005).
FUS/TLS responds to hyperosmolar stress

PREFACE TO APPENDIX III:

The following chapter is a manuscript published in Molecular Neurodegeneration. (Publisher: BioMed Central; no permission or license required for reproduction)

My contributions to this manuscript included intellectual input, experimental design strategies, and the creation and establishment of NSC-34 stable cell lines expressing exogenous human wild-type or R495X FUS used in figure 2. Additionally, I was responsible for the maintenance and culturing of these cells for experimental use and performed the western blot analysis shown in figure 2A.
Amyotrophic lateral sclerosis-linked FUS/TLS alters stress granule assembly and dynamics

Desiree M. Baron1, Laura J. Kaushansky2, Catherine L. Ward1, Reddy Rangith K Sama1, Ru-Ju Chian1, Kristin J. Boggio1, Alexandre J. C. Quresma3, Jeffrey A. Nickerson2 and Daryl A. Bosco1,3*

Abstract

Background: Amyotrophic lateral sclerosis (ALS)-linked fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS) is concentrated within cytoplasmic stress granules under conditions of induced stress. Since only the mutants, but not the endogenous wild-type FUS, are associated with stress granules under most of the stress conditions reported to date, the relationship between FUS and stress granules represents a mutant-specific phenotype and thus may be of significance in mutant-induced pathogenesis. While the association of mutant-FUS with stress granules is well established, the effect of the mutant protein on stress granules has not been examined. Here we investigated the effect of mutant-FUS on stress granule formation and dynamics under conditions of oxidative stress.

Results: We found that expression of mutant-FUS delays the assembly of stress granules. However, once stress granules containing mutant-FUS are formed, they are more dynamic, larger and more abundant compared to stress granules lacking FUS. Once stress is removed, stress granules disassemble more rapidly in cells expressing mutant-FUS.

These effects directly correlate with the degree of mutant-FUS cytoplasmic localization, which is induced by mutations in the nuclear localization signal of the protein. We also determined that the RGG domains within FUS play a key role in its association to stress granules. While there has been speculation that arginine methylation within these RGG domains modulates the incorporation of FUS into stress granules, our results demonstrate that this post-translational modification is not involved.

Conclusions: Our results indicate that mutant-FUS alters the dynamic properties of stress granules, which is consistent with a gain-of-toxic mechanism for mutant-FUS in stress granule assembly and cellular stress response.

Keywords: Stress granule, Amyotrophic lateral sclerosis, Frontotemporal lobar degeneration, FUS/TLS, Oxidative stress

Background

Mutations in the gene encoding fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS), also known as the heterogeneous nuclear ribonucleoprotein (hnRNP) P2 [1], are linked to inherited cases of amyotrophic lateral sclerosis (ALS) [2,3]. ALS is a fatal neurodegenerative disease characterized by motor neuron loss, progressive muscle weakening and paralysis [4]. Most ALS-linked FUS mutations are located within the C-terminal nuclear localization signal (NLS) that binds to the nuclear importator that translocates FUS from the cytoplasm into the nucleus [5,6]. Although FUS is predominately localized to the nucleus in most cell types [7], it has nucleo-cytoplasmic shuttling capabilities that may be important for mRNA transport [8]. In fact, FUS is thought to play a role in local translation at the dendrites of neuronal cells [9-11]. Disruption of the FUS/transportin interaction leads to nuclear depletion with concomitant cytoplasmic accumulation of FUS in cultured mammalian cells [6]. The potential relevance of this interaction is underscored by the cytoplasmic accumulation of FUS in both ALS [2,3] and frontotemporal lobar degeneration (FTLD) [12] post-mortem central nervous system (CNS) tissues.

The extent to which FUS mutants redistribute to the cytoplasm correlates with ALS disease severity [6,13].
For example, individuals with the FUS R495X mutation, which leads to truncation of the NLS and significant cytoplasmic retention of FUS, exhibit early disease onset and a relatively severe disease course [13]. Nuclear depletion of FUS may impair putative nuclear functions involving mRNA [14,15] and DNA [16,17] processing. An alternative, though not mutually exclusive, possibility is that mutant-FUS exerts a gain-of-toxic function in the cytoplasm [18].

Recently, a two-hit model has been proposed to account for cytoplasmic FUS toxicity in ALS and FTLD [19]. Cytoplasmic mislocalization of FUS, either through genetic mutations or other unidentified factors, represents the first hit. The first hit alone may not be sufficient to cause disease. However, a second hit stemming from cellular stress directs cytoplasmic FUS into stress granules. Stress granules are stalled translational complexes that form in a normal response to induced stressors such as oxidative, heat-shock, viral infection or hypoxia [20]. The function of stress granules is thought to be in the triage of mRNAs that are destined for expression, storage or degradation, which in turn restores cellular homeostasis [21]. Stress granule function may not be limited to mRNA processing, as the activity of certain proteins can also be controlled by their sequestration into stress granules [22]. It follows that the association of mutant-FUS with stress granules may impair stress response and ultimately cause disease [23]. This notion is supported by evidence of stress granule marker proteins within the pathological aggregates of neurodegenerative disease tissues [24,25].

While we and others have firmly established a mutant-specific phenotype with respect to FUS in stress granules [5,6,13,26-30], there is little evidence that mutant-FUS actually alters the properties of stress granules. Although there is no functional assay per se for stress granules, the properties of stress granules that are thought to be relevant to their function include assembly kinetics, dynamics, morphology and abundance [21,31]. Under conditions of oxidative stress, we show that mutant-FUS delays stress granule formation in mammalian cell culture. Once sodium arsenite-induced stress granules are formed, however, those containing mutant-FUS are more dynamic, larger and more abundant compared to stress granules lacking FUS. Upon removal of stress, stress granules disassemble more rapidly in cells expressing cytoplasmic mutant-FUS. Further, we identified the RGG domains within FUS as playing a key role in the assembly of mutant-FUS into stress granules, although the methylation of arginine residues within these RGG domains does not play a significant role. The evidence presented here supports the hypothesis that the association of mutant-FUS with stress granules represents a gain-of-toxic interaction in ALS pathogenesis.

Results

The expression of cytoplasmic mutant FUS influences stress granule assembly and disassembly

We and others previously demonstrated that ALS-linked FUS mutants assemble into stress granules to an extent that directly correlates with their cytoplasmic mislocalization [6,13]. These experiments were performed under conditions of acute stress such that stress granules assembled rapidly and did not address whether mutant-FUS affects the processes of stress granule assembly and disassembly. First, we employed our previously characterized, doxycycline-inducible HEK-293 cell lines expressing GFP-tagged wild-type FUS and ALS-linked FUS mutants (R495X and H517Q) [13] to examine the effect of mutant-FUS on stress granule assembly under conditions of oxidative stress. The R495X mutation truncates the nuclear localization signal (NLS), causing FUS to significantly redistribute from the nucleus to the cytoplasm (Figure 1A and [13]). On the opposite end of the mislocalization spectrum is H517Q, an autosomal recessive mutation in the NLS that induces a mild mislocalization phenotype (Figure 1A and [2,13]). Stress granule assembly was initiated in GFP-FUS (WT, R495X, and H517Q) cell lines with 0.25 mM sodium arsenite, an inducer of oxidative stress [32] and an environmental toxicant that can cause neural defects [33,34]. Sodium arsenite has been shown to induce the incorporation of cytoplasmic FUS-mutants into stress granules, but does not influence endogenous FUS or exogenously expressed GFP-FUS WT proteins [13,35]. In fact there is no difference in cellular response to sodium arsenite with respect to stress granule formation or cell viability when FUS expression is reduced [31,35]. Therefore, sodium arsenite induces a mutant-specific phenotype with respect to FUS localization to stress granules. The concentration of sodium arsenite employed here was reduced from the 0.5 mM concentration that is typically used [13,36] in order to lengthen the timescale of stress granule assembly and resolve differences in this process between cell lines. Ras GTPase-activating protein-binding protein 1 (G3BP), a stress granule specific marker [36], was used to probe for stress granules by immunofluorescence (IF) over a 90 min time course of sodium arsenite exposure. At 0 min, there were no stress granules; G3BP remained diffusely cytoplasmic and no cytoplasmic GFP-FUS puncta were detected in any cell line (Figure 1A). By 90 min, all cell lines contained stress granules in virtually every cell. As expected, GFP-FUS R495X co-localized with G3BP in stress granules, as did GFP-FUS H517Q albeit to a far lesser degree. In contrast, GFP-FUS WT remained entirely nuclear and was not detected within these structures (Figure 1A and Additional file 1). Strikingly, fewer GFP-FUS R495X expressing cells contained G3BP-positive stress granules compared to GFP-FUS (WT).
Figure 1 Mutant-FUS expression delays the assembly and expedites the disassembly of stress granules in human cells.
(A) Representative fluorescence images of HEK-293 cells expressing GFP-FUS (WT, R495X or H517Q) upon treatment with 0.25 mM sodium arsenite for 0, 40 and 90 min. The extent of stress granule formation in each lane is illustrated with low magnification (40x) images using the anti-G3BP (red) stress granule marker (columns 1, 3 and 5). The localization of GFP-FUS (green) with respect to the nucleus (DAPI blue) and stress granules is demonstrated within high magnification (100x) images (columns 2, 4 and 6). Scale bar = 30 and 5 μm, respectively, at low and high magnification images. (B) Quantification of the percentage of cells with stress granules at 40 min for the lanes in (A) that are either induced (+) or not induced (-) to express GFP-FUS reveal that expression of GFP-FUS R495X causes a significant decrease in the number of cells with stress granules compared to controls. All error bars represent SEMs. Statistically significant differences were determined by one-way ANOVA and Tukey’s post-hoc test (**P < 0.0001, *P < 0.05). Additional significant comparisons include, but are not shown for clarity: uninduced GFP-FUS WT versus induced GFP-FUS R495X (P < 0.001), uninduced GFP-FUS H517Q versus induced GFP-FUS R495X (P < 0.001), and induced GFP-FUS H517Q versus induced GFP-FUS R495X (P < 0.0001). (C) Western blot and densitometry analyses of cell lines in (B) and naive HEK-293 cells (UT) reveal that exogenous (exo) GFP-FUS proteins are expressed at levels similar to each other and within 2-fold of endogenous (endo) FUS (exo/endo FUS ratio). (D) Stress granule disassembly was assessed as described in (B) for GFP-FUS WT, R495X and H517Q lines after stress was removed for 30 min. Significantly fewer GFP-FUS R495X expressing cells contain stress granules.

and H517Q) lines after approximately 40 min of sodium arsenite exposure (Figure 1A).

Quantification of these results revealed that the greatest difference in cells containing stress granules occurred between the GFP-FUS R495X (65 ± 3.3%) and GFP-FUS WT (90 ± 1.5%) lines after 40 min of sodium arsenite exposure (Figure 1B). Stress granules were also assembled in GFP-FUS H517Q cells (79 ± 2.5%), though to a lesser extent than WT cells. Therefore, the expression of mutant-FUS is not sufficient to cause a delay in stress granule assembly, but rather, the delay in assembly depends on the extent that FUS is redistributed to the cytoplasm (WT-cH517Q>cR495X). Artifacts from FUS over-expression are not expected to influence these results since the expression levels of all exogenous GFP-FUS proteins were similar to each other and within two-
fold of endogenous FUS (Figure 1C). To rule out an inherent difference between cell lines irrespective of GFP-FUS expression, identical experiments were performed in uninduced cells (i.e., without doxycycline). Uninduced GFP-FUS (WT and H517Q) lines did not express detectable GFP-FUS and behaved similarly to induced GFP-FUS WT cells, confirming that GFP-FUS WT expression has no effect on stress granule assembly. There was a small yet insignificant difference between uninduced GFP-FUS (WT and R495X) lines (Figure 1B). We suspect this may be due to low levels, below the limit of detection via western analysis (Figure 1C), of GFP-FUS R495X expression in the absence of doxycycline. Nonetheless, induced expression of GFP-FUS R495X in these cells significantly attenuated the assembly of stress granules compared to the uninduced condition in the same line (Figure 1B).

The reversible nature of stress granules is an important functional feature of these structures: upon removal of stress, stress granules disassemble as the cell reestablishes homeostasis. Since mutant-FUS delays the assembly of stress granules, we sought to determine whether mutant FUS also influences the reverse process of disassembly. Cells were treated with 0.25 mM sodium arsenite for 1 h, at which point ~100% of cells in all cell lines contained stress granules. The disassembly process was initiated by replacing sodium arsenite with fresh media, and the percentage of cells with stress granules was quantified after 90 min. At this time point, fewer GFP-FUS R495X expressing cells (51 ± 6.0%) contained stress granules compared to GFP-FUS WT (72 ± 3.7%) and GFP-FUS H517Q (68 ± 6.0%). Therefore, expression of GFP-FUS (WT and H517Q) had virtually no effect, while expression of the cytoplasmic GFP-FUS R495X exerted the most pronounced effect on the kinetics of stress granule disassembly (Figure 1D). Interestingly, a similar effect on stress granule assembly and disassembly was observed upon depletion of endogenous TAR DNA-binding protein 43 (TDP-43) [37], which, unlike FUS, is thought to play a normal role in arsenite-induced stress response [31]. Thus, both a loss of TDP-43 function and a potential toxic gain of mutant-FUS function manifests in delayed stress granule assembly and more rapid stress granule disassembly under conditions of oxidative stress.

