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ABSTRACT 
Higher-order genome organization is important for the regulation of gene expression by 

bringing different cis-regulatory elements and promoters in proximity. The 

establishment and maintenance of long-range chromatin interactions occur in response 

to cellular and environmental cues with the binding of transcription factors and 

chromatin modifiers.  Understanding the organization of the nucleus in differentiation 

and cancer has been a long standing challenge and is still not well-understood.  In this 

thesis, I explore the dynamic changes in the higher-order chromatin structure in bone 

differentiation and breast cancer.  First, we show dynamic chromatin contact between a 

distal regulatory element and the promoter of Runx2 gene, which encodes the Runt-

related transcription factor 2 (RUNX2) that is essential for bone development.  Next, via 

using a genome-wide approach, we show that breast cancer cells have altered long-range 

chromatin contacts among small, gene-rich chromosomes and at telomeres when 

compared with mammary epithelial cells.  Furthermore, we assess the changes in 

nuclear structure and gene expression of breast cancer cells following Runt-related 

transcription factor 1 (RUNX1) deficiency, an event frequently observed in breast 

cancer.  Finally, I present the role of the central ATPase subunit of the SWI/SNF 

complex, SMARCA4 (BRG1), in mediating nuclear structure and gene expression.  

Taken together, the research presented in this thesis reveals novel insight and paradigm 

for the dynamic changes in disease and differentiation, as well as uncovers previously 

unidentified roles for two chromatin regulatory proteins, RUNX1 and SMARCA4.  
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CHAPTER 1: Introduction 

1.1 A brief history of chromatin biology 
 How does the two meter DNA fit inside a ~10µm nucleus?  Within such a 

condensed environment, how does the genome function in order to maintain the cellular 

functions, or to drive the differentiation process of a whole organism from a single cell? 

The fundamentals of chromatin folding and chromosome compaction have been a long-

standing mystery in biology.  The existence of chromosomes was noticed as early as late 

19th century [1].  During that time, Walther Flemming identified that the chromatin 

corresponded to the thread-like structures, which were later named as "chromosome" 

(Greek: chroma – "color", soma – "body") by Heinrich Wilhelm Gottfried von 

Waldeyer-Hartz [2-5].  Towards the mid-1880s, it was discovered that chromosomes 

were the units for hereditary information [6].  In 1871, F. Miescher identified an acidic, 

phosphorous rich substance in leukocytes which he called "nuclein", and later in sperm 

cells, he identified the basic substance termed "protamin" [7].  In 1884, Hoppe-Seyler 

described the "histon" in the acidic fraction of the nucleus [8].  Later on, with the 

advancement of microscopic lenses with minimal optical aberrations and improved 

fixatives [9], in addition to identification of distinct nuclear substances [10], the 

chromatin biology field has achieved a deeper understanding about the structure of the 

nucleus.  

 There were several landmark discoveries in the first half of the 20th century 

including the rediscovery of Gregory Mendel's principles and the identification of 

genetic linkage.  However, during this time, very little was identified regarding the 
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structure and the proteins associated with the chromatin.  Many discoveries, such as the 

identification of the Drosophila puff chromosomes, relied on the enzymatic digestion 

and the visualization of the biological material by light microscopy.  Towards the 

second half of the 20th century, some profound discoveries were made.  The discovery of 

the structure of DNA [11-13], the demonstration that DNA is the backbone of the 

chromatin [14], the identification of the histones [15], and the association between 

histone modifications and gene expression (by histone acetylation and methylation) [16] 

can be considered as milestones of the era. 

1.2 An overview of chromatin structure 
 It is now very well established that many aspects of chromatin structure are 

intricately linked to several functions of the eukaryotic genome.  The chromatin 

condenses/decondenses both locally and globally in the processes of cell division, 

replication, transcription, homologous recombination and DNA repair.  Yet, the cell can 

dynamically regulate and fine-tune all of these nuclear functions during cell 

differentiation (including embryogenesis) and in response to intrinsic and extrinsic 

environmental cues including hormonal regulation, mechano-sensing, heat-shock, and 

hypoxia.  Perturbations in the genomic processes are tightly associated with both 

developmental and pathologic diseases including cancer. 

 From yeast to mammalian genomes, the DNA is folded every ~146 base pairs 

(bp) into nucleosome complexes that consist of H2A, H2B, H3 and H4 core proteins, 

and H1 linker protein [17].  Nucleosomes are connected to each other by short DNA 

segments known as the "linker DNA".  Electron micrographs of this structure are 



 
 
 
 
 

3 
 

visualized as the "beads on a string" model, which constitutes the primary structure of 

the chromatin.  The linker DNA and the linker histone H1 associates with surrounding 

histone complexes and constitutes a degree of compaction, observed as the condensed 

30nm chromatin, which has been observed in vitro. However, its in vivo presence is still 

being debated [18-20].  During cell division, the chromatin is further folded into mitotic 

chromosomes [21].  Even though the biology of the primary structure and the condensed 

structure (i.e. mitotic chromosomes) is rather well understood, our understanding about 

the intermediate folding characteristics of the chromatin has remained very limited.  

  During the interphase nucleus, each chromosome occupies a separate nuclear 

space, forming the chromosome territories [22-24].  It is known for a very long time that 

the chromosomes are radially positioned in the nucleus, where the larger, gene-poor 

chromosomes are located towards the periphery, and the small, gene-rich chromosomes 

are located towards the interior of the nucleus [25].  Because gene-dense chromosomes 

generally exhibit higher levels of transcription than gene-poor chromosomes [26], gene 

activity may be the underlying basis for the radial positioning of the genome. 

Interestingly, this paradigm holds true not just for entire chromosome territories, but 

also for individual genes and gene complexes within chromosomes; as expressed alleles 

are generally found further from the nuclear periphery than alleles that are not expressed 

[27-30]. This could result from the preferential localization of tightly packed chromatin 

at the nuclear periphery [31; 32].  Although the chromosome territories are spatially 

separated, they cross-talk with each other by the intermingling of different chromosome 

territories, a phenomenon called "chromosome kissing" [33; 34].   One mechanism for 
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chromosome intermingling is "transvection" [35], where the DNA sequences of a 

chromatid can affect the homologous sequences on the other chromatid [36; 37].   Each 

chromosome has a preferred position with respect to the nuclear periphery and with 

respect to each other [38; 39].  Preferential inter-chromosomal associations measured 

between pairwise heterologous chromosome territories suggest an overall nonrandom 

organization of chromosome territories with respect to each other.  This preferred 

positioning of chromosomes are cell-type specific, affecting the trans-interactions they 

make with other chromosomes, as revealed by the specific recurrent translocations 

between two chromosomes based on their proximity [40; 41].  Subsequently, unique 

chromosome territory profiles are detected in different cell types and tissues [41-45]. 

The localization of the chromosomes relative to the periphery and to each other dictates 

the transcriptional and regulatory outcome of the genes and other regulatory elements.  

For example, the ectopic transcriptional activation of a gene locus results in the 

movement of that locus from the nuclear periphery to the interior [46].  As cells 

differentiate, entire chromosome territories are repositioned [47; 48] and individual 

genes within chromosome territories exhibit altered inter-chromosomal interactions; the 

pluripotency-related gene Nanog is an example [49].  Within each chromosome 

territory, subdomains were proposed to occur via 6–12 chromatin loops of 

approximately 50–200 kb arranged in a rosette pattern composed of approximately 1 Mb 

of DNA [50-52].  The periphery of the nucleus contains nuclear lamins forming the 

nuclear lamina [53], a proteinaceous layer found at the interface between chromatin and 

the inner nuclear membrane [54].  Containing hundreds of lamin associated proteins 
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[55], lamin associated DNA regions (LADs) are largely consistent among the individual 

cells in a population [56].  Consistent with observations about gene activity and 

chromosome territory radial positioning, LADs are typically found in repressed 

heterochromatin microenvironments.  These ideas are supported by the observation that 

disruption of the nuclear lamina in patients with progeria results in perturbation of 

telomere length [57], radial CT positioning [58], and the condensation and 

compartmentalization of peripheral heterochromatin [53; 59-62]. 

 Beyond the chromosome territories and the nuclear lamina, even though the 

nucleus is not separated by a membrane-bound compartment, the regulatory machinery 

for transcription, DNA repair and replication are architecturally organized into sub-

nuclear compartments with specific functions.  There are prominent domains inside the 

nucleus, such as the nucleolus and heterochromatin, which were identified long before 

their functions were elucidated.  Furthermore, other architectural components, including 

the nuclear matrix, nuclear lamina, Cajal bodies, speckles, transcription factories and the 

Barr body were identified once advances in microscopy became available and molecular 

approaches were introduced [63-68]. 

 Nucleolus is one of the most extensively studied prominent domains impacting 

nuclear organization is the nucleolus. They are formed by the congregation of the 

acrocentric chromosomes 13, 14, 15, 21, and 22, specifically through the nucleolar 

organizer regions (NORs), which are comprised of tandem arrays of ribosomal RNA 

(rRNA) gen the interphase chromatin.  Detailed biochemical and DNA-sequencing 

analysis of nucleoli indicates that not only the acrocentric NOR-bearing chromosomes 
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interact with nucleoli, but all chromosomes have nucleolar-associating domains (NADs). 

These NADs share sequence similarity with LADs and localize to the perinucleolar 

heterochromatin [65].  This configuration of the chromatin does not persist through 

mitotic phase of the cells.  During mitosis, the sub-nuclear compartments are 

diminished, the nuclear envelope is broken down, and the chromatin becomes tightly 

compacted forming the mitotic chromosomes [21].  However, as the cell exits mitosis, 

chromosomes need to de-compact and resume its transcriptional and other functions, 

recapitulating the cellular program inherited from the parent cells.  This phenomenon is 

accomplished via a mechanism called "mitotic bookmarking", in which certain 

transcription factors and chromatin modifiers are retained on the chromosomes 

throughout the mitotic cell cycle [69].  Having gone through mitosis, the bookmarking 

mechanism enables the rapid resumption of cell-type specific gene expression [70].   

 With the advancement of recent molecular methods (discussed below), it was 

discovered that, similar to prior observations [50-52], megabase scaled genomic 

compartments were discovered.  The A-type (open) compartments are gene-rich, 

transcriptionally active, early replicating, and active whereas the B-type (closed) 

compartments are gene-poor, transcriptionally more repressed, late replicating, and 

enriched in repressive histone modifications [71].  The localization of these 

compartments correlates very well with the timing of replication [72].  More recent 

studies identified the presence of clusters of 100kb to 1Mb sized interaction domains 

within the genomic compartments, which were named as topologically associating 

domains (TADs) [73-75].  The genes within a TAD displayed correlated gene 



 
 
 
 
 

7 
 

expression and transcriptional regulation.  TADs are stable across species, during 

differentiation, and in response to hormonal regulation [76-78].  It was shown that 

insulator proteins, such as CTCF, cohesin and condensin, are enriched at TAD 

boundaries [73; 79; 80].  Very recently, it was shown that the orientation of CTCF 

(CCCTC-binding factor) binding was strongly correlated with TAD formation [81].   It 

is still debated whether TAD formation is primarily driven by the enrichment of genes 

and the transcription factors at the boundaries, or by the interactions within a TAD [82].   

More studies are required to delineate the nuclear regulation in the context of TAD 

structures.  

1.3 Methods to Study Chromatin Organization 

 Chromatin organization is fundamental for biological processes that include 

transcriptional regulation, DNA replication and chromosome segregation. It has been 

long recognized that nuclear and chromatin organization is strongly associated with gene 

activity and chromatin state. This is illustrated by the demonstration that genes 

positioned near the nuclear periphery are often silenced, whereas genes in the interior of 

the nucleus are frequently active. Furthermore, changes in chromosome condensation 

and decondensation during the cell cycle were observed more than a century ago. 

Because it affects so many biological processes, understanding the principles of genome 

folding has been, and is still, an intense area of research.   

 The two major techniques used to observe the spatial organization of chromatin 

can be broadly categorized as microscopic and molecular assays. Light microscopy can 
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provide information about the shape and the distribution of chromosomes at a resolution 

of 50–100 nm in single cells. Electron microscopy, though it provides unprecedented 

resolution, does not provide sequence specific information about the structures 

observed. On the other hand, molecular assays provide a relative spatial-contact 

relationship among genomic loci for a population of cells.  

1.3.1 Chromosome Conformation Capture based techniques 

 Many of the molecular techniques rely on nuclear ligation [83], including the 

chromosome conformation capture methods (3C) [84]. The 3C technique captures the 

population-averaged interaction frequency of two loci based on their spatial proximity in 

the three-dimensional nucleus. Chromosome conformation capture and 3C-derived 

techniques rely on the same basic biochemical steps to capture chromatin interactions: 

cross-linking of the nucleus with formaldehyde, fragmenting chromatin by restriction 

digestion, re-ligating the digested ends in a dilute solution to favor intra- over inter-

molecular interactions, and finally detecting the chimeric ligated products by PCR or 

deep sequencing. The resulting sequence information reveals the interactions of distant 

genomic fragments in the linear genome (Figure 1.1).  Depending on the biological 

question, each approach presents advantages and disadvantages. 
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Figure 1.1. An overview of chromosome conformation capture techniques. They share a procedural 
front end that includes crosslinking, restriction-enzyme digestion, DNA ligation in dilute conditions, and 
DNA purification. Downstream, however, there are major differences in detection of these ligation 
products that yield significantly different types of data. 
 
1.3.1.1 Chromosome Conformation Capture (3C) 

Chromosome conformation capture is used to identify the interaction frequency of two 

selected fragments in the genome. At the end of the 3C procedure, a pool of genome-

wide intra- and inter-chromosomal interactions is generated [85]. However, because the 

interaction frequency between any two fragments are analyzed in a pairwise manner 

(one by one) by PCR using specific primers for each fragment, researchers are limited to 

analyzing only a few loci or a genomic region within relatively small regions (10 kb to 1 

Mb). Thus, 3C is considered a “hypothesis driven” technique, as a priori knowledge 

about the genomic locations of the elements to be tested is required.  The drawbacks of 

the 3C techniques is that even though one can infer whether two fragments are in close 

proximity, the data do not  necessarily infer functional relevance. Additional 
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experiments, such as luciferase-reporter assays, should be performed to assess the 

functional relevance of these looping interactions. Moreover, 3C does not provide 

information about the localization of these fragments in the nucleus (i.e., peripheral or 

interior). If this is of interest for the biological question, supplementing the 3C results 

with DNA-FISH is advised. Furthermore, 3C cannot determine the proximity of 

individual haplotype chromosomes—the data do not distinguish whether the paternal or 

the maternal chromosome, or both, make the long-range contact. 

1.3.1.2 Circular chromosome conformation (4C) 
 
A limitation of the 3C technique is that one can only look at a portion of the picture, 

which is constrained by the number of restriction fragments the 3C primers have been 

designed to query and the genomic distance (up to 1Mb). However, it is well established 

that promoters and enhancers can establish long-range interactions many megabases 

away with other regulatory regions. In order to circumvent this issue 

and probe the genome-wide interactions of a single fragment (one versus all), Simonis et 

al., Wurtele et al., and Zhao et al. [86-88] respectively developed chromosome 

conformation capture on ChIP, circular chromosome conformation capture and open-

ended chromosome conformation capture techniques. Although these parallel methods 

answer the same biological question, they differ slightly in their experimental 

procedures. In the 4C technique, DNA fragments that are ligated to the “bait” fragment 

are amplified, and the amplified pool of interacting “prey” fragments are detected by 

either deep sequencing or microarray analysis. More recently a modification of 4C, 

called enhanced 4C (e4C), has been reported [89]. Using this technique, the interactions 
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of a bait fragment bound by a specific protein of interest can be evaluated. The 

advantage of 4C is that it can detect all of the intra- and inter-chromosomal interactions 

of a specific fragment (or an element) in high resolution. 4C has been widely used to 

study genes involved in development and disease [45; 90-92]. 

1.3.1.3 Chromosome Conformation Capture Carbon Copy (5C) 
 
Transcriptional regulation occurs in an orchestrated manner that typically involves 

several protein complexes and a congregation of cis-regulatory elements such as 

enhancers and insulators. In other words, a genomic region can, and many times does, 

participate in interactions with multiple elements. For instance, multiple enhancers can 

loop with a single developmental gene promoter to fine-tune its transcription. In 

addition, genes within a certain genomic region can be subject to similar modes of 

regulation. As a result, it can be important to chart the interactions between a large 

number of fragments in a genomic region. To address this need, Dostie et al. developed 

the chromosome conformation capture carbon copy (5C) technique [93].  Briefly the 5C 

method begins with preparation of a 3C library. Then, several to several hundred 5C 

primers are designed to span a large genomic region of interest such that the primers will 

anneal precisely at the ligation junctions of the restriction fragments in the 3C library. 

Next, the fragments are subjected to ligation mediated amplification (LMA), to 

simultaneously amplify thousands of 3C junctions in a single reaction. The resulting 

PCR amplicons are detected by either microarray analysis or deep sequencing. The 5C 

method has been successfully used to study the β-globin and HOX loci, and the 

embryonic stem cell gene loci, Klf4, Sox2, and Nanog and 1% of the genome [93-98]. 
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As a result, 5C can provide in-depth information about the higher-order chromatin 

organization of a selected genomic region. 5C data from multiple samples or 

physiological conditions can be compared to infer biological function. Yet, the 5C 

approach is not genome-wide and requires a priori-defined region of interest. 

1.3.1.4 Genome-wide chromosome conformation capture (Hi-C) 
 
For many biological questions, understanding the overall interaction frequency of the 

genome in certain physiological conditions or disease states is desirable. In these cases, 

it is impractical to investigate interaction frequencies using probe based 3C approaches 

(i.e., 3C, 4C, or 5C). To capture an unbiased view of genomic interactions, Lieberman–

Aiden and van Berkum et al. devised the Hi-C method [71].  A detailed protocol and 

guidelines for data interpretation has been extensively explained [99; 100]. Hi-C is very 

similar to 3C in terms of methodology, except that, after the restriction digestion, the 

digested ends are treated to incorporate biotin prior to the diluted ligation step. After 

ligation, all chromosome interactions can be captured genome-wide in an unbiased 

manner by recovering ligated fragments using streptavidin. The Hi-C method has been 

extensively used in studies that address a myriad of biological questions, related to 

disease, stem cell biology, evolution and cell cycle [62; 77; 78; 101]. Interaction 

frequencies in Hi-C data represent the population average of several million cells. Thus, 

the Hi-C technique cannot distinguish whether interactions are stable and present in 

some cells, and non-existent in others; or are dynamically present in all cells. DNA-

FISH, on the other hand, can provide information about single cells, but it cannot be 

used to simultaneously incorporate information about the proximity of several loci. Used 



 
 
 
 
 

13 
 

as complimentary methods, Hi-C and FISH can provide comprehensive and 

complementary information about chromosome conformation [97]. More recently, Hi-C 

has also been applied to single cells [102]. These analyses reveal that larger structures in 

the nucleus (such as chromosome territories) are stable among different cells; however, 

higher resolution structures (i.e., compartments) are more variable. Another 

modification of Hi-C is called Capture Hi-C, in which a pool of sequences of interest 

(i.e., promoter sequences or specific disease loci) is enriched in the library prior to 

sequencing. This targeted technique can provide a very high-resolution interaction map 

of enriched sequences [103-105]. Taken together, the Hi-C strategies for chromosome 

conformation analysis are promising tools to elucidate different roles of genome 

organization in the cell nucleus in physiologic and pathologic states. 

1.3.1.5 ChIA-PET, 6C, and ChIP-Loop 
 
All of the techniques explained thus far are used to study genome organization from a 

“DNA-centric” point of view. Because DNA organization is established and maintained 

by protein and RNA complexes, several methods have been devised to study genome 

structure from the protein perspective.  One common approach is to combine chromatin 

immunoprecipitation with 3C.  DNA is first cross-linked, the protein of interest is 

immunoprecipitated using an antibody, and 3C is then performed. These techniques not 

only reduce background, they also enrich for genomic interactions that are enriched for 

binding of the protein of interest. However, detecting chromosome interactions with 

these techniques does not necessarily mean that the interaction is mediated by the 

protein. Additional experiments, such as knocking down the protein of interest, are 



 
 
 
 
 

14 
 

required to assess the functional relevance of the data.  6C and ChIP-loop can query 

chromosome interactions in “one by one” manner, requiring the design of fragment 

specific probes [106; 107]. However, the ChIA-PET technique uses deep sequencing to 

assess the protein bound interactome genome-wide [108].  ChIA-PET has been thus far 

performed on the estrogen receptor, Pol2, and CTCF [108-110].  Although ChIA-PET 

gives a genome-wide view of chromatin interactions, this view is focused on the protein 

of interest under investigation. 

1.3.2 Microscopy based techniques 

Fluorescence in situ hybridization (FISH) is a microscopic method to visualize specific 

DNA or RNA sequences within the nucleus by hybridizing complementary fluorescent-

dye labeled DNA or RNA probes.  There are a number of FISH approaches that can be 

applied to metaphase chromosomes, interphase chromosomes and oligonucleotide arrays 

[111; 112]. The two-dimensional FISH (2D-FISH), 3D-FISH, and cryo-FISH are 

variations of the FISH procedure that can directly visualize and measure the nuclear 

distance between DNA segments, the nuclear localization of DNA segments, whole 

chromosomes, and the localization of a DNA segment in relative to the rest of the 

chromosome.  FISH has been used extensively to identify chromosomal aberrations 

(e.g., translocations or deletions), and characterize chromosome territories, and other 

nuclear bodies and microenvironments.  Due to the minimum size limits of FISH probes, 

distances <100kb cannot be resolved with traditional FISH techniques.  FISH is ideal for 

analysis of individual chromosome territories.  However, the procedure takes time, and 

it is low throughput as the current protocols for microscopy and image analysis are time 
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consuming.  With the microscopy based techniques, target sequence information is 

required for the design of the probes. With the most advanced equipment, it is 

theoretically possible to use five fluorescently labeled probes simultaneously; however, 

most studies query only two or three probes at a time to avoid technical difficulties.  

Conventional FISH is performed in fixed nuclei (data are from individual cells at the 

time they were prepared for microscopy).   Recently, live-cell FISH has been achieved 

using catalytically inactive CRISPR/Cas9 labeled with EGFP and tiled sgRNAs [113].  

FISH is ideal for determining the position of individual chromosomes territories in the 

nucleus and/or relative to nuclear compartments.  Conventional microscopy resolution is 

constrained by the diffraction limit of light.  Super resolution microscopy [114; 115], on 

the other hand, can increase resolution up to 20 fold over conventional microscopy 

[116].  Taken together, microscopy remains an important approach for high-throughput 

genome-wide studies.  Used in combination with emerging molecular chromatin 

conformation capture techniques, and with more sophisticated and powerful analysis 

methods, it is likely that ongoing investigation will yield ever more precise and detailed 

information on the role of chromosome territory organization in biology. 

1.4 Higher-order chromosome organization during development 

 During cellular differentiation, the cell responds to internal and external 

environmental and cellular signals.  These responses are present in the form of gene 

regulatory networks, where the expression of a gene is regulated by other genes and 

proteins.  The complexity of these gene regulatory networks are mediated by 

interactions between DNA-protein, RNA-protein, protein-protein and RNA-DNA 
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molecules.  Harboring several layers of methods of regulation, including mRNA 

processing, translational regulation and post-translational modifications of proteins, one 

of the fundamental levels is the transcriptional regulation.  Transcriptional regulation 

occurs when transcription factors, along with their co-factors including long non-coding 

RNAs, bind to the DNA at the regulatory regions such as promoters and enhancers, and 

affect the transcription of the regulated gene by modulation of the RNA polymerase 

complex.  Binding of transcription factors often appear in clusters in an orchestrated 

way, presumably via making protein-protein interactions between the transcription 

factors at the regulatory regions.  At a broader scale, many changes in chromosome 

territory positioning accompany the dynamic alterations in target genes' loci. 

 As explained previously, the chromatin is not a one dimensional entity.  Genome 

organization is a fundamental effector of  gene expression.  Many genes are regulated by 

making long-range interactions between the regulatory elements and their cognate 

promoters. In certain instances, several promoters cluster together and are regulated by a 

single regulatory-element.  Because cellular differentiation results in extensive 

alterations in transcriptional regulation, it is important to understand the differentiation-

mediated higher-order chromatin structure changes to gain insight into the underlying 

biology of development. 

 One of the landmark examples of higher-order chromatin structure affecting 

gene expression is the X chromosome inactivation [117], where the X chromosome that 

is deemed to be inactivated is compacted into the Barr body near the nuclear periphery.  

Another remarkable example is found in the rod photoreceptor cells in the retina of 
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nocturnal and diurnal mammals [118].  The chromosome organization in the diurnal rod 

cells is similar to the conventional architecture present in nearly all other eukaryotic 

cells.  However, the rods of nocturnal mammals possess an inverted organization, where 

the heterochromatin is localized at the nuclear center and the euchromatin is situated at 

the nuclear periphery.  This type of organization allows the nocturnal rod photoreceptor 

to efficiently channel the light [118].  

 At the finer scale, it was shown that the interactions between the upstream locus 

control region (LCR) and the β-globin locus 80kb away make a long-range looping 

interaction at the onset of globin expression.  All the globin genes in the locus, including 

the fetal globin and adult globin genes, are spatially clustered foriming the active 

chromatin hub (ACH) [119].  During embryonic and adult development, the chromatin 

interactions between the globin genes and the LCR dynamically follow the 

transcriptional changes that accompany the order of globin gene expression, from fetal 

to adult globin genes [120]. Many transcription factors and chromatin remodeling 

factors were found to drive or stabilize this looping formation [121-123].  Similarly, the 

α-globin gene promoter displays long-range interactions with its distal enhancer element 

[124].   

 Another developmental gene is the homeobox (Hox) gene cluster.  There are 4 

clusters in the mouse genome and in each cluster the individual genes are sequentially 

activated along the anterior-to-posterior body axis to organize the body plan during 

mammalian development [125]. Using 4C approaches, it was shown that there are 

dramatic architectural changes at the Hox gene cluster during embryonic development 
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[91].    

 .The β-globin and the Hox loci are only two examples of many, yet still 

highlights the importance of long-range interactions in the regulation of the loci. 

Transcription factors, co-factors, non-coding RNAs and epigenetic marks are all 

involved in this process.  Understanding the underlying mechanisms of three-

dimensional chromatin folding is an important challenge in order to possible allow 

manipulating cell differentiation for clinical and therapeutic purposes.  In the second 

part of this thesis (Chapter 2), differentiation-dependent chromatin changes during bone-

differentiation will be presented. 

1.5 Higher-order chromosome organization during tumorigenesis 

Changes in nuclear morphology have been used for almost 140 years as a major 

diagnostic tool to detect cancer [126; 127].  One of the first examples of a microscopic 

observation of cancer was by Lionel S. Beale of King's College Hospital, London, in 

1860.  He studied the unstained sputum from a patient with pharynx cancer and 

identified nuclear size and shape variations in cancer cells [128].  The nuclei of cancer 

cells, irrespective of their tissue origin, are generally larger and more irregularly shaped 

than the healthy cell nuclei [126].  Certian types of cancer nuclei are characterized by an 

increased number and size of nucleoli [129; 130].  Several cancer types display partial 

loss of heterochromatin / euchromatin compartmentalization.  The physical proximity of 

the chromosome territories dictate the frequency of the translocation events as assessed 

by microscopy [33; 38; 131; 132], as well as Hi-C [62].   
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 Cases of aberrant chromosome territory movements are also observed in cancer.  

For example, in the majority of human pancreatic cancer cells, chromosome 8 moves 

toward the nuclear periphery [133].  Chromosomes 18 and 19 show position changes in 

multiple types of cancer [134; 135].  Beyond the movement of whole chromosomes, the 

centromere of chromosome 17 becomes more internally localized in cancer compared to 

normal nuclei [133].  In a finer scale, individual gene loci display nuclear re-positioning 

in cancer cells, a phenomenon which has been utilized as a diagnostic tool [136; 137]. 

Apart from whole-scale nuclear alterations, there are thousands of reports suggesting 

perturbations in the epigenetic landscape of cancer cells (reviewed in [138]).  These 

changes include aberrant DNA methylation, histone modifications, binding of several 

transcription factors and chromatin modifiers to ectopic regions potentially resulting in 

perturbed gene expression.   

 The mechanisms of the altered higher-order nuclear structure to functional 

regulation, despite the wealth of data available, is not fully understood. The task of 

unraveling the principle consequences of altered genome structure represent one of the 

biggest challenges in molecular and cell biology.  In the majority of this thesis (Chapters 

3, 4 and 5), different studies to understand the molecular aspects of the nuclear structure 

of the breast cancer genome will be presented. 
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CHAPTER 2: The bone-specific Runx2-P1 promoter displays conserved three-

dimensional chromatin structure with the syntenic Supt3h promoter. 

2.1 Introduction 

 The Runt-related transcription factor 2 (Runx2/CBFα1/AML3) is essential for 

osteoblastic differentiation and is required for bone and cartilage development  [139-

143]. A complete knockout of Runx2 leads to embryonic lethality marked by an absence 

of bone development and ossification [141; 144; 145]. Moreover, Runx2 interacts with 

the nuclear matrix to affect histone modifications and chromatin remodeling [127; 146; 

147]. 

 The murine Runx2 gene is located on chromosome 17 and spans a region of ~210-

kb. Two predominant Runx2 isoforms are transcribed from distinct promoters. The 

Runx2 type-II isoform controlled by the P1 promoter is exclusively expressed in osteo-

progenitor cells and is stimulated upon bone formation. The Runx2 type-I isoform is 

driven by the P2 promoter and is expressed in both osteogenic and non-osteogenic 

mesenchymal tissues [148]. During embryonic development, P1 promoter driven Runx2 

type-II is the major isoform expressed in the developing skeleton [149]. Consistent with 

this pattern, the specific loss of expression from the Runx2–P1 promoter in mice results 

in severe developmental defects with cleidocranial dysplasia (CCD)-like symptoms 

[149]. 

 Runx2 displays a syntenic relationship with the Suppressor of Ty3 homolog (Supt3h) 

gene, whose promoter resides within the first intron and ~38-kb downstream of the 
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Runx2-P1 transcriptional start site (TSS). SUPT3H is a TAF associated protein that is a 

component of the human histone acetyl transferase STAGA complex (SPT3-TAF9-

GCN5-acetylase) [150-153]. These two genes have different expression profiles; Runx2-

P1 is developmentally regulated, while Supt3h is ubiquitously expressed and is essential 

in all tissues. Interestingly, the syntenic relationship between Runx2 and Supt3h is 

conserved among species from humans to sponges [154], which suggests the existence 

of an evolutionarily conserved selective pressure to preserve this syntenic relationship. 

This pressure may be due to a shared or linked regulatory control mechanism and a 

potential for crosstalk between these two genes [155; 156]. 

 In this chapter, we investigated the higher-order organization of the Runx2 locus in 

several cell types. Mining the ENCODE database through the WashU Epigenome 

Browser [157], we identified long-range associations between the Runx2-P1 and Supt3h 

promoter regions. Carrying out chromosome conformation capture (3C) analyses in 

RAW 264.7 murine macrophage cells, where Runx2-P1 is silent, we confirmed the 

existence of this interaction. As Runx2-P1 activity is increased during 

osteoblastogenesis, we next asked whether this interaction is dynamic and functional. 

Interestingly, 3C analyses revealed an increase in the interaction frequency between the 

Runx2-P1 and Supt3h promoters in MC3T3-E1 murine pre-osteoblast cultures 

throughout osteoblastic differentiation. The Supt3h promoter also showed enrichment 

for DNaseI hypersensitivity (DHS) and CTCF and RUNX2 localization with the onset 

of osteogenesis. Finally, we provide evidence that the Supt3h promoter can interact with 

Runx2-P1 in-trans and modulate its expression in a differentiation-dependent manner. 
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2.2 Materials and Methods 

2.2.1 WASHU epigenome and UCSC genome browser search 
Online interaction data was obtained from the WASHU epigenome browser (20) and the 

UCSC Genome Browser [158]. IMR90 HiC data [73] and the PolII ChIA-PET data 

[110] were extracted for the hg19: chr6:45,250,000-45,370,000 genomic coordinates. 

The DNaseI hypersensitivity tracks were obtained for University of Washington (UW) 

tracks for MCF7 and K562; and from Duke University tracks for IMR90. The MCF7 

CTCF ChIP-seq data were extracted from University of Washington (UW) generated 

tracks. Both CTCF and PolII tracks were obtained from Stanford/Yale/Duke/Harvard 

(SYDH) tracks for K562 and IMR90 cells. The MCF7 PolII ChIP-seq data were 

obtained from UT Austin tracks. All RNA-seq data were gathered from the Cold Spring 

Harbor Laboratory ENCODE tracks. 

2.2.2 MC3T3-E1 Cell culture 
The MC3T3-E1 clone-4 pre-osteoblastic murine cell-line [159] was obtained from the 

American Type Culture Collection (ATCC, Manassas, VA). Growth-phase cultures 

were maintained in α-MEM without ascorbic acid (Hyclone, Thermo Fisher Scientific, 

Rochester, NY) and supplemented with 1% penicillin-streptomycin (Gibco, Life 

Technologies, Grand Island, NY), 2 mM L-glutamine (Gibco, Life Technologies, Grand 

Island, NY), and 10% Fetal Bovine Serum (Hyclone, Thermo Fisher Scientific, 

Rochester, NY).  When cultures reached ~90% confluency, differentiation was initiated 

by the addition of 142 µM ascorbic acid (Sigma-Aldrich, St. Louis, MO). After two 
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days, the ascorbic acid concentration was increased to 280 µM and 5 mM β-

Glycerophosphate (Sigma- Aldrich, St. Louis, MO) was added. Cultures were 

maintained at 37°C and at 5% CO2. 

2.2.3 Chromosome Conformation Capture (3C) of the Runx2 locus 
3C assays were performed as previously described [84; 85], with the following 

modifications: 3C restriction fragments were defined by BglII enzyme digestion. The 

anchor fragment used to query Runx2-P1 chromosomal interaction spans from -975 to 

+1113 (mm9 chr17: 44,950,469-44,952,567).  ~1X108 MC3T3-E1 cells were fixed with 

1% formaldehyde in serum free αMEM for 10 min at room temperature. Formaldehyde 

was quenched by the addition of 0.125 M glycine.  Nuclei were released by dounce 

homogenization in ice-cold lysis buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.2% 

NP-40) containing cOmplete, Mini Protease Inhibitor Cocktail (Roche Applied Science, 

Indianapolis, IN). Nuclei were collected and subjected to overnight digestion with 400 U 

of BglII (New England BioLabs, Ipswich, MA). The enzyme reaction was halted by 

incubation at 65°C for 30 min in the presence of 10% SDS. Samples were aliquoted into 

22 separate tubes and were diluted 40-fold in ligation buffer [85] and subjected to 

proximity mediated ligation with 10U of T4 DNA Ligase (Invitrogen, Life 

Technologies, Grand Island, NY) per reaction for 4 h at 16°C. Nuclear material was 

reverse cross-linked by overnight incubation with Proteinase K at 65°C. Ligated 

chromatin was extracted by phenol-chloroform extraction followed by ethanol 

precipitation. 3C primers that span the Runx2 gene locus were designed by Primer3 

software and are listed in Appendix 1. The annealing temperatures of all 3C primers 
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were 60±1°C.  The PCR conditions were 95°C for 8 min followed by, 35 cycles of 95°C 

for 30 sec, 60°C for 30 sec, and 72°C for 30 sec, followed by 72°C for 8 min. All 3C 

PCR products were analyzed on 1% agarose gels stained with ethidium bromide. Gel 

quantifications were analyzed using the GEL-QUANT software (www.gelquant.org). 

 Interaction frequencies were determined by assessing fold-change of 3C PCR 

amplification product of sample chromatin compared to randomly ligated BglII digested 

bacterial artificial chromosomes (BACs) that span the Runx2 locus. The following BAC 

clones, which span the Runx2-Supt3h locus and a gene desert region, were used: 

BACPAC CHORI (Children’s Hospital Oakland Research Institute) catalog numbers 

RP23-22H7, RP23-92H18, RP23-356F5, RP23-443F11, and RP23-238O6. The ligation 

efficiencies of all 3C samples were normalized to each other by taking the log2 average 

of the ligation frequencies of a gene desert region [160] for samples generated with 

BglII, and ERCC3 locus for samples generated with HindIII. The BAC control template 

was prepared by mixing the different BACs in equimolar concentrations, followed by 

digestion and ligation.  Then, the interaction frequency was calculated by dividing the 

amount of PCR product from the 3C template by the amount of PCR product from the 

BAC control template, thereby normalizing for differences in primer efficiencies.  All of 

the 3C primer pairs yielded similar amounts of product with both the 3C and the BAC 

templates.  Primers that gave very low PCR yields were discarded.  3C data represent 

the averaged ligation frequencies of two independent cultures quantified in three 

separate library preparations. Student’s t-test was used to assess the p-values. 

 

http://www.gelquant.org/
http://www.gelquant.org/
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2.2.4 DNase-seq  
Genome-wide DNase-hypersensitivity mapping of osteoblast cultures was performed by 

adapting the DNase-seq protocol from Song et al. [161] with slight modifications. 

Approximately 40 X 106 growth-phase (day 0, or d0) or matrix-deposition stage (day 9, 

or d9) MC3T3-E1 cells were harvested and were each subjected to 4, 12, and 40 U/µL 

of DNaseI for 15 min at 37°C. Steps involving the isolation of chromatin embedded in 

agarose, included a treatment with 10 U/mL β-agarase for 2 h at 37°C before extracting 

with phenol:chloroform:isoamyl alcohol (25:24:1 v/v) and ethanol precipitation. Peak 

signals in this report represent a single biological sample for each culture condition 

sequenced twice (combined technical duplicates) and normalized using align2rawsignal 

(Kundaje A., http://code.google.com/p/align2rawsignal/). DNase-seq analysis was 

validated by 4-fold representation (two biological replicates, each with technical 

duplicates) that pass ENCODE Consortium standards on F-seq called peaks [162] using 

IDR analysis (data not shown, Tai et al., manuscript in preparation). The DNase-seq 

data was deposited under the accession GSE55046. 

2.2.5 Reverse-transcriptase qPCR 
Total RNA from cultures was extracted using TRIzol reagent (Invitrogen, Life 

Technologies, Grand Island, NY) followed by DNase treatment with DNA-Free RNA 

Kit (Zymo Research, Irvine, CA) according to manufacturer’s instruction. cDNA was 

prepared using the SuperScriptIII First-Strand Synthesis System (Invitrogen, Life 

Technologies, Grand Island, NY). qPCR was performed with the iTaq SYBR Green 

http://code.google.com/p/align2rawsignal/
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Supermix with ROX (Bio-Rad, Hercules, CA) and on the 7300 Sequence Detection 

System (Bio-Rad Laboratories, Hercules, CA). Relative transcript levels were 

determined by the ΔΔCt method and normalized to gapdh. Primer sequences for 

runx2P1, runx2P2, osteocalcin, bone sialoprotein, and gapdh are described elsewhere 

[149]. Primers for detection of supt3h message were designed using FoxPrimer 

(www.foxprimer.org, Dobson et al., manuscript in preparation) and are: forward, 5’-

AAGGCATTGACGAGGATGAC-3’ and reverse, 5’-TCTTCAAACATTGCCAGCAG-

3’. Student’s t-test was used to assess the p-values. 

2.2.6 Reporter constructs  
The design and preparation of the 3-kb (-2821 to -16) and 0.6-kb (-629 to -16) luciferase 

constructs are described elsewhere [163].  The Runx2-P1 0.9-kb-Luc construct was 

derived from the 3-kb luciferase construct by deleting sequence between -2821 and -966 

using the quick-change method for large fragment deletion  [163]. The murine 3.3-kb 

Supt3h promoter region (3315-bp) was PCR cloned from mouse C57BL/6 genomic 

DNA using Phusion High-Fidelity DNA Polymerase using the following forward and 

reverse primers: 5’-GCTCGCACTCAGCTTTGGGCA-3’ and 5’-

GGGAGAGACAGGCAAGGAGGGG-3’. The 3.3-kb Supt3h promoter region flanked 

by KpnI restriction sites was cloned upstream of 0.9-kb Runx2-P1 pGL3 luciferase 

vector (GENEWIZ, Inc., South Plainfield, NJ). To generate the Supt3h-TOPO construct, 

the 3.3-kb Supt3h promoter region was subcloned into the pCR-4Blunt-TOPO vector 

using the Zero Blunt TOPO PCR Cloning Kit following manufacturers’ recommended 

conditions. The Supt3h-DHS1 and Supt3h-DHS2 TOPO and 0.9-kb pGL3 constructs 

http://www.foxprimer.org/
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described here were generated by similar methods using the following primer sets: 

 

Supt3h-DHS1:FW,5’-GGA ACT TTG TAG AAA GGA ACG GGG G-3’,RV,5’-CAT 

GCG CAC CCG GCT GGC C-3’;  

Supt3h-DHS2: FW, 5’-CGC TCT CGC CGC ACG GC-3’, 

RV,5’-CTC CCA TAA ACC TGA GTT TTG AGC TAG G-3’; 

Supt3h-0.5kb: FW, 5’-GAT ATT AGT TGA GCA GAA TTT TAA T-3’, RV, 5’-TAC 

TTC ATT AAT GTC TTG CCT ATG-3’ 

Supt3h-0.6kb:FW,5’-TAA CTT CAC AAG AGC TTC GTT TTC-3’,RV  5’ TAA ACA 

AAC AAA CAA ACA AAC TGC T-3’;Supt3h-1.1kb:FW 5’TAA CTT CAC AAG 

AGC TTC GTT TTC-3’,  RV 5’-TAC TTC ATT AAT GTC TTG CCT ATG-3’ 

  

The empty-TOPO construct described in this report was generated by allowing the pCR-

4Blunt-TOPO vector to self-circularize, a low-frequency event that occurs when 

reactions lack a blunt-ended fragment. The TK-pGL3 and SV40-renilla constructs were 

kind gifts from Dr. Stephen D. Hauschka. 

2.2.7 Co-transfections and Luciferase reporter assays 
Growth-phase MC3T3-E1 clone-4 cells were grown to >90% confluency and co-

transfected with Firefly Luciferase test constructs and SV40-Renilla constructs using 

Lipofectamine (Invitrogen, Life Technologies, Grand Island, NY) and Plus Reagent 

(Invitrogen, Life Technologies, Grand Island, NY) according to manufacturer’s 

instructions. 2.5 µg of total plasmid DNA was transfected per 60 mm plate as described 
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in the Results section. At designated days post-switch, cultures were harvested and 

reporter activities were measured using the Dual-Luciferase Reporter Assay System 

(Promega, Madison, WI) on a VICTOR X4 Multilabel Plate Reader (Perkin Elmer, 

Waltham, MA), according to manufacturers’ instructions. Each test condition described 

is represented by at least 9 replicate plates, and statistical significance values are 

reported where applicable.  

2.2.8 Interplasmid 3C  
We adapted a 3C-qPCR [164] approach for analyzing the interaction frequency between 

two transiently co-transfected plasmid constructs. We have named this method 

Interplasmid 3C (i3C).  The following primers were designed to span SphI restriction 

sites: TOPO 5’- GCACGTACTCGGATGGAAG -3’, pGL3 5’-

CCGAGTGTAGTAAACATTCCAAAAC-3’, Runx2 internal control FW 5’- 

CTCTTCATTTGCACTGGGTCACACG-3’ and Runx2 internal control RV 5’-

CCAGGGAAGTGGAGGGAAGGGTTG-3’. qPCR was performed as described above. 

Enrichment of ligation products were assessed by normalizing the Ct values of the 3C-

ligation products to an internal loading control. Relative ligation frequency was obtained 

by normalizing the enrichment values to the empty TOPO - empty pGL3 control 

combination. Student’s t-test was used to assess the p-values. 

2.3 Results 

2.3.1 Identification of a long-range interaction between the Runx2-P1 and Supt3h 
promoters  
In order to assess the prevalence of long-range looping interactions between Runx2-P1 

and Supt3h promoters in a variety of cellular contexts, we examined (using the WashU 
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Epigenome Browser [157]) publicly available Hi-C and ChIA-PET datasets that are part 

of the ENCODE project.  Because DHS and CTCF are strongly correlated with the 

presence of long-range interactions [94], we decided to include these marks in our 

analysis. In addition, RNA-seq and PolII ChIP-seq data were included as parameters of 

transcriptional activity. Hi-C (High-throughput chromosomal conformation capture) 

methodology probes long-range chromosomal interactions on a genome-wide scale [71]. 

ChIA-PET (Chromatin Interaction Analysis by Paired-End Tag Sequencing), on the 

other hand, identifies chromatin interactions at regions associated with a transcription 

factor or a complex of interest via a combination of chromatin immunoprecipitation 

(ChIP) and 3C mapping [108]. 

 IMR90 human lung fibroblasts display a long-range interaction between Runx2-P1 

and Supt3h promoter regions, which are ~38kb away from each other (Figure 2.1). 

Results from individual IMR90 Hi-C experimental replicate tracks show the same result 

(Figure 2.2).  Moreover, RNA-seq data suggest that the Supt3h gene is transcribed. 

Consistent with the observation of the chromatin interaction, the Supt3h promoter also 

harbors DHS, CTCF and PolII binding. There is no detectable RNA-seq signal at the 

Runx2-P1 promoter region, as expected from a non-osteogenic cell line (Figure 2.1). 
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Figure 2.1. The long-range interactions in the Runx2 locus in IMR90 Hi-C dataset. WashU 
Epigenome Browser snapshot of the Hi-C interaction frequencies in IMR90 cells between the Runx2-P1 
and Supt3h promoter regions. The genes are diagramed on top, and the transcriptional start sites are 
indicated by the arrows. The 20-kb regions encompassing the Runx2-P1 and Supt3h promoters are 
highlighted with black bars. In the Hi-C heatmap, darker colors represent higher interaction frequency. 
UCSC genome browser screenshots of ChIP-seq profiling signal tracks for PolII, CTCF, DHS and RNA-
seq data of IMR90 cells are labeled. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2. The long-range interactions in the Runx2 locus in IMR90 Hi-C replicates.WashU 
Epigenome Browser snapshot of the Hi-C interaction frequencies in IMR90 cells for both of the replicates. 
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 In K562 leukemia cells, ChIA-PET data for interactions bound by PolII demonstrate 

many looping interactions within the intervening sequences between Runx2-P1 and 

Supt3h promoters, as indicated by the different sizes of arcs in Figure 2.3. Comparison 

of data from individual replicates suggests that the variability of detectable interaction 

events within this region is fairly high (Figure 2.4).  

Figure 2.3. The long-range interactions in the Runx2 locus in K562 ChIA-PET dataset. ChIA-PET 
interactions bound by PolII within the local Runx2-P1 and Supt3h promoter regions, accompanied by 
UCSC genome browser screenshot of PolII and CTCF ChIP-seq, DHS and RNA-seq signals for K562 
cells. The arrows indicate the specific interaction between Runx2 and Supt3h promoters. 
 
 
 

Figure 2.4. The long-range interactions in the Runx2 locus in K562 ChIA-PET biological replicates. 
WashU Epigenome Browser snapshot of the ChIA-PET interactions for K562 cells for individual 
replicates. 
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The  interaction between the Runx2-P1 and Supt3h promoter regions is reproducible 

between these two replicates (Figure 2.4). The epigenetic marks correlating with higher-

order chromatin organization such as the presence of DHS, enrichment of CTCF and 

PolII, and a strong RNA-seq peak are all observed in the Supt3h region. Similar to the 

case in IMR90 cells, there is no detectable ChIP-seq or RNA-seq signal in the Runx2-P1 

promoter (Figure 2.3). Interestingly, the intensity and locations of the looping 

interactions in K562 cells greatly differ between the Runx2 and Supt3h promoter 

regions. This may be due to PolII tracking through the Supt3h gene body during active 

transcription. It is worth noting that the Supt3h promoter region also makes long-range 

interactions with regions other than the Runx2-P1 promoter, suggesting a complex 

regulatory interaction network for these genes. 

 
 ChIA-PET data for MCF7 PolII also suggest a physical interaction between Runx2 

and Supt3h promoter regions, accompanied by a DHS, transcription of the Supt3h gene, 

and PolII and CTCF binding to the Supt3h promoter (Figure 2.5). There is no 

transcription detected from the Runx2-P1 promoter. In comparison with the K562 PolII 

ChIA-PET data, looping between the Supt3h promoter and other regions is observed in 

addition to many local interactions in MCF7 cells. In this dataset, the interaction 

between Runx2-Supt3h is detected in only one of the two experimental replicates (Figure 

2.6), which might indicate contacts are rare in MCF7 compared to K562 cells. 
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Figure 2.5. The long-range interactions in the Runx2 locus in the MCF7 ChIA-PET dataset. ChIA-
PET interactions bound by PolII within the local Runx2-P1 and Supt3h promoter regions, accompanied by 
UCSC genome browser screenshot of PolII and CTCF ChIP-seq, DHS and RNA-seq signals for MCF7 
cells. The arrows indicate the specific interaction between Runx2 and Supt3h promoters. 
 
 

 
Figure 2.6. The long-range interactions in the Runx2 locus in the MCF7 ChIA-PET biological 
replicates. WashU Epigenome Browser snapshot of the ChIA-PET interactions for MCF7 cells for 
individual replicates. 
 
 
 Because there is a long-range interaction between Runx2-Supt3h promoters in 

human cell lines that lack detectable Runx2-P1 driven transcription as assessed by RNA-

seq tracks, we next asked whether this interaction also exists in a murine cell line where 

Runx2 is silent. In order to address this question, we used the 3C approach [84; 85] to 

examine the RAW 264.7 murine macrophage cell line, which exhibits low levels of 

Runx2 expression as assessed by RT-qPCR (Figure 2.7). 

 3C is a widely used method that employs the intra-molecular ligation of 

enzymatically digested cross-linked chromatin. Unique ligation junctions are quantified 

by PCR to assess the relative proximity of restriction fragments of interest to detect 

captured interacting chromosomal domains [84; 85]. We analyzed the interaction profile 
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of the Runx2-P1 promoter with the BglII restriction fragments encompassing the Supt3h 

and Runx2-P2 promoters (Figure 2.8). The 3C primers were designed to query the 

ligation frequency between the anchor fragment located at the P1 promoter and BglII 

restriction fragments flanking the Supt3h and Runx2-P2 promoter regions (see 

Appendix, Table 1 for the primer list). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.7. RT-PCR expression levels of Runx2-P1 and Runx2-P2 in MC3T3 and RAW264.7 cells. 
Relative expression levels of runx2-P1, runx2-P2, d0 and d9 MC3T3 cultures and RAW 264.7 cells. 
Relative expression was normalized to gapdh levels. 
 
  

 Similar to the cases observed in different human cell lines that have minimal Runx2 

expression, we found long-range interactions between the Runx2-P1 and Runx2-P2 

regions, and between Runx2-P1 and the Supt3h promoters (Figure 2.8). 
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Figure 2.8. 3C analysis of the Runx2 locus in the RAW264.7 cells. Chromosome conformation capture 
(3C) analysis of the Runx2 gene locus in RAW264.7 macrophages. The x-axis represents the genomic 
position and the y-axis shows the relative interaction frequency. Anchor BglII fragment at Runx2-P1 is 
indicated with a black bar. Gray bars indicate the BglII restriction fragments. Arrowheads point at the 
Supt3h and Runx2-P2 interactions. Error bars: S.E.M. 
 