While HEK-293 GFP-FUS lines are ideal for microscopic measurements of stress granule properties, owing to the GFP tag on FUS and the relatively flat nature of these cells, we wanted to both confirm these stress granule assembly trends in neuronal cells and rule out a potential "tag" effect from GFP. To this end, motor neuron-like NSC-34 [38] cell lines were engineered to constitutively express untagged human FUS WT or FUS R495X using a lentiviral transduction expression system. FUS protein expression in these cells was accomplished with an IRES-containing bicistronic vector (CSCW2-IRES-GFP), which allowed for the simultaneous expression of both FUS and GFP separately (i.e., not as a fusion protein) but from the same RNA transcript. Therefore, GFP served as a reporter for cells transduced to express either untagged FUS WT or R495X. The expression levels of FUS (WT and R495X) proteins were similar to each other and within two-fold of endogenous FUS (Figure 2A and Additional file 2). In the absence of stress, elevated levels of cytoplasmic FUS were observed in NSC-34 cells expressing FUS R495X, and diffuse cytoplasmic G3BP signal was observed in both FUS R495X and WT cells. Upon exposure to 0.25 mM sodium arsenite for 1 h, FUS was detected within G3BP-positive stress granules only in cells expressing FUS R495X. Although sodium arsenite exposure lead to fewer NSC-34 cells with stress granules overall compared to HEK-293 cells, the same phenotype was observed in that fewer cells formed stress granules in FUS R495X expressing cells compared to those expressing FUS WT (Figure 2B). Quantification of this phenotype revealed a 2.4-fold lower percentage of stress granule-containing NSC-34 cells for FUS R495X (23 ± 1.6%) compared to FUS WT (55 ± 2.8%) lines (Figure 2C). To assess whether the expression of exogenous human FUS proteins had any effect on stress response in these cells, the percentage of cells with stress granules was also quantified in the parent, or non-transduced, NSC-34 cell line after 1 h of sodium arsenite exposure. While FUS WT and R495X lines exhibited the most significant difference, there were also more FUS WT cells with stress granules relative to the parent (57 ± 3.6%) line (Figure 2C). Possible explanations for why an effect of exogenous FUS WT is observed in NSC-34 but not HEK-293 (Figure 1B) is that the expression of exogenous human FUS WT exerts an additional stress due to i) higher relative protein levels (compare exogenous to endogenous FUS in Figures 1C and 2A), and/or ii) different species of cells (expression of human FUS in mouse versus human cells), either of which could heighten the stress response of these cells to sodium arsenite. In fact, expression of FUS WT is sufficient to induce stress and toxicity in different model organisms [39-41]. Nonetheless, the efficiency of stress granule assembly in the parent NSC-34 line is more similar to that of FUS WT than FUS R495X (Figure 2C). Moreover, one would expect FUS R495X to also induce an additional stress, and yet stress granule assembly is attenuated in these cells, providing further evidence that expression of mutant-FUS interferes with the assembly of stress granules under conditions of stress.

Unlike HEK-293 cells (Figure 1), the percentage of NSC-34 cells containing stress granules never reached 100% in any line, and the FUS WT line always contained double the percentage of cells with stress granules compared to FUS R495X. This behavior precluded our ability to perform a similar disassembly analysis as described
above for HEK-293 cells (Figure 1D), which compared the absolute percentage of cells with stress granules at different time points.

The expression of cytoplasmic mutant-FUS alters the dynamic binding properties of stress granule-associated proteins

Stress granules are highly dynamic structures [32,42,43]. Proteins and mRNA continuously shuttle in and out of stress granules, reversibly binding to other stress granule components in a manner that is thought to regulate both protein signaling activity [22] and mRNA fate towards translational arrest, expression or decay [20]. To study the effect of stress granule-associated mutant-FUS on the dynamic properties of stress granules, we employed fluorescence recovery after photobleaching (FRAP). FRAP measures the relative kinetics and affinities of protein binding within complexes, such as stress granules, over the time course of the experiment [64,65]. Because FRAP reports on binding events in live cells, fluorescently tagged-proteins were employed for these experiments [32,42,43,46]. We transiently expressed monomeric RFP (mRFP)-tagged proteins T-cell-restricted intracellular antigen-1 (TIA-1) or G3BP, two established stress granule-associated proteins, to mark stress granules for FRAP within HEK-293 GFP-FUS (WT) and R495X cells. Overexpression of G3BP is sufficient to form inclusions that resemble stress granules in the absence of stress [31,47]. Since it is not clear whether these G3BP overexpression-induced stress granules have different properties than sodium arsenite-induced stress granules, conditions were optimized for transfection of mRFP-G3BP that minimized the formation of G3BP-positive inclusions a priori of sodium arsenite treatment (Figure 3A; see Materials and methods).

During a FRAP experiment on stress granules, the fluorescence from a tagged species (GFP-FUS R495X, mRFP-TIA-1 or mRFP-G3BP in our case) is bleached. The fluorescence signal recovers as bleached molecules unbind from sites in the stress granules, un-bleached fluorescent molecules exchange back into the photobleached area and then bind. The fluorescence recovery time is limited by
Figure 3 (See legend on next page)
either diffusion, which is faster than the rates we report here, or by binding kinetics; thus, proteins that are tightly bound to other proteins or cellular structures exhibit relatively long half times of fluorescence recovery (t₁/₂) [44]. The population of fluorescent molecules that exchange with their bleached counterparts over the time course of the experiment comprises the "mobile fraction" [44]. The "immobile fraction" is the population that is tightly bound and does not exchange over the time course of the experiment. Here, each experiment was carried out such that the photobleaching occurred in only a single channel and fluorescence was diminished evenly over the entire stress granule (Figure 3B). Initially, the dynamics of GFP-FUS R495X within stress granules were investigated since the dynamic binding properties of this protein under stress conditions have not been reported. GFP-FUS R495X cells alone or transfected with either mRFP-G3BP (Figure 3A) or mRFP-TIA-1 (Figure 3B) were exposed to 0.20 mM sodium arsenite for 1 hr, at which point the majority of cells contained fully formed stress granules. The fast recovery (t₁/₂ of 3.6 ± 2.1 s; Figure 3C) of GFP-FUS R495X by FRAP shows that this protein re-binds within stress granules relatively quickly compared to other stress granule-associated proteins (see below). Moreover, ~87% of GFP-FUS R495X molecules constituted the mobile fraction, indicating that GFP-FUS R495X is weakly bound within stress granules (Figure 3D). Neither the t₁/₂ nor the mobile fraction of GFP-FUS R495X changed significantly upon transient transfection of either mRFP-G3BP or mRFP-TIA-1 (Figure 3C and D). Therefore, neither the process of transient transfection itself, nor the over-expression of stress-granule associated proteins, influenced the dynamic properties of mutant-FUS.

Next we performed FRAP on mRFP-G3BP or mRFP-TIA-1 to determine the effect of mutant-FUS on the dynamic properties of proteins within stress granules. Fluorescence recovery for mRFP-G3BP (t₁/₂ 12 ± 4.4 s; 70 ± 2% mobile) and mRFP-TIA-1 (t₁/₂ 12 ± 3.9 s; 70 ± 2% mobile) within GFP-FUS WT expressing cells was observed (Figure 3E and F). Our measurements of mRFP-TIA-1 in control HEK-293 cells were similar to those reported for GFP-TIA-1 COS7 cells [32]. In cells expressing GFP-FUS R495X, the fluorescence recovery half times were nearly the same for mRFP-G3BP (t₁/₂ 11 ± 2.8 s) and mRFP-TIA-1 (t₁/₂ 10 ± 2.8 s). However, the mobile fraction for both mRFP-G3BP and mRFP-TIA-1 increased significantly in GFP-FUS R495X cells to 79 ± 3% and 89 ± 4%, respectively, compared to GFP-FUS WT cells (Figure 3E-G). Control experiments in GFP-FUS WT (induced and uninduced) and GFP-FUS R495X (uninduced) cells confirmed that an increase in mRFP-TIA-1 mobile fraction required the expression of mutant-FUS (Figure 3G). The increased mobile fraction for mRFP-G3BP and mRFP-TIA-1 indicates that these proteins bind more weakly to factors within GFP-FUS R495X positive stress granules compared to stress granules lacking mutant-FUS. As a result, there is increased exchange of mRFP-G3BP and mRFP-TIA-1 between the area that is photobleached and the area that is not photobleached, resulting in fluorescence recovery. Together, these data demonstrate that the incorporation of mutant-FUS into sodium arsenite-induced stress granules decreases the binding of other stress granule-associated proteins within these structures.

Because we and others observed that stress granules form as a result of G3BP overexpression [31,47], we examined whether their dynamic properties were different compared to those stress granules induced by sodium arsenite. mRFP-G3BP exhibited significantly weaker binding (i.e., larger mobile fraction, P < 0.05) within stress granules in GFP-FUS WT cells under conditions of G3BP over-expression compared to sodium arsenite stress, indicating that the dynamic properties of these stress granules are inherently different (Additional file 3). The most striking difference was the effect of mutant-FUS: GFP-FUS R495X significantly increased mRFP-G3BP binding within stress granules (i.e., smaller mobile fraction) under conditions of G3BP over-expression compared to all other conditions, which is the opposite trend in sodium arsenite-induced stress granules (Figure 3). Therefore, the effect of GFP-FUS R495X on the dynamic properties of stress granules...
depends on the stressor and is consistent with observations that the source of stress influences the constituents within stress granules [48]. Irrespective of the stress, our results show that the incorporation of GFP-FUS R95X into stress granules alters the dynamic binding interactions of other well-characterized stress granule-associated proteins within these structures.

Expression of mutant-FUS increases the size and abundance of stress granules
In addition to dynamics, stress granule size and abundance could also be altered by the presence of mutant-FUS. As such, both stress granule size and abundance were quantified in HEK-293 cells expressing either GFP-FUS (WT or R95X) after exposure to 0.5 mM sodium arsenite for 1 hr, at which point stress granules were fully formed (>95% of cells contain stress granules). In contrast to previous methods that measure the area of stress granules, which does not take into account the three-dimensional aspect of these structures, we developed a method to quantify the volume of stress granules based on fluorescence intensity measurements (Materials and methods). Briefly, fixed cells were labeled with an anti-G3BP antibody and then optically sectioned by confocal microscopy. Three-dimensional reconstruction of these sections allowed us to quantify the volume of selected stress granules (Figure 4A). This analysis revealed that GFP-FUS R95X expressing cells produced significantly larger stress granules (3.8 ± 0.1 μm³) compared to GFP-FUS WT cells (2.7 ± 0.2 μm³; Figure 4B and C). This trend is consistent with ALS-linked TDP-43 mutants, which also show an increased stress granule size under conditions of hyperosmolar stress [49], suggesting that this may be a common disease-related characteristic.

Our quantitative analysis also revealed that mutant-FUS expressing cells contained 27% more stress granules per cell (3.8 ± 0.3) compared to WT-FUS (6.9 ± 0.4; Figure 4B and D). This result is consistent with a recent report demonstrating a greater abundance of stress granules within patient FUS (R521C and R514G) fibroblast lines under conditions of sodium arsenite relative to control lines [30]. Moreover, cells expressing ALS-linked TDP-43 also produce more stress granules compared to control cells under stress [25]. Therefore, disease-causing FUS and TDP-43 proteins appear to alter stress granules morphology by increasing their size and abundance.

The RGG domains play a key role in modulating the association of mutant-FUS with stress granules
In order to understand the factors modulating the incorporation of mutant FUS into stress granules, we engineered GFP-tagged FUS constructs lacking the functional domains of FUS and tested their ability to incorporate into stress granules. The functional domains of FUS are as follows: the prion-like QGGSY-rich region (QGGSY), a glycine-rich region (GLY), an RNA recognition motif (RRM), and two arginine-glycine-glycine-rich domains (RGG1 and RGG2) separated by a C2-C2 zinc finger motif (ZF) (Figure 5A). All of these domains have been shown to play a role in modulating the incorporation of other RNA binding proteins into stress granules [26,50-52] and thus each have the potential to influence the association of mutant-FUS with stress granules. The extent with which FUS mutants localize to arsenite-induced SGs correlates with their level of cytoplasmic expression (Figures 1, 2 and 13). However, since transient transfection of highly cytoplasmic FUS mutants (eg, R95X) has the potential to produce cytoplasmic protein aggregates that could confound our stress granule analysis [13], domain deletion constructs were engineered within the background of the less aggregation-prone R521G mutant.

Transient transfection of GFP-FUS R521G deletion constructs in HeLa cells resulted in varying degrees of GFP-FUS cytoplasmic expression: FL, ΔQGSY, ΔRGGSY, ΔGLY, and ΔRRM were predominately expressed in the nucleus, whereas relatively high cytoplasmic expression was observed for ΔRGG2, which lacks part of the signal used for nuclear import of FUS [5] (Figure 5B). Deletion of the zinc finger motif resulted in a construct that failed to express in mammalian cells (data not shown), possibly because this construct is unstable and/or structurally altered [53]. Although GFP-FUS R521G exhibits cytoplasmic expression upon transient transfection [2], the levels here were not sufficient for an accurate stress granule analysis. It was therefore necessary to increase the cytoplasmic expression of FUS-deletion constructs by co-transfection with maltose binding protein (MBP)-tagged M9M. M9M is a transportin/KapN2-specific nuclear import inhibitor that blocks the nuclear import of FUS [6,54]. Co-transfection with MBP-M9M increased cytoplasmic retention of GFP-FUS for all constructs, ensuring that each construct had equal potential to assemble into stress granules (Figure 5B).

Administration of 0.5 mM sodium arsenite for 1 hr induced stress granule formation (Figure 5B) in ~75% of cells for all constructs. A ratio of the GFP signal within stress granules relative to the diffuse GFP-FUS signal in the cytoplasm (stress granule/diffuse GFP-FUS signal) was used to quantify the incorporation of each construct within stress granules. Full length GFP-FUS R521G exhibited a robust localization to stress granules with a stress granule/diffuse GFP-FUS ratio of 4.75 ± 0.97 (Figure 5B and C). As expected for a protein that does not associate with stress granules, analysis with free GFP as a negative control produced the lowest ratio of 1.13 ± 0.11. GFP-FUS R521G ΔQGSY, ΔGLY, and ΔRRM were not significantly different from FL GFP-FUS R521G. In contrast, deletion of the RGG1
domain (ΔRGG1) significantly impaired the localization of FUS into stress granules (1.72 +/- 0.22), and deletion of the RGG2 domain (ΔRGG2) exhibited a similar impairment trend (2.23 +/- 0.48). We note that while distinct FUS-positive stress granules are observed for ΔRGG2, a comparatively high level of GFP-FUS signal remains diffuse, yielding a low stress granule/diffuse FUS ratio. All constructs were expressed at comparable levels (Figure 5D).
and a threshold was applied (see Materials and methods) such that all cells included in this analysis expressed similar levels of FUS. Together, these data demonstrate that the RGG domains in FUS are the most important for mutant-FUS localization to stress granules.