Taken together, these findings suggest that the Runx2-P1 and Supt3h promoters are in 

close proximity in four different cell types of human and mouse origin. The human cell 

lines queried show the presence of DHS, and the enrichment of CTCF and PolII at the 

Supt3h promoter. The presence of DHS and the enrichment of CTCF at this region 

correlate with the observation of the long-range interaction [94; 95]. In the mouse RAW 

264.7 macrophage cells, in which the Runx2 gene is transcriptionally silent, the same 

interaction is also observed via 3C analysis. These findings suggest that these 

interactions represent a static three-dimensional structure established between the 

Runx2-P1 and Supt3h promoters in cells that have minimal levels of Runx2-P1 driven 

transcription. 
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2.3.2 Interaction frequency between Runx2-P1 and Supt3h promoters is increased 

during osteoblast differentiation 

Runx2 is fundamental for bone formation and maintenance. Because Runx2-P1 driven 

transcription increases during osteogenesis [149; 165], we asked whether the long range 

association observed between the Runx2-P1 and Supt3h promoters is altered during 

osteoblast differentiation. We compared the MC3T3-E1 cell line at growth-phase, pre-

osteoblasts (d0) vs. differentiating cultures at matrix-deposition stage (d9), since Runx2 

transcript levels have been shown to increase ~2-6-fold by the matrix-deposition stage of 

osteoblastogenesis [166; 167]. This marked increase in transcription occurs within the 

first 9 days of differentiation. 

 Using the 3C methodology, we queried the interaction profile of the Runx2-P1 

promoter with sequences flanking ~300kb 5’ and 3’ of this promoter in d0 and d9 

cultures. The 3C results show that the Runx2-P1 anchor fragment displays high-

interaction frequency with the fragment encompassing the Runx2-P2 promoter in both 

d0 and d9 cultures (Figure 2.9). Cells cultured in differentiation conditions for d9 show 

a modest, statistically insignificant increase in the interaction frequency between the 

Runx2-P1 and Runx2-P2 promoters. A notable interaction between the anchor fragment 

and the fragment encompassing the Supt3h promoter in d0 cultures was also observed. 

Interestingly, there was a statistically significant ~2-fold increase (p<0.05) in interaction 

frequency at this region in d9 vs. d0 cultures (Figure 2.9). Interaction with the Supt3h 

promoter region was among the most significantly changed throughout the entire 600kb 

Runx2 locus during differentiation, suggesting a mechanistic link with the conserved 
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syntenic nature of these genes. 

 

Figure 2.9. 3C analysis of Runx2-P1 promoter in MC3T3 cells. 3C analysis of the Runx2 locus in 
proliferating (d0 and d9) post-differentiation MC3T3-E1 cultures. The genes are diagramed on top, and 
the TSSs are designated by the arrows whereas the exons are represented by black bars. The anchor 
fragment is designated by a black bar at Runx2-P1. The x-axis represents the genomic position and the y-
axis shows the relative 3C interaction frequency. The highest interaction frequency value (d9, Runx2-P2 
peak) was normalized to 1. Error bars: S.E.M. 
 
 
 

 To confirm the interactions between the Runx2-P1, Supt3h, and Runx2-P2 promoter 

regions in differentiating (d9) osteoblasts, we utilized the 3C primer that is most 

proximal to the Runx2-P2 promoter as the anchor primer to probe for interactions 

between the Runx2-P2 promoter and flanking regions. When the BglII fragment 

spanning the Runx2-P2 promoter is used as the anchor, strong interaction frequencies 

with both Runx2-P1 and Supt3h promoters are observed (Figure 2.10). 
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Figure 2.10. 3C analysis of d9 MC3T3 cultures with the anchor fragment located on Runx2-P2. The 
black arrows point at Runx2-P1 and Supt3h regions. Error bars: S.E.M.  
 
 

To further validate these results, we repeated the 3C experiments with an alternative 

design, using the HindIII restriction enzyme instead of BglII. Interaction frequencies 

between the anchor Runx2-P1 fragment and the HindIII fragments at the Supt3h 

promoter region were analyzed in d0 and d9 MC3T3 cells. We observed that the HindIII 

fragment at the Supt3h TSS region has a significantly higher interaction frequency with 

the Runx2-P1 promoter in d9 cultures than in d0 cultures (Figure 2.11). It is also worth 

noting that the looping HindIII and BglII fragments (Figure 2.9) at the Supt3h promoter 

overlap with each other. HindIII fragments flanking the BglII fragment showed similar 

interaction frequencies in d0 and d9 cultures (Figure 2.11). 

 The increase in chromatin association between the Runx2-P1 and Supt3h promoters 

during differentiation suggests a possible regulatory relationship between these two 

regions, while other interaction events appear to remain constant. 
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Figure 2.11. 3C performed with HindIII as validation of the interaction between Runx2-P1 and 
Supt3h promoters in d0 and d9 MC3T3s. The anchor fragment is designated by a black bar at Runx2-
P1. The looping BglII fragment in Figure 2.9 is indicated by a black rectangle. Gray shades indicate the 
HindIII restriction fragments. Error bars: S.E.M. (*p<0.05 by Student’s t-test). 

 

2.3.3 Interactions between Runx2-P1 and Supt3h are enriched for CTCF, RUNX2 

and DHS during osteoblast differentiation 

Genome-wide studies have recently shown that many developmentally regulated genes 

exhibiting long-range interactions are enriched for CTCF [94; 95]. Additionally, 

RUNX2 protein is shown to be a component of the nuclear matrix and to act as a nuclear 

scaffolding factor [143; 146; 147]. We asked if the local chromatin state is altered at the 

Runx2-P1 and Supt3h promoter regions during differentiation, in which the looping 

intensity is significantly increased upon differentiation. 

 We have recently employed a comparative analysis of the genome wide enrichments 

of CTCF and RUNX2 via ChIP-seq during MC3T3-E1 differentiation [167]. To 

determine whether the interactions between the Runx2-P1 and the Supt3h promoter 
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regions correlate with the recruitment of CTCF and/or RUNX2, we extracted the ChIP-

seq data encompassing the Runx2 locus. Additionally, to address whether there is altered 

nucleosome association at these regions due to a change in factor occupancy, we carried 

out DNase-seq experiments in differentiating MC3T3 cultures (Figure 2.12) (Tai et al., 

manuscript in preparation). 

Figure 2.12. The epigenetic landscape of the Runx2 locus during differentiation. DNaseI-seq and 
ChIP-seq signal tracks for CTCF and RUNX2 enrichment in d0 and d9 MC3T3s. The DHS scores for the 
Supt3h promoter region are also shown. 
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 Interestingly, the DHS profile of the genomic region surrounding the Runx2-Supt3h 

gene locus shows the most pronounced peak at the Supt3h promoter region in both d0 

and d9 cultures. ChIP-seq analysis demonstrates that CTCF, which is implicated in 

mediating long-range interactions, is enriched at the Supt3h promoter on d0, consistent 

with the basal level of interaction in cells that lack Runx2-P1 activity. As pre-osteoblasts 

undergo osteoblast differentiation, we also observed a modest increase of CTCF 

enrichment at the Supt3h promoter (d9), coinciding with a similar increase in the DHS 

signal at this region (Figure 2.12). Interestingly, the timing of enrichment of CTCF at 

the Supt3h promoter overlaps with the increased looping frequency with Runx2-P1 

(Figure 2.9). Moreover, ChIP-seq data demonstrate that RUNX2 enrichment is 

substantially increased at the Runx2-P1, Runx2-P2 and Supt3h promoters upon 

differentiation (Figure 2.12). 

 The increase of DHS and CTCF enrichment at the Supt3h promoter, together with 

the differentiation-dependent increased looping frequency, suggests a mechanistic link 

between the Supt3h and Runx2-P1 promoters. The enrichment of RUNX2 observed at 

both Runx2-P1 and Supt3h promoters is correlated with the increase in transcriptional 

activity of the bone-related Runx2-P1 promoter [149], implying a regulatory role for 

sequences within the Supt3h promoter. 

2.3.4 Supt3h expression levels remain constant during osteoblast differentiation 
As the Supt3h promoter region undergoes alterations in chromatin conformation, DHS 

and factor binding profiles, we analyzed the expression of Supt3h throughout several 

time points during osteoblast differentiation. As expected [168], transcript levels of 
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Runx2-P1 and Runx2-P2 increased between d0 and d9 cultures (2.5-fold and 1.6-fold, 

respectively) (Figure 2.13). mRNA levels of bone-sialoprotein (Ibsp) and osteocalcin 

(Bglap2), markers for osteoblast differentiation, were several-fold increased between the 

same two time-points (Figure 2.13) while the Supt3h mRNA levels were relatively 

unchanged.   

 

 

 

 

 

 

 

 

 

Figure 2.13. qPCR analysis of bone-specific genes during osteoblast differentiation. Relative 
expression levels of runx2-P1, runx2-P2, ibsp, bglap2 and supt3h in d0 and d9 cultures. Relative 
expression was normalized to ‘d0’ values. 
 
 
 In order to rule out the possibility that Supt3h mRNA levels might fluctuate between 

d0 and d9, we measured the Supt3h expression levels at additional time points during 

differentiation. Cultures harvested between d2 and d7 after initiation of differentiation 

showed no significant changes in Supt3h RNA levels (Figure 2.14).  This lack of change 

in RNA levels is also true of cultures undergoing mineralization for 28d post-

differentiation (data not shown). Therefore, despite changes in the local chromatin 
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architecture of its promoter (Figure 2.9 and Figure 2.12), supt3h expression was not 

changed during osteoblastic differentiation. 

 

 

 

 

 

 

 

 

 
Figure 2.14. Time course qPCR expression analysis of bone-related genes in MCF3T3 cells. (d0, d2, 
d4, d5, d6 and d7).  
 

2.3.5 Runx2-P1 and Supt3h promoters can physically interact and regulate Runx2-

P1 expression in-trans 

The increase of Runx2-P1 and Supt3h interaction frequency as well as the enrichment of 

RUNX2 and presence of DHS at the Supt3h promoter, without affecting Supt3h 

expression, suggests that regulation of the Runx2-P1 promoter includes chromatin 

alterations that do not affect Supt3h gene transcription. 

 To determine if the Supt3h promoter region can regulate the transcriptional activity 

of the Runx2-P1 promoter, we generated a reporter construct by cloning a ~3-kb Supt3h 

fragment (-1154 to +1915 of the Supt3h TSS) upstream of a ~1-kb (-965 to -16) Runx2-

P1 promoter sequence that drives the luciferase reporter gene [169]. The 3kb Supt3h 
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fragment partially overlaps with the looping BglII fragment (Figure 2.9). Luciferase 

reporter assays were conducted in undifferentiated (d0) and post-differentiated (d6) 

MC3T3-E1 cultures. We observe that the 3kb Supt3h promoter construct suppresses the 

transcriptional activity of the Runx2-P1 promoter in both d0 and d6 cultures (Figure 

2.15). Similar effects were observed when different fragments within the upstream 2.5kb 

of the Supt3h promoter were assayed for reporter gene expression (Figure 2.16a-b). 

Some of the regions tested also include the DNaseI hypersensitive site in Figure 2.12. 

Figure 2.15. Luciferase reporter assay of the Supt3h construct in d0 and d6 MC3T3-E1 cells. The 
constructs shown were cloned upstream of the 0.9kb Runx2-P1 promoter driving the luciferase gene, and 
the luciferase reporter assay was performed in d0 or d6 MC3T3 cultures. 

Figure 2.16a. Schematic representation of the fragments used in luciferase reporter assays. 
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Figure 2.16b. Luciferase experiments for different Supt3h promoter constructs. The constructs 
shown were cloned upstream of the 0.9kb Runx2-P1 promoter driving the luciferase gene, and the 
luciferase reporter assay was performed in d0 or d6 MC3T3 cultures. 
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 Taking into account the increase in Runx2-P1 transcription by ~3 fold in d9 MC3T3 

cultures (Figure 2.13) accompanied by the increase in looping interaction frequency 

(Figure 2.9), the suppressive effect on luciferase reporter activity of the Supt3h promoter 

was unexpected. We therefore reasoned that the transcriptional effect of Runx2-P1 we 

observed with the different Supt3h promoter regions might be related to undefined 

spacing requirements for these regulatory sequences. When these regions are placed in 

tandem in the same plasmid (in-cis), they are in an artificial configuration removed from 

their endogenous context. Therefore, to better recapitulate the endogenous context, we 

asked whether Runx2-P1 and Supt3h promoter regions could regulate Runx2-P1 

transcription while residing on different plasmid constructs via an in-trans association. 

 To test whether the Supt3h promoter region can physically interact with and regulate 

the Runx2-P1 promoter activity in-trans, we employed a modified 3C-assay that we 

have named “interplasmid-3C” (i3C) (Figure 2.17).  In the i3C method, as summarized 

in Figure 2.17, we used the (-965 to -16) Runx2-P1 promoter pGL3 luciferase construct, 

and we also cloned the 3.3-kb Supt3h promoter region (-1154 to +1915) into a TOPO 

plasmid to generate the Supt3h-TOPO construct. 
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Figure 2.17. The schematic of the interplasmid-3C assay. After the co-transfection of pGL3 and TOPO 
vectors, chromosome conformation capture is performed, and the proximity of two plasmids is assessed 
via primers designed on the backbone of the vectors. 
 
MC3T3-E1 cultures were co-transfected with the Runx2-P1 pGL3 luciferase construct 

along with the Supt3h-TOPO construct to test if they associate with each other. Parallel 

cultures were co-transfected with the Runx2-P1 pGL3 luciferase construct along with an 

empty-TOPO plasmid to serve as a negative control, and the empty pGL3 luciferase 

construct along with the empty-TOPO construct to serve as a normalization control for 

the i3C experiment. The Supt3h–TOPO vector combination was also added as a control.  

After co-transfection, cells were differentiated for 5 days and treated in the same manner 

as cultures subjected to the 3C methodology (see Materials and Methods). To assess the 

ligation frequency between the plasmids, PCR quantification was performed with i3C 

primers specific to either pGL3 or TOPO plasmid backbone sequences. 

 Our results reveal that when normalized to the empty pGL3 and empty-TOPO co-

transfection control, d5 cultures transfected with the Runx2-P1 pGL3 luciferase and 

Supt3h-TOPO constructs showed a ~2.5-fold increase in interaction frequency compared 
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to the Runx2-P1 pGL3 and empty-TOPO constructs (Figure 2.18). In other words, pGL3 

luciferase and TOPO constructs interact at a higher frequency only when the TOPO 

construct contains the 3.3-kb Supt3h region and the pGL3 constructs the Runx2-P1 

promoter region (Figure 2.18, 3rd and 4th lanes). Our i3C results demonstrate that co-

transfected plasmids can physically interact. More importantly, we demonstrate that the 

Supt3h and the Runx2-P1 promoters on separate plasmids can associate in-trans outside 

of their endogenous chromosomal context. 

 

Figure 2.18. i3C analysis of co-transfected plasmids. The y-axis represents the relative ligation 
frequency between the plasmids. The co-transfection of plasmids was represented with a ‘+’ below. Error 
bars: S.E.M. 
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 We next tested whether the Supt3h promoter region can regulate the activity of the 

Runx2-P1 promoter using the in-trans system described above. We co-transfected 

MC3T3-E1 cells with the Runx2-P1 pGL3 luciferase construct together with either 

Supt3h-TOPO or empty-TOPO constructs. We then assayed for Runx2-P1 promoter 

activity via luciferase reporter assay at daily intervals throughout differentiation (d2, d4, 

d5, d6, and d7) (Figure 2.19). Surprisingly, cultures transfected with Supt3h-TOPO 

displayed a nearly 40% increase in luciferase activity at d7 compared to cultures 

transfected with the empty-TOPO construct (Figure 2.19). The increase in Runx2-P1 

promoter activity after d6 suggests that the regulatory sequences within the Supt3h 

promoter, which exerted a suppressive effect in-cis (Figure 2.15), can positively regulate 

the Runx2-P1 promoter activity in-trans in a differentiation dependent manner. 

Figure 2.19. In-trans luciferase assay. Cells were transfected with either Supt3h-TOPO or empty-TOPO 
construct, and relative luciferase activity was measured at indicated time points.  
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2.4 Discussion 
Recent mapping of genome-wide chromosomal interactions in both prokaryotes and 

eukaryotes suggests the regulatory importance of long-range associations to control gene 

expression [170; 171].  During development, the genome undergoes drastic structural 

and regulatory changes resulting in the alteration of cell identity. Runx2 is an important 

regulator of bone formation and a key player in metastatic bone disease [139-143]. 

Perturbations to the Runx2 gene and reduction of its transcript levels result in 

cleidocranial dysplasia [172]. Due to its importance in development and disease, 

understanding the structure and the regulation of the Runx2 gene is relevant to many 

regulatory pathways. 

 Genetic evidence suggests that mammalian Runx genes acquired the utilization of 

two promoters (P1 and P2) prior to their duplication event [173]. Therefore, if a 

regulatory relationship between different sequences within the Runx locus existed before 

its duplication, it is possible that this relationship may be conserved throughout 

evolution in paralogue Runx genes. In the light of these findings, the syntenic 

relationship between Runx2 and Supt3h has prompted us to hypothesize that an 

architectural and regulatory relationship exists between these promoter regions. Apart 

from the syntenic relationship, the fact that the Supth3h promoter is embedded between 

Runx2-P1 and P2 promoters hints at the possibility that the Supt3h promoter sequence 

may have been co-opted by the Runx2-P1 promoter as a cell specific enhancer. 

Promoters have been shown to act as enhancers for other genes [110]. 

 During Runx gene duplication, although the syntenic relationship with Supt3h may 
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have been lost, the dependency of an intronic enhancer may have been retained in the 

Runx1 and Runx3 gene loci. Evidence for such conservation of cis-regulatory elements 

is observed in the Runx1 gene, a paralogue of Runx2. Runx1 has a similar gene structure 

to Runx2, with two isoforms transcribed from two distinct promoters. RUNX1 is 

required for hematopoietic cell development. Markova et al. reported that in human 

lymphoid and erythroid cell lines, there is a higher-order looping structure between the 

Runx1-P1 and an intronic element ~35kb downstream of this promoter [174]. The 

distance and the localization of the intronic looping element in the Runx1 locus coincide 

with the syntenic Supt3h promoter in the Runx2 locus. This result is consistent with the 

fact that alternative promoter usage of Runx genes existed before their duplication [173], 

and it suggests the existence of a similar structural relationship in the Runx2 gene locus. 

 When we queried the ENCODE database, we found that long-range chromatin 

interactions exist between Runx2-P1 and Supt3h in human lung fibroblast (IMR90), 

breast cancer (MCF7), and leukemia (K562) cell lines (Figures 2.1-2.6). Interestingly, 

although the PolII ChIA-PET data in K562 and MCF7 cells suggested at a looping 

interaction between Supt3h and Runx2 promoters, there was little to undetectable PolII 

ChIP-seq signal at the Runx2-P1 promoter (Figures 2.1-2.6). A similar low-level PolII 

signal is also observed at Runx2-P1 in IMR90 cells. These data indicate that a basal 

level of Supt3h – Runx2-P1 interaction is present regardless of Runx2-P1 expression. 

 Synteny results from selective evolutionary pressure. The selective pressure could be 

related to a requirement for looping events between the Runx2-P1, Runx2-P2 and 

Supt3h promoter regions. These findings not only correlate with the evolutionary 
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relationship and the conservation of this synteny across many organisms, but are also 

consistent with the idea of a basal structural interaction between these promoters. 

Further evidence to support this idea comes from the 3C analysis with mouse 

macrophage RAW 264.7 cells (Figure 2.8) and undifferentiated d0 pre-osteoblastic cells 

(Figure 2.9). RAW 264.7 cells have minimal expression of Runx2-P2, and lack the 

expression of Runx2-P1 isoforms (Figure 2.7); and d0 MC3T3 cells show low levels of 

Runx2-P1 activity (Figure 2.13).  However, we were able to observe an interaction 

between the Supt3h and Runx2-P1 promoters in these cells. Moreover, we also detected 

a structural link between the Runx2-P1 and Runx2-P2 promoters (Figure 2.10), a 

phenomenon also observed in the P1 and P2 promoters of the Runx1 gene locus [174]. 

 Another interesting finding is that the Supt3h promoter region is epigenetically 

altered during differentiation, as indicated by the increase in DNaseI hypersensitivity 

and the increase of CTCF and RUNX2 enrichment (Figure 2.12). However, Supt3h 

expression levels remain unchanged throughout this process. The interaction frequency 

between the Runx2-P1 and Supt3h promoters exhibits a striking increase during 

osteoblastic differentiation (Figure 2.9). When the 3C anchor is positioned on the 

Runx2-P2 promoter, the data also suggest that three promoters (Runx2-P1, Runx2-P2 

and Supt3h) are in close proximity in d9 MC3T3 cultures (Figure 2.10).  Taken together, 

our observations suggest that local changes occurring at the Supt3h promoter act by 

modulating Runx2-P1 activity. Alternatively, the increase of CTCF enrichment may 

reflect the presence of an activated insulator element that flanks the Supt3h promoter 

region during differentiation. The recruitment of CTCF to the Supt3h promoter region 



 
 
 
 
 

53 
 

may also act to prevent the regulatory action of upstream sequences that may interfere 

with Supt3h transcription. Moreover, at d0, RUNX2 binds primarily to P2, but not to the 

P1 promoter. The RUNX2 protein is known to interact and co-bind to DNA with several 

other co-factors such as C/EBPβ [167; 175; 176].  It is possible that differential binding 

of co-factors to RUNX2 may change its affinity for its binding sites.  Additionally, the 

Runx2-P1 promoter contains binding sites for C/EBPβ, Oct1, AP-1, Runx2, Msx2/ 

Dlx3/Dlx5, ATF, HLH/Twist, VDRE, LEF/TCF, NKX, NF-1, Sp1, and ETS. 

Combinatorial binding of these factors may also play roles in selectively recruiting 

RUNX2 to these promoters. 

 We also demonstrate that the interaction between the Runx2-P1 and Supt3h 

promoters impacts the activity of the Runx2-P1 promoter. We chose to include the -

965/-16 region of the Runx2-P1 promoter, as this region has been shown to adequately 

respond to differentiation conditions [169]. Also, there are 3 RUNX binding sites within 

the 5’ UTR of the Runx2-P1 promoter centered at +31,+39, and +49 base pairs 

downstream of the Runx2-P1 transcriptional start site. These RUNX motifs have been 

shown to suppress Runx2 expression as part of a negative feedback loop [163].  

Luciferase reporter assays with different Supt3h constructs cloned in-cis upstream of the 

Runx2-P1 promoter driving luciferase showed a reduction of Runx2-P1 activity (Figures 

2.15 and 2.16a-b). Because the Supt3h and Runx2-P1 promoter regions reside more than 

35kb away from each other in their endogenous context, we hypothesized that testing 

these regions in a “trans” configuration would better recapitulate the regulation 

occurring in the endogenous setting. We therefore measured the effect of the Supt3h 



 
 
 
 
 

54 
 

promoter on the Runx2-P1 promoter while on separate plasmids. Although the ability for 

regulatory regions residing on separate plasmid constructs to modulate activity in-trans 

has been demonstrated previously [177; 178], the majority of in vitro assays that test for 

enhancer-promoter interactions are performed within the same DNA construct, in cis, 

where the enhancer is cloned 5’ to the promoter. Functional assays aimed to validate 

long-range, cis-acting interactions are also performed in this manner. To test our 

hypothesis that the Supt3h promoter could interact with Runx2-P1 when introduced on 

separate plasmids, we utilized a modified 3C protocol that we termed “interplasmid 3C” 

(i3C) (Figure 2.17). i3C results show that there is a ~2.5 fold higher interaction 

frequency between plasmids containing the Runx2-P1 and Supt3h sequences than 

control plasmids (Figure 2.18). This result indicates that regulatory sequences of the 

Supt3h promoter need to be at a distance from the Runx2-P1 promoter. Under these 

same conditions, when Runx2-P1 promoter driven luciferase activity was assayed 

throughout differentiation, a significant increase is observed (Figure 2.19) when co-

transfected with the Supt3h-TOPO construct but not the empty-TOPO construct, 

suggesting a differentiation-dependent activator role of the Supt3h promoter. 

 It is still not clear why background levels of structural interactions between these 

two promoters exist in cells which lack Runx2-P1 transcription. However, we have 

shown a bone-differentiation specific regulatory function of the Supt3h promoter region 

on Runx2-P1 promoter driven transcription. It is important to point out that in our 3C 

analysis; we only queried a ~+/-300kb genomic region surrounding the Runx2 locus 

(Figure 2.9). Other studies have indicated that enhancers can exert their functions from 



 
 
 
 
 

55 
 

hundreds, or even thousands, of kilobases away [94].  It may be that additional distant 

regulatory regions which are located outside the ~600kb Runx2 locus become associated 

with the Runx2-P1 promoter region and contribute to its regulation. 

 Taken together, our results demonstrate a novel aspect of Runx2 gene structure and 

regulation. We also demonstrate a role for Supt3h association with the Runx2-P1 

promoter in modulating the bone-specific activity of the Runx2-P1 promoter. Further 

experiments such as deletion of the Supt3h promoter region will be needed to provide 

additional insight into the transcriptional control of the Runx2-P1 promoter during 

osteogenesis. 
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CHAPTER3: Chromatin interaction analysis reveals changes in small chromosome 

and telomere clustering between epithelial and breast cancer cells 

3.1 Introduction 
 Three-dimensional genome organization is important for regulation of gene 

expression by bringing together distant promoter, enhancer and other cis-regulatory 

regions [179-181].  The development of cancer involves several genetic and epigenetic 

alterations that result in aberrant gene expression [182-185].  Moreover, cancer is a 

disease characterized by major morphological changes in the nucleus that are used as 

diagnostic markers [126; 186].  Even though the morphological features of cancer are 

well characterized, the molecular consequences of the aberrant nuclear morphology are 

still poorly understood.   

  The higher-order folding of chromatin within the nucleus involves hierarchical 

structures spanning different length scales [187].  Microscopic imaging shows that 

chromosomes are positioned within confined volumes known as chromosome territories 

[23].  In the nucleus, each chromosome has a preferred, but not fixed, position in which 

gene-dense chromosomes tend to be at the nuclear interior whereas the gene-poor 

chromosomes are found near the nuclear periphery [22-24; 39].  Increasing evidence 

highlights the importance of chromosome and gene positioning during breast cancer 

initiation [136; 188; 189].  Moreover, recent evidence demonstrates the influence of 

physical spatial proximity in the nucleus on recurrent translocations [131; 190; 191].  
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 Several studies have revealed that chromosome territories consist of megabase-

scale genomic compartments that are either euchromatic, gene-rich, highly transcribed 

(A-type compartments); or heterochromatic, gene-poor and silent (B-type 

compartments) [62; 71; 191; 192].  The open and closed compartments mostly interact 

with other open and closed compartments, respectively, whereas there are very few 

interactions between the two different types of compartments. The open (A-type) 

compartments preferentially and spatially cluster together in the nuclear interior, 

whereas the closed (B-type) compartments cluster together near the nuclear periphery 

[24].   

 Compartments are composed of 100kb to 1Mb scale topologically associated 

domains (TADs). TADs have been defined as clusters of interactions, in which the 

enhancers and promoters of co-regulated genes cross-talk with one another. The intra-

TAD interactions are much more prevalent than inter-TAD interactions [24]. TADs have 

been shown to be largely invariant across different species, cell types and physiological 

conditions [73; 74]  and may act as functional units for transcription regulation [75; 76; 

193].  Recent work elucidated the role of TADs and transcription factor associated 

interactions at a genome-wide level in the context of hormonal regulation (i.e estrogen 

or progesterone treatment) [76; 108; 110; 194-198].  TADs are thought to facilitate 

transcriptional regulation by integrating the regulatory activities within the same domain 

[75; 187].  Within TADs, looping interactions at the 10 kb – 1 Mb scale bring together 

enhancers and promoters to regulate gene expression.  Functional characterization of 

long-range interactions in breast cancer has been studied within certain candidate 
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regions [199-203]; or by examining the genome-wide interactions of a single locus using 

more unbiased approaches [45; 103; 204].  Probing chromatin structure in cancer has 

potential as a discovery tool for identifying candidate biomarkers [96], as the 

organization of chromatin is often perturbed at different hierarchical levels in cancer 

[205].  Despite the number of previous studies, differences in genome-wide chromatin 

structure between normal epithelial cells and tumorigenic breast cancer cells remain 

unknown.   

 In this study, in order to characterize different scales of genome organization 

during breast cancer development, we performed genome-wide chromosome 

conformation capture (Hi-C) analyses in MCF-10A mammary epithelial and MCF-7 

tumorigenic breast cancer cells.  Hi-C is a powerful molecular tool to probe genome-

wide chromatin interactions in an unbiased way [67]. Our results uncovered 

fundamental differences of chromatin organization at different genomic scales between 

two commonly used mammary epithelial and tumorigenic breast cancer cell lines. This 

work provides an important foundation for understanding the relationship between the 

alterations in chromatin organization and gene expression in breast cancer. 

3.2 Materials and Methods 

3.2.1 Cell Culture 

MCF-10A cells were obtained from the Barbara Ann Karmanos Cancer Institute 

(Detroit, MI). The cells were maintained in monolayer in Dulbecco's modified Eagle's 

medium-F12 (DMEM/F12) (Invitrogen, 21041025) supplemented with 5% horse serum 
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(Invitrogen, 16050122), 1% penicillin/streptomycin (Invitrogen, 15140122), 0.5 μg/ml 

hydrocortisone (Sigma, H-0888), 100 ng/ml cholera toxin (Sigma, C-8052), 10 μg/ml 

insulin (Sigma, I-1882), and 20 ng/ml recombinant human EGF (Peprotech, 100-15) as 

previously described [206].  MCF-7 cells were obtained from ATCC and were cultured 

in DMEM supplemented with 10% FBS and pen-strep. 

3.2.2 RNA-seq and Analysis 

The RNA-seq libraries were generated with TruSeq Stranded Total RNA with Ribo-

Zero Gold Kit and the samples were sequenced 100bp single-end using a Hi-Seq 2000 

instrument. To do RNA-Seq analysis, first, the adapter sequences were removed from 

the RNA-seq reads. Ribosomal RNA reads, if any, were filtered out using Bowtie [207]. 

After quality filtering and adapter removal steps, the reads were aligned to a 

transcriptome and quantified using RSEM v1.2.7 [208].  The annotation file was 

downloaded from University of California, Santa Cruz (UCSC) genome browser, human 

hg19 assembly.  To quantify the gene expression, the gene counts and transcripts per 

million (TPM) values were calculated by using the RSEM tool. Differential gene 

expression was calculated by using the Deseq2 version 1.4.5 package in R 3.1.0 using 

the mean value of gene-wise dispersion estimates [209].  To find significant 

differentially expressed genes, we used 0.01 for p-adjusted value and >1 log2 fold 

change.  Gene Ontology analysis was performed with the FuncAssociate software [210]. 

 The RNA-seq plots were confirmed using the ngs.plot software [211].   
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3.2.3 Preparation of Hi-C Libraries 

Hi-C was performed as previously described with minor modifications [99].  The 

modified part of the protocol was in the biotin incorporation step, where the mixture was 

incubated at 37°C for 40 minutes with continuous shaking and tapping the tube every 10 

minutes. The MCF-10A and MCF-7 Hi-C samples displayed a range of 40% to 85% 

biotin incorporation efficiency.  At the end of Hi-C sample preparation, the libraries 

were sequenced using PE100 read with a Hi-Seq 2000 instrument. 

3.2.4 Read Mapping / Binning / ICE correction 

Table 3.1 summarizes the mapping results and different classes of reads and interactions 

observed [100]. The data were binned at 6.5Mb, 1Mb, 250kb, 100kb and 40kb non-

overlapping genomic intervals.  In our Hi-C analyses of the near diploid MCF-10A and 

aneuploidy MCF-7 cells, we utilized the iterative correction and eigenvector 

decomposition (ICE) method [212], which corrects for  differences in copy number.  A 

tetraploid chromosome may have twice as many sequenced interactions as a diploid 

chromosome, but the ICE method divides its final interaction counts by the total sum of 

all interactions and thus normalizes this difference.  Iterative mapping and correction of 

Hi-C data were performed as previously described [101].  Biological replicates showed 

high reproducibility (Pearson's correlation coefficient > 0.9 for 1Mb resolution data).  

Similarly, the first eigenvector comparison of the replicates showed high reproducibility.  

For the downstream analyses, sequences obtained from both biological replicates were 

pooled and ICE-corrected to serve as a combined dataset. 
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3.2.5 Z-score Calculation 

We modeled the overall Hi-C decay with distance using a modified LOWESS method 

(alpha = 1%, IQR filter), as described previously [94]. LOWESS calculates the 

weighted-average and weighted-standard deviation for every genomic distance and 

therefore normalizes for genomic distance signal bias. 

3.2.6 Calculation of Differential Interactions 

To capture the differences between MCF-10A and MCF-7 interactions, we first 

transformed the 6.5Mb Hi-C data into Z-score matrices for all 4 replicate datasets 

(MCF-7-R1, MCF-7-R2, MCF-10A-R1, and MCF-10A-R2).  For each interaction, the 

mean sample:sample (between samples) Z-score difference was calculated from all 

pairwise combinations of the four datasets (MCF-7-R1 – MCF-10A-R1, MCF-7-R1 – 

MCF-10A-R2, MCF-7-R2 – MCF-10A-R1, MCF-7-R2 – MCF-10A-R2). The 

replicate:replicate Z-score difference (within samples) was also calculated for a random 

set of 500,000 interactions. These random replicate-replicate Z-score differences were 

then used to build an expected distribution of Z-score differences. The resulting Z-score 

difference matrix was then derived by calculating for each bin the ratio of the mean of 

the set of 4 possible sample:sample Z-score differences minus the genome-wide mean of 

the replicate:replicate Z-score difference, divided by the genome-wide standard error of 

the replicate:replicate Z-score differences. 

3.2.7 Compartment Profiles 

First, the z-scores of the interaction matrices at 250kb resolution were generated as 

described previously [191].  Then, Pearson Correlation on the Z-score matrices was 
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calculated.  In performing principal component analysis [71; 191], the first principle 

component usually detects the patterns of increased and decreased interaction across the 

genome that appear as a “plaid pattern” in the heatmap.  Each genomic region tends to 

match this prominent interaction pattern (positive eigenvector value) or its opposite 

(negative eigenvector value) and these represent the two spatially segregated 

compartments.  In any given analysis, though, the generally open, gene rich “A-type” 

compartment may end up with either a positive or negative eigenvector.  To detect 

which compartment is the open “A-type” and which is the closed “B-type”, the genome 

wide gene density was calculated to assign the “A-type” and “B-type” 

compartmentalization. 

3.2.8 Identification of TAD Boundaries (Insulation Square Analysis) 

TAD calling was performed as calculating the insulation score of each bin using the 

40kb resolution combined Hi-C data [213].  The mean of the interactions across each bin 

were calculated.  By sliding a 1Mb x 1Mb (25bins x 25bins) square along the diagonal 

of the interaction matrix for every chromosome, we obtained the insulation score of the 

interaction matrix.  Valleys in the insulation score indicated the depletion of Hi-C 

interactions occurring across a bin.  These 40kb valleys represent the TAD boundaries.  

Based on the variation of boundaries between replicates, we chose to add a total of 

160kb (80kb to each side) to the boundary to account for replicate variation.  The final 

boundaries span a 200kb region. All boundaries with a boundary strength < 0.15 were 

excluded as they were considered weak and non-reproducible.  The insulation plots for 

the biological replicates showed high reproducibility (Pearson correlation coefficient = 
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0.80 for MCF-7 and 0.90 for MCF-10A replicates), suggesting the robustness of the 

method.  Similarly, the overlap of detected boundaries also showed high reproducibility 

between the biological replicates (~85% TAD boundary overlap for MCF-7 and ~91% 

for MCF-10A).  Therefore, we used the combined Hi-C replicates for the TAD analyses. 

3.2.9 Identification of TAD Domains 

The cell line specific TAD domains were identified by using the bedtools suite [214].  

First the boundaries on all chromosomes for both MCF-10A and MCF-7 were merged.  

The boundaries that overlapped were categorized as “all overlapping TAD boundaries”.  

Then, the regions outside of the boundaries were extracted using the “complementBed” 

function.  The telomere/centromere regions were filtered by using the “intersectBed -v” 

option.  The resulting regions constituted the “all overlapping TAD domains”.  Next, the 

TAD boundaries identified in MCF-10A and MCF-7 datasets were independently 

subtracted (by using the subtractBed function) from the “all overlapping TAD 

boundaries”.  Within these two independently subtracted datasets, the TAD domains that 

have at least 90% overlap (-f 0.90 -r) were considered as “overlapping TAD domains”, 

TAD domains that were found only in MCF-7 were categorized as “MCF-7 specific 

TAD domains”, and the domains that were only found in MCF-10A subtracted datasets 

was categorized as “MCF-10A specific TAD domains”. 
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3.3 Results 

3.3.1 Small, Gene-Rich Chromosomes Interact Less Frequently in the MCF-7 

Breast Cancer Genome 

In order to probe the genome-wide chromatin structure of mammary epithelial 

and breast cancer cells, we generated Hi-C libraries from two independent biological 

replicates for the MCF-10A and MCF-7 cell lines.  After sequence filtering [100], a total 

of ~152 and ~143 million interactions were obtained from the MCF-10A and MCF-7 

combined replicate Hi-C libraries, respectively (Table 3.1), with high reproducibility 

between the biological replicates (Figure 3.1a-b).  For the initial Hi-C analyses, we used 

the Iterative Correction Method (ICE) [212] to correct for systematic biases, including 

copy number differences. 
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Table 3.1. Hi-C statistics of the MCF-7 and MCF-10A replicates. The sequencing, mapping and 
filtering statistics for the Hi-C replicates analyzed as previously described [100]. 

 
 
 
 
 
 
 

Figure 3.1a. MCF-7 and MCF-10a Hi-C replicates are highly reproducible. Heatmaps of 250kb 
interaction matrices of chr11 for each biological replicate. 
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Figure 3.1b. Interactions in MCF-7 and MCF-10a Hi-C replicates are highly reproducible. Pearson 
correlation coefficient of genome-wide interactions of the biological replicates for each cell line. 

 Genome-wide interaction data were visualized as chromosome versus 

chromosome heat maps, where darker colors represent more frequent interactions events 

(Figure 3.2).  The heat maps revealed two aspects of large scale genome organization in 

the MCF-10A and MCF-7 cells.  First, consistent with the notion of chromosome 

territories [23], intra-chromosomal interactions (visualized as darker boxes along the 

diagonal) were much more frequent than inter-chromosomal interactions (Figure 3.2).   

Second, we observed a number of large blocks of inter-chromosomal interactions 

representing the translocation events in these cell lines.  Comparing the translocated 

regions in the Hi-C data with previously published MCF-10A and MCF-7 spectral 

karyotyping (SKY) and multiplex fluorescence in situ hybridization (M-FISH) data [44; 

215], we observed that the majority of the translocated regions identified by SKY/M-

FISH are also identified by Hi-C (Figure 3.3 and Figure 3.4).   
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Figure 3.2. Genome-wide all by all 1Mb Hi-C interaction heatmaps of a) MCF-10A and b) MCF-7 
cells. The chromosomes in all by all heatmaps are stacked from top-left to bottom-right in order (chr1, 
chr2...chr22 and chrX).  The gray regions indicate repetitive regions (such as centromeres) in which the 
sequencing reads could not be mapped.  The intra-chromosomal interactions were much more frequent 
than inter-chromosomal interactions. The blocks of enriched inter-chromosomal interactions represent the 
translocated regions.  On the lower panel, an enlargement of the cis- and trans-interactions for chr16 
through chr22 is shown. c) Genome-wide heatmap of significant differential interactions between MCF-
10A and MCF-7.  Each dot denotes a genomic region of 6.5Mb.  Chromosomes are stacked from top-left 
to bottom-right from chr1 through chr22 and chrX.  The red color indicates MCF-7 enriched and the blue 
color indicates MCF-10A enriched interactions, respectively.  The white regions denote interacting 
regions that are not significantly changed between the cell lines. On the lower panel, significant 
interactions within and in between chr16-22 are shown. 
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Figure 3.3. Inter-chromosomal heatmaps showing the translocations in MCF-10A detected by a 
previous SKY-FISH study [44]. 
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Figure 3.4. Inter-chromosomal heatmaps showing the translocations in MCF-7 detected by a 
previous SKY-FISH study [215]. 
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In order to assess whether the clustering of chromosomes is altered between 

MCF-10A and MCF-7 cells, we compared the genome-wide interaction differences (see 

Methods, and Figure 3.2c). Strikingly, we observed a strong physical proximity of gene-

rich, small chromosomes (chr16 to chr22) in MCF-10A compared to MCF-7 (Figure 

3.2a-c, lower panels). This interaction network of small chromosomes also included the 

p-arm of chr8 (Figure 3.2c). Quantification of the inter-chromosomal interactions 

between chr16-22, and between chr16-22 and the rest of the genome revealed that there 

is a significant increase of inter-chromosomal associations between chr16-22 in the 

MCF-10A genome (Figure 3.5). The same result was also observed when, as an 

alternative approach, a direct subtraction of the MCF-10A and MCF-7 interaction 

matrices was performed (Figure 3.6).  

Figure 3.5. Small chromosomes interact with each other more frequently in MCF-10A cells. Boxplot 
showing the MCF-10A/MCF-7 inter-chromosomal interaction frequency differences between chr16 
through chr22 and all the other chromosomes (grey); or in between chr16 through chr22 (blue). p-value: 
Wilcoxon rank-sum test 
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Figure 3.6. Small chromosomes interact more frequently in the MCF-10A genome. a) Subtraction of 
the MCF-10A z-score matrix from that of MCF-7 at 2.5Mb resolution.  The blue and the red squares 
represent interactions enriched in the MCF-10A and MCF-7 genomes, respectively.  The black rectangle 
denotes the interactions among the small chromosomes (chr16-22 and the red rectangles show the 
interactions between the small chromosomes and chr1-15 and chrX. b) Box plot showing the 
quantification of interactions among chr16-22 (blue), or with with the rest of the genome (grey). P-value: 
Wilcoxon rank-sum test. 

Moreover, the larger chromosomes (chr1-15 & X) in the MCF-10A genome 

showed similar levels of differential interaction frequency with other large 

chromosomes or chr16-22.  Consistent with this observation, the positioning of chr18 

with other small chromosomes was not prevalent in the raw Hi-C interaction matrices 

(Figure 3.7a-c). However, the relative (MCF-10A / MCF-7) interaction frequency of 

chr18 with other small chromosomes was significantly increased in the MCF-10A cells 

(Figure 3.7d-e), which suggests that all of the small chromosomes in MCF-10A cells 

show increased proximity to each other compared to the relative proximity in the MCF-7 

cancer cell line.  
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Figure 3.7. The positioning of chr18 is not altered in MCF-10A cells. All by all raw interaction matrix 
for a) MCF-10A and b) MCF-7 genomes. The red arrow denotes chr18. c) Interaction frequency of chr18 
either with large chromosomes (grey), or the small chromosomes (orange) in MCF-10A and MCF-7 cells.  
The MCF-7 chr18 displays less interaction frequency with other small chromosomes compared to MCF-
10A chr18. d) Box plots showing the relative interaction frequency (MCF-10A / MCF-7) of each small 
chromosome. e) p-values of the differences between small and large chromosome clustering of each small 
chromosome in Panel D, assessed by Wilcoxon rank sum test.  

 

3.3.2 Decreased interaction frequency between small chromosomes in MCF-7 cells 

coincides with increased open chromatin compartmentalization  

Previous evidence [71] has shown there are two unique patterns of 

interactions in the genome, representing the open (A-type) and closed (B-type) genomic 

compartments.  We identified the two patterns of compartmentalization in both genomes 

with high reproducibility among the biological replicates (see Methods) (Figure 3.8).  
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Associating the MCF-7 ENCODE ChIP-seq datasets with the genomic compartments 

revealed the known features of genomic compartmentalization, including increased 

DNase1 hypersensitivity, and higher levels of transcription factor binding in open (A-

type) compartments in the MCF-7 genome (Figure 3.9). 

Figure 3.8. Replicate analysis of genomic compartments in MCF-10A and MCF-7 cells. a) Pearson 
correlations of the 1st eigen values for each Hi-C biological replicate. b) Bar graph showing the number of 
reproducible compartments between the replicates. “Other” indicated repetative regions that are masked.  
The compartments that are consistent between the biological replicates were used for downstream 
analysis. 

 

Figure 3.9. Association of MCF-7 ENCODE datasets with genomic compartments. a) Number of 
DNase1 hypersesitive sites in MCF-7 cells within open or closed compartments. b) Number of MCF-7 
ENCODE transcription factor ChIP-seq peaks per compartment type. 

  

a b 
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 To determine whether there are any differences in the compartmentalization 

between the MCF-10A and MCF-7 genomes, we compared the compartments 

throughout the genome at 250kb resolution.  The MCF-10A and MCF-7 genomes 

displayed similar distribution of open and closed compartments, with certain regions 

showing a change in genomic compartmentalization from A-type to B-type and vice 

versa (Figure 3.10 and Figure 3.11).  The majority of compartments were the same in 

both cell lines, where 47% of all compartments constituted the A-type compartments 

and 40% constituted the B-type compartments (Figure 3.11).  Importantly, 12% of all 

compartments in the MCF-10A genome transitioned to the opposite compartment (A-

type to B-type and vice versa) in MCF-7 cells (Figure 3.11).  Compartment switching 

was  homogeneous throughout the chromosomes, rather than in a few hot spots (Figure 

3.12). 

Figure 3.10. Genomic compartments are altered between MCF-10A and MCF-7 genomes. First 
principal component of chr18, representing the open A-type (black) and closed B-type (grey) 
compartmentalization.  Highlighted bars represent examples of regions with either stable or differential 
compartmentalization. The differential compartments are defined as genomic regions in which one type of 
compartmentalization is observed in one cell line, and the other compartment type in the second cell line. 
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Figure 3.11. A subset of genomic compartments display switching between MCF-10A and MCF-7 
genomes.  Pie chart showing the genomic compartment changes between MCF-10A and MCF-7 genomes. 
“A” and “B” denotes the open and closed compartments, respectively.   “A → A” represents 
compartments that are open in both cell lines, “B → B” represents compartments that are closed in both 
cell lines,    “A → B” denotes compartments that are open in MCF-10A but closed in MCF-7, and “B → 
A” denotes compartments that are closed in MCF-10A and open in MCF-7.  

 

 

Figure 3.12. Compartment changes are distributed homogeneously throughout the genome. Bar 
graph displaying the compartmental changes for each chromosomes.  Compartmental alterations are 
distributed homogeneously throughout all the chromosomes, rather than localized to a few hotspots. 

  



 
 
 
 
 

76 
 

To understand if the inter-chromosomal interaction changes we observed 

between small chromosomes were related to any compartment change, we asked 

whether there was an enrichment in transition of genomic compartments on small 

chromosomes (chr16-22). We found a significant enrichment of genomic regions on 

chr16-22 that switched to the A-type compartment in MCF-7 cells from the B-type 

compartment in MCF-10A cells (Figure 3.13).  Conversely, we also observed a 

significant decrease of compartment transition from A-type in MCF-10A to B-type in 

MCF-7 on small chromosomes (Figure 3.13). These findings show that there is a higher 

frequency of open compartments on small chromosomes in the MCF-7 genome, which 

suggests a relationship between inter-chromosomal clustering, compartmentalization 

and phenotypic gene expression. 
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Figure 3.13. Small chromosomes display enriched “B to A” switching. Bargraph showing the 
percentage of compartments that have switched (A → B or B → A) or remained similar (A → A or B → 
B) between MCF-10A and MCF-7 genomes for chr16 through chr22 (blue) and rest of the genome (grey).  
chr16 – chr22 displays a higher percentage of B →  A compartment switching, and a lower percentage of 
A →  B compartment switching between MCF-10A and MCF-7, suggesting a more open 
compartmentalization in MCF-7. **p-value<0.001: Chi-square with Yates' correction 

 

3.3.3 Decreased inter-chromosomal interactions and higher frequency of open 

compartmentalization on chr16-22 in MCF-7 are associated with WNT signaling 

related genes  

 Open compartmentalization is correlated with increased gene expression. We 

asked if the differential interaction network and compartmentalization of chr16 through 

chr22 between MCF-10A and MCF-7 are associated with differential gene expression.  

First, to characterize the gene expression differences between MCF-10A and MCF-7 

cells, we performed RNA-seq with ribosomal RNA-depleted RNA from MCF-10A and 

MCF-7 cells with biological triplicates (Figure 3.14).   
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Figure 3.14. Replicate correlation of MCF-10A and MCF-7 RNAseq datasets. Pearson correlations of 
the transcript per million (TPM) values for each biological replicate of a) MCF-10A and b) MCF-7 cells. 

 

Differential expression analyses identified 2437 MCF-7 upregulated and 2427 MCF-7 

down-regulated genes (log2 FC>1, p<0.01) with high reproducibility (Figure 3.15).  The 

number of differentially expressed genes identified in this study is comparable to 

previously published microarray studies [216].   

 

Figure 3.15. Differential RNA-seq gene expression between MCF-10A and MCF-7 cells. a) Scatter 
plot showing differential gene expression between MCF-10A and MCF-7 cells. The axes represent 
normalized RNA-seq log2 gene expression counts. Red and grey dots denote significantly expressed and 
unchanged genes, respectively. b) Heatmap showing the MCF-7 up and down-regulated genes for each 
biological replicate.  Differential expression analyses identified 2437 MCF-7 upregulated and 2427 MCF-
7 down-regulated genes (log2 FC>1, p<0.01) with high reproducibility. 
 

a b 

a b 



 
 
 
 
 

79 
 

The significant expression changes were enriched for the medium to highly expressed 

genes (Figure 3.16).  

Figure 3.16. The significant expression changes were enriched for the medium to highly expressed 
genes. MA-plot showing the log2 fold change versus the mean expression values of significantly 
expressed genes. 

 The gene ontology terms associated with MCF-7 downregulated (i.e. MCF-10A 

over-expressed) genes included terms such as “hemidesmosome assembly”,“focal 

adhesion”, and “neutral lipid biosynthetic process” (Table 3.2).  On the other hand, gene 

ontology terms associated with MCF-7 upregulated genes included terms such as 

“calcium-dependent cell adhesion” (Table 3.2).   
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Table 3.2. GO terms of differentially expressed genes between MCF-10A and MCF-7 cells. Top 5 
gene ontology terms of the MCF-7 down- and up-regulated genes (over MCF-10A). 