Figure 5 The RGG domains modulate the incorporation of FUS into arsenite-induced stress granules. (A) Illustration of full length (FL) GFP-FUS R52IG and constructs lacking the following sequences: Gly-Gly-Ser (ΔGGYS), Gly-rich (ΔGLY), RNA recognition motif (ΔRRM), and Arg-Gly-Gly-rich (ΔRGG) regions (ΔRGG1 and ΔRGG2). (B) Confocal images of HeLa cells transfected with GFP-FUS R52IG constructs (green) alone (−) or co-transfected (+) with MBP-M9M, the transportin-1 inhibitor. Note the increased levels of cytoplasmic GFP-FUS in co-transfected cells (compare columns 1 and 2). Confocal fluorescence images of co-transfected cells treated with 25 mM sodium arsenite for 1 hr were used to assess the ability of GFP-FUS R52IG constructs (green column 3) to associate with stress granules (G3BP red column 4). The greatest degree of GFP and G3BP co-localization was observed in cells expressing FL GFP-FUS R52IG, whereas there was minimal co-localization in control cells expressing free GFP (compare panels in column 1). (C) Quantitative analysis (see Materials and methods) of (B) reveals that constructs lacking RGG domains (ΔRGG1 and ΔRGG2) exhibit impaired localization to stress granules. Statistically significant comparisons include FL and ARRM (*) P < 0.05, FL and GFP (**) P < 0.01, and ΔRGG1 and ΔG3BP and GFP (*** P < 0.001) not shown on graph for clarity) by one-way ANOVA followed by a Dunnett’s post-hoc test on n=3 independent experiments. All error bars represent SEMs. (D) Western blot analysis of HeLa cells in (B) demonstrates equivalent expression levels for all GFP-FUS R52IG constructs.

Methylation of mutant-FUS is not required for its assembly into stress

In light of the 20 dimethylated arginine residues within the RGG domains of FUS [55], and the fact that arginine dimethylation dictates protein and RNA interactions as
well as protein subcellular localization [56], we explored the possibility that arginine dimethylation of mutant-FUS regulates its association with stress granules. While methylated FUS has been detected within stress granules in cell culture and pathological CNS inclusions from individuals harboring FUS mutations [5], it is not clear whether methylation is actually required for FUS incorporation into these structures. To investigate this question, HeLa cells were pre-treated with the global methyltransferase inhibitor adenosine 2,3-dialdehyde (AdOx) [57] prior to expression of the highly cytoplasmic GFP-FUS R495X mutant and sodium arsenite exposure. We note that conditions (see Materials and methods) were used to minimize GFP-FUS R495X aggregation in these experiments. Immunoprecipitation of GFP-FUS R495X using an anti-GFP antibody, followed by western analysis with the dimethyl-specific ASYM24 antibody, confirmed that GFP-FUS R495X is hypomethylated in the presence of AdOx (Figure 6A). Despite the significant degree of hypomethylation, GFP-FUS R495X maintains a robust association with stress granules under these conditions (Figure 6B and C). Conversely, the overall ASYM24 signal, including the signal within stress granules, is significantly attenuated. Similar results were seen in our stable HEK-293 GFP-FUS R495X line (data not shown). While the small population of methylated GFP-FUS R495X that remains after AdOx treatment (Figure 6A) could be sequestered into stress granules, the significant decrease in ASYM24 signal (i.e. the decrease in signal for methylated proteins) with no decrease in GFP-FUS signal argues against this possibility. Therefore, while methylated mutant-FUS can assemble into stress granules, this post-translational modification is not a prerequisite for its incorporation.

Discussion

The association of cytoplasmically mislocalized ALS-linked FUS mutants with stress granules is well established [5,6,13,26-30], but what affect does mutant-FUS have on the properties of stress granules? We sought to examine the effect of mutant-FUS on the physical properties of stress granules that are potentially linked to function. While there is no functional assay per se for stress granules, they are believed to represent sites of mRNA triage, which influences whether particular mRNA transcripts are retained within stress granules, translated on ribosomes or degraded within P-bodies [20]. There is also evidence that the signaling activity of proteins can be controlled by their sequestration and/or release from stress granules during stress [22]. Thus, the cellular response to stress is modulated, at least in part, by stress granules. Since mutant-FUS, but not WT-FUS, is incorporated into stress granules under various induced stressors, the mutant protein has the potential to disturb stress granules and impair cellular stress response in ways that could contribute to ALS pathogenesis [19].

Stress granules assemble in response to induced stress. Our results show that ALS-linked, cytoplasmic FUS R495X delays the assembly of stress granules in both HEK-293 (Figure 1) and neuronal NSC-34 (Figure 2) cells under conditions of acute oxidative stress. The predominantly nuclear FUS H517Q mutant also delays stress granule assembly, but to a lesser degree than FUS R495X (Figure 1). Therefore, the delay in stress granule assembly correlates with cytoplasmic levels of mutant-FUS, probably because the protein is poised to enter stress granules once stress is induced. Since over-expression of some ALS-FUS mutants reportedly induce the spontaneous formation of cytoplasmic inclusions that stain positively for stress granule markers [28,29], one might expect the expression of mutant-FUS to correlate with a faster rate of stress granule assembly. However, the properties of stress granules are influenced by the nature of the induced stressor [48], and we show that stress granules induced by protein over-expression exhibit different dynamic properties than those induced by sodium arsenite (Additional file 3). We also demonstrate that mutant-FUS accelerates the disassembly of stress granules (Figure 1D). Therefore, expression of mutant-FUS appears to disfavor the formation of and/or destabilizes stress granules, possibly by interfering with protein interactions within these structures (Figure 3). The effects of mutant-FUS on stress granule assembly and disassembly are reminiscent of effects seen during TDP-43 knock-down [57]. Considering that stress granule assembly is a regulated process [20], factors that either delay or accelerate stress granule assembly/disassembly may adversely affect cellular homeostasis.

Interestingly, once stress granules are formed, mutant-FUS exerts an effect on both stress granule morphology and abundance that may appear counterintuitive based on the effect of FUS during the processes of assembly and disassembly. While the expression of GFP-FUS R495X both disfavors stress granule assembly and weakens stress granule associated interactions, under conditions of persistent stress the size and abundance of stress granules is augmented by the expression of mutant-FUS (Figure 4). This increased size and abundance of stress granules does not necessarily mean these structures are held together more tightly, but rather is a likely consequence of the additional protein load associated with these structures from the GFP-FUS R495X protein itself. This rationale may also be relevant to the increased size of stress granules in ALS-linked TDP-43 mutants under conditions of hyperosmolar stress [49] and suggests that this phenotype may be part of a common disease pathway. An intriguing, but not mutually exclusive, possibility is that mutant-FUS and TDP-43 recruit additional protein partners and mRNA substrates into stress granules, thereby further increasing their size.
and abundance (Figure 4 and [25,30]). Indeed, thousands of mRNA transcripts are bound by FUS [56,59] with many distinct mRNAs bound by cytoplasmic mutant-FUS but not WT FUS [59]. Therefore, mutant-FUS may inappropriately process mRNAs and/or facilitate aberrant cytoplasmic protein interactions during stress. The latter possibility is supported by our FRAP analyses, which showed that both mRFP-G3BP and mRFP-TIA-1 exhibit weaker binding and heightened dynamics within sodium arsenite-induced stress granules containing mutant-FUS (Figure 3). In fact, GFP-FUS R495X altered the dynamic properties of stress granules in all of our FRAP experiments, raising the possibility that mutant-FUS interferes with the sorting mechanisms [21,22] associated with these structures under stress.

If the association of mutant-FUS with stress granules does indeed represent a gain of toxic interaction, it will be important to identify factors that modulate this association. Although FUS contains multiple domains that contribute to FUS aggregation [60] and/or are homologous to sequences that direct other proteins into stress granules [26,50-52], our results show that the RGG domains are largely responsible for directing FUS into stress granules (Figure 5). Our results are in general agreement with a recent report by Bentmann et al., which also demonstrated a key role for the RGG domains in assembling FUS into stress granules [26]. However, our results do not support a role for the Gly-rich and RRM domains in this process, whereas the former study did. This discrepancy may be due to the difference in FUS constructs, stressor (sodium...
arsenite versus heat shock [26]) and/or the FUS mutation (R521G versus P525L [26]) that were employed in these studies. Whether the RNA-binding ability of FUS is required for its localization to stress granules is not altogether clear [26,27]. Several domains within FUS exhibit RNA-binding capabilities, including the RMM, RGG, and zinc finger domains. Bestmann et al. demonstrated a correlation between cytoplasmic FUS constructs that bound RNA and were incorporated into stress granules, consistent with a role for RNA-binding in the assembly of mutant-FUS into stress granules [26].

That the RGG domains direct mutant-FUS to stress granules raises the possibility that this process is controlled by arginine dimethylation of RGG motifs [61]. Emerging evidence indicates that the RGG motifs within FUS are methylated by protein arginine N-methyltransferase-1 (PRMT1) [55,62,63], and that this post-translational modification can influence the subcellular localization of mutant-FUS [62,63]. While stress granules contain methylated proteins (Figure 6B), and methylated forms of mutant-FUS have been detected in both stress granules and diseased-tissues [5], our data suggests that methylation of FUS is not a prerequisite for its incorporation into stress granules (Figure 6).

How might the incorporation of mutant-FUS into stress granules alter cellular homeostasis under conditions of induced stress, and what are the implications for neurodegenerative disease? We show that mutant-FUS delays stress granule assembly (Figures 1 and 2), decreases the binding of stress granule-associated proteins within stress granules (Figure 3), and increases both size and abundance of stress granules (Figure 4). These physical and dynamic properties of stress granules are thought to be linked to stress granule function, and thus the effects of mutant-FUS may culminate in impaired stress response and, eventually, in neurodegeneration. Although there have been no reports of overt cytotoxicity in mutant-FUS cellular models exposed to sodium arsenite or other stressors, the effects of impaired stress response may appear more distinctly as a function of age, disease progression and/or chronic stress in the human disease [19]. In fact, stress granule marker proteins have been detected within the pathological inclusions of CNS tissues from patients with ALS and FTLD [6,25], supporting the notion that stress response factors are altered during the course of disease. Moreover, these observations raise the possibility that stress granules are precursors to the end-stage aggregates that are characteristic of these diseases [23]. Although our data show that mutant-FUS accelerates stress granule disassembly, under conditions of persistent stress these granules containing mutant-FUS are larger and more numerous and thus have the potential to coalesce into larger aggregates. Extending analyses of stress granules to other models systems, such as human IPS cells from individuals with ALS or ALS rodent models, may allow us to better address whether altered stress granule assembly plays a role in disease onset and/or progression, and whether the association of ALS-linked proteins with stress granules does in fact impact disease.

Conclusions

ALS-linked FUS mutants that mislocalize to the cytoplasm not only incorporate into stress granules under conditions of oxidative stress, but the presence of mutant-FUS in stress granules alters the properties of these structures. Expression of mutant-FUS delays the assembly and expedites the disassembly of stress granules. Furthermore, the morphology and dynamics of these structures is influenced by the presence of mutant-FUS. Therefore, our data are consistent with a gain of toxic function for mutant-FUS with respect to stress granule assembly and dynamics.

Materials and methods

Cell culture and drug treatments

Inducible GFP-FUS expressing FlpIn HEK-293 cells were maintained as described previously [13]. Human cervical carcinoma cells (HeLa) were maintained in Modified Eagle’s medium (MEM, Gibco 10370) supplemented with 10% (v/v) heat inactivated fetal bovine serum (Sigma, F4135), 2 mM L-glutamine (Gibco, 25030), and 1% (v/v) penicillin and streptomycin solution (Gibco, 15140). Mouse motor neuron–like hybrid cell lines (NSC-34) [38] constitutively expressing untagged human FUS were maintained in Dulbecco’s modified Eagle’s medium (Invitrogen, 11965-090) supplemented with 10% (v/v) tetracycline-tested fetal bovine serum (Sigma, F6782), and 2 μg/mL puromycin (Invitrogen, A11138-03).

NSC-34 cells constitutively expressing untagged human FUS constructs were generated by lentiviral transduction of the CScW2-IRES-GFP lentivector (a generous gift from Dr. Miguel Esteve, University of Massachusetts Medical School) containing FUS (WT or mutant R495X). Flow cytometry was used to enrich for expression of the GFP reporter in each line. Cells with equivalent levels of exogenous FUS proteins were employed.

For drug treatments, the following stocks were prepared and stored at freezing temperatures: 50 mg/mL doxycycline (Sigma, D9891) in water (−80°C), 100 mM sodium arsenite (Sigma, 71287) in water (−20°C) and 20 mM adenosine-2,3-diphosphate ("A20x"; Sigma, A7154) in water (−20°C). FUS expression in the FlpIn HEK-293 lines was induced with the addition of 1 μg/mL doxycycline for 24 h, unless otherwise noted. Cells were then exposed to sodium arsenite and/or A20x as described below.
Plasmids and cloning
The pEmRP-GGBP and mRFP-TIA-1 plasmids for FRAP analyses were generously provided by Drs. Nancy Redesh and Paul Anderson (Brigham and Women’s Hospital, Harvard Medical School). The mRFP-TIA-1 was sub-cloned into the low expression lentivirus vector CSHPW2 (a gift from Miguel Estevez, Umss) with NheI and KpnI restriction sites using BP Clonase II (Invitrogen, 11789-020), thereby creating CSHPW2-RFP-TIA-1. MRP-9/M9 was a kind gift from Dr. Yuh Min Cho (University of Texas Southwestern Medical Center).

GFP-FUS R521G deletion constructs were constructed as follows: PCR amplified full length GFP-FUS R521G, flanked by attB homologous sequences, was cloned into pDONR221 vector (Invitrogen, 12356-017) with BP Clonase II (Invitrogen, 11789-020) to generate the starting plasmid pDONR221-GFP-FUS R521G. To facilitate substitution of the full length gene with deletion/truncation variants, restriction sites for KpnI and XbaI were introduced upstream of the ATG start codon and downstream of the TAA stop codon, respectively, using the following primers: fwd. GGGGGACATTTTGATCAAAAAAGCAAGCCTGG TACCAGTCGCTCCAAGCGATATTACCC; rev. GGGGA CCACTTTGACAAAGATGCTGGGTTCAGATAATTATT. To generate deletion constructs, the following primers were designed by joining the upstream and downstream sequences flanking the domain that was deleted: ΔGLY_fwd. AGAACCGATACACAGCAGCAGTACATTCTTGGTCAAGGCC; ΔGLY_rev. AGCTGAATTGAGATACACAGCAGTACATTCTTGGTCAAGGCC. ΔRR M_rev. CCACGACACTGCCCACACGCTGTTGGTC TGAATTACCTGCGC; ΔRRG1_fwd. CAGATGCT CGTATTACCTGCGCCTGTGACGGATCTGCGC; ΔRRG1_rev. CATATTCTTACAGGGTGGATTAGGCC GATATGAATCTGCGGCGC; ΔRRG2_fwd. CCAGGT TAAACGCGTACTGACGCGGATCTGACGCGG; ΔRRG2_rev. GTACAGTACACGCGTACTGACGCGGATCTGACGCGG. Δ422-526_fwd. GGGGAACAGTTTGTACAAAAGAGACGCGG TGGTACCATGCGCTCIAACCGATATTACC; Δ422-526_rev. GGGGAACCTTTGTTACAAGAAGACGCGG GTTTACATATTACCTGCGCTTCCACG. The deletion reactions were performed using the pDONR221: FUS R521G plasmid as template and the QuickChange II Mutagenesis kit (Stratagene; 200523) according to the manufacturer’s instructions. For the ΔQ5SY truncation construct, PCR was performed using a reverse primer for the full-length R521G gene paired with a forward primer containing the 5’-ends of sequence ΔGLY flanked by the restriction enzyme KpnI recognition sequence: ΔQ5S1_fwd. CAGCTGGTACACGCGTACTGACGCGGATCTGACGCGG. All constructs were then sub-cloned into the expression vector pDEST-53 (Invitrogen) using Gateway cloning method with LR Clonase II (Invitrogen, 11791-100) according to the manufacturer’s instructions.

Immunofluorescence
Standard immunofluorescence protocols were employed as described previously [13]. Briefly, cells were fixed with 4% paraformaldehyde for 10–15 min then blocked with PBSAT (1X PBS/1% BSA/0.05% Triton-X 100) for 30–60 min at ambient temperature. Primary antibodies described in each experiment were diluted in PBSAT and applied to cells at ambient temperature for 1 hr. Primary antibody dilutions were as follows: 1:2000 for mouse anti-GGBP (BD Transduction Labs, 611126), 1:1000 for rabbit anti-GGBP (Proteintech, 100-57-2AP), 1:500 for rabbit anti-dimethyl arginine ("ASCY241", Millipore, 07-414) and 1:200 mouse anti-FUS (Santa Cruz, SC-4771). Cells were then incubated with secondary antibodies diluted 1:1000–1:2500 in PBSAT for 45 min at ambient temperature. Secondary antibodies included Dylight 549 conjugated anti-mouse IgG (Jackson ImmunoResearch Labs, 715-055-151), Cy3 conjugated anti-mouse IgG (Jackson ImmunoResearch Labs, 715-165-152), Cy5 conjugated anti-rabbit IgG (Jackson ImmunoResearch Labs, 711-165-152), and Cy5 conjugated anti-mouse IgG (Jackson ImmunoResearch Labs, 715-175-151). GFP signal was enhanced by 1:1000 dilution of Alexa Fluor 488-conjugated rabbit anti-GFP (Invitrogen, A21311). Cells were stained with 34 ng/mL DAPI in dH2O, and coverslips were mounted with ProLong Gold anti-fade reagent (Invitrogen, P36930).

Western blotting
Standard western blotting protocols were employed as described previously [13]. Primary antibodies described in each experiment were diluted as follows: 1:1000 for mouse anti-GFP (Living Colors; 632380), 1:1000 for rabbit anti-dimethyl-arginine ("ASCY241", Millipore, 07-414), 1:1000 for mouse anti-tubulin (Sigma, T9026), and 1:1000 for rabbit anti-FUS. Rabbit anti-FUS antibodies were generated by GenScript against a C-terminal epitope, using the peptide CKFGPGQSGSRHDEQDND. Blots were incubated with primary antibodies for 1 hr at ambient temperature and overnight at 4°C. Secondary antibodies, including anti-mouse IRDye 680 (LiCor, 926–32220) and anti-rabbit IRDye 680 (LiCor, 926–32220) or IRDye 800 (LiCor, 926–32210) were diluted 1:10000 and incubated with blots for 1–2 hrs at ambient temperature. Bands were visualized with an Odyssey Infrared Imager (LiCor, Model 9120), and densitometry measurements performed with the Odyssey Software (LiCor, V3.0).
cells/cover slip. The next day, GFP-FUS expression was induced as described above. For stress granule assembly measurements, cells were treated with 0.25 mM sodium arsenite for 40 or 90 min. Coverslips were then fixed and processed for immunofluorescence (IF) with the mouse anti-G3BP1 and rabbit anti-GFP antibodies listed above. For stress granule disassembly measurements, cells were treated with 0.25 mM sodium arsenite for 60 min. at which time the media containing sodium arsenite was replaced with fresh media. After 90 min in fresh media, cells were processed for IF as described above. The percentage of cells with stress granules was determined as [(the number of cells containing at least one stress granule / total number of cells) x 100]. More than 2000 healthy, interphase, non-crowded cells were counted in multiple (between n=4 and n=11, depending on cell line and condition) independent experiments for both assembly and disassembly conditions. A one-way ANOVA with Tukey's multiple comparisons post-test was used to compare the induced and uninduced groups. Similar parameters were used for assembly kinetics in NSC-34 parent cells and cells expressing untagged human FUS proteins with the following changes: cells were treated with sodium arsenite for 1 hr, and immunofluorescence was performed with the rabbit anti-G3BP1 and mouse anti-GFP antibodies listed above. More than 2000 cells were counted in at least n=11 independent experiments per condition. Statistical significance was determined by one-way ANOVA with Tukey's multiple comparisons post-test.

Fluorescence recovery after photobleaching (FRAP) experiments were performed at 37°C as previously described [45]. Multiple cells were analyzed in each experiment over a 30 min period starting at 60 min of sodium arsenite exposure. Experiments were carried out on a Leica SP5 AOBS laser scanning confocal microscope using a 40× 1.3NA water immersion objective or a Leica SP1 system using a 40×, 1.25NA oil immersion objective. No more than two stress granules, from opposite sides of a cell, were individually bleached using a 1-3a laser pulse delivered by a 488 nm or 561 nm laser. A pre-bleach, immediate post-bleach and 16 additional post-bleach images spaced at 5 sec intervals were captured. Leica Confocal Software (Leica Microsystems, Exton, PA) was used to measure fluorescence intensity in the bleached region of interest (ROI), the whole cell, and in a background control area lacking cells at each time point. The data was analyzed and background fluorescence subtracted using Excel. The relative fluorescence intensity (I_{rel}) in the bleached area was calculated as previously shown [45]. Briefly, the following equation was used: $I_{rel} = (I_{0} - (C_{F} / C_{G}))(1 - (C_{F}/C_{G}))$, where C_{F} is the total cellular fluorescence before bleaching, C_{G} is the total cellular fluorescence in the post-bleach image, C_{F} is the total cellular fluorescence at time t, I_{0} is the pre-bleach ROI fluorescence intensity, and I_{rel} is the ROI fluorescence intensity at time t. I_{rel} was calculated as the percentage difference between the relative fluorescence asymptote of the recovery curve and a relative recovery of 1, a value that would reflect complete recovery without an immobile fraction. Recovery curves were drawn using Graphpad Prism 6 (Graphpad Software), with individual time points presented as means ± SEM. Fluorescence recovery half times were calculated from exponential one-phase association curves best fit for the recovery graphs: $F(t) = F_{\infty} (1 - e^{-t/T_{1/2}})$. Mobile fractions were calculated from the plateau region from each curve, which was identified as the series of data points with < 2% change in slope over time.

At least two independent experiments were performed for all conditions. The total number of stress granules analyzed for each condition is shown in Figure 3. A two-way ANOVA was used to determine statistical significance between the mobile fractions for each of the experiments.

Morphology experiments Stable GFP-FUS Hek-293 cells were plated and processed for immunofluorescence as described under 'stress granule assembly and disassembly kinetics' above, except that cells were treated with 0.5 mM sodium arsenite for 1 hr. Confocal stacked images (0.2 μm stack step, 4 μm range) were acquired using a Zeiss Axiovert 200 microscope with a PerkinElmer UltraView LAS spinning disc equipped with a 100× phase objective. Imaris analytical software (Bitplane Scientific Software) was used to construct 3D projections of image stacks. Volume measurements were taken of each stress granule with a G3BP fluorescence signal that was at least 2-fold above background. Because P-bodies had an average volume of 0.5 μm³ (data not shown) by the same analysis, only stress granules with a volume > 0.5 μm³ were included in the analysis. Data is averaged from three independent experiments per line, using approximately 30 stress granules per condition. Statistical significance was determined using the Student’s t-test.
Analysis of FUS deletion constructs in stress granule assembly

HeLa cells were plated on coverslips at a density of 2.5 × 10⁶ cells/coverslip and adhered at 37°C for 24 hrs, after which GFP-FUS R21G truncation constructs and MBRM9M were transiently transfected into cells using Lipofectamine-2000 (Invitrogen, 15666) according to the manufacturer’s instructions. Twenty-four hours post-transfection, cells were subjected to media containing 0.5 mM sodium arsenite for 1 hr. Cells were processed for immunofluorescence using mouse anti-G3BP as described above.

Confocal microscopy was performed using a Solamere Technology Group CSU10B spinning disk confocal system equipped with a Yokogawa CSU10 spinning disk confocal scan head. Image stacks (0.2 μm stack step, 13 stack range) were acquired using a 100x oil objective, a Roper Cool-snap HQ2 camera and MetaMorph V7.6.3 software. Background signal was subtracted by removing fluorescence from a dark-current image (acquired with the laser off) from each raw image. For the GFP images, variations in illumination and detection efficiencies at each pixel were corrected by dividing the dark-adjusted intensities by a normalized flat-field image of a uniformly green fluorescence slide (Chroma Technology, Rockingham, VT, USA) acquired using the same 525/50 nm band-pass filter. Four channels were imaged per cell: FITC for GFP-FUS, Cy3 for G3BP, DAPI for nuclei and phase for cell borders.

The extent of GFP-FUS incorporation into stress granules was analyzed with MetaMorph V7.6.3 software using the Integrated Morphometry Analysis tool. Since cells with a GFP signal brighter than 1.5 × 10⁶ gray/s/μm² tended to form cytoplasmic aggregates a priori of aserinite treatment (data not shown), only transfected cells with GFP-FUS expression levels < 1.5 × 10⁶ gray/s/μm² were selected for analysis. Stress granules were selected using the Cy3 (G3BP) channel as a reference. The slice corresponding to the center of the stress granule was selected from each image stack. Stress granules with an area of at least 0.5 μm² were selected. An outline was drawn around each G3BP granule, and this outline was then transferred to the corresponding FITC (GFP-FUS) image, such that the GFP-FUS signal intensity (“stress granules intensity”) within that granule could be measured. GFP signal intensity measurements were also acquired in the region proximal to the stress granule, and was referred to as the “Diffuse intensity”. The ratio of stress granule intensity (i.e., GFP-FUS inside the stress granule) to diffuse intensity (i.e., GFP-FUS outside the stress granule) was determined for a total of 75–150 stress granules per construct over three independent experiments. Statistical significance was determined by a one-way ANOVA followed by a Dunnett’s post hoc test in Graphpad Prism 6 (Graphpad software).

Methyltransferase inhibition studies

HeLa cells were plated at a density of 2.5 × 10⁶ cells/coverglass and adhered for 24 hrs, after which GFP-FUS R495X expression constructs were transiently transfected with Lipofectamine-2000 either with or without 25 μM AdOx for 24 hrs. Cells were then exposed to 0.5 mM sodium arsenite for 1 hr and coverglasses were processed for immunofluorescence using the mouse anti-G3BP rabbit and ASYM24 antibodies as described above. For quantification, confocal images of 30 cells per condition across three independent experiments were taken, and the intensity of GFP-FUS and ASYM24 signal within stress granules was determined between AdOx-treated and untreated conditions using MetaMorph as described above. Statistical significance was determined using a Student’s t test.

For GFP immunoprecipitation (IP) reactions, cells were lysed for 15 min in IP buffer (400 μL 1% NP-40 (MP Biomedical, 198596)/50 mM Tris–HCl (Sigma T3253-50G)/5 mM EDTA (Fisher E478-500)/150 mM NaCl and 10% v/v glycerol (Acros 15982-0010) in water; pH 7.5), and centrifuged at 13000 rpm for 15 min at 4°C. The supernatant was pre-cleared with 50 μL Biorag Protein G beads (Qiagen, 311813) for 2 hrs at 4°C. Anti-GFP-coated beads for each sample were prepared by incubating 0.5 μL of anti-GFP (Abcam, ab290) in 400 μL of IP buffer with 50 μL Biorag Protein G beads for 2 hrs at 4°C. IP reactions were performed at 4°C overnight with 100 μg of pre-cleared lysate. Protein elution was accomplished with 50 μL 1X SDS loading buffer (Boston Bioproducts BPLHR) for 5 min at 98°C, and 20 μL of sample was subjected to western blot analysis with mouse anti-GFP, mouse anti-tubulin and ASYM24 as described above.