 

 To test the link between genome-wide open spatial compartmentalization and 

increased gene expression more directly, we analyzed the frequency of differentially 

expressed genes at regions where a compartment transition is observed.  In agreement 

with previous findings [77], MCF-7 downregulated genes were enriched in regions 

where the open A-type compartment in MCF-10A transitioned to a closed B-type 

compartment in MCF-7 (Figure 2C).  Conversely, there was an enrichment of MCF-7 

upregulated genes in regions with a B-type compartment in MCF-10A that switched to 

an A-type compartment in MCF-7 (Figure 3.17).  In other words, when the MCF-7 / 

MCF-10A log2 fold change expression levels were plotted for each compartment change 

category, we observed a down-regulation of MCF-7 genes in A-type to B-type 

compartment switch regions and an up-regulation of MCF-7 genes in B-type to A-type 

switch regions, respectively (Figure 3.17).  These results show that compartment 

changes in the genome reflect differential gene expression.   
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Figure 3.17. Compartmental changes are associated with changes in gene expression. MCF-7 / MCF-
10A log2 fold change expression box plot of all the genes residing at regions for different compartmental 
switch categories. The compartments that are A → B and  B → A show significantly decreased and 
increased expression levels, respectively. p-value: Wilcoxon rank-sum test 

 

Finally, to assess whether the differences in interactions and genomic 

compartments among the small chromosomes are associated with altered gene 

expression, we focused on the MCF-7 upregulated genes on small chromosomes where 

the compartmentalization was switched from the B-type to A-type (MCF-10A to MCF-

7).  REACTOME pathway analysis of these genes revealed well known oncogenic 

pathways including “Repression of WNT target genes” and “TCF/LEF binding to gene 

promoters” (Table 3.3).  Even though the pathway terms are deemed significant, the 

total number of genes and the number of genes identified in our dataset are relatively 

low.  Therefore, studying these genes individually may yield more insight into the 

phenotypic transcriptional changes at these regions with altered interactions. 
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Table 3.3. REACTOME pathways of the genes that are located on chr16-22 and at B → A 
compartment regions. 

 

Taken together, these results suggest that the decrease of inter-chromosomal 

associations of small chromosomes in the MCF-7 genome is associated with a higher 

open compartmentalization in MCF-7 and expression of genes related to WNT signaling 

pathway, which is frequently implicated in tumorigenesis.   
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3.3.4 Cell-Line Specific TAD Boundaries Are Conserved between MCF-10A and 

MCF-7 

Chromosome conformation capture based studies revealed that A-type and B-

type compartments are composed of topologically associating domains (TADs), in 

which the expression levels of the genes in a single TAD can be co-regulated [73; 76; 

217].  TADs have been shown to be stable units in different species, cell types and 

physiological conditions [76; 77].  However, whether the large-scale chromosomal 

interactions and altered genomic compartments observed between MCF-10A and MCF-

7 genomes have an effect on the structure of the underlying TAD formation and 

ultimately on gene expression is unknown.  To address this question, we identified the 

TAD boundaries by calculating the insulation plot of the 40kb resolution genome-wide 

interaction maps (see Methods, and Figure 3.18), with high reproducibility between the 

biological replicates (Figure 3.19).   
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Figure 3.18. TAD boundary analysis for replicate Hi-C datasets. Bar graph showing the number of 
shared TAD boundaries in relation to their set size (see Methods).  b) Scatter plots showing the Pearson 
correlation of the genome-wide insulation plots across the biological replicates. 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. Correlation plots of insulation scores across Hi-C biological replicates.  Scatter plots 
showing the Pearson correlation of the genome-wide insulation plots across the biological replicates. 
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We detected 3305 and 3272 TAD boundaries in MCF-10A and MCF-7 

genomes, respectively.  Despite the differences in chromosomal structure and changes in 

compartmentalization and gene expression, ~85% (2805) of the TAD boundaries were 

common between the cell lines (Figure 3.20). This rate of TAD boundary overlap is 

consistent with previous comparisons in different cell types and conditions [76; 77] . 

This result suggests that despite having cell-type specific translocations and large-scale 

structural differences, TAD boundaries are consistent between non-tumorigenic and 

tumorigenic cells. 

Figure 3.20. MCF-7 and MCF-10A cells have similar TADs. a) TADs are similar between MCF-10A 
and MCF-7 genomes.  An example heatmap of a portion of MCF-10A chr14 at 40kb resolution, where the 
upper part of the heatmap shows the MCF-7 TADs, and the bottom panel showing the MCF-10A TADs. 
b) Venn diagram showing that majority (~85%) of all the TAD boundaries between MCF7 and MCF10A 
are conserved. 

 

Closer examination of TAD boundaries revealed that there were several 

TADs that were “broken” into multiple sub-TADs between the cell lines.  The 

boundaries that were shared among the larger and smaller TADs between the cell lines 

were categorized as “overlapping”, and the boundaries that were unique to a cell line 

were categorized as “cell-line specific” boundaries (Figure 3.21).  We asked whether the 

genes residing at the cell-specific boundaries showed cell-specific differential gene 

a b 
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expression.  When the percentages of unchanged and MCF-7 up- and down-regulated 

genes were plotted per TAD boundary category, we did not find a strong correlation 

between cell-type specific TAD boundaries and differential gene expression (Figure 

3.22).   

Figure 3.21. TADs can be disrupted in cancer cells. An example heatmap showing an example of a 
differential TAD between MCF-10A (blue) and MCF-7 (red) on chr21 (chr21:16647759-30544567).  The 
black dots represent the overlapping boundaries that are present in both cell lines, and the red dot denotes 
the MCF7-specific TAD boundary.  

 

 

 

 



 
 
 
 
 

87 
 

Figure 3.22 Gene expression is not associated with TAD boundaries. The percentage of unchanged 
(grey), MCF7 downregulated (blue) and MCF7 upregulated (red) genes located at each TAD boundary 
category.  

 Apart from the TAD boundaries, we next analyzed the TAD domains.  We 

categorized the TAD domains as overlapping (>90% overlap), MCF-7 specific or MCF-

10A specific (see Methods) (Figure 3.23).  

 

  

 

 

 

 

Figure 3.23. Analysis of TAD domains. Number of overlapping and cell-type specific TAD domains. 
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Figure 3.24a. Analysis of TAD domain sizes. Box plots showing the sizes of MCF-10A and MCF-7 
specific, as well as overlapping TADs. p-value : Wilcoxon rank sum test. 

 

The sizes of the overlapping TAD domains were slightly larger than the cell-line 

specific TADs (Figure 3.24).   

 We then asked whether cell-line specific TAD domains showed differential gene 

expression.  Analysis of differential gene expression for each TAD domain category 

showed that cell-type specificity of the TAD domains was not correlated with cell-type 

specific gene expression (Figure 3.25).   
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Figure 3.24b. Gene expression analysis of TAD domains. Box plots showing MCF-7 / MCF-10A log2 
fold change values for the genes located at MCF-7 and MCF-10A specific, and overlapping TAD 
domains.  There is not significant difference. p-value : Wilcoxon rank sum test. 

 

3.3.5 MCF-7 TAD Boundaries Are Enriched for Several Oncoproteins 

 TAD boundaries are bound by multiple factors [73; 79].  To investigate the 

chromatin states of the boundaries, we calculated the enrichment of factors characterized 

by MCF-7 ENCODE datasets at the MCF-7 TAD boundaries (Figure 3.25).  The known 

features of the TAD boundaries, such as the enrichment of H3K36me3, CTCF, RAD21, 

TSS, POL2 and DHS, and the depletion of H3K9me3, were observed at the MCF-7 

TAD boundaries (Figure 3.25, lower panel).  Interestingly, we observed a strong 

association of GABP, ELF1, PML, SIN3A, SRF and the oncogenic drivers cMYC and 

MAX at MCF-7 TAD boundaries, and a depletion of GATA3 and FOXA1 (Figure 

3.25).  Consistent with previous work [73], P300 was depleted at the MCF-7 boundary 

regions.  The rest of the MCF-7 ENCODE datasets did not show any enrichment.   
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Figure 3.25. Analysis of factors enriched at MCF-7 TAD boundaries. The frequency plots of factors 
enriched at MCF-7 TAD boundaries per 25kb for plus/minus 1Mb of every MCF-7 TAD boundary. 

  

Recent evidence suggested that TADs may act as stable units of replication 

domains [72].  Therefore, we intersected the previously published MCF-7 Repli-seq 

dataset [72] with MCF-7 TAD boundaries and, consistent with the literature, we 

determined that late replicating regions were depleted at TAD boundary regions (Figure 

3.26).   

Moreover, eQTLs have been shown to be preferentially located at TAD 

boundaries [54].  Integrating the breast cancer eQTL data [110] with MCF-7 TAD 

boundaries, we determined that breast cancer associated eQTLs were enriched in 

overlapping TAD boundaries (Figure 3.27). Altogether, these results uncover previously 

unidentified transcription factors and chromatin states that may potentially play roles at 

the TAD boundaries.   
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Figure 3.26. Analysis of MCF-7 Repli-seq data with TAD boundaries. MCF-7 Repli-seq data [72] 
frequency across MCF-7 TAD boundaries. 

 

 

Figure 3.27. eQTL analysis across TAD boundaries. Enrichment of breast cancer associated eQTLs 
[218] with MCF-7 TAD boundaries and domains. 
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3.3.6 The telomeric / sub-telomeric regions in MCF-10A genome display stronger 

associations than those in MCF-7 

Previous evidence has shown that interaction frequency decreases as a function 

of genomic distance [71].  This phenomenon represents the nature of the chromatin fiber 

and is a reflection of the folding status of the underlying chromatin [219].  We first 

asked whether the fiber characteristics of the MCF-10A and MCF-7 genomes were 

similar.  Scaling plots of 1Mb binned genome-wide intra-chromosomal interactions 

displayed the expected exponential decrease of contact probability as a function of 

increasing genomic distance in both MCF-10A and MCF-7 cells (Figure 3.28). 

Surprisingly, and in contrast to all previously published human Hi-C datasets, the 

frequency of interactions in MCF-10A showed an increase at very large genomic 

distances (>200Mb) (Figure 3.28).  This suggests that very distant (i.e telomeric / sub-

telomeric) regions of chromosomes show a higher interaction frequency on the same 

chromosome.  
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Figure 3.28. Scaling plot of interaction frequencies against genomic distance for the MCF-7 and 
MCF-10A genomes. The MCF-10A genome showed increased interaction frequency at genomic 
distances that are larger than 200 megabases, suggesting telomere/sub-telomere associations. 

 

 To assess whether the telomeric ends of the chromosomes in MCF-10A indeed 

have higher frequency of interactions compared to MCF-7, we calculated the intra-

chromosomal interaction frequency of the ends of each chromosome (5% by length) in 

MCF-10A and MCF-7.  We observed a significant increase in telomeric / sub-telomeric 

interaction frequency in the MCF-10A genome (Figure 3.29), which supports the 

observation that intra-chromosomal telomeric interactions are more frequent in MCF-

10A cells.  
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Figure 3.29. Quantification of the interaction frequency between the telomeric regions (5% of the 
ends by length) of each chromosome in MCF7 and MCF10A. p-value: Wilcoxon rank-sum test. 

Scaling plots of each chromosome individually at 250kb resolution indicate that 

the increase in telomeric / sub-telomeric interactions seemed to be driven by chr1, chr2 

and chr7 in the MCF-10A genome (Figure 3.30 and Figure 3.31).    However, this 

phenomenon was not observed on other large chromosomes in MCF-10A cells, such as 

chr3 (Figure 3.30).   

Figure 3.30. The scaling plots of MCF-10A and MCF-7 for chr1, chr2, chr7 and chr3.  Chromosomes 
1, 2 and 7 displayed an increased interaction frequency at large distances in MCF-10A, however 
chromosome 3 did not. 
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Figure 3.31. The chromsome by chromosome scaling plots generated by using 250kb binned Hi-C 
data. 
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Certain chromosomes, such as chr11 and chr16, showed increased interaction 

frequency at large distances both in the MCF-10A and MCF-7 genomes even though 

their lengths did not span 200Mb (Figure 3.31).  As expected, this observation was lost 

when the scaling plots for individual chromosomal arms were analyzed (Figure 3.32).   

These results suggest that the telomeric ends of the chromosomes, especially 

chr1, 2 and 7, in the MCF-10A genome are in closer proximity than those in MCF-7.  

Taken together, we identified large-scale differences in both cis- and trans-chromosomal 

interactions between two commonly used cell lines in breast cancer research.   

Figure 3.32. The scaling plots of individual chromosome arms for chr1, chr2 and chr7 did not show 
enriched telomeric / sub-telomeric interactions.  
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3.4 Discussion 

 Cancer is a disease characterized by major morphological changes in the nucleus 

[126; 186]. Although individual gene positioning may differ [189], relative arrangement 

of chromosomes in the interphase nucleus can be conserved between normal and cancer 

cells [38].  Furthermore, extensive epigenetic dysregulation is observed in the cancer 

state.  In order to map the genome-wide interactions and perform a comparative 

analysis, we performed Hi-C in the MCF-10A and MCF-7 cell lines.  We observed a 

higher background interaction frequency in the MCF-7 genome compared to MCF-10A 

(Figure 3.2).  This background could be the result of a technical source (i.e the ligation 

step in the Hi-C procedure), or because of increased background interaction frequency in 

the MCF-7 genome due to the probabilistic positioning of the chromosomes inside the 

aneuploid nucleus and increased diversity of interactions within this genome.    

 Comparison of MCF-7 and MCF-10A Hi-C data revealed a significant depletion 

of inter-chromosomal associations between small, gene-rich chromosomes (chr16-22) in 

the MCF-7 genome.  One possibility for the loss of interactions among the small 

chromosomes in MCF-7 compared to MCF-10A cells is that randomization (i.e loss of 

specificity) of contacts within the MCF-7 genome could lead to lower frequencies of 

individual contacts, and hence to an apparent loss of interaction.  However, loss of 

specific contacts does not itself cause a difference in overall chromosome contacts.  Two 

whole chromosomes that tend to be close together in a cell will overall show more inter-

chromosomal interactions with each other by Hi-C than will two distant chromosomes, 
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even if they have no specific interactions that are consistent across the population of 

cells.  If each cell in the population has a different arrangement of chromosome 

territories, this will look on average like less clustering of small chromosomes.  But, this 

scenario should also reveal more interactions between large and small chromosomes and 

less clustering of large chromosomes.  In Figure 3.22 and Figure 3.6, in contrast, we do 

not observe a compensating increase in interactions between the small and large 

chromosomes, suggesting that this is not just a randomization of interactions.  Moreover, 

it should be kept in mind that there are several extensive rearrangements in the MCF-7 

genome, and it could be that only the re-arranged copies of a highly aneuploid 

chromosome may show a particular three-dimensional conformation.   

The decreased clustering of small chromosomes and the differentially open 

compartmentalized regions in MCF-7 are associated with increased expression of genes 

related to tumorigenesis.  The correlation between increased gene expression in B-type 

to A-type compartment switch regions and a higher number of A-type compartments on 

MCF-7 chr16-22 suggests that the underlying mechanism for this phenomenon is most 

likely due to transcriptional differences, rather than chromosomal copy number changes 

between the cell lines.  The loss of small chromosome clustering may also be interpreted 

as a reflection of mis-organization of the chromosome territories in cancer.   

Genomic compartmentalization has been shown to be associated with gene 

expression [71; 77]. One hypothesis for the clustering, compartmental and 

transcriptional changes we observe in small chromosomes would be that once a gene is 
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activated/repressed in the process of tumorigenesis, its position in the three-dimensional 

nuclear space is changed, with movement towards the open/closed compartment regions.  

Such a phenomenon has been previously shown by microscopic studies [220].  An 

alternative hypothesis is that chromosomes change compartments before gene 

expression changes.  A recent study supports the alternative hypothesis in which 

chromatin decondensation plays a major role in cell differentiation [221].    

 Scaling plot analysis (Figures 3.28-3.32) suggested that distinct types of 

chromatin folding states might exist between MCF-10A and MCF-7 cells, both genome-

wide, and at individual chromosomes [219].  Surprisingly, and in contrast to all previous 

human Hi-C datasets, there was an increased frequency of interactions at distances 

>200Mb away in MCF-10A cells, suggesting interactions between telomeric and sub-

telomeric regions on the same chromosome.  It has been suggested that telomere 

clustering is associated with the Alternate Telomere Lengthening (ALT) mechanism 

[222].  ALT is a mechanism in which telomere length is maintained through a 

homologous recombination-dependent process.  It could be possible that the MCF-10A 

and MCF-7 cells have different mechanisms of telomere maintenance, and the proximity 

of telomeric ends in the MCF-10A genome might suggest an effect of increased ALT 

regulation.  Increased telomere interactions were observed in chr1, chr2 and chr7, and 

on some smaller chromosomes (Figure 3.31), but not in individual chromosomal arms 

(Figure 3.32).   A recent report suggests that 10% of all cancers and immortalized cell 

lines display the ALT mechanism [223].  Our results are consistent with previous 
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findings that the presence of an ALT mechanism results in clustering of telomeres, 

which is observed in epithelial MCF-10A cells but not in tumorigenic MCF-7 cells.   

 Overall, in this study we charted the chromatin structure of mammary epithelial 

and breast cancer cells at different chromosomal scales, from large-scale chromosomal 

cis- and trans-interactions to genomic compartmentalization and TAD formation (Figure 

3.33).  Further studies on normal and cancer genomes and primary cells will provide 

additional insight into the functional role of chromatin organization in transcriptional 

regulation and tumorigenesis. 

Figure 3.33. Overview of the changes in chromatin architecture between MCF-10A and MCF-7 
cells. There are two large-scale changes between the genomes of MCF-10A and MCF-7. First, the inter-
chromosomal interactions between the small, gene rich chromosomes are drastically weaker in the MCF-7 
breast cancer genome. In concordance with this, there is higher frequency of open genomic compartments, 
and higher gene expression on chromosomes 16 through 22, especially of the genes related with pathways 
reflecting the phenotype of the MCF-7 cells. Secondly, the intra-chromosomal associations of the 
telomeric ends of chromosomes are lost in the MCF-7 genome.This phenomenon may reflect differential 
telomeric maintenance mechanisms. 
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CHAPTER4:  BRG1 regulates gene expression and higher-order chromatin 
structure in proliferating mammary epithelial cells 

4.1 Introduction 
 Organization of chromatin is essential for many biological processes. Packaging 

of the DNA around the nucleosomes acts to tightly condense the genome [224].  At the 

same time, the cell has to regulate the accessibility of chromatin to many enzymes for 

the regulation of gene expression, DNA replication and repair.  Maintaining a balance 

between tight packaging and accessibility of chromatin is an important function of the 

eukaryotic nucleus.  This balance is achieved by multiple specialized protein complexes 

that dynamically alter chromatin structure in an ATP-dependent manner [225].  Four 

families of ATP-dependent chromatin remodelers exist: SWI/SNF, ISWI, INO80 and 

CHD (reviewed in [226; 227]). The ATPase subunits of each family have a conserved 

helicase-like ATPase domain that uses the energy from ATP hydrolysis to evict, 

reposition or modify nucleosomes [228; 229].  These structural changes in chromatin 

result in local alteration of chromatin followed by the binding of regulatory proteins.  

Different families of remodelers work in a dynamic and orchestrated way in cells to fine 

tune DNA accessibility [230].   

 The mammalian SWI/SNF (mating-type switching – SWI / and sucrose non 

fermenting – SNF) complexes contain one of two distinct ATPase subunits, BRM 

(Brahma, or SMARCA2) or BRG1 (Brahma-related Gene 1, or SMARCA4) [231-233].  

BRM is dispensable, as BRM null mice can properly develop to adulthood [234].  On 

the other hand, BRG1 is essential, as BRG1 null mice are embryonic lethal and BRG1 

heterozygous mice are prone to mammary tumor formation [235; 236].  BRG1 has been 
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shown to be involved in many developmental processes and in transcriptional 

regulation, DNA repair, cell cycle control, and cancer [237; 238].  The role of BRG1 in 

gene regulation is contextual, as it can activate some promoters while repressing others.  

In addition, extensive dysregulation and mutations of BRG1 have been implicated in 

many different cancer types, making BRG1 a potential therapeutic target for cancer 

[239; 240].  

 The organization of the nucleus occurs in a hierarchical manner.  First, 

chromosomes are positioned in distinct volumes forming the chromosome territories 

[23] , which consist of open (A-type) and closed (B-type) genomic compartments [71].  

The genomic compartments are further folded into sub-megabase scaled structures 

called topologically associated domains (TADs)[73; 74], where local looping 

interactions between promoters and enhancers occur [94]  .  Through interactions with 

many different protein partners [237; 241], BRG1 is involved in nuclear structure and 

mediating long-range chromatin interactions between genes expressed at the same time 

in response to differentiation signaling [242], and between the enhancers and their 

cognate promoters at many gene loci, including the beta and alpha-globin genes [243; 

244]  , the IgH locus [245] , and the class II major histocompatibility complex gene 

(CIITA) [246].  BRG1 binds to poised developmental enhancers in embryonic stem cells 

[247; 248] and B-cells [245] and colocalizes with pluripotency factors [249], suggesting 

important roles in enhancer function.  Furthermore, previous work classifying genome-

wide interactions according to their histone modifications and transcription factor 

binding revealed BRG1 enrichment at open chromatin regions, indicating a possible 
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structural role for BRG1 [250].  In addition, BRG1 regulates nuclear size [251] and the 

integrity of nuclear shape via a mechanism independent of cytoskeletal connections 

[252].  Recently, it has been shown that BRG1 is involved in the lncRNA-dependent 

assembly of nuclear bodies [253].   

 Taken together, apart from its chromatin remodeling activity at the regulatory 

regions of target genes, emerging evidence suggests a possible important role for BRG1 

in maintaining the structural integrity of the nucleus by regulating global chromatin 

structure [254].  To date, very little is known about the role of BRG1 in global higher-

order genome organization.  In order to gain insight into the role of BRG1 in nuclear 

organization at a genome-wide level, we performed RNA-seq and Hi-C in BRG1-

depleted and control MCF-10A human mammary epithelial cells.  Furthermore, to map 

the localization of BRG1 in the genome, we performed BRG1 ChIP-seq in the parental 

MCF-10A cells.  We show that BRG1 depletion is associated with extensive changes in 

gene expression and higher-order chromatin structure at multiple levels.   

4.2 Materials and Methods 
4.2.1 MCF-10A Cell Culture 

MCF-10A cells expressing control shRNA and shRNA targeting BRG1 were generated 

as previously described [255]. The cells were maintained in monolayer in Dulbecco's 

modified Eagle's medium-F12 (DMEM/F12) (Invitrogen, 21041025) supplemented with 

5% horse serum (Invitrogen, 16050122), 1% penicillin/streptomycin (Invitrogen, 

15140122), 0.5 μg/ml hydrocortisone (Sigma, H-0888), 100 ng/ml cholera toxin (Sigma, 

C-8052), 10 μg/ml insulin (Sigma, I-1882), and 20 ng/ml recombinant human EGF 
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(Peprotech, 100-15) as previously described [206].  The doxocyline induction was 

performed by the addition of 0.05 microgram per milliliter DOX to the cells and 

incubating them for 3 to 4 days. 

4.2.2 RNA-seq and Analysis 

RNA was isolated from MCF-10A cells at ~75% confluence using the TRizol Reagent 

(Life Technologies #15596-026) treated with DNase1. The poly(A)-selected RNA-seq 

libraries were generated with TruSeq RNA Sample Preparation Kit v2 and SE100 

sequencing was performed using a Hi-Seq 2000 instrument. RNA-seq analysis was 

performed by filtering and mapping the reads by Bowtie [269], quantifying the 

transcripts by RSEM v1.2.7 [208] and finding the differentially expressed genes (log2 

fold change>1, p<0.01) by DeSeq2 [209].  

4.2.3 Preparation of Hi-C Libraries 

Hi-C was performed as previously described with minor modifications [99].  The 

modification was in the biotin incorporation step, where the mixture was incubated at 

37°C for 40 minutes. The MCF-10A shSCRAM and shBRG1 samples displayed a range 

of 25% to 50% biotin incorporation efficiency.  At the end of Hi-C sample preparation, 

the libraries were sequenced using PE100 read with a Hi-Seq 2000 instrument. 

4.2.4 Read Mapping / Binning / ICE correction 

Table 4.1 summarizes the mapping results and different classes of reads and interactions 

observed [100]. The data were binned at 2.5Mb, 1Mb, 250kb, 100kb and 40kb non-

overlapping genomic intervals.  In our Hi-C analyses, we utilized the iterative correction 

and eigenvector decomposition (ICE) method [212].  The replicates showed high 
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correlation at multiple scales.  For the downstream analyses, sequences obtained from 

both biological replicates were pooled and ICE-corrected to serve as a combined dataset. 

4.2.5 Z-score Calculation 
We calculated the z-scores by modeling the overall Hi-C decay with distance using a 

modified LOWESS method (alpha = 1%, IQR filter), as described previously [94]. 

LOWESS calculates the weighted-average and weighted-standard deviation for every 

genomic distance and therefore normalizes for genomic distance signal bias. 

4.2.6 Calculation of Differential Interactions 

To capture the differences between shSCRAM and shBRG1 interactions, we used a 

method previously described [263].  Briefly, we first transformed the Hi-C data into Z-

score matrices for all 4 replicate datasets (shBRG1-R1, shBRG1-R2, shSCRAM-R1, and 

shSCRAM-R2).  For each interaction, the mean sample:sample (between samples) Z-

score difference was calculated from all pairwise combinations of the four datasets 

(shBRG1-R1 – shSCRAM-R1, shBRG1-R1 – shSCRAM-R2, shBRG1-R2 – 

shSCRAM-R1, shBRG1-R2 – shSCRAM-R2). The replicate:replicate Z-score 

difference (within samples) was also calculated for a random set of 500,000 interactions. 