Additional files

Additional file 1: A minor fraction of GFP-FUS HS17Q incorporates into stress granules in response to sodium arsenite. Images for the indicated GFP-FUS cell line (top 3 rows) were collected as described in Figure 1A. Antibody markers used for immunofluorescence are indicated on the left. Images overexposed for GFP detection (bottom row) reveal that a minor fraction of GFP-FUS HS17Q (green) co-localizes with G3BP-positive stress granules (red). FUS HS17Q containing stress granules are denoted by arrows. Conversely, GFP-FUS WT is not detected in stress granules (i.e., there is no GFP-positive signal that co-localized with G3BP), even with high exposure. Scale bar = 5 μm.

Additional file 2: NSC-34 cells expressing untagged human FUS WT and R495X exhibit similar transduction efficiencies. Fluorescent images of the GFP reporter (green) in NSC-34 cells transduced with lentivirus containing untagged human FUS WT or R495X. Translation efficiencies of approximately 100% were determined for both lines. Cellular nuclei are stained with DAPI blue; Scale bar = 20 μm.

Additional file 3: Sodium arsenite induced stressed granules display different dynamics compared to those induced by mHtt. G3BP over-expression. (A) Transfection of mHtt-G3BP was sufficient to induce G3BP-positive stress granules in a subset of both GFP-FUS WT and GFP-FUS R495X cells as determined by live cell imaging. Scale bar = 20 μm. (B) The FRAP recovery curve for mHtt-G3BP inside the stress granule
in (A) was different depending on whether mPAP-GFP was transfected into CEP-FUS WT (blue circles) or R P52 (red squares) expressing cells. Note the trend is opposite from sodium arsenite-induced stress granules in Figure 3. (C) Quantification of the mobile fraction from the recovery phase in (B) compared to those in Figure 3C revealed that expression of CEP-FUS R P52 significantly increased mPAP-GFP binding (i.e., smaller mobile fraction) to stress granules in the over-expression condition compared to all other conditions. Arsenic significantly decreases functional differences between cell lines as determined by two-way ANOVA (F(2,16) = 2.004) on data from 3 independent experiments. Additional significant comparisons include, but are not shown for clarity in the over-expression versus WT in the sodium arsenite condition (P < 0.02). F4/80 in the over-expression versus R P52 in the sodium arsenite condition (P < 0.001). F4/80 in the over-expression versus WT in the sodium arsenite condition (P < 0.002). The total number (N) of stress granules analyzed is indicated. All error bars represent SEM.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

DB, LL, and CH planned and performed the majority of experiments; DB, LL, and CH performed and analyzed data for RAP4; IC, JIN, and JIN planned deconstruct constructs for structure-function analyses. RAP and HB contributed to the design and data interpretation for experiments. DB, LL, and DBH wrote the paper. All authors read and approved the final manuscript.

Acknowledgements

We thank Dr. Zhiqiang Xu for his critical review of the manuscript, Dr. John Landers for helpful discussions, Dr. Paul Funtzun of the UMass Medical School Core Digital Imaging Facility for his assistance with the confocal microscopy, Dr. Miguel Estevez of University of Massachusetts Medical School for the C572/842.8G-FRET construct and production of lentiviruses, Dr. Nancy Sollitto and Paul Anderson-Brikman and Women’s Hospital, Harvard Medical School for the C572/842.8G-FRET construct, Dr. Xi Min Chook (University of Texas Southwestern Medical Center) for the MIP-1/2 plasmid. Drs. Zhiqiang Xu and Stephen Loisey (University of Massachusetts School) for use of their microscopes, and Ruth Ann Lynn for her assistance with experiments. We acknowledge financial support from the ALS Therapy Alliance-OSPF Pharmacy, GMB, A.S. Association 6ZLBA, the Worcester Foundation (DBH), and the US National Institutes of Health/ National Institute on Neurological Disorders and Stroke (RO1NS067206-01 and RO1NS061451-01). DBH.

Author details

1Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA. 2Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA. 3Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.

Received: 16 April 2013 Accepted: 27 August 2013

References

"Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or page charge figures
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit"
PREFACE TO APPENDIX IV:

The work presented in this appendix was performed by Catherine L. Ward with the following exceptions:

Mass spectrometry analysis was performed by either Murat Karabacak (previously of Jeffery Agar’s lab, Brandeis University) or John Leszyk (UMMS, mass spectrometry core facility) and p38α activity was determined by Sun Kyong Lee (previously of Gerardo Morfini’s lab, University of Illinois at Chicago).
APPENDIX IV: EXPRESSION, PURIFICATION AND CHARACTERIZATION OF ACTIVATED P38 MAPK FROM E-COLI

Abstract

P38α is a ubiquitously expressed mitogen-activated protein kinase (MAPK) involved in a diverse set of physiological and disease-related processes including the control of gene expression, apoptotic cell death, inflammation, tumorigenesis and neurodegeneration. *In vivo*, p38α activation involves dual phosphorylation of a threonine and tyrosine residue within its activation loop by either upstream MAPKs or through autophosphorylation. However, singly phosphorylated p38α or p38α with phosphomimetic mutations also exhibit kinase activity, indicating dual phosphorylation is not an absolute requirement for activity. Here, we report single and double phosphorylation of recombinant p38α expressed in *Escherichia coli*. This result is unexpected, since mammalian recombinant proteins are not typically phosphorylated when expressed in *Escherichia coli*. We describe a simple procedure to produce a relatively large, highly purified source of active p38α. This procedure involves a few simple steps, and does not require ion exchange chromatography or sophisticated protein purification equipment. While commercially available sources of p38α activated by upstream MAPKs *in vitro* are commercially available, an economic source of active p38α that can be produced in most basic science laboratories is expected to benefit many fields of biomedical research.
Introduction

P38 mitogen-activated protein kinase (MAPK) is a member of the MAPK superfamily that also includes extracellular signal-regulated kinases (ERKs) and c-jun N-terminal kinases (JNKs) (Krishna and Narang, 2008). P38 MAPKs and JNKs are also known as stress-activated protein kinases (SAPKs) because they are activated in response to cellular stressors such as oxidative stress, inducers of DNA damage, and proinflammatory cytokines (Krishna and Narang, 2008). Of the four isoforms of p38 that include p38α, p38β, p38γ and p38δ, p38α has been the most extensively studied. Activation of p38α is generally accomplished by upstream kinases called MAPK kinases (MKKs), which phosphorylate both the Thr and Tyr residues within the activation loop sequence Thr-Gly-Tyr. MKKs are in turn phosphorylated and thus activated by MAPK kinase kinases (MKKKs); together the MAPKs, MAPKKs and MAPKKKs comprise a MAPK signaling cascade (Zarubin and Han, 2005). P38α can also become activated by factors outside of this MAPK signaling cascade. For example, TAB-1 (transforming growth factor-b-activated protein kinase 1) binds and induces the autophosphorylation of p38α (Ge et al., 2002). P38α substrates include various transcription factors, kinases and cytoskeletal proteins. A role for active p38α has been reported in several biological processes including gene regulation, inflammation, apoptosis and cell cycle (Krishna and Narang, 2008), as well as in human diseases such as cancer and neurodegeneration (Morfini et al., 2009; Kim and Choi, 2010).
In light of the important roles that p38α plays in various pathways, including our recent finding that p38α may play a role in amyotrophic lateral sclerosis (ALS) pathogenesis (Morfini et al., 2009; Bosco et al., 2010b), we sought to express and purify recombinant p38α for biochemical studies. Unexpectedly, we discovered that p38α is phosphorylated during its expression in *Escherichia coli*, in a manner independent of upstream mammalian MKKs. Thus, p38α might represent a rare example of a mammalian protein that is post-translationally modified by one or more *E. coli* kinase(s). Significantly, phosphorylated p38α isolated from our preparations displays kinase activity, and may therefore substitute commercially available forms of activated p38α that are too costly for many laboratories. To ensure that most basic science labs benefit from this finding, we describe a straightforward protocol to isolate milligram quantities of highly purified, active p38α. Importantly, this protocol does not require a protein purification instrument, such as an FPLC. An economic source of active p38α is expected to benefit laboratories studying the biological functions of this kinase.

Results

Expression and purification of p38α MAPK from E. coli. His-tagged p38α was expressed and purified using a strategy similar to previous methods ((Wang et al., 1997; Bukhtiyarova et al., 2004) and *Materials and Methods*). In agreement with previous reports (Bukhtiyarova et al., 2004), we obtained significantly
greater yields of p38α when expressed in *E. coli* Rosetta (DE3) cells compared to *E. coli* BL21(DE3) cells (data not shown), with an average yield of 10-15 mg of protein per liter of bacterial culture. The cobalt-based TALON resin, as opposed to a more common nickel-based resin, was employed for affinity purification of his-p38α. While TALON resin is advertised to prevent non-specific binding of host proteins, the purity of his-p38α was only ~85% after the first TALON purification step (Figure AIV-1, lane 2 and 2a). Next, we employed the commercially available thrombin protease to cleave the his-tag, and reapplied the thrombin/his-p38α cleavage reaction to the TALON resin. Tag-free p38α was eluted in the flow-through of this chromatography step with a purity of ~95% as assessed by SDS-PAGE and Coomassie Brilliant blue staining (Figure AIV-1, lane 3). Non-specific host proteins and uncleaved p38α were both retained by the TALON resin (Figure AIV-1, lane 4). Residual thrombin was removed by applying the tag-free p38α to a Benzamidine column, which removes serine proteases such as thrombin (Figure AIV-1, lane 5).
Figure AIV-1. Expression and purification of p38α MAPK from *E. coli*. His-tagged p38α was expressed and purified as described in *Materials and Methods*. Samples from several steps of the purification process were subjected to SDS-PAGE and Coomassie Brilliant blue staining and assessed for purity. Lane 1 shows a sample of the unpurified lysate from *E. coli* induced to express his-tagged p38α. This lysate was applied to a TALON resin column and imidazole-eluted proteins are shown in lane 2, with the most abundant species corresponding to the expected molecular weight (~43,300 kDa) of his-tagged p38α. Eluted proteins were subjected to Thrombin protease treatment to cleave the his-tag from p38α and then reapplied to the TALON column. Tag-free p38α eluted in the flow-through (lane 3), whereas uncleaved his-tagged p38α and non-specific host-proteins were bound to the TALON resin and eluted with imidazole (lane 4). The protein eluting in the flow-through (lane 3) was applied to a Benzamidine column to remove the Thrombin (lane 5). A more diluted sample corresponding to lane 2 is shown in lane 2a such that pure p38α (lane 5) can be directly compared to impure p38α after the first TALON column.
Other purification procedures have been reported for his-p38α and untagged p38α, however these require additional chromatography steps and generally employ an anion exchange column with a salt gradient (Wang et al., 1997; Keesler et al., 1998; Bukhtiyarova et al., 2004; Diskin et al., 2004). We show here that simply removing the his-tag eliminates the non-specific host proteins that bind to the TALON resin. Because our protocol can easily be carried out in batch-mode or with gravity filtration, we expect this protocol to be particularly useful for molecular biology laboratories researching p38α, but that lack protein purification technology such as a fast protein liquid chromatography (FPLC) system. Moreover, a tag-free protein is advantageous for biological and biophysical assays wherein a tag could potentially interfere with the experiment.

Recombinant p38α expressed in E. coli is phosphorylated. We expressed and purified p38α with the intention of performing *in vitro* activation assays. Western blot analysis using an antibody raised against a peptide sequence including phosphorylated Thr180 and Try182 residues of p38α suggested that at least a fraction of p38α from our *E. coli* preparation was dually phosphorylated (*Figure AIV-2A, lane 1*). Treatment of p38α with lambda protein phosphatase, which removes phosphate groups from serine, threonine and tyrosine residues, abolished this immunoreactivity (*Figure AIV-2A, lane 2*), further supporting the presence of phosphorylated p38α in our preparations.
Figure AlV-2. The activation loop of his-p38α isolated from *E. coli* is phosphorylated. Purified his-p38α was dephosphorylated using lambda protein phosphatase as described in Materials and Methods. (A) Both untreated and dephosphorylated p38α (lanes 1 and 2 respectively), were analyzed by western blotting. Similar p38α loading was confirmed using a phosphorylation-independent anti-p38 antibody from Sigma (p38). In contrast, a phosphorylation-dependent anti-p38 antibody (p-p38) raised against a phosphopeptide containing Thr180 and Tyr182 showed reduced immunoreactivity in lambda phosphatase-treated samples, compared to untreated samples. (B) Quantification of the data in A is shown. The densitometry of the pp38 bands in lanes 1 and 2 are normalized to the total amount of p38α detected using the phosphorylation-independent anti-p38antibody (p38). A ~100-fold reduction in p-p38 immunoreactivity was seen in lambda phosphatase-treated samples, compared to control, untreated samples.
Fourier-transform mass spectrometry (FT-MS), which provides a high mass-accuracy and high resolution relative to most mass spectrometry techniques (Scigelova et al., 2011), was employed to confirm the phosphorylation status of p38α. The FT-MS spectrum revealed unphosphorylated (m/z 43,319), monophosphorylated (m/z 43,399) and bisphosphorylated (m/z 43,479) p38α peptide species (Figure AIV-3). While it is not possible to quantify the exact ratio of each species based on their relative intensities in the mass spectrum, the unphosphorylated species appears to be present at the highest relative abundance and the bisphosphorylated form at the lowest relative abundance.
Figure AIV-3. Fourier-transform mass spectrometry confirms that p38α MAPK isolated from *E. coli* is phosphorylated. Shown is the charge deconvoluted FT-MS spectrum that was reconstructed as charge +1 (Data Analysis, Bruker Daltonics). The spectrum reveals the presence of unphosphorylated (average m/z 43,319), monophosphorylated (average m/z 43,399) and bisphosphorylated (average m/z 43,479) p38α species. The monophosphorylated species is present at a higher relative abundance than the bisphosphorylated species.
Next, we designed a mass spectrometry approach to identify phosphorylation sites within our *E. coli* derived p38α. P38α was first excised from an SDS-PAGE/Coomassie Brilliant blue stain gel and proteolytically digested. A titanium dioxide (TiO$_2$) column was used to enrich for phosphorylated p38α peptides. MALDI-TOF revealed the presence of two phosphopeptides with masses corresponding to 1575.58 and 1591.60 (Figure AIV-4). Based on the results of the Mascot MS/MS database search, peptide 1575.58 corresponds to the p38α peptide monophosphorylated at site Thr180, and peptide 1591.60 corresponds to the oxidized (+16 on Met179) form of this same peptide. The MASCOT scores decrease significantly for both the reduced and oxidized forms of the peptide when the phosphate group is modeled onto Tyr182 (Table AIV-1). Using this approach, we were unable to detect p38α peptides dually phosphorylated at Thr180 and Tyr182. Thus, the monophosphorylated species at relatively high abundance in the FT-MS spectrum likely corresponds to p38α phosphorylated at Thr180.
Figure AIV-4. MALDI-TOF reveals the presence of two phosphorylated p38α MAPK peptides. P38α was excised from an SDS-PAGE gel stained with Coomassie Brilliant blue and proteolytically digested. Enrichment of phosphorylated p38α peptides was accomplished with a titanium (TiO$_2$) oxide column. MALDI-TOF revealed the presence of two phosphopeptides with masses corresponding to 1575.58 and 1591.60, representing a peptide monophosphorylated at Thr180 (see Table AIV-1) with and without oxidation, respectively. No other phosphorylated peptides were identified; smaller peaks represent non-specific binding peptides.
<table>
<thead>
<tr>
<th>Peptide mass (observed)</th>
<th>Peptide sequence<sup>1</sup></th>
<th>Score<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1575.5751</td>
<td>R.HTDDEMTGYVATR.W</td>
<td>91.5</td>
</tr>
<tr>
<td></td>
<td>R.HTDDEMTGYVATR.W</td>
<td>85.5</td>
</tr>
<tr>
<td>1575.5751</td>
<td>R.HTDDEMTGYVATR.W</td>
<td>42.6</td>
</tr>
<tr>
<td></td>
<td>R.HTDDEMTGYVATR.W</td>
<td>26.2</td>
</tr>
<tr>
<td>1591.6010</td>
<td>R.HTDDEMTGYVATR.W</td>
<td>64.6</td>
</tr>
<tr>
<td></td>
<td>R.HTDDEMTGYVATR.W</td>
<td>32.6</td>
</tr>
</tbody>
</table>

Table AIV-1. Results of MASCOT database search of phosphorylated p38α peptides.
¹The sites of phosphorylation and oxidation are in bold and underlined within the peptide sequence that corresponds to the observed mass in the left column.
²The highest scoring sequences from the MASCOT search for the 1575.5751 and 1591.6010 peptides are shown. The scores correlate directly with the accuracy of the corresponding phosphorylation and oxidation sites.
Phosphorylated p38α MAPK derived from E. coli exhibits kinase activity. To determine whether recombinant p38α in our preparation exhibits kinase activity, we performed a kinase assay in the presence of recombinant cJun, a well-characterized p38α substrate (Yamagishi et al., 2001). Phosphorimager scanning (\(^{32}\)P) revealed that E. coli-derived p38α effectively phosphorylates cJun. In contrast, phosphorylation of cJun is not detected in reactions containing dephosphorylated, lambda phosphatase-treated p38α (Figure AIV-5), confirming that the activity of recombinant p38α expressed in E. coli depends upon phosphorylation. Collectively, these data demonstrate that recombinant p38α is phosphorylated during expression in E. coli, resulting in activation of a fraction of the total p38α expressed.
Figure AIV-5. Phosphorylated p38α MAPK expressed in *E. coli* is catalytically active. Recombinant, GST-tagged cJun (cJun), a known substrate of p38α, was incubated in the presence of radiolabelled $[\gamma^{32}P]ATP$ with either untreated p38α (p-p38) or p38α treated with lambda protein phosphatase (d-p38). Reactions were separated by SDS-PAGE and processed for autoradiography. Phosphorimager scanning (P32) shows marked phosphorylation of cJun by untreated p38α (p-p38), but not by dephosphorylated p38α (d-p38), indicating that p38α derived from *E. coli* is an active kinase. Coomassie Brilliant blue (CB) staining shows equivalent amounts of recombinant p38α and cJun substrate in all reactions. Control reactions included cJun, p-p38, and d-p38.
Discussion

Despite many reports for recombinant p38α expression and purification in *E. coli*, observations of p38α phosphorylation have not been cited. The bacterial strain and growth conditions described herein are similar to those described by others (Wang et al., 1997; Bukhtiyarova et al., 2004). However, most purification protocols employ at least one anion exchange column (Wang et al., 1997; Keesler et al., 1998; Bukhtiyarova et al., 2004; Diskin et al., 2007), which is known to separate proteins with different phosphorylation states. Our results indicate that phosphorylated p38α represents a subspecies, and suggest that the non-phosphorylated form is present in the highest relative abundance (Figure AIV-3). Thus, it is conceivable that other protocols enriched for the more abundant, unphosphorylated p38α protein at the expense of phosphorylated p38α species.

To our knowledge, there is only one report by Han *et al.* that describes a recombinant form of p38α from *E. coli* that is recognized by an anti-phosphotyrosine antibody and that phosphorylates the myelin basic protein (MBP) substrate. However, these data were not shown, nor were the specific phosphorylation sites identified (Han et al., 1994). Alternative possibilities for why active, phosphorylated forms of p38α from *E. coli* is not generally described are that researchers did not probe for activity, or that the kinase activity was below the limit of detection for the various assays employed.
The p38α protein in our preparation is comprised of heterogeneous species, as defined by their phosphorylation state. Mass spectrometry data unequivocally identified non-phosphorylated and singly-phosphorylated pools of p38α. Western blots using an antibody raised against a peptide dually phosphorylated at Thr180 and Tyr182 suggest that our preparation also includes this dually phosphorylated p38α species. Since we did not detect phosphorylated Tyr182 in our MALDI-TOF spectrum, we cannot rule out the possibility that this antibody cross-reacts with singly phosphorylated p38α. An alternative explanation is that the abundance of dually phosphorylated p38α is below the limit of detection for our MALDI-TOF experiment and that the antibody is relatively more sensitive. Should most of the p38α in our preparation be singly-phosphorylated at Thr180, as suggested by our mass spectrometry studies (Figure AIV-4), it would be possible that this protein preparation exhibits less activity than p38α preparations dually phosphorylated in vitro at Thr180 and Try182 by upstream MAPKs. However, a recent report showed p38α monophosphorylated at Thr180 displays significant kinase activity that was only 1 order of magnitude lower than bis-phosphorylated p38α (Zhang et al., 2008; Askari et al., 2009). Taken together, these observations suggest that a significant portion of the observed kinase activity in our p38α preparation stems from p38α monophosphorylated at Thr180.

That p38α is phosphorylated and activated in *E. coli* was unexpected, since *E. coli* does not typically modify recombinant mammalian proteins post-
translationally. P38α may be autophosphorylated in *E. coli*, perhaps through a protein-interaction similar to mammalian TAB-1 that induces p38α autophosphorylation (Ge et al., 2002). Accordingly, autophosphorylation has been proposed as the mechanism of phosphorylation for the Lck protein-tyrosine kinase when expressed in *E. coli* (Jullien et al., 1994). An alternative explanation is that recombinant p38α is phosphorylated by bacterial kinases, as suggested for bacterially expressed recombinant p68 RNA helicase (Yang and Liu, 2004). The exact mechanisms underlying phosphorylation of mammalian p38α produced in *E. coli* are unknown.

In sum, we describe a simple method for the production and purification of active p38α from *E. coli* that would be useful to researchers in the MAPK field. In addition, our findings identify p38α as another example of a mammalian protein that is post-translationally modified when expressed in *E. coli*. This observation suggests that careful characterization of post-translational modifications might be needed for other mammalian protein expressed in bacteria.

Materials and Methods

Reagents. \[^{32}\text{P}]\text{ATP was purchased from MP Biomedicals. Recombinant GST-tagged cJun (1-79) was from Calbiochem. The antibodies employed in this study include anti- phosphorylated p38α (Cell Signaling, 9215) and anti-total p38 (Sigma, M0800). Lambda protein phosphatase was purchased from New England Biolabs (P0753S), Rosetta DE3 cells were from Novagen (EMD*}
Chemicals, 71400-4), and TALON Metal Affinity Resin from ClonTech (635502).

Thrombin protease was purchased from GE/Pharmacia (27-0846-01), and HiTrap Benzamidine Fast Flow column from GE Healthcare. Isopropyl-1-thio-s-D-galactopyranoside (I6758), trypsin (T6567), iodoacetamide (I6125), and lysozyme (L6876) were purchased from Sigma-Aldrich. ProteaseMAX surfactant (V2072) was purchased from Promega, TiO$_2$ NuTip (NT1TIO.96) from Glygen Corp., and alpha-cyano-4-hydroxycinnamic acid (186002331) from Waters MassPREP.

Expression and purification of His-tagged p38α MAPK. The pET-14b plasmid containing the murine p38α MAPK gene was a generous gift from Dr. Jiahuai Han (The Scripps Research Institute, La Jolla CA). The plasmid encodes full-length murine p38α (Accession Number #NM_011951) with a Histidine (His) tag and a thrombin cleavage site (MGSSHHHHHHHSSGLVPRGSH) at the amino terminus. This plasmid was transformed into Rosetta DE3 cells using a standard heat-shock protocol. Transformed colonies from LB/ampicillin plates were grown at 30°C in 5 mls Luria-Bertani (LB) broth, supplemented with 100μg/ml ampicillin (amp) and 34μg/ml chloramphenicol (cam), referred to here as LBAC media. After 8-10 hours these cultures were added to 50 mls of fresh LBAC media and grown overnight at 30°C. Twenty-five to 50 mls of this culture was added to 2L of fresh LBAC media until an OD$_{600}$ between 0.05 and 0.10 was reached. Cells were then allowed to grow at 30°C until an OD$_{600}$ of 0.6-0.7, at which point p38α
expression was induced by the addition of 1mM isopropyl-1-thio-s-D-galactopyranoside (IPTG) for 4 hours. Cells were harvested by centrifugation at 8,000 rpm for 15 minutes. Cell pellets were stored at -80°C or immediately used for his-p38α purification.

Bacterial cells were resuspended in lysis buffer (50mM Tris, 500mM NaCl, 10mM imidazole, and protease inhibitor) (Wang et al., 1997). Lysozyme (1 mg/ml) and NP-40 (0.3%) was added to the lysate, which was then sonicated in a Sonic Dismembrator (Fisher Scientific, Model 500) as follows: once at 10% for 12 sec, three times at 20% for 12 sec, and once at 30% for 12 sec. The lysate was cleared by centrifugation at 15,000 rpm for 30 minutes at 4°C, and then applied to TALON resin equilibrated in Buffer A (50mM sodium phosphate, 300mM NaCl, and 5mM imidazole, pH 7.0) inside a 50 mL conical tube and incubated with gentle rocking at room temperature for 30 minutes. The resin was centrifuged at 2000 rpm for 5 minutes and the supernatant was removed. The resin was washed 3 times with 10 bed volumes of Buffer A before eluting the his-tagged p38α with Buffer B (50 mM sodium phosphate, 300 mM NaCl, and 150mM imidazole, pH 7.0). The protein was then buffer exchanged into phosphate buffered saline (PBS) supplemented with 2mM dithiothreitol (DTT). Yields were typically 10-15mg of ~85% pure protein per liter of LBAC media.

Thrombin cleavage of His-tagged p38α MAPK. For cleavage of the his-tag from p38α, the purified protein was buffer exchanged into Buffer A and treated with 10
units of thrombin protease per mg of fusion protein overnight at 4°C. The protein was then applied to TALON resin a second time to remove the cleaved his-tag and residual un-cleaved p38α. To remove the thrombin protease, the protein was applied to a HiTrap Benzamidine FF column equilibrated with Buffer A. The p38α eluted in the flow-through, and was subsequently buffer exchanged into PBS supplemented with 2mM DTT and stored at -80°C. Protein purity was assessed as ~95% based on SDS-PAGE and Coomassie Brilliant blue staining analysis.

Dephosphorylation of p38α MAPK by lambda phosphatase. His-tagged p38α (1.3 mg) was incubated with 8000 units of lambda protein phosphatase at 30°C overnight, and the reaction was applied to TALON resin as described above. The lambda phosphatase was removed by washing the resin with Buffer A. Dephosphorylated his-tagged p38α was eluted with Buffer B and buffer exchanged into PBS as described above.

In vitro p38α MAPK activity assay. Phosphorylated and dephosphorylated (lambda protein phosphatase treated) forms of his-tagged p38α (500nM each) were incubated with GST-cJun (13.5μM) in kinase buffer (20mM Hepes, pH 7.4, 2mM EGTA, 10mM Magnesium Sulfate, 1mM DTT) at 30°C. Reactions were started by addition of 100μM, γ-32P labeled ATP. After 10 minutes incubation, kinase reactions were stopped by addition of 10μl Laemmli sample buffer.
Reactions were separated by SDS-PAGE and stained with Coomassie Brilliant blue. After destaining, gels were dried and processed for Phosphorimager Typhoon scanning.

Determination of the exact mass of p38α MAPK proteins. The exact masses associated with the his-tagged p38α species in our preparation were determined using Electrospray Ionization Fourier transform ion cyclotron resonance (FT-ICR, FT-MS) mass spectrometer (apex Qe-94, Bruker Daltonics) as described previously (Bosco et al., 2010b). Briefly, purified samples were diluted into either 50% methanol/49.1% water/0.1% formic acid 2 mM ammonium Bicarbonate or 2 mM ammonium bicarbonate in water. Similar phosphorylation patterns were obtained with both solvents, with the acidified solution giving a higher signal/noise ratio.