These random replicate-replicate Z-score differences were then used to build an 

expected distribution of Z-score differences. The resulting Z-score difference matrix was 

then derived by calculating for each bin the ratio of the mean of the set of 4 possible 

sample:sample Z-score differences minus the genome-wide mean of the 

replicate:replicate Z-score difference, divided by the genome-wide standard error of the 

replicate:replicate Z-score differences.  
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4.2.7 Compartment Profiles 

To detect the genomic compartments, first, Pearson Correlation of the Z-score matrices 

was calculated.  In performing principal component analysis [71; 191], the first principle 

component detects the patterns of increased and decreased interaction across the genome 

that appear as a “plaid pattern” in the heatmap.  Each genomic region matches this 

prominent interaction pattern (positive eigenvector value) or its opposite (negative 

eigenvector value) and these represent the two spatially segregated compartments.  The 

open, gene rich “A-type” compartment may end up with either a positive or negative 

eigenvector.  To detect which compartment is the open “A-type” and which is the closed 

“B-type”, the genome wide gene density was calculated to assign the “A-type” and “B-

type” compartmentalization. 

4.2.8 Identification of TAD Boundaries (Insulation Square Analysis) 

TAD calling was performed as calculating the “insulation” score of each bin using the 

40kb resolution combined Hi-C data as previously described [213; 263]  .   

4.2.9 ChIP-seq Analysis 
The ChIP assay was performed as previously described [270].  Briefly, ~1x107 parental 

MCF-10A cells were crosslinked with formaldehyde at room temperature for 10 

minutes.  Then, the cells were lysed using lysis buffer A (50mM HEPES, 140mM NaCl, 

1mM EDTA pH=8, 10% Glycerol, 0.5% NP-40, 0.25% Triton X-100) and the residual 

cytoplasmic protein was removed using lysis buffer B (10mM Tris-HCl pH=8, 200mM 

NaCl, 1mM EDTA, 1mM EGTA).  The nuclear fraction was released using lysis buffer 

C (10mM Tris-Hcl pH=8, 100mM NaCl, 1mM EDTA, 1mM EGTA, 0.1% Sodium 
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Deoxycholate, 0.5% N-lauroylsarcosine).  Chromatin was then sheared by using a 

Bioruptor instrument on high setting, 30' on , 30' off, for 5 minutes for 5 cycles. The 

pull-down was performed using a BRG1 antibody (Santa Cruz #G-7).  Samples were 

washed three times with RIPA buffer (Tris-HCl pH=8, 150mM NaCl, 1mM EDTA, 1% 

NP-40, 0.25% Sodium deoxycholate, 0.1% SDS) and were eluted.  The pull-down and 

input control sequencing libraries were generated using the NEXTflex Rapid DNA 

Sequencing Kit (Bioo Scientific #5144-02) and were sequenced by using SE100 reads 

with a HiSeq 2000 instrument.  The adapters were trimmed from the sequencing reads, 

and the reads were aligned to the hg19 human genome using the Bowtie2 tool [269].  

Quality controls, peak calling, motif analysis and peak annotation were performed using 

the HOMER suite [271].  As the ChIP signal across the biological replicates showed 

high correlation , we performed ChIP-seq peak calling on the pooled replicates.  

4.3 Results 

4.3.1 BRG1 knockdown results in down-regulation of genes associated with 
extracellular matrix in MCF-10A cells 
 BRG1 plays an extensive role in regulating gene expression.  In order to 

investigate the transcriptional effects of BRG1 depletion in mammary epithelial cells, 

we used previously described doxocycline-inducible MCF-10A mammary epithelial 

cells expressing either a non-specific (scrambled) shRNA (shSCRAM), or shRNA 

against BRG1 (shBRG1) [255].  BRG1 knockdown was confirmed by western blot 

analysis.  Quantification of the western blot demonstrated ~85% reduction of BRG1 

protein levels (Figure 4.1).   
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Figure 4.1. BRG1 levels are reduced upon shRNA induction. Western blot of the BRG1 protein levels 
of shSCRAM and shBRG1 MCF10A cells in the non-induced (DOX -) and induced (DOX +) conditions.  
Lower panel: Quantification of the western blot showing ~85% reduction of BRG1 protein levels upon 
doxocyline induction.  

 We performed polyA RNA-seq in doxocycline-induced shBRG1 and shSCRAM 

MCF-10A cells with two biological replicates.  The mean log2 gene expression values 

between biological replicates showed a very strong correlation (Pearson Correlation 

Coefficient = 0.99) both for shBRG1 and shSCRAM MCF-10A RNA-seq samples 

(Figure 4.2a-b).  BRG1 depletion in MCF-10A cells resulted in a lower mean expression 

compared to control cells (Figure 4.3). 
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Figure 4.2. Correlation analysis of RNA-seq replicates. Scatterplots showing the gene expression 
correlation between the RNA-seq biological replicates for a) shBRG1 and b) shSCRAM samples. 
 
 
 
 

Figure 4.3. BRG1 depletion results in a lower mean gene expression. Histograms showing the number 
of genes and the expression levels for shBRG1 (left panel) and shSCRAM (right panel) combined 
datasets.  
 
 Consistent with this, by performing a differential gene expression analyses 

[209]]  , we identified 176 up-regulated and 1292 down-regulated genes upon BRG1 

depletion (log2FC>1, p<0.01) that showed high reproducibility between the biological 

replicates (Figure 4.4 and Figure 4.5).  The average expression level range of down-

regulated genes was lower when compared to the average expression level range of up-

regulated genes (Figure 4.6).   
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Figure 4.4. Scatterplot showing the log2 gene expression values for shBRG1 and shSCRAM cells.  
The red and blue dots denote the up and down-regulated genes between the two conditions, respectively.  
 
 
 
 

 
Figure 4.5. Heatmap showing the transcripts per million (TPM) expression values of the 
differentially expressed genes between shSCRAM and shBRG1 for each biological replicate. 
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Figure 4.6. BRG1 knockdown results in extensive transcriptional dysregulation. MA-plot showing 
the log2 fold change and the mean expression of significantly altered (red) and unaltered genes (black). 
 
 

 The genomic localization of the differentially expressed genes was similar across 

the chromosomes (Figure 4.7).  The frequency of up and down-regulated genes showed 

a widespread distribution between the chromosomes, rather than localizing to a few hot 

spots in the genome (Figure 4.8). 
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Figure 4.7. Locations of BRG1 regulated genes. Chromosome ideograms showing the locations of up 
(red) and down (blue) regulated genes upon BRG1 K.D. 
 

Figure 4.8. BRG1-mediated gene regulation occurs throughout the genome. Bargraph showing the 
gene frequencies of up (red) and down (blue) regulated genes for each chromosome. 
 

 To assess the biological pathways associated with the differentially expressed 

genes, we performed REACTOME pathway analysis [256; 257].  Pathway analysis of 

down-regulated genes identified pathways related to “extracellular matrix organization”, 

“collagen degradation”, “cell adhesion molecule L1-like (CHL1) interactions” and 



 
 
 
 
 

113 
 

“cohesin loading onto chromatin” (Figure 4.9).  A significant portion of the down-

regulated genes were associated with cell adhesion, including many proteoglycans, 

integrins and laminins.  On the other hand, the pathways of up-regulated genes were 

associated with lipid metabolism, including pathways such as “regulation of cholesterol 

biosynthesis by SREBP”, “fatty acids” and “eicosanoids”, which are the byproducts of 

fatty acid oxidation (Figure 4.10).  These pathways point out to a BRG1-mediated effect 

on cell metabolism.  

 
Figure 4.9. REACTOME terms of down-regulated genes upon BRG1 knockdown. Bar graph showing 
the -log10 p-values for the REACTOME terms of the 1292 genes that are down-regulated upon BRG1 
knockdown. 
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Figure 4.10. REACTOME terms of up-regulated genes upon BRG1 knockdown. Bar graph showing 
the -log10 p-values for the REACTOME terms of the 176 genes that are up-regulated upon BRG1 
knockdown. 
  

Furthermore, in order to separately assess the transcriptional changes of poly-

adenylated long non-coding RNAs (lncRNAs), we analyzed the differential expression 

between the control and BRG1 knockdown MCF-10A cells using the GENCODE v19 

lncRNA gene annotation [258].  We identified 88 down-regulated and 64 up-regulated 

polyA lncRNAs upon BRG1 depletion, suggesting a widespread role of BRG1 in the 

transcriptional regulation of both coding and non-coding genes.  Even though the 

majority of the differentially expressed lncRNAs were unannotated, we observed down-

regulation of several well-known lncRNAs, including XIST, NEAT1 and MALAT1, and 

up-regulation of the imprinted lncRNA H19.  

 In order to validate the RNA-seq results, we performed qRT-PCR on 23 coding 

and non-coding genes of interest.  The RNA-seq expression profile of 18 of 23 genes 

(~78%) was validated by qRT-PCR with statistical significance (Figure 4.11). Plotting 

 



 
 
 
 
 

115 
 

the log2 ratios of qRT-PCR and RNA-seq shBRG1/shSCRAM expression levels 

revealed a significant correlation (Spearman's rho=0.65, p=4.17x10-6) between the 

RNA-seq and qRT-PCR experiments (Figure 4.12).  

Figure 4.11. qRT-PCR validation of the RNA-seq data for 23 genes. The y-axis shows the relative 
expression level of each gene compared to GAPDH. 18 of 23 genes showed significant differential 
expression. 
 

Figure 4.12. Scatterplot showing the correlation of log2 fold change values for the 23 genes from the 
RNA-seq and qRT-PCR analyses. There is a significant positive correlation between the RNA-seq and 
qRT-PCR data (Spearman's rho=0.65). 
 
 We conclude that BRG1 positively and negatively regulates many coding and 

non-coding genes and plays a role in the positive regulation of the expression of several 
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genes associated with extracellular matrix and cell adhesion in mammary epithelial 

cells, which supports the role of BRG1 in regulation of extracellular matrix protein 

coding genes [259-261].  BRG1 is also involved in the negative regulation of several 

pathways involved in lipid metabolism. 

4.3.2 BRG1 ChIP-seq analysis reveals extensive binding to intergenic and intronic 
regions 
 In order to expand our understanding about the function of BRG1 in mammary 

epithelial cells, we mapped its genome-wide localization by performing chromatin 

immunoprecipitation followed by deep sequencing (ChIP-seq) in the parental MCF-10A 

cell line (Figure 4.13, 4.14 and 4.15).  We identified 15,046 BRG1 bound regions in the 

genome.  The binding profile of BRG1 demonstrated that BRG1 binds to defined 

locations in the genome (Figure 4.15).   

 
Figure 4.13. Table showing the sequenced and mapped reads for each ChIP-seq biological replicate. 
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Figure 4.14. Matrix showing the Pearson correlation of the signal intensity between the BRG1 pull 
down (ChIP) and input samples. 
 

Figure 4.15. BRG1 binds to defined locations in the genome. Example of  a ChIP-seq genome browser 
view of BRG1 binding and the input control, as well as the shSCRAM and shBRG1 RNA-seq on chr5, 
and a zoom-in on the VCAN (V-cadherin) gene in the lower panel.  The y-axis represents the tag densities 
relative to hg19 genomic coordinates. 
 
 Annotation of BRG1 ChIP-seq peaks revealed that 60% of the binding sites were 

localized in promoters, introns and exons (gene bodies), whereas 40% of the sites were 

bound to intergenic regions (Figure 4.16).  Consistent with the annotation of BRG1 

peaks, normalized BRG1 binding signal across all the human genes was highest at 
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transcriptional start site (TSS) and promoter regions (Figure 4.17).  Since BRG1 was 

enriched at the promoters, we asked whether its localization overlapped with Pol II 

binding.  When the BRG1 peaks were intersected a publicly available MCF-10A Pol II 

ChIP-seq dataset (GSM935588), we determined that 27% of all BRG1 bound sites were 

also bound by Pol II (Figure 4.18).   

Figure 4.16. Annotation of BRG1 peaks. Distribution of BRG1 ChIP-seq peak annotation for genic and 
intergenic regions.  
 
 
 
 
 

Figure 4.17. BRG1 is enriched at promoter regions. Normalized BRG1 ChIP-seq signal intensity plot 
for all human UCSC genes +/- 2kb.  BRG1 binding is enriched at the promoter regions. 
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Figure 4.18. A significant portion of BRG1 overlaps with PolII. Pie chart showing intersections of 
BRG1 peaks with publicly available Pol2 peaks from MCF-10A cells. 
 
 

 BRG1 binds to DNA by complexing with different partner proteins.  To obtain 

information about the context of the underlying DNA sequences of BRG1-bound 

regions, we performed a motif analysis on BRG1 peaks.  We identified many binding 

motifs significantly enriched at BRG1 peaks. Among those, the five most significantly 

enriched motifs were MEF2A/C, USF2, SMAD2/4, p53 and PU.1 (Figure 4.19).   

 Next, we asked whether BRG1 binding at the promoters was associated with 

differentially expressed genes.  To address this, we analyzed the BRG1 peak frequency 

at the promoters of up- and down-regulated genes.  We observed a dramatic increase in 

the frequency of BRG1 binding at the promoters of down-regulated genes, whereas there 

was minimal association of BRG1 with the promoters of up-regulated genes (Figure 

4.20).  This result suggests a more direct role for BRG1 in the positive regulation of 

gene expression.   
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Figure 4.19. Motif analysis of BRG1 peaks. Top 5 sequence motifs of the BRG1 peaks. 
 
 
 

 
Figure 4.20. BRG1 is enriched at the promoter regions of down-regulated genes. BRG1 peak density 
within +/- 20kb of the TSS of significantly downregulated (blue), or upregulated genes (red). 
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 Recently, super-enhancers, a novel type of regulatory regions having an unusual 

enrichment of transcription factors, were described [262].  They are identified by 

ranking the ChIP-seq peaks by signal, and taking most enriched peaks that are “stitched” 

over a 12kb windows.  Super-enhancers are mostly associated with developmentally 

regulated genes.  BRG1 is localized at super-enhancers in leukemic and in normal B-

cells [245].  Using the approach previously published [262], we identified 109 BRG1-

bound super-enhancers in the MCF-10A genome (Figure 4.21).  BRG1 signal intensity 

was greater at super-enhancers than at other BRG1 ChIP-seq peak regions (Figure 4.22).  

Annotation of the super-enhancers revealed ~60% localization at intergenic regions and 

~40% localization at gene bodies, but not at promoters (Figure 4.23).  This localization 

pattern is opposite of the annotation of typical BRG1 peaks (Figure 4.16).   

 Altogether, these results suggest that BRG1 is bound to specific loci in the 

genome, mostly (~60%) at gene bodies.  It is likely co-bound with other factors, 

possibly including MEF2C, USF2, SMAD2 and p53, as it exerts its remodeling 

function.  BRG1-bound super-enhancers, on the other hand, are located mostly in 

intergenic regions and introns, and are not found in promoter regions. 
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Figure 4.21. Identification of BRG1 bound super-enhancers. Distribution of BRG1 ChIP-seq signal 
across the MCF-10A enhancers.  BRG1 binding is not uniformly distributed across the enhancers, as 109 
super-enhancers display high amounts of BRG1 binding. 
 
 
 
 
 

  Figure 4.22. BRG1 signal intensity of super-enhancers. BRG1 signal is higher over super-enhancers 
(red) than typical enhancers (green). 
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 Figure 4.23. Annotation of BRG1 bound super-enhancers. Distribution of BRG1 bound super-
enhancer annotation for genic and intergenic regions.   

 

4.3.3 Hi-C analysis of BRG1 knockdown and control cells 
 To probe changes in higher-order chromatin structure upon BRG1 depletion, we 

performed Hi-C in doxycline-induced shSCRAM and shBRG1 MCF-10A cells.  Two 

independently grown and fixed batches of cells were sequenced to an average depth of 

~115 million reads per replicate (Table 4.1).  The sequence mapping and the initial Hi-C 

analysis was performed as described previously [100; 213; 263], using the Iterative 

Correction Method (ICE) [212] to correct for systematic biases.  
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Table 4.1. Sequencing and mapping statistics of the shBRG1 and shSCRAM Hi-C biological 
replicates. 
 

 The biological replicates showed a high degree of correlation (Figure 4.24). The 

scaling plot curves of genomic interaction frequencies along genomic distance showed 

similar trends of decay, and an increase at distances larger than >200Mb, which we 

previously showed to be a characteristic of the MCF-10A genome [263] (Figure 4.25).   
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Figure 4.24. shBRG1 and shSCRAM Hi-C data are reproducible. Scatter plots comparing normalized 
interactions between pairs of 2.5Mb bins in the two biological replicates from a) shBRG1 and b) 
shSCRAM datasets. 
 

 
Figure 4.25. Scaling plot analysis of shBRG1 and shSCRAM Hi-C samples. Interaction frequency 
decreases similarly as a function of genomic distance. The difference between the shBRG1 and 
shSCRAM curves is due to the differences in % cis interactions. 
 
 

 Moreover, correlation between the genomic compartments (Figure 4.26 and 

Figure 4.27) and insulation plots to assess TADs also showed high correlation (Figure 

4.28a and Figure 4.28b).  
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Figure 4.26. Compartment analysis for shBRG1 and shSCRAM Hi-C replicates. Scatter plots 
showing the correlation of the 1st eigenvector values for each 250kb bin from the compartment analysis 
for each biological replicate in shBRG1 (left panel) and shSCRAM (right panel) datasets. 
 
 
 
 
 

Figure 4.27. Eigenvector analysis for shBRG1 and shSCRAM Hi-C replicates. Example of the first 
eigen values for each biological replicate across chromosome 18. The replicates show high correlation in 
genomic compartmentalization. 
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Figure 4.28a. Correlation  analysis of Hi-C insulation plot replicates. Insulation score correlation 
among the biological replicates for each 40kb bin for shBRG1 (left) and shSCRAM (right) datasets. 
 

Figure 4.28b. Insulation plot analysis of Hi-C replicates. Example of the insulation plot across 
chromosome 15 for each biological replicate. 
 
 
 
Therefore, we pooled the biological replicates for further downstream analyses.  The 

pooled shSCRAM and shBRG1 Hi-C datasets also showed a high correlation with the 

parental (wildtype) MCF-10A Hi-C data [263] (Figure 4.29). The pooled Hi-C datasets 

displayed similar cis/trans interaction ratios (Figure 4.30).  
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Figure 4.29. shBRG1 and shSCRAM Hi-C data shows high correlation with the parental MCF-10A 
cells. Pearson correlations of the pooled Hi-C replicates between shSCRAM, shBRG1, and previously 
published parental (wildtype) MCF-10A cells. 
 
 
 
 
 
 
 

Figure 4.30. cis/trans ratio of the Hi-C replicates. a) Bargraph showing the cis interaction percentage of 
individual and pooled shBRG1 and shSCRAM Hi-C replicates. b) The percentage of cis/trans interaction 
frequencies of pooled shBRG1 and shSCRAM datasets for each chromosome. 
 
 Genome-wide Hi-C interaction heatmaps showed that, consistent with previous 

Hi-C studies and the notion of chromosome territories [23], the intra-chromosomal 

interactions are more frequent than inter-chromosomal interactions, which are visualized 

as black boxes along the diagonal (Figure 4.31).  Moreover, we identified large blocks 

a b 
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of inter-chromosomal interactions between chromosomes 3 and 5, chromosomes 3 and 

9, and chromosomes 6 and 19, which represent previously known translocations in the 

MCF-10A genome [44; 263] (Figure 4.32).  Visualizing the Hi-C heatmaps from the 

shSCRAM and shBRG1 datasets at increasing resolutions revealed hierarchical higher-

order chromatin structures such as genomic compartments and TADs (Figure 4.31).   
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Figure 4.31. Hi-C data reveals genomic compartments and TADs. Genome-wide all by all Hi-C 
interaction heatmaps at 1Mb resolution and a zoom-in of chr11 at 250kb resolution (middle panel) and 
40kb resolution (lower panel) in a) MCF-10A shSCRAM and b) MCF-10A shBRG1 cells.  For the 
genome-wide heatmaps, the chromosomes are stacked from top-left to bottom-right in order (chr1, 
chr2...chr22 and chrX).  The gray regions indicate repetitive regions (such as centromeres) in which the 
sequencing reads could not be mapped.  
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Figure 4.32. Translocations in the MCF-10A genome. Inter-chromosomal interaction heatmaps 
showing the translocated regions in the MCF-10A genome for a) shBRG1 and b) shSCRAM Hi-C 
datasets. 
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4.3.4 BRG1 knockdown results in extensive gain and loss of long-range chromatin 
interactions and altered genome organization 
 To map BRG1-mediated alterations in higher-order chromatin structure, we 

compared the genome-wide interactions as previously described [213; 263] (Figure 

4.33a-e).  At multiple resolutions, BRG1 depletion resulted in the widespread disruption 

of existing interactions and the emergence of novel specific contacts (Figure 4.33a-e) 

throughout each chromosome (Figure 4.33b and Figure 4.34). Mapping the high-

confidence interactions that are depleted/enriched upon BRG1 knockdown revealed 

specific regions potentially important for transcriptional regulation (Figure 4.33d-e).  

For instance, a zoom-in view of the differential interactions at the promoter regions of 

MALAT1 and NEAT1 lncRNAs, which are down-regulated upon BRG1 loss, displayed 

several differentially interacting regions upon BRG1 knockdown (Figure 4.33d-e).   

 To analyze the global effects of BRG1 depletion in higher-order chromatin 

organization, we visualized the genome-wide interaction matrices in a chromosome by 

chromosome manner and asked whether chromosomal organization was similar in 

BRG1 depleted cells.  Consistent with earlier work [23], the smaller, gene-rich 

chromosomes interacted more frequently with each other in both shBRG1 and 

shSCRAM samples (Figure 4.35a-b).  Therefore, BRG1 knockdown does not result in 

extensive chromosomal reorganization in MCF-10A mammary epithelial cells (Figure 

4.35a-b).  Analyzing the intra and inter-chromosomal interaction frequencies, we 

observed that the frequency of significant inter-chromosomal interactions was higher in 

shBRG1 cells (Figure 4.36-a-b). Moreover, in the context of cis-interactions, BRG1 

knockdown resulted in significant interactions that are more frequent between intra-



 
 
 
 
 

133 
 

chromosomal arm and inter-chromosomal arms (Figure 4.36-a-b).    
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Figure 4.33. BRG1 knockdown results in extensive changes in long-range interactions. a) Genome 
wide interaction heatmap at 2.5Mb resolution showing the differences between interactions that are gained 
and lost upon BRG1 depletion.  The chromosomes are stacked from top-left to bottom-right in order (chr1, 
chr2...chr22 and chrX).   b) A zoom in of chr11 at 250kb resolution showing the all differential 
interactions, and c) the interactions that are altered with significance. d) A further zoom in view of a 
genomic region on chr11 (chr11:60000001-81750000) (top panel), where the MALAT1 and NEAT1 loci 
reside (chr11:64750339-65807685), showing the differential interactions.  e)  RNA-seq tracks of shBRG1 
and shSCRAM cells showing a reduction of expression in NEAT1 and MALAT1 lncRNA genes upon 
BRG1 loss.  f) A zoom-in of the inter-chromosomal interactions between chr1 and chr2 through chr5, with 
arrows indicating the enriched telomeric interactions in the shBRG1 cells.  This pattern of telomeric / sub-
telomeric interaction occurs throughout the genome. g) Quantification of the interactions among 
subtelomeric ends for shSCRAM and shBRG1 Hi-C datasets.  The subtelomeric ends show significantly 
higher frequency of interactions, compared to h) 1000X randomized set of regions. p-values: Wilcoxon 
rank-sum test.   
 
 
 
 Visualizing the chromosomal interactions in higher resolution (Figure 4.33f), we 

observed a systematic pattern of increased interactions in shBRG1 cells, both in-cis and 

in-trans, among the sub-telomeric regions of the chromosomes (Figure 4.33f).  In other 

words, the sub-telomeric regions of each chromosome displayed a striking enrichment 

of interactions with each other upon BRG1 knockdown compared to shSCRAM control 

(Figure 4.33f).  Quantification of the sub-telomeric interactions suggested a significant 

increase in both intra- and inter-chromosomal associations in shBRG1 cells compared to 

shSCRAM (Figure 4.33g).  However, this was not the case when interactions in the 

same regions were randomized (Figure 4.33h).  Taken together, these results indicate a 

novel role for BRG1 in telomere structure and suggest that disruption of BRG1 levels 

results in altered three-dimensional organization of telomeric regions of the genome. 
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Figure 4.34. shBRG1 / shSCRAM interactions that are significantly different at 1Mb for each 
chromosome. 
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Figure 4.35. Chromosome positioning is not altered upon BRG1 knockdown. Chromosome by 
chromosome interaction heatmaps for a) shSCRAM and b) shBRG1 Hi-C datasets. 
 
 
 
 

Figure 4.36. BRG1 knockdown results in alterations in higher-order genome organization. a) 
Boxplot showing the shBRG1 / shSCRAM interaction difference scores for cis and trans-interactions. 
shBRG1 MCF-10A cells show higher frequency of trans-interactions. b) Boxplot showing the intra-arm 
and inter-arm chromosomal interaction frequencies for shBRG1 and shSCRAM datasets. p-values: 
Wilcoxon rank-sum test. 
 
 
 

a b 
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4.3.5 BRG1 occupancy is enriched at open compartment regions 
 Each chromosome territory is composed of megabase-scale genomic 

compartments that are either A-type (i.e open, gene rich) or B-type (i.e closed, gene 

poor).  The frequency of interactions within one compartment occurs much more 

frequently than the interactions in between compartments [71].  We asked whether 

BRG1 depletion resulted in any compartment change. To address this, we binned the 

genome at 250kb non-overlapping intervals and compared the type of 

compartmentalization for each bin (Figure 4.37).   