Mass spectrometry based-identification of phosphorylation sites in recombinant p38α. Phosphorylated and dephosphorylated (lambda protein phosphatase-treated) p38α preparations were processed for tryptic digestion and mass spectrometry analyses as follows. His-tagged p38α proteins were resolved by SDS PAGE analysis and visualized by Coomassie Brilliant blue staining. Bands corresponding to p38α were excised and placed into 1.5ml eppendorf tubes with 1ml of water for 1 hr. The water was removed and 25 μl of 250 mM Ammonium Bicarbonate was added. To reduce the disulfide bond in the proteins, 5 μl of a 45
mM solution of DTT was added and the samples were incubated at 50°C for 30 min. The samples were cooled to room temperature. Alkylation of the cysteines (to prevent disulfide bond formation) was accomplished with the addition of 5 µl of a 100 mM Iodoacetamide solution. After 30 min, the gel slices were washed twice with 1 ml water aliquots. The water was removed and 1ml of 50:50 (50mM Ammonium Bicarbonate: Acetonitrile) was placed in each tube and samples were incubated at room temperature for 1hr. The solution was then removed and 200 µl of Acetonitrile was added to each tube. After the gel slices turned opaque white, the acetonitrile was removed and gel slices were further dried in a Speed Vac. Dried gel slices were rehydrated in 50 µl of 2ng/µl trypsin in 0.01% ProteaseMAX Surfactant: 50mM Ammonium Bicarbonate. Samples were then incubated at 37°C for 21hrs. The supernatant of each sample was then removed and placed in a separate 0.5 ml eppendorf tube. Gel slices were further dehydrated with 60 µl of 80:20 (Acetonitrile: 1% formic acid). The extract was combined with the supernatants of each sample. The samples were then dried down to a 10 µl volume in a Speed Vac.

Aliquots of the extracted peptide digest were then enriched for phosphorylated peptides as follows. Several microliters of the extracted peptide digest was diluted in 10 µl of binding solvent (75:19:6 Acetonitrile: Water: TFA). A 1-10 µl TiO2 NuTip was washed two times with 10 µl aliquots of binding solvent. Phosphopeptides were then bound by repetitive pipetting (20 times) of the 10 µl sample volume. The NuTip was then washed 5 times with binding
solvent and then 5 times with 0.1% TFA. Phosphopeptides were then eluted in a separate tube with a 10 \(\mu l \) volume of 6% \(\text{NH}_4\text{OH} \) after repetitive pipetting (10 times). A 3 \(\mu l \) aliquot of 5% TFA was then added to acidify the sample. The phosphopeptides were further purified prior to MALDI analysis using a micro C18 ZipTip.

Samples containing digested peptides from p38\(\alpha \) proteins were deposited onto the MALDI sample target with 1\(\mu l \) of Acetonitrile: 0.1% TFA (80:20) followed by addition of 0.5\(\mu l \) of Matrix solution which consisted of 5 mg/ml of Alpha-Cyano-4-hydroxycinnamic acid in Acetonitrile: 0.1% TFA (50:50). Samples were allowed to air dry prior to insertion into the mass spectrometer. Analyses were performed on a Shimadzu Biotech Axima TOF2 (Shimadzu Instruments) matrix-assisted-laser desorption/ionization Time-of-Flight (MALDI-TOF) mass spectrometer. Peptides were analyzed in positive ion Reflectron mode. The instrument was externally calibrated using a local spot to the sample of interest with Angiotensin II (1046.54), P14R (1533.86) and ACTH (18-39) 2465.20 Da. Collision Induced Dissociation (CID) and/or a Post-Source-Decay (PSD) analysis were performed on the same instrument using a dual timed ion gate for high resolution precursor selection with a laser power about 20% higher than for MS acquisition. CID/PSD fragments were separated in a Curved Field Reflectron (CFR) allowing for a full mass range acquisition of the MS/MS spectrum. All spectra were processed with Mascot Distiller (Matrix Sciences, Ltd.) prior to database searching. Database searches were performed in house with Mascot.
(Matrix Sciences, Ltd.). For MS searches the Peptide Mass Fingerprint program was used with a peptide mass tolerance of 100 ppm. For MS/MS searching (CID/PSD spectra) the MS/MS Ion Search program was used with a Precursor tolerance of 100 ppm and a fragment tolerance of 1.5 Da.
PREFACE TO APPENDIX V:

The work presented in this appendix was performed by Catherine L. Ward with the following exceptions:

Mass spectrometry was performed by the mass spectrometry core facility (UMMS) and cross-linking experiments were largely performed by Michelle Dubuке during her lab rotation (UMMS). All figures were prepared by Catherine L. Ward.
APPENDIX V: P38 MAPK PREFERENTIALLY BINDS FALS-LINKED MUTANT AND OXIDIZED WILD-TYPE SOD1 PROTEINS

Abstract

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a rapidly progressive and fatal motor neuron disease. The mitogen activated protein kinase, p38, is thought to play a role in the pathogenesis of ALS due to aberrant activity of the kinase and in association with mutant superoxide dismutase-1 (SOD1). Here, we investigate the relationship between SOD1 and p38. Using several familial ALS-linked SOD1 variants and oxidized WT SOD1, as a model for sporadic ALS, we show that p38 MAPK, both alpha and beta isoforms, preferentially bind the mutant and oxidized forms of SOD1, independently of p38 activation.

Introduction

Amyotrophic lateral sclerosis (ALS), is a rapidly progressive and fatal disease characterized by the death of motor neurons. Approximately 10% of ALS cases are familial (fALS), or inherited, with the remaining 90% classified as sporadic cases (sALS). Of the familial cases, ~20% are caused by mutations in the gene superoxide dismutase-1 (SOD1), which was found over two decades ago to be involved in ALS (Rosen et al., 1993). SOD1 is an enzyme which catalyzes the conversion of superoxide anions to hydrogen peroxide. Over 150
mutations in SOD1 have been found to cause ALS, which is thought to occur by a gain of toxic function, as suggested by lack of neurotoxic phenotype in SOD1 knock-out mice (Reaume et al., 1996). This toxic function is thought to be related to the tendency of mutant SOD1 to misfold and aggregate. Wild-type (WT) SOD1 is found to aggregate upon being oxidized (Rakhit et al., 2004; Furukawa et al., 2006) and once oxidized, SOD1 mimics the toxicity and binding interactions of mutant SOD1 (Ezzi et al., 2007). WT SOD1 could therefore be playing a role in sALS pathogenesis through its ability to gain toxic properties similar to those seen with mutated SOD1.

Also shown to be important in the pathogenesis of ALS are the mitogen-activated protein kinases (MAPKs). MAPKs are serine-threonine protein kinases which regulate cellular activities through a signaling cascade initiated by cues from various extracellular or intracellular stimuli. The basic MAPK pathway consists of three components: a MAPK kinase kinase (MAP3K), which phosphorylates a MAPK kinase (MAP2K), which in turns phosphorylates a MAPK (Kim and Choi, 2010). Upon phosphorylation, these kinases become activated allowing for further transmission of the signal cascade. One member of the MAP kinase family associated with ALS is p38. This protein has several isoforms, α, β, γ, δ, and is activated by many cellular stresses, including osmotic shock, cytokines, and oxidative stress. Aberrantly activated p38α can lead to elevated levels of phosphorylated neurofilament heavy chain, which when accumulated, is a pathological feature of ALS (Ackerley et al., 2004). Aberrant activation of p38
also correlates with disease progression in SOD1 G93A mice (Tortarolo et al., 2003) while the p38 inhibitor, SB203580, prevents SOD1 induced apoptosis of motor neurons (Dewil et al., 2007). Additionally, activated p38 was found to be a component of inclusions in human ALS patients and G93A SOD transgenic mice (Bendotti et al., 2005). In light of the associations between p38 MAPK and SOD1 in ALS, we tested the hypothesis that there is a direct binding interaction between modified SOD1 proteins and p38 MAPK. We found that p38 binds SOD1 mutants A4V, G37R, G41D, G85R, and G93A, as well as oxidized WT, while having little affinity for the unmodified WT protein. This binding interaction was direct and independent of p38 activation.

Results

P38 MAPK co-purifies with fALS-linked mutant SOD1, but not WT-SOD. In light of the correlation between p38 and SOD1 in ALS we sought to determine the relationship between these two proteins, starting with probing for a binding interaction. Neuro-2A (N2A) cells stably expressing either WT-SOD1 or a fALS-linked mutant SOD1 (G37R, G41D, or G85R) were lysed and incubated with His-tagged p38α. Using affinity chromatography, the His-tagged p38α was isolated from the reaction. Western analysis of the extracted protein shows that G37R, G41D, and G85R have a 3.7, 4.2, and 5.2 fold increase in affinity for p38α, respectively, as compared to WT SOD1 ([Figure AV-1](#)). To account for non-specific binding of the SOD1 proteins to the affinity column, p38α was omitted
from the reactions and the amount of SOD1 eluted from the column (Figure AV-1; background) was quantified and subtracted from the experimental values. An equal amount of His-p38α was isolated in each sample, indicating that mutant forms of SOD1 bind p38α to a significantly higher degree than WT-SOD1 (Figure AV-1).

FALS-linked mutant SOD1 proteins bind directly to P38 MAPK. Once a mutant specific binding interaction was established it was next necessary to determine if this binding was a result of a direct interaction. Purified His-tagged p38α was incubated with purified WT SOD1 or the fALS-linked SOD1 mutant A4V. Western analysis following extraction of p38α via affinity chromatography revealed a direct binding interaction of p38α and SOD1 which was exclusive for the mutant protein (Figure AV-2, lanes 1 and 2). Comparison of Western blot band density between WT and mutant A4V revealed a ~23 times greater amount of mutant protein present than WT.

To substantiate the direct binding interaction observed from the affinity pull-downs, crosslinking experiments between fALS-linked mutant SOD1 and p38α were performed. Purified p38α and SOD1 proteins were incubated with the crosslinking agent, dimethyl suberimidate (DMS), which functions to covalently link proteins between the amino groups of lysines at their binding interface. WT-SOD1 and mutants A4V, (Figure AV-3) G85R, and G93A, (Figure AV-4) were included in the analysis. The crosslinking reactions were analyzed via Western
Figure AV-1. Recombinant p38α preferentially binds to fALS-linked mutant SOD1 proteins from N2A cell lysates. Lysates from N2A cells stably expressing fALS-linked SOD1 mutants G85R, G41D, or G37R or SOD1 WT were incubated with the alpha (α) isoform of His-tagged p38 MAPK. The binding reactions were applied to Ni-NTA spin columns and then eluted with imidazole. The elutions were subjected to Western blot analysis using antibodies against p38 and SOD1 as indicated. The Western blots were analyzed and quantified by densitometry. The quantification shows that G37R, G41D, and G85R have a 3.7, 4.2, and 5.2 fold increase in affinity for p38α, respectively, as compared to WT SOD1, demonstrating that p38α preferentially binds fALS-linked mutant SOD1 proteins.
blot using antibodies against p38 and SOD (Figure AV-3A and AV-4A). Several crosslinked species were observed, with molecular weights correlating to a p38α dimer, an SOD1 dimer, and a p38α monomer crosslinked to a SOD1 monomer (Table AV-1). From the density of the Western blot bands probed with anti-p38, the percentage of p38 crosslinked to SOD1 was calculated. 7.62% of WT SOD1 and 11.91% of A4V bound to p38α (Figure AV-3B). Comparison of WT, G85R, and G93A showed 9.85%, 8.99%, and 11.54% of SOD1 protein, respectively, bound to p38α (Figure AV-4B) The Western blots were also probed with SOD1 to confirm the crosslinking and to calculate the percentage of SOD1 crosslinked to p38α. Comparison of WT and the A4V mutant showed 1.74% of total WT SOD1 bound to p38α and 17.42% of total A4V (Figure AV-3C). 7.88% of total WT SOD1, 8.85% of total G85R, and 12.69% of total G93A was bound to p38α (Figure AV-4C).

To verify these results, the crosslinking samples were analyzed via SDS-PAGE with silver staining. The protein bands with a molecular weight of 60-65 kD were excised and subjected to mass spectrometry analysis. The analysis of these bands revealed no p38α present in the WT SOD1 crosslinking reaction, indicating that if any p38α was present, it was below the limit of detection (Table AV-2). Through these experiments using isolated, purified protein it was established that the binding of p38α and SOD1 was a direct interaction preferential for mutant SOD1.
Figure AV-2. Recombinant p38α preferentially binds to recombinant fALS-linked SOD mutant A4V and aberrantly oxidized SOD1 WT (SODox) proteins. Recombinant SOD1 WT, fALS-linked mutant A4V, and SODox (a model protein for sALS) were incubated with the alpha (α) isoform of Histagged p38. The binding reactions were applied to Ni-NTA spin columns and then eluted with imidazole. The elutions were subjected to Western blot analysis using antibodies against p38 and SOD1 as indicated. The Western blots were analyzed by densitometry and the quantification was corrected for non-specific binding of SOD1 proteins (background). The quantification revealed a ~23 and ~28 times greater affinity of A4V and SODox for p38α, respectively, as compared to WT. Per the Western blot and quantification, it is evident that the mutant and oxidized forms of SOD1 bind p38α to a much higher degree than the unmodified WT protein.
Oxidized WT-SOD1 mimics fALS-linked mutant SOD1 in its ability to bind p38. As a model for sALS, an oxidized form of the wildtype SOD1 protein (referred to here as SODox) was also incubated with p38α and analyzed for a binding interaction via affinity chromatography and Western blot. As with the fALS-linked mutant proteins, the oxidized WT protein had a significantly higher binding affinity for p38α than the unmodified WT protein (Figure AV-2A, lanes 1 and 3). Comparing the Western blot band density between the amount of unmodified WT SOD1 and oxidized WT SOD1 purified with p38α reveals a ~28 times greater amount of oxidized WT protein. Therefore, WT SOD1 when modified by oxidation, mimics the p38α binding capabilities of mutant SOD1 protein.