 

 

Figure 4.37. Compartment profiles (the first principal components) of shSCRAM and shBRG1 data 
for chromosome 2. The A-type (open) compartments are shown in black, and the B-type (closed) 
compartments are shown in grey.  The same color scheme was used for the gene density plot for 
chromosome 2 in the lower panel.  
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The majority of the compartmentalization was similar in shSCRAM and 

shBRG1 MCF-10A cells, with 42% of the genome consisting of A-type compartments 

and 54% consisting of B-type compartments (Figure 4.38).   Upon BRG1 depletion, a 

total of 2% of the genome altered its compartmentalization from A-type to B-type and 

2% showed alteration from B-type to A-type (Figure 4.38).  Compartmentalization of 

the genome is correlated with gene expression [77; 263].   

Figure 4.38. A subset of compartments are altered upon BRG1 knockdown. Pie chart showing the 
genomic compartment changes between shSCRAM and shBRG1 datasets. “A” and “B” denotes the open 
and closed compartments, respectively. “A to A” represents compartments that are open in both cell lines, 
“B to B” represents compartments that are closed in both cell lines, “A to B” denotes compartments that 
are open in shSCRAM but closed in shBRG1, and “B to A” denotes compartments that are closed in 
shSCRAM and open in shBRG1.  
 

 To understand the link between compartment switching and gene expression 

upon BRG1 depletion, we plotted the shBRG1 / shSCRAM log2 fold change RNA-seq 

expression levels of the genes that were located either within unchanged compartments 

or within compartment switch regions (Figure 4.39).  The genes located in regions with 

a compartment switch from A-type to B-type upon BRG1 knockdown showed 

significantly lower expression levels than the genes within unaltered compartment 
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regions.  Conversely, genes within B-type to A-type compartment switch regions 

(shSCRAM to shBRG1), even though significant,  showed similar expression levels 

upon BRG1 knockdown (Figure 4.39).  These results, consistent with previous work 

[77; 263], suggests a prominent correlation between differential compartmentalization 

on gene expression.   

  

Figure 4.39. Alterations in genomic compartments are associated with gene expression.  shBRG1 / 
shSCRAM log2 fold change RNA-seq expression boxplot of all the genes residing at regions for different 
compartmental switch categories. The compartments that are switched from A to B and from B to A show 
significantly decreased and increased expression levels, respectively. p-value: Wilcoxon rank-sum test  
 

 Next, we asked whether the regions with BRG1 binding were associated with 

compartment switching.  The majority (76%) of all BRG1-bound sites were located 

within the constitutive open A-type compartments.  In contrast, a smaller fraction (21%) 

of BRG1 ChIP-seq peaks were found in the closed B-type compartment regions (Figure 

4.40).  Only a small percentage of BRG1 peaks were in regions showing compartment 

switching (Figure 4.40).   We then assessed the percentage of genomic compartment 
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switching regions that were either bound or not bound by BRG1.  We observed that 

BRG1 was bound to ~80% of constitutive A-type compartments (A to A) and ~50% of 

constitutive B-type compartments (Figure 4.41).  The frequency of BRG1 binding to 

altered compartment regions were similar as; 75% of “A to B” and ~55% of “B to A” 

compartment switch regions showed BRG1 binding.  

 Taken together, these results suggest that BRG1 binding is more enriched at 

open compartments.  In addition, this also suggests that the depletion of BRG1 results in 

a modest level of compartment switching from both A-type to B-type and B-type to A-

type for a subset of regions. 

Figure 4.40. BRG1 is bound mostly on A-type compartments. Pie chart showing the compartment 
change profiles of BRG1 bound regions.  
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Figure 4.41. BRG1 is bound to compartment switch regions at similar levels. Bargraph showing the 
percentage of the compartment switch regions that are bound by BRG1.  The colored portions of the graph 
denotes the BRG1 bound percentage of each compartment change category.  

4.3.6 BRG1 is associated with TAD boundaries and TAD boundary strength 
 Each compartment is composed of TADs, which are sub-megabase scale 

structures constituting a confined nuclear micro-environment for the proper association 

and regulation of promoters and enhancers [75].  The 40kb resolution MCF-10A 

shSCRAM and shBRG1 interaction maps revealed these sub-megabase scale interaction 

domains on all chromosomes, suggesting that BRG1 depletion does not result in a loss 

of TAD formation (Figure 4.42a-b and Figure 4.43).    

Figure 4.42. Pile-up of interactions confirm TAD boundaries. Mean of pile up interaction frequencies 
1Mb around the TAD boundaries for a) shSCRAM and b) shBRG1 cells 
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 In order to quantify the TAD boundary scores and identify specific TADs, we 

assigned an insulation score for each genomic interval along the genome using a method 

that was described previously [213; 263]].  We identified 2963 and 2796 TAD 

boundaries in shSCRAM and shBRG1 MCF-10A cells, respectively (Figure 4.44).  The 

identified TADs showed known characteristics, such as enrichment of genes and Pol II 

binding at the boundaries compared to the surrounding regions (Figure 4.45a-b). 

Figure 4.43. TADs are mostly stable upon BRG1 knockdown. An example of a region on chromosome 
9 (chr9:103800001-123920000) showing (from top to bottom) the compartment profiles of shBRG1 and 
shSCRAM at 250kb intervals, the insulation plot profiles at 40kb intervals (see Methods), the insulation 
plot difference between shBRG1 and shSCRAM, hg19 UCSC genes, TAD boundaries, shBRG1 and 
shSCRAM contact heatmaps showing the TADs, and a subtraction of the shSCRAM from the shBRG1 
contact heatmap.  



 
 
 
 
 

144 
 

 

Figure 4.44. A large portion of TADs remain similar upon BRG1 knockdown. Venn diagram showing 
that the TAD boundaries are largely similar between shSCRAM and shBRG1 Hi-C datasets.  
 

Figure 4.45. TAD boundaries are enriched for PolII binding and gene frequency. Frequency of 
UCSC genes (keft) and Pol2 binding (right) at and +/- 1Mb of TAD boundaries 
 
 

 Consistent with the notion that TADs are stable across different cell types, 

species and different biological contexts [73-76], BRG1 knockdown did not 

significantly alter the localization of the TAD boundaries, as the majority of TAD 

boundaries (83% of shSCRAM and 88% of shBRG1) were overlapping between the 
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control and  the BRG1 knockdown cells (Figure 4.44).   TAD boundaries are bound by 

proteins such as CTCF and cohesin in vertebrates [73; 78] and by several architectural 

binding proteins in flies [79].  Therefore, we asked whether BRG1 plays any role in 

TAD boundaries and assessed whether BRG1 localization was enriched at TAD 

boundaries.  Intersection of BRG1 ChIP-seq peaks with both the shBRG1 and 

shSCRAM TAD boundary definitions yielded similar results, where ~25% of all BRG1 

binding was located at TAD boundaries (Figure 4.46). Surprisingly, we observed an 

enrichment of BRG1 binding at the boundaries when the frequency of BRG1 binding 

was plotted around the TAD borders (Figure 4.47).  66% of all TAD boundaries were 

bound by BRG1.  Thus, TAD boundaries are enriched for BRG1 binding.  A similar 

phenomenon was observed when BRG1-bound super-enhancers were plotted across the 

TAD boundaries (Figure 4.48).  
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Figure 4.46. A significant portion of BRG1 binding is located on TAD boundaries. Pie chart showing 
the percentage of BRG1 localization at TAD boundaries.  
 

Figure 4.47. BRG1 and BRG1-bound super-enhancers are enriched at TAD boundaries. The 
frequency plot of BRG1 ChIP-seq peaks per 25kb for +/-  1Mb of every shBRG1 TAD boundary.  
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Figure 4.48. The frequency plot of BRG1 super-enhancers per 50kb for +/-  1Mb of every shBRG1 
TAD boundary. 
 

 The strength of a TAD boundary is a measure of the allowance of inter-TAD 

interactions across the boundary [79; 80].  Even though our data indicate that the 

majority of TAD boundaries are similar, we wondered whether BRG1 depletion resulted 

in a change in TAD boundary strength.  Interestingly, BRG1 knockdown resulted in an 

overall decrease in the overlapping TAD boundary strength, as shown by plotting the 

boundary scores for the overlapping and unique TAD boundaries for the shBRG1 and 

shSCRAM cells (Figure 4.49).  Furthermore, to address whether this decrease is related 

to BRG1 binding, we compared the TAD boundary scores of the TAD boundaries that 

were either BRG1-bound or not.  We observed a significant decrease of TAD boundary 

strength at borders that lacked BRG1 binding (Figure 4.50).  As a result, the data 

suggests that BRG1 binding is associated with stronger TAD boundaries. 
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Figure 4.49. BRG1 knockdown results in a lower TAD boundary score. Boxplot showing the TAD 
boundary score distribution for the overlapping, shSCRAM and shBRG1 specific TAD boundaries. 
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Figure 4.50. BRG1 binding is associated with higher TAD boundary score. Box plot showing the 
TAD boundary scores for BRG1 bound and unbound TAD boundaries. 
  

4.4 Discussion 
 In this study, we characterized BRG1-dependent alterations in gene expression 

and higher order chromatin structure in mammary epithelial MCF-10A cells.  

Modification of chromatin structure by ATP-dependent remodeling complexes is an 

essential process in transcriptional regulation.  The role of BRG1 involves both the 

activation and repression of many genes through its interactions with transcription 

factors and other cofactors [237].  RNA-seq analysis in the control (shSCRAM) and 

BRG1 knockdown (shBRG1) cells showed an extensive down-regulation of gene 

expression (Figure 4.4).  ChIP-seq analysis indicated that BRG1 is mostly bound 

(~60%) to gene bodies and ~40% is bound to intergenic regions (Figure 4.16), which is 

similar to the case in murine mammary epithelial cells [230]. Differentially expressed 
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genes that were positively regulated by BRG1 generally showed BRG1 binding at the 

locus, whereas genes negatively regulated by BRG1 generally did not show binding by 

BRG1, suggesting that negative regulation by BRG1 occurs via indirect mechanisms. 

  Growing evidence suggests that the shape of the nucleus, the stiffest organelle in 

the cell, might partly be affected by force-induced changes, a phenomenon known as 

nuclear mechanotransduction [264]. It is becoming well established that the cell surface 

adhesion receptors, such as integrins and cadherins, can exert the mechanical forces to 

the nucleus and can potentially cause gene activation and/or chromatin reorganization 

[265].  However, changes in nuclear shape can be induced from either external forces 

exerted by the cytoskeleton, or via internal nuclear forces.  Previous work showed that 

BRG1 depletion results in nuclear shape alterations in MCF-10A cells [252]  .  

However, the disruption of the cytoplasmic filaments (actin, tubulin and cytokeratins) 

did not alter BRG1-dependent structural changes observed in the MCF-10A cells [252].  

This implies that BRG1, apart from its chromatin remodeling function, might have 

additional roles in maintaining the structural integrity of the nucleus [254].  

Interestingly, in this study, we identified that the majority of the genes that are down-

regulated upon BRG1 knockdown were associated with the extracellular matrix (ECM).  

These findings suggest an additional mechanism for BRG1-mediated regulation of 

nuclear integrity in MCF-10A cells via regulation of ECM genes and possible alteration 

of cell surface connections and mechanotransducing forces to the nucleus.  In contrast, 

the up-regulated genes were associated with the lipid synthesis pathways (Figure 4.10), 

which suggests a role for BRG1 in regulating cell metabolism.   
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 Hi-C analysis of BRG1 knockdown and control MCF-10A cells revealed a 

significant enrichment of sub-telomeric interactions in the shBRG1 cells (Figure 4.33f-

h).  Recently, Guidi et al. showed that the telomeres of yeast cells undergo spatial re-

organization upon switching to different metabolic states [266].  Since our RNA-seq 

analysis showed up-regulation of genes related to lipid synthesis and since Hi-C analysis 

showed alterations in telomeric interactions in shBRG1 cells, it is very tempting to 

speculate that the increased telomeric interactions (Figure 4.33f-h) may be associated 

with changes in the metabolic state of the shBRG1 cells.     

 The formation of topologically associated domain boundaries is dependent on 

many factors [79; 267]  ], especially insulators such as CTCF and cohesin [73; 78].  

Here, we report the rather remarkable observation that BRG1 peaks and super-enhancers 

are also enriched at TAD boundaries (Figure 4.46-3.48), and that the loss of BRG1 

results in lower TAD boundary scores genome-wide (Figure 4.49), implicating BRG1 as 

a co-regulator of the integrity of topological associated domains.  Furthermore, when the 

TAD boundaries of the control (shSCRAM) cells are considered, BRG1-bound 

boundaries exhibited a stronger boundary score than the boundaries not bound by BRG1 

(Figure 4.50).  There are ~1400 sequence specific transcription factors in the human 

genome [268].  Therefore, apart from well-studied insulators such as CTCF and cohesin, 

maintenance of TAD boundaries may at least in part be regulated by other chromatin 

regulators such as BRG1, and by extension, the SWI/SNF enzyme. 

 Taken together, we identify novel roles for BRG1 in regulating higher-order 

chromatin structure by affecting telomere organization, TAD boundary strength and the 
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frequency and specificity of long-range chromatin interactions.  In conjunction with our 

earlier studies indicating that BRG1 regulates the aspect of nuclear size and shape [252; 

254], these data provide possible mechanisms by which changes in global chromatin 

organization may modulate the integrity of the nucleus. 
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CHAPTER5: RUNX1-mediated control of higher-order chromatin organization 

and gene expression in breast cancer cells 

5.1 Introduction 

  The mammalian RUNX family of transcription factors consists of three 

members, RUNX1, RUNX2 and RUNX3, which show distinct tissue-specific 

expression patterns and cell-context dependent functions through interactions with their 

common partner core binding factor beta (CBFβ) [272].  Each RUNX member has a 

divergent physiological role.  RUNX1 is involved in hematopoiesis [273], RUNX2 is 

required for bone formation [274], and RUNX3 is associated with gastrointestinal and 

neuronal development [275; 276].  Therefore, RUNX proteins are considered master 

regulators of multiple signaling pathways in both normal and abnormal physiological 

conditions, and hence have been shown to play key roles in many different types of 

cancer (reviewed in [277-280]).  In particular, RUNX1 is involved in the RAS, ERK, 

TGFβ and WNT signaling pathways in a variety of cellular contexts including cancer 

[281-284].  

  Several translocations and mutations at the Runx1 gene locus are associated with 

the onset of human leukemia types [285; 286].  However, the role of RUNX1 is not 

confined to the hematopoietic lineage.  In the last decade, accumulating evidence 

suggests a pivotal role for RUNX1 in the development of breast cancer both as an 

oncogene and a tumor suppressor [287-292].  RUNX1 has been shown to be down-

regulated [287; 292; 293] as well as up-regulated [292] in breast cancer.  In addition, 

recent whole-genome sequencing studies identified deletions and point mutations in the 
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Runx1 gene in a significant portion of human luminal breast tumors [182; 294; 295] .  

Another study based on a meta-analysis of microarray studies comparing Runx1 

expression in normal versus tumor tissues reported that Runx1 is in the top 1% 

overexpressed genes in breast cancer [296].   

  RUNX1 exerts its function via both activating and repressing target gene 

expression depending on its interaction partners [276; 277].  The RUNX1 protein 

assembles into subnuclear domains and associates with the nuclear matrix [297].  

RUNX1 has been shown to tether estrogen receptor alpha (ERalpha), an important 

regulator in breast cancer, to chromatin [298].  Similar to tethering ERalpha to its target 

sites, RUNX1 also interacts with the polycomb repressive complex 1 (PRC1) and 

regulates its recruitment to the chromatin [299; 300].  Furthermore, in the context of 

hematopoiesis, chromosome conformation capture studies showed RUNX1 involvement 

in mediating locus-specific, long-range interactions to regulate gene expression [301; 

302]. 

  Cancer is a disease characterized by large scale changes in the nucleus [126]. 

The organization of the genome involves multiple hierarchical structures [187].  First, 

each chromosome is positioned within a confined volume in the nucleus forming the 

chromosome territories [60].  Each chromosome is partitioned into megabase scaled 

genomic compartments [71]  and further folded into discrete chromosomal 

neighborhoods called topologically associating domains (TADs) [73; 74].  Being mostly 

invariant across tissue types and species [73-78], TADs are defined as clusters of 

interaction domains in which the enhancers and promoters inside a single TAD cross-
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talk with one another.  The expression of the genes inside a single TAD is co-regulated, 

and two neighboring TADs can have different modes of regulation [76].  Alteration in 

higher-order chromatin organization is a frequently observed phenomenon in breast 

cancer [126].  Recently, we demonstrated that breast cancer cells have extensively 

altered long-range chromatin contacts among small, gene-rich chromosomes  and at 

telomeres when compared with mammary epithelial cells [263].  Given the importance 

of higher-order genome folding and the involvement of RUNX1 in the context of breast 

cancer, the relationship between the function of RUNX1 involvement in chromatin 

organization and structure and its functional role in breast cancer requires investigation. 

  In this study, we characterized the genome-wide alterations in higher-order 

chromatin structure and gene expression upon RUNX1 knockdown in the tumorigenic 

human breast cancer MCF-7 cell line by using Hi-C and RNA-seq technologies.  In 

addition, to gain insight into RUNX1-mediated regulation of the chromatin, we probed 

RUNX1 localization by performing ChIP-seq analysis.  We observed that RUNX1 is 

involved in significant alterations in gene expression and higher-order genome structure, 

particularly at TAD boundaries.  As a result, we show a previously unidentified role for 

RUNX1 in genome architecture, and we provide additional insight into the underlying 

consequences of RUNX1 perturbation in breast cancer.   

5.2 Materials and Methods 

5.2.1 Generation of MCF-7 cell lines and cell culture 

The MCF-7 cells were obtained from ATCC and were cultured in DMEM supplemented 

with 10% fetal bovine serum and 5% penicillin/streptomycin. For the shRNA-mediated 
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knockdown of RUNX1, MCF-7 cells were plated in six-well plates (1x105 cells per 

well) and infected 24h later with lentivirus expressing shRunx1 (5'-

GATCATCTAGTTTCTGCCG-3') or nonspecific shRNA (shNS) (Thermo Scientific).  

Briefly, cells were treated with 0.5 ml of lentivirus and 1.5 ml complete fresh DMEM 

high glucose per well with a final concentration of 4 μg/ml polybrene. Plates were 

centrifuged upon addition of the virus at 1460 × g at 37 C for 30 min.  Infection 

efficiency was monitored by GFP co-expression 2 days after the infection.  Cells were 

selected with 2 μg/ml puromycin for at least two additional days. After removal of the 

floating cells, the remaining attached cells were passed and analyzed. 

5.2.2 RNA-seq and Analysis 

The RNA-seq libraries were generated with TruSeq Stranded Total RNA with Ribo-

Zero Gold Kit and the samples were sequenced as 100-bp single-end reads using a Hi-

Seq 2000 instrument.  For the RNA-seq analysis, first the adapter sequences were 

removed from the RNA-seq reads.  Next, any ribosomal RNA reads were filtered using 

Bowtie [269].  The reads were then aligned to the hg19 transcriptome and the gene 

counts and transcript per million (TPM) values were quantified using the RSEM v.1.2.7 

tool [208].  Differential gene expression was calculated using the DeSeq2 v.1.4.5 

package in R 3.1.0 using the mean value of gene-wise dispersion estimates [209].  Genes 

with adjusted p-value less than 0.01 and log2 fold change >1 were considered as 

differentially expressed.   

5.2.3 ChIP-seq and Analysis  
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The ChIP assay was performed as previously described [270].  Briefly, ~1x107 parental 

(wildtype) MCF-7 cells were crosslinked with formaldehyde at room temperature for 10 

minutes.  Then, the cells were lysed using lysis buffer A (50mM HEPES, 140mM NaCl, 

1mM EDTA pH=8, 10% Glycerol, 0.5% NP-40, 0.25% Triton X-100), and the residual 

cytoplasmic protein was removed using lysis buffer B (10mM Tris-HCl pH=8, 200mM 

NaCl, 1mM EDTA, 1mM EGTA).  The nuclear fraction was released using lysis buffer 

C (10mM Tris-Hcl pH=8, 100mM NaCl, 1mM EDTA, 1mM EGTA, 0.1% Sodium 

Deoxycholate, 0.5% N-lauroylsarcosine).  The chromatin was then sheared using a 

Covaris S2 instrument with 10% duty cycle, 5 intensity, 200 cycles per burst, frequency 

sweeping mode, 60 second process time and for 4 cycles. The pull-down was performed 

using a RUNX1 antibody (Cell Signaling #4334).  Samples were washed three times 

with RIPA buffer (Tris-HCl pH=8, 150mM NaCl, 1mM EDTA, 1% NP-40, 0.25% 

Sodium deoxycholate, 0.1% SDS) and were eluted.  The pull-down and input control 

sequencing libraries were generated by using the NEXTflex Rapid DNA Sequencing Kit 

(Bioo Scientific #5144-02) and were sequenced using SE100 reads with a HiSeq 2000 

instrument.  The adapters were trimmed from the sequencing reads, and the reads were 

aligned to the hg19 human genome using the Bowtie2 tool [269]]  .  Quality controls, 

peak calling, and peak annotation was performed using the HOMER suite [271].  The 

ChIP-seq peaks that were reproducible across the biological replicates were used for 

downstream analysis.  De novo motif analysis was performed using the MEME-ChIP 

suite [306].  The geneset enrichment of ChIP-seq peaks was analyzed with the ChIP-

Enrich tool [310].   
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5.2.4 Preparation of Hi-C Libraries 

The Hi-C experiments were performed with two biological replicates as previously 

described with minor modifications [99].  The altered sections of the protocol was the 

biotin incorporation step, where the mixture was incubated at 37°C for 40 minutes with 

continuous shaking.  The MCF-7 shNS and shRUNX1 replicates displayed a 40-90% 

biotin incorporation efficiency.  The Hi-C libraries were sequenced using PE100 reads 

with a HiSeq 2000 instrument. 

5.2.5 Hi-C read mapping/binning/ICE correction 

Initial Hi-C analysis was performed as previously described [100].  Table 3 summarizes 

the mapping statistics of different classes of reads and interactions observed for each 

biological replicate [100].  The data was binned at 2.5Mb, 1Mb, 250kb, 100kb and 40kb 

non-overlapping genomic intervals.  The iterative correction and eigenvector 

decomposition (ICE) method was used to correct for systematic biases [212].  The 

biological replicates showed high reproducibility.  For the downstream analyses, 

sequences from both biological replicates were pooled and ICE-corrected to serve as a 

combined dataset.  

5.2.6 Calculation of Genomic Compartment Profiles 

First, we modeled the overall Hi-C decay with distance using a modified LOWESS 

method (alpha=1%, interquartile range filter) as described previously [94].  LOWESS is 

used for calculating the weighted average and weighted standard deviation for every 
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genomic distance and normalizing for genomic distance bias.  To calculate the 

compartment profiles, the z-scores of the interaction matrices at 250kb resolution were 

generated.  Then, the Pearson correlation of the z-score matrices was calculated.  By 

performing principal component analysis, the first principal component detects the 

patterns of increased and decreased interaction frequency, which appear as a “plaid 

pattern” in the heatmap.  Each region has a positive or a negative first eigen value.  To 

detect which compartment (positive or the negative eigen value) is A-type, the gene 

density was calculated to assign the A-type and the B-type compartmentalization.   

5.2.7 Identification of TAD boundaries 

TAD calling was performed by using the insulation score of each bin using the 40kb 

resolution combined data, as described previously [213; 263].  By sliding a 1Mb x 1Mb 

square along the diagonal of the interaction matrix for each chromosome, we obtained 

the “insulation plot” of the matrix.  The insulation plots showed high correlation 

between the biological replicates.  Valleys within the insulation plots indicate the 

depletion of interaction across two TADs.  Based on the variation of boundaries between 

replicates, we added a total of 160kb (80kb to each side) to the boundary to account for 

replicate variation, thereby making the final boundary size 200kb.  All boundaries with a 

strength <0.15 were excluded.   

5.2.8 Calculation of Differential Interactions 

In order to probe the differential interactions between MCF-7 shNS and shRUNX1 

samples, we used a method previously described [263].  We first transformed the Hi-C 

data into Z-score matrices for all biological replicates.  For each interaction, the mean 
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sample to sample Z-score was calculated between all pairwise combinations of the four 

replicate datasets (shNS-R1 vs. shNS-R2, shNS-R1 vs. shRUNX1-R1, shNS-R1 vs. 

shRUNX1-R2, shRUNX1-R1 vs. shRUNX1-R2, and shRUNX1-R2 vs. shNS-R2).  A 

randomized set of 500,000 interactions were also calculated.  These random interaction 

Z-score differences were used to build an expected distribution of the Z-score 

differences. The resulting Z-score difference matrix was then derived by calculating the 

ratio of the mean of the set of four possible sample:sample Z-score differences minus 

the genome-wide mean of the replicate:replicate Z-score difference, divided by the 

genome-wide standard error of the replicate:replicate Z-score differences for each bin. 

5.3 Results 

5.3.1 RUNX1 knockdown results in aberrant gene regulation in MCF-7 cells 

  To investigate the transcriptional effects of RUNX1 knockdown, we generated 

MCF-7 cell lines stably expressing either a non-silencing shRNA (shNS), or shRNA 

against RUNX1 (shRUNX1).  Western blot analysis of induced cells showed no 

detectable levels of RUNX1, confirming a near complete knockdown (Figure 5.1).   
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Figure 5.1. Knockdown of RUNX1 results in near complete depletion of the protein levels. Western 
blot of the RUNX1 protein levels of shNS and shRNX1 MCF-7 cells. There is a near complete knock 
down of RUNX1 protein levels. 
 

  

 In order to analyze the effect of RUNX1 depletion on global gene expression, we 

performed RNA-seq from ribosomal-RNA depleted samples in shNS and shRUNX1 

MCF-7 cells in triplicates, whch showed high correlation among each other (Figure 5.2 

and Figure 5.3).   

 

 



 
 
 
 
 

162 
 

Figure 5.2. Replicate correlation of gene expression (Transcript per million, TPM) for shNS 
biological triplicates. The Pearson Correlation values for each pairwise replicate are on the right-top side 
of the matrices. 
 