Mutant SOD1 also binds the beta isoform of p38 MAPK. Being 75% homologous in sequence to the alpha isoform of p38, the binding of the beta isoform to SOD1 was also examined. Recombinant, His-tagged p38β was incubated with a subset of the mutant protein found to bind p38α, including G37R from N2A cells and purified A4V and SODox. After isolating p38β via affinity chromatography, the same binding interactions as observed for p38α were seen (Figure AV-5). Neither purified WT SOD1 nor WT SOD1 from N2A cells bound p38β. Comparison of the Western blot band density reveals that G37R, A4V, and SODox bound p38β 1.6, 1.4, and 0.5 times greater than unmodified WT SOD1, respectively. These results therefore indicate that the binding of oxidized and mutant SOD1 to p38 is not specific for the alpha isoform.
Figure AV-3. Recombinant p38α preferentially binds fALS-linked mutant A4V in crosslinking analyses. Recombinant p38α was combined with either SOD1 WT or fALS-linked SOD1 mutant A4V and treated with the crosslinker dimethyl suberimidate (DMS) for 15 minutes at room temperature. Crosslinking occurred at lysine residues in SOD1 and p38α within 11 Å of each other. The crosslinked species were then identified by Western analysis, probing for SOD1 and p38, and are indicated by the arrows (A). The proposed crosslinked species were determined based on molecular weight (Table AV-1). Monomer (m) and dimer (d) proteins were both detected. Densitometry was performed (n = 2) to determine the percentage of total p38 crosslinked to SOD1 (B) and the percentage of total SOD1 crosslinked to p38 (C).
Discussion

This study has revealed a specific binding interaction between p38 MAPK and oxidized or mutant forms of SOD1, identifying a link between these two proteins relevant to ALS pathogenesis. A series of binding assays utilizing affinity chromatography demonstrated a unique affinity of p38 for SOD1 mutants A4V, G37R, G41D, G85R, and G93A, as well as the oxidized WT protein (SODox), while not binding to the unmodified WT protein. These assays also confirmed that the binding is due to a direct interaction of these proteins and is not mediated by any additional protein interactions.

Important to the link between the familial and sporadic forms of ALS is the binding of p38 to the oxidized wild-type protein. Whereas this protein has no mutations, it mimics the binding capabilities of the mutant protein. This demonstrates that a modification, such as oxidation, to the wild-type protein is enough to cause it to acquire new binding partners that could be significant to the pathogenesis of sporadic ALS.

That p38 interacts with mutant and modified forms of SOD1 is an important observation as a functional interaction between these proteins has also been observed. In a model using giant squid axoplasm, modified SOD1 purified from sporadic ALS patient tissue, as well as recombinantly purified SOD1 mutant protein, inhibited axonal transport in a p38 dependent manner. Additionally, the amount of mutant SOD1 bound to p38 is a very small proportion of the total amount expressed, suggesting that only a subpopulation of the mutant proteins
acquire this potentially toxic binding property. Perhaps when bound to SOD1, p38 acquires new binding partners, altering the transmission of the kinase signaling cascade and activating unintended proteins.

In addition to revealing a unique binding interaction of p38, this work has provided a new tool for studying the kinase activity of the protein. Isolation of a doubly phosphorylated p38 species via *E. coli* expression was accomplished using affinity chromatography followed by purification with an ion exchange column. Being able to purify out these different forms of p38 will enhance the way in which the activity of the kinase is studied.

Studying the relationship between p38 and SOD1 has given us a new tool to enhance the study of p38 as well as an important observation into the activity of these two proteins related to ALS pathogenesis. Further characterizing the nature of this binding interaction unique to mutant and modified WT SOD1 will lead to further insights into their roles in ALS pathogenesis.
Figure AV-4. Recombinant p38α preferentially binds fALS-linked mutants G85R and G93A in crosslinking analyses. Recombinant p38α was combined with either SOD1 WT or fALS-linked SOD1 mutants G85R and G93A and treated with the crosslinker dimethyl suberimidate (DMS) for 15 minutes at room temperature. Crosslinking occurred at lysine residues in SOD1 and p38α within 11 Å of each other. The crosslinked species were then identified by Western analysis, probing for SOD1 and p38, and are indicated by the arrows (A). The proposed crosslinked species were determined based on molecular weight (Table AV-1). Monomer (m) and dimer (d) proteins were both detected. Densitometry was performed (n = 2) to determine the percentage of total p38 crosslinked to SOD1 (B) and the percentage of total SOD1 crosslinked to p38 (C).
Figure AV-5. The beta isoform of p38 also binds mutant and modified SOD1 proteins. Lysates from N2A cells stably expressing fALS-linked SOD1 mutant G37R or SOD1 WT, as well as recombinant fALS-linked SOD1 mutant A4V and the oxidized form of WT SOD1 (SODox), were incubated with the beta (β) isoform of His-tagged p38 MAPK. The binding reactions were applied to Ni-NTA spin columns and then eluted with imidazole. The elutions were subjected to Western blot analysis using antibodies against p38 and SOD1 as indicated. The Western blots were analyzed by densitometry and the quantification was corrected for non-specific binding of SOD1 proteins (background). The quantification shows that G37R, A4V and SODox have a 1.6, 1.4, and 0.5 fold greater affinity for p38α, respectively, than the WT protein.
Materials and Methods

Cell culture. Flp-in HEK cells (Invitrogen - #R75007) expressing GFP-SOD1 constructs under control of a doxycycline-induced promoter (generous gift from Dr. Larry Hayward, UMMS) were maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% TET-tested fetal bovine serum (Atlanta Biologicals,#s10350H), 2mM L-glutamine (Gibco, #25030), 1% pen/strep solution (Gibco, #15140), 15 mg/ml blasticidin (Invitrogen, #R210-01), and 25 ug/ml hygromycin B (Invitrogen, #10687-010). Neuro2A (N2A) cells stably expressing WT or mutant SOD were maintained in 1:1 DMEM and OPTI-MEM media supplemented with 12% fetal bovine serum, 400 μg/ml geneticin (GIBCO, #11811-031), and 1% penicillin/streptomycin/glutamine.

Protein expression and Purification. p38 MAPK plasmid was a gift from Goldsmith and Han labs and myc-tagged SOD1 from Dr. Zuoshang Xu, UMMS. Mutations to the SOD1 WT protein were constructed using mutagenic primers and the QuickChange Site Directed Mutagenesis method (Stratagene).

SOD1 production: Expression of GST-tagged SOD1 in Rosetta DE3 cells (Novagen) was induced by 1mM isopropyl-1-thio-s-D-galactopyranoside (IPTG) for 3 hours at 37°C. Incorporation of metals was achieved by the addition of 200μM CuCl2 and 200μM ZnCl2 prior to the IPTG induction. The bacteria were harvested through centrifugation and lysed with lysis buffer (0.5mM dithiothreitol
Table AV-1. Molecular weight of p38 and SOD1 species resulting from crosslinking analysis. Recombinant p38α was combined with either SOD1 WT or fALS-linked SOD1 mutants A4V, G85R, or G93A. Reactions were treated with the crosslinker dimethyl suberimidate (DMS) for 15 minutes at room temperature. Crosslinking occurred at lysine residues in SOD1 and p38α within 11 Å of each other. Crosslinking reactions were analyzed by Western blot and imaging software (Licor), where each Western blot band was compared to a molecular weight protein ladder. The Western blots were probed with anti-p38 and anti-SOD1 as indicated. The expected protein species was determined based on the molecular weight of the bands.
(DTT), 0.1mM EDTA, protease inhibitor cocktail (Roche, #11873580001), in PBS) and gentle sonication. After centrifuging the lysate, the supernatant was passed through a glutathione Sepharose column, previously washed with PBS. The GST-SOD1 protein was eluted from the column with 10mM glutathione, 50mM Tris (pH 9.5). Cleavage of the GST tag was achieved using six units of Precision Protease (GE/Amersham, 27-0843-01) per milligram of protein. Following cleavage, the protein was dialyzed back into PBS and was run back over the glutathione Sepharose column. The untagged SOD1 protein was further purified using a Q-column in a 10mM Tris buffer at a pH of 8.0. The protein was eluted from the column with a gradient of 10mM Tris, 300mM NaCl pH 8.0 buffer. Purity of the preparation was assessed using SDS-PAGE and mass spectrometry. For the production of SODox, wild-type SOD1 protein was incubated at room temperature with 10mM hydrogen peroxide for 24 hours. The reaction was quenched by buffer exchanging the protein into PBS.

P38 production: Expression of His-tagged p38 in Rosetta DE3 cells (Novagen) was induced by 1mM isopropyl-1-thio-s-D-galactopyranoside (IPTG) for 4 hours at 30°C. The bacteria were harvested by centrifugation and lysed with lysis buffer (50mM Tris pH 7.4, 500mM NaCl, 10mM imidazole, protease inhibitor cocktail) and gentle sonication. Cleared lysate was added to TALON resin (ClonTech) and purification proceeded as per manufacturer’s instructions. The his-tag was then cleaved using thrombin protease (GE/ Pharmacia, #27-0846-01)
<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample Contents</th>
<th>Molecular weight (Da)</th>
<th>PLGS Score</th>
<th>Peptides</th>
<th>Coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>Trypsin precursor</td>
<td>24393</td>
<td>875.0</td>
<td>12</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>Superoxide dismutase Cu Zn</td>
<td>15794</td>
<td>225.7</td>
<td>3</td>
<td>6.5</td>
</tr>
<tr>
<td>A4V</td>
<td>Trypsin precursor</td>
<td>24393</td>
<td>386.4</td>
<td>5</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>Superoxide dismutase Cu Zn</td>
<td>15794</td>
<td>487.0</td>
<td>4</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>Mitogen activated protein kinase</td>
<td>41261</td>
<td>96.6</td>
<td>9</td>
<td>10.3</td>
</tr>
<tr>
<td>G85R</td>
<td>Trypsin precursor</td>
<td>24393</td>
<td>1180.1</td>
<td>13</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>Superoxide dismutase Cu Zn</td>
<td>15794</td>
<td>1537.2</td>
<td>11</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>Mitogen activated protein kinase</td>
<td>41261</td>
<td>1094.8</td>
<td>27</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>Glutathione S transferase 26 kDa</td>
<td>25481</td>
<td>185.5</td>
<td>8</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>Keratin type II cytoskeletal 1</td>
<td>65846</td>
<td>62.3</td>
<td>3</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>Cytokeratin 1 K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keratin type I cytoskeletal 10</td>
<td>57675</td>
<td>40.6</td>
<td>4</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Cytokeratin 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G93A</td>
<td>Trypsin precursor</td>
<td>24393</td>
<td>1146.1</td>
<td>12</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>Superoxide dismutase Cu Zn</td>
<td>15794</td>
<td>1304.0</td>
<td>12</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>Mitogen activated protein kinase</td>
<td>41261</td>
<td>1609.0</td>
<td>25</td>
<td>19.7</td>
</tr>
</tbody>
</table>

Table AV-2. Mass spectrometry analysis of crosslinked species. The crosslinking reactions shown in Figure AV-3 were subjected to a silver stain (BioRad) following SDS-PAGE. Based on their molecular weights, as shown in Table AV-1, the bands correlating to p38α:SOD crosslinked species were extracted and subjected to mass spectrometry. The analysis shows both p38α and SOD1 present in the crosslinking reactions containing mutant SOD1 proteins A4V, G85R, and G93A, but not in the crosslinking reaction containing SOD1 WT. If p38α and SOD1 WT did bind during the crosslinking reaction, there was not a large enough population of this crosslinked species to be detected.
Binding assays with recombinant p38 MAPK and N2A cell lysates. Total N2A cell lysates were prepared using a lysis buffer composed of 50 mM NaH2PO4, 100 mM imidazole, 300 mM NaCl (pH 8.0), 12 mM deoxycholic acid, 1% NP-40, protease inhibitor cocktail, 50 mM NaF and 10 mM Na2VO3. 700μg of total protein from N2A cell lysates was incubated with 100μg of purified His-tagged p38 for 3 hour at 4°C with rotation. As a control, reactions were also incubated without His-tagged p38. After incubation, the binding reactions were applied to Ni-NTA spin columns (Qiagen), washed with 50 mM NaH2PO4, 20 mM imidazole, 300 mM NaCl (pH 8.0), and eluted with 50 mM NaH2PO4, 500 mM imidazole, 300 mM NaCl (pH 8.0). Speed and duration of spins were as per manufacturer’s instructions (Qiagen). The elutions were subjected to SDS-PAGE and probed for p38 and SOD1 using standard Western blot methods with anti-p38 MAP Kinase antibody produced in rabbit (Sigma, M0800) and anti-superoxide dismutase (Cu/Zn Enzyme) produced in sheep (Calbiochem, 574597), respectively.

Recombinant protein binding assays. 10μg of purified SOD1 protein in lysis buffer was incubated with 100μg of purified His-tagged p38 for 3 hour at 4°C with rotation. As a control, reactions were also incubated without His-tagged p38. The binding reactions were applied to Ni-NTA spin columns (Qiagen), washed, and eluted as described above. The elutions were subjected to SDS-PAGE and
probed for p38 and SOD by standard Western blotting techniques with the antibodies described above.

Crosslinking analysis. Proteins were buffer exchanged into 0.2M Triethanolamine (TEA) pH 8.5 and combined such that the final concentration of each protein was 2.5mg/ml. Dimethyl suberimidate · 2HCl (ThermoScientific, #20700) was added in 150M excess and the reaction was allowed to proceed at room temperature for 15 or 30 minutes after which the reaction was quenched by the addition of SDS sample loading buffer and boiling. (as per the manufacturer’s instructions) Samples were analyzed via Western blot probing for p38 and SOD1 with the antibodies described above. For verification by mass spectrometry analysis, the samples were first run on an SDS-PAGE gel and subjected to silver stain (Bio-Rad). The bands corresponding to the predicted size of the crosslinked species were then extracted and sent to the Mass Spectrometry Core Facility at UMMS for digestion and analysis.
BIBLIOGRAPHY

Bertrand P, Akhmedov AT, Delacote F, Durrbach A, Lopez BS (1999) Human POMp75 is identified as the pro-oncoprotein TLS/FUS: both POMp75 and POMp100 DNA homologous pairing activities are associated to cell proliferation. Oncogene 18:4515-4521.

Du K, Arai S, Kawamura T, Matsushita A, Kurokawa R (2011) TLS and PRMT1 synergistically coactivate transcription at the survivin promoter through
TLS arginine methylation. Biochemical and biophysical research communications 404:991-996.

Hedera P, Davis TL, Phibbs FT, Charles PD, Ledoux MS (2013) FUS in familial essential tremor - The search for common causes is still on. Parkinsonism Relat Disord.

inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 125:413-423.