 

 
 



 
 
 
 
 

163 
 

Figure 5.3. Replicate correlation of gene expression (Transcript per million, TPM) for shRUNX1 
biological triplicates. The Pearson Correlation values for each pairwise replicate are on the right-top side 
of the matrices. 
 

 By performing a differential gene expression analysis [209], we identified 466 

down-regulated and 687 up-regulated genes upon RUNX1 knockdown (Figure 5.4 and 

Figure 5.5).   
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Figure 5.4. RUNX1 knockdown results in extensive transcriptional changes. Heatmap showing the 
transcripts per million (TPM) expression values of the differentially expressed genes between shNS and 
shRUNX1 samples for each biological replicate.  
 

Figure 5.5. RUNX1 depletion results in up- and down-regulation of hundreds of genes. Scatter plot 
showing the log2 pooled replicate gene expression values for shNS and shRUNX1 cells. The red and blue 
dots denote the significantly up- and down-regulated genes, respectively. 
 

  

 



 
 
 
 
 

165 
 

 REACTOME pathway analysis [256; 257] of the down-regulated genes identified 

pathways related to extracellular matrix (ECM) constituents, especially involving 

collagen fibers and collagen assembly (Figure 5.6).  The down-regulated genes included 

certain well-studied lncRNAs, such as NEAT1 and MALAT1, that are involved in 

nuclear organization.  In contrast, the up-regulated genes were associated with 

chromatin regulation, including condensation of chromosomes, as well as nucleosome 

and centromere assembly (Figure 5.7).   

  Collectively, these results confirm a role for RUNX1 as a both activator and a 

repressor of gene expression in breast cancer cells.  Furthermore, knockdown of 

RUNX1 results in dysregulation of several genes related with ECM biology and 

chromatin structure, both of which have been frequently implicated in breast cancer 

[263; 303]].  

 

Figure 5.6. REACTOME terms of down-regulated genes. Bar graph showing the -log10 p-values for 
the top 5 REACTOME terms for the genes that are down-regulated upon RUNX1 knockdown. 
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Figure 5.7. REACTOME terms of up-regulated genes. Bar graph showing the -log10 p-values for the 
top 5 REACTOME terms for the genes that are up-regulated upon RUNX1 knockdown. 
 

5.3.2 Genome-wide RUNX1 localization in parental MCF-7 cells 

  To expand our understanding about the role of RUNX1 in breast cancer cells, we 

probed its genome-wide occupancy by performing chromatin immunoprecipitation 

followed by deep sequencing (ChIP-seq) in the parental MCF-7 cells (Figure 5.8 and 

Figure 5.9).   

Figure 5.8. Table showing the sequenced and mapped reads for each RUNX1 ChIP-seq biological 
replicate. 
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Figure 5.9. Matrix showing the Pearson correlation of the signal intensity between the pull down 
(ChIP) and input samples. 
 
 

 We identified 3466 high-confidence RUNX1 ChIP-seq peaks.  Visualization of the 

RUNX1 peaks revealed binding to defined locations in the genome as expected from a 

sequence specific transcription factor (Figure 5.10 and Figure 5.11).  Interestingly, 

RUNX1 was bound to the promoters of NEAT1 and MALAT1, the two lncRNAs whose 

transcription was significantly reduced upon RUNX1 knockdown, suggesting a direct 

transcriptional role of RUNX1 at the regulation of these lncRNAs that are important for 

cancer progression (Figure 5.10 and Figure 5.11) [304; 305].   
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Figure 5.10. RUNX1 binds to the MALAT1 promoter. Example of a ChIP-seq genome browser view 
of RUNX1 binding and the input control, along with shNS and shRUNX1 RNA-seq tracks for MALAT1 
(chr11:65182867-65201926). 
 
 
 
 

Figure 5.11. RUNX1 binds to the NEAT1 promoter.   Example of a ChIP-seq genome browser view of 
RUNX1 binding and the input control, along with shNS and shRUNX1 RNA-seq tracks for NEAT1 
(chr11:65255544-65285081). 
 

  To obtain information about the context of the underlying DNA sequences of 

RUNX1 bound regions, we performed a motif analysis on RUNX1 peaks using the de 

novo DNA motif discovery software MEME [306].  Our analysis identified several 

binding motifs significantly enriched at RUNX1 peaks (Figure 5.12).  The most 
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significantly enriched motif was the RUNX1 binding sequence motif.  We additionally 

identified binding motifs for the factors EBF1, STAT3, FOXP3, EGR1, FOS and ESRR.  

These results are intriguing as RUNX1 has been shown to be a co-regulator for these 

factors [296; 307-309], as well as being a direct interaction partner of estrogen receptor 

(ESRR) [298].   

 

Figure 5.12.  MEME de novo motif analysis of the RUNX1 peaks.  The peaks are ordered by 
significance from top to bottom. 
 

  Annotation of the RUNX1 bound regions revealed ~70% binding at gene bodies 

and ~30% binding at intergenic regions (Figure 5.13).  This suggests that the regulation 

of RUNX1 occurs mostly through the gene bodies, and possibly through intergenic cis-



 
 
 
 
 

170 
 

regulatory regions.  The strongest RUNX1 signals at known genes were observed at 

gene promoter regions (Figure 5.14).   

 

Figure 5.13.  Pie chart showing the distribution of RUNX1 ChIP-seq peak annotation for genic and 
intergenic regions. 
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Figure 5.14.  Normalized RUNX1 ChIP-seq signal intensity plot for all human UCSC genes +/- 2kb.  
RUNX1 binding is enriched at the promoter regions. 
 
 In order to assess the functional significance of RUNX1 binding, we analyzed the 

enrichment of biological pathways of the genes with RUNX1 binding within 10kb of 

their transcriptional start site (TSS) [310].  We identified pathways such as G-protein 

coupled receptor pathway and RNA binding, , which is implicated with RUNX1 binding in 

leukemia as well [311], suggesting RUNX1 mediated regulation of intra-cellular signaling 

and RNA processing pathways (Figure 5.15).   

Figure 5.15. GO Terms of RUNX1 peaks. Table showing the gene ontology terms of the genes 
associated with RUNX1 peaks. 
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 Furthermore, we checked whether RUNX1 peaks were associated with RUNX1-

dependent differentially expressed genes.  Therefore we plotted the RUNX1 peak 

density +/- 5kb of the differentially expressed genes' promoters (Figure 5.16).  ~10% of 

all differentially expressed gene promoters displayed RUNX1 binding.  The promoters 

of down-regulated genes displayed a modest enrichment of RUNX1 binding compared 

to the up-regulated genes, suggesting a more direct role for RUNX1 in differential gene 

expression.   

Figure 5.16. RUNX1 density across differentially expressed genes. RUNX1 peak density within +/- 
5kb of the TSS of all genes (grey), significantly downregulated genes (blue), or upregulated genes (red). 
 

  RUNX1 has been shown to directly interact and be involved with several 

regulatory complexes [276] and signaling pathways [280].  We asked whether RUNX1 

localization overlapped with other MCF-7 ENCODE factors.  To address this question, 

we intersected the MCF-7 ENCODE data [312] for the binding of transcription factors, 

histone modifications (by ChIP-seq) and open chromatin regions (by FAIRE and 

DNase1 hypersensitivity) with RUNX1 binding (Figure 5.17).  Interestingly, RUNX1 
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showed the most overlap with the activating enhancer binding protein 2 gamma (AP2g, 

also known as TFAP2C), which is an important developmental regulator [313].  RUNX1 

also was bound at DNase1 hypersensitive regions.  Furthermore, RUNX1 showed >50% 

overlap with HAE2F1 and MAX, whereas several other factors, including ERalpha, 

demonstrated varying levels of overlap with RUNX1 binding.  The lowest amount of 

overlap was observed with two repressive histone marks, H3K27me3 and H3K9me3 

(Figure 5.17).  These findings suggest a role for the co-occupancy of RUNX1 with other 

factors in gene regulation.   

Figure 5.17. RUNX1 associates with other chromatin modifiers. Bar graph showing the percent 
overlap of RUNX1 peaks with open chromatin, transcription factor binding and histone modification 
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peaks from the ENCODE project. 
 

 To gain further insight into the co-binding of RUNX1 with other factors, we 

analyzed the overlap of each RUNX1 peak with the ENCODE factors and performed a 

hierarchical clustering (Figure 5.18).  We identified two groups of factors that distinctly 

overlapped with RUNX1.  One of the groups consisted of AP2g, HAE2F1, cMYC, 

MAX, active histone mark H3K27ac, DNase1 hypersensitivity, ELF1 and GABP; 

whereas the second group consisted of SIN3A, HDAC2, GATA3, NR2F2, FOXA1, 

TCF7L2 and ZNF217 (Figure 5.18).  From this pattern of overlap, it can be inferred that 

RUNX1 binds to the genome within differentially interacting complexes, and possibly 

exerts differential (i.e activating or repressive) functions.   

  Taken together, profiling the genome-wide localization of RUNX1 revealed 

binding mostly within gene bodies, and related to differential gene expression.  

Moreover, motif and overlap analysis revealed RUNX1 association with distinct classes 

of co-regulators.  
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Figure 5.18. RUNX1 associates with distinct classes of factors. A hierarchically clustered heatmap 
showing the co-overlap of RUNX1 with open chromatin regions FAIRE and DHS. and available ChIP-seq 
peaks from MCF-7 ENCODE data. 
 

 

 

5.3.3 RUNX1-mediated genome-wide interaction analysis in MCF-7 cells 

  In order to probe the higher-order chromatin structure upon RUNX1 knockdown 

in breast cancer cells, we performed Hi-C in shNS and shRUNX1 MCF-7 cells.  Two 

independently grown and fixed batches of cells were sequenced to an average of depth 

of ~183 million reads.  Sequence mapping and the initial Hi-C analysis were performed 

as described previously [100; 213; 263], using the Iterative Correction Method (ICE) 

[212]  to correct for systematic biases (Table 5.1).   
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Table 5.1. The sequencing and mapping statistics of shNS and shRUNX1 Hi-C biological replicates.  
 

There was a high correlation between the biological replicates at multiple resolutions 

(Figure 5.19 and Figure 5.20).  The compartments and the TAD analysis (discussed 

below) also showed high reproducibility (Figure 5.21a-c).  Therefore, we combined the 

replicate datasets for downstream analysis.  The pooled shNS and shRUNX1 datasets 

also showed high correlation with the previously published parental MCF-7 Hi-C dataset 

(Figure 5.22, [263]). The Hi-C datasets displayed similar cis/trans ratios with each other 

(Figure 5.23).  Interaction frequency decreases as a function of genomic distance.  Both 

the shNS and shRUNX1 datasets showed similar rates of decay of interaction frequency 

with increasing distance (Figure 5.24).  Collectively these analyses reflect the high 

quality and reproducibility of the Hi-C datasets.   
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Figure 5.19. Scatter plots comparing normalized interactions between pairs of 2.5Mb bins from two 
biological replicates from a) MCF-7 shNS b) MCF-7 shRUNX1. There is a strong correlation between 
the biological replicates. The black dots denote the outliers whereas the red dots denote the reproducible 
interactions. 
 
 

 

Figure 5.20. Example of the Hi-C interaction heatmaps at 100kb resolution for chr14 of the shNS and 
shRUNX1 biological replicates. The grey area denotes the acrocentric repetitive regions that could not be 
mapped. 
 
 

a b 
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Figure 5.21. Reproducibility of the Hi-C data a) Pearson correlation of the compartment analysis (first 
eigenvector) at 250kb resolution and insulation plot analysis at 40kb resolution between the biological 
replicates b) An example graph showing the first eigenvector (compartmentalization) of chr14 in shNS 
and shRUNX1 biological replicates. c) UCSC snapshot showing the insulation plot (TAD analysis) of 
chr18 in shNS and shRUNX1 biological replicates. 
 
 

 

 

Figure 5.22. Pearson correlation of the pooled replicate datasets between shNS and shRUNX1, and 
between the parental MCF-7 cells (from Barutcu et al., 2015) 
 
 

a b 

c 
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Figure 5.23. Bar graph showing the percentage of the percent cis ratios of the replicate and the 
pooled Hi-C libraries. 
 

Figure 5.24. Scaling plot of the shNS and shRUNX1 pooled Hi-C libraries. The frequency of 
interaction decrease as a function of genomic distance. 
 
 Interaction heatmaps of the individual chromosomes showed no drastic changes in 

the chromosomal organization of MCF-7 cells upon RUNX1 knockdown (Figure 5.25).   
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Figure 5.25. The chromosome by chromosome interactions matrices for shNS and shRUNX1 
datasets. 
 
 

  

 Visualizing the MCF-7 Hi-C interaction matrices at increasing resolutions revealed 

the genomic compartments, interaction topology and the TAD structures within the 

genome (Figure 5.26).  The MCF-7 wildtype, shNS and RUNX1 knockdown cells 

showed similar genomic compartmentalization and TAD structures (Figure 5.26).  

Consistent with earlier reports [73; 74]  , two neighboring TADs can display a dramatic 

difference in repressive histone modification H3K27me3 (Figure 5.26, lower panel), 

suggesting a differential mode of gene regulation in adjacent TADs. 

 

a b 
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Figure 5.26.  Hi-C interaction heatmaps of chr14 at increasing resolutions that reveal the genomic 
compartments and the TAD structures for a) wildtype MCF-7 cells from Barutcu et al, 2015. b) shNS and 
c) shRUNX1 pooled Hi-C datasets, showing the genomic compartments and the TAD structures.  Bottom 
panel:  A browser shot of the MCF-7 H3K27me3 ChIP-seq signal from the ENCODE database showing 
differential histone methylation across a TAD boundary. 
 

a b c 
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5.3.4 A sub-portion of genomic compartments are altered ulpon RUNX1 

Knockdown 

  Decades of microscopy studies revealed that the open euchromatic regions 

occupy a distinct subnuclear region different than the closed heterochromatic regions 

within each chromosome territory [23].  More recently, Hi-C studies revealed the 

presence of megabase scale sub-chromosomal structures named A-type and B-type 

genomic compartments, where the A-type compartments are gene-rich, early replicating, 

and active whereas the B-type compartments are gene-poor, late replicating and 

repressed [71].  It was previously shown that compartmental alterations are associated 

with differential gene expression [77; 263].  Since RUNX1 knockdown in MCF-7 cells 

was associated with the differential expression of many genes, we asked whether 

depletion of RUNX1 resulted in any change in genomic compartments.  To address this 

question, we calculated the compartmentalization of each 250kb non-overlapping bin 

throughout all of the chromosomes and compared the compartment type between shNS 

and shRUNX1 Hi-C datasets (Figure 5.27).   
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Figure 5.27. Schematic representation of the genomic compartment switching at each non-
overlapping bin. 
 
 
 
 Even though RUNX1 depletion resulted in hundreds of differentially expressed 

genes, the majority of the compartments were similar (stable) between the shNS and 

shRUNX1 datasets (Figure 5.28).  Only a few percent of the genome showed a 

compartmental alteration from A-type to B-type and vice versa upon RUNX1 

knockdown (Figure 5.28).   

 
 
 
 



 
 
 
 
 

184 
 

Figure 5.28. Pie chart showing the genomic compartment changes between shNS and shRUNX1 
datasets. “A” and “B” denotes the open and closed compartments, respectively. “A to A” represents 
compartments that are open in both cell lines, “B to B” represents compartments that are closed in both 
cell lines, “A to B” denote compartments that are open in shNS but closed in shRUNX1, and “B to A” 
denotes compartments that are closed in shNS and open in shRUNX1. 
 

 The change in compartmentalization was homogeneous throughout the 

chromosomes, rather than being localized to a few hot spots (Figure 5.29).  The 

distribution of the compartment strength (the 1st eigenvector) was similar in shNS and 

shRUNX1 datasets, suggesting that the observed differences are indeed due to changes 

in specific interactions (Figure 5.30).   
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Figure 5.29. Bar graph showing the number of stable and altered compartments for each 
chromosome between shNS and shRUNX1 Hi-C datasets. The switch in compartmentalization is spread 
throughout the chromosomes, instead of localizing in a few hotspots. 
 
 

Figure 5.30. Distribution of the 1st eigenvalues for each 250kb for shNS and shRUNX1 datasets, 
showing similar distributions. 
 
 

 Although the majority of the compartments were similar, changes in gene expression 

were correlated with altered compartment regions.  The regions that switched from an 

open A-type compartment to a closed B-type compartment upon RUNX1 depletion 
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showed significantly more down-regulation of gene expression than the genes in the 

stable compartments (A-type to A-type and B-type to B-type) (Figure 5.31).  Even 

though not significant, genes in compartments that switched from the B-type to A-type 

compartment switch regions upon RUNX1 loss showed a trend for up-regulation of gene 

expression as assessed by the mean log2 fold change values (Figure 5.31).   

 

Figure 5.31. Transcriptional changes are correlated with compartment changes. shRUNX1 / shNS 
log2 fold change RNA-seq expression box plot of all the genes residing at regions for different 
compartmental switch categories. The compartments that are switched from A to B and from B to A show 
decreased and increased expression levels, respectively. p-value: Wilcoxon rank-sum test.  
 

  Next, we assessed whether RUNX1 binding was associated with the 

compartment switch regions.  We intersected the RUNX1 peaks and observed that the 

majority (87%) of the RUNX1 bound regions were in the stable A-type open 

compartments (Figure 5.32).  In contrast, only 11% of the RUNX1 peaks were in the 



 
 
 
 
 

187 
 

stable closed B-type compartment regions.  Only ~3% of the RUNX1 binding sites were 

associated with altered compartments (Figure 5.32).   

 

Figure 5.32. Pie chart showing the percentage of the compartment switch regions that are bound by 
RUNX1. The colored portions of the graph denote the RUNX1 bound percentage of each compartment 
change category.  
 

 Furthermore, we analyzed the percentage of each type of compartment that 

contained one or more RUNX1 ChIP-seq peaks (Figure 5.33).  RUNX1 binding was 

most pronounced at “A to A” stable open compartments, and least enriched in “B to B” 

stable closed compartments.  Interestingly, even though the regions showing “A to B” 

and “B to A“ switching represented only a small percentage of the total (Figure 5.28), 

we observed comparable relative enrichment of RUNX1 binding in the regions with a 

compartment switch (Figure 5.33). 

  Taken together, these results suggest that RUNX1 depletion results in a 

compartment switch of a small subset of genomic regions that is associated with 
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RUNX1-dependent differential gene expression.  Moreover, RUNX1 binding is 

similarly associated with each compartment switch type, and is more enriched at open 

compartments than at closed compartments. 

 

Figure 5.33. Bar chart showing the percentage of stable and altered compartments that are RUNX1 
bound. 
 

5.3.5 RUNX1 is enriched at TAD boundaries 

  Each genomic compartment consists of 100kb to 1Mb scale TADs.  TADs have 

been shown to be largely invariant across tissues, species and in tumorigenesis [73; 74; 

78; 263]. We asked if RUNX1 depletion resulted in any differential TAD formation.  To 

address this, we generated insulation plots for each chromosome and calculated the TAD 

boundaries using the 40kb shNS and shRUNX1 Hi-C datasets (see Methods and [100; 

263]).  The majority (~92%) of the TAD boundaries overlapped when RUNX1 was 

knocked down (Figure 5.34).   
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Figure 5.34. Venn diagram showing that the TAD boundaries are largely similar between shNS and 
shRUNX1 Hi-C datasets. 
 

  In order to determine whether RUNX1 binding was associated with TAD 

borders, we calculated the RUNX1 peak overlap with TAD boundaries.  Thirty percent 

of all RUNX1 bound sites were located on TAD boundaries (Figure 5.35).   

Figure 5.35. Pie chart showing the percentage of RUNX1 localization at TAD boundaries. 
 
 
 When we analyzed the RUNX1 peak density across (+/- 1Mb) the TAD boundaries, 

we observed an enrichment of RUNX1 binding at TAD boundaries, suggesting that 

RUNX1 might function at TAD boundaries (Figure 5.36 and Figure 5.37).   
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Figure 5.36. The frequency plot of RUNX1 ChIP-seq peaks per 25kb for +/-  1Mb of every TAD 
boundary. 
 

 

 

Figure 5.37. An example region on chr10 showing three different TADs, along with their chromatin 
states assessed by H3K27ac and H3K27me3 ENCODE ChIP-seq tracks, shNS TAD borders and RUNX1 
ChIP-seq peak binding at the TAD border regions. 
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 Overlapping the RUNX1 peaks that were located on TAD boundaries with the MCF-

7 ENCODE data revealed clustering of several factors (Figure 5.38).  Interestingly, 

unlike the clustering of all the RUNX1 peaks overlaps (Figure 5.18), RAD21 (cohesin) 

and CTCF were clustered together, overlapping with a subset of RUNX1 peaks (Figure 

5.38).  This suggests a combinatorial role of RUNX1 with other co-regulators previously 

implicated as regulators of genome structure at TAD boundaries. 

Figure 5.38. A subset of RUNX1 peaks overlap with CTCF and cohesin at TAD boundaries.  A 
hierarchically clustered heatmap showing the co-overlap TAD border bound RUNX1 peaks with open 
chromatin regions (FAIRE and DHS) and available ChIP-seq peaks from MCF-7 ENCODE data.  A 
portion of RUNX1 peaks overlap with CTCF and cohesin (black arrow). 
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5.3.6 RUNX1 knockdown results in emergence and disruption of many long-range 

interactions 

     To assess the alterations in long-range chromatin interactions upon RUNX1 

knockdown, we compared the genome-wide interaction differences across all 

chromosomes (see Methods).  Analysis of the interactions that are altered upon RUNX1 

knockdown revealed an extensive network of disruption and emergence of novel 

interactions on each chromosome (Figure 5.39).   
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Figure 5.39. The z-score differences of shRUNX1 / shNS Hi-C matrices for each chromosome at 
1Mb bin size. 
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 For instance, the BMP2 gene, which is important for epithelial cell transformation 

[314], is down-regulated by log2 fold change of -1.55 upon RUNX1 knockdown.  The 

BMP2 gene resides inside a sub-TAD, near a TAD border on chromosome 20 (Figure 

5.40a).  Upon RUNX1 knockdown, we observed extensive long-range chromatin 

interaction alterations within +/- 5Mb of the BMP2 locus (Figure 5.40b).  Visualizing 

the significantly altered interactions revealed interesting changes in the higher-order 

chromatin structure of this locus.  The BMP2 locus is flanked by two RUNX1 bound 

regions, harbors several DNase1 hypersensitive sites, and is flanked by CTCF and 

RAD21 (cohesin) binding (Figure 5.40c).  However, upon RUNX1 knockdown, the 

TAD boundary adjacent to the BMP2 gene region is lost (Figure 5.40c), accompanied by 

a loss of long-range interactions between the two TAD borders flanking the TAD border 

that was lost.  Taken together, these results suggest a prominent role for RUNX1 in 

genome architecture. 
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Figure 5.40. An example of interaction changes upon RUNX1 knockdown. a) Genome wide 
interaction heatmap of the BMP2 gene locus indicated by an arrow. +/- 5Mb on chr20 chr20:4388564-
9118290.  The top and the bottom parts of the heatmap show the interaction frequency of the shRUNX1 
and shNS cells, respectively. b) Heatmap of the same region showing the differential interactions between 
shRUNX1 and shNS.  The red and blue pixels denote interactions that are gained and lost upon RUNX1 
knockdown, respectively.  c) Heatmap showing the significantly altered see Methods. interactions around 
the BMP2 gene locus.  In the lower panel, the UCSC genes, MCF-7 ChIP-seq signal for RUNX1 from this 
study, ChIP-seq for CTCF, RAD21 as well as Dnase1 hypersensitivity from the ENCODE database, and 
the TAD borders for shNS and shRUNX1 cells are shown.  The highlighted region indicates the BMP2 
gene.  The TAD border near the BMP2 gene is lost upon RUNX1 knockdown red arrow, and the 
interactions between the surrounding borders are decreased.    
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5.4 Discussion 

  RUNX1 protein can act as a both tumor suppressor and an oncogene depending 

on the cellular context (reviewed in [315; 316]).  Although much is known about the 

role of RUNX1 in breast tumor prognosis [291; 292], its role in mediating gene 

expression and affecting higher-order genome architecture remains unknown.  Here, we 

probed RUNX1-mediated genome-wide transcriptional and architectural changes in the 

MCF-7 breast cancer cells.  Understanding the molecular consequences of RUNX1 loss 

is important in delineating the cell context-specific roles of RUNX1 in breast cancer.  

   RUNX1 depletion in the MCF-7 cell line resulted in down- and up-regulation of 

many genes, suggesting both an activator and a repressor role for RUNX1.  Associating 

RUNX1 localization with other MCF-7 ENCODE datasets suggested that RUNX1 binds 

to the chromatin with different transcriptional regulators and cofactors, likely as part of 

multiple distinct complexes (Figure 5.17).  Therefore, the dual transcriptional role of 

RUNX1 most likely depends on its interaction partners, which is consistent with prior 

findings that the RUNX1 protein harbors many partner proteins [308].  RUNX1 is 

primarily bound to gene bodies (~70%) and to a lesser extent to intergenic regions 

(Figure 5.13).  This suggests a direct regulation of RUNX1-mediated gene expression 

(Figure 5.16).  RUNX1 depletion resulted in the down-regulation cell surface 

connections and extracellular matrix (Figure 5.6); and up-regulation of several 

chromatin modifying genes related to DNA methylation, nucleosome and centrosome 

assembly (Figure 5.7).  All of these categories are tightly associated with tumorigenesis.  

As a result, it can be hypothesized that RUNX1 loss in different cellular contexts may 



 
 
 
 
 

197 
 

have distinct molecular consequences, therefore distinct phenotypic outcomes.  This can 

partly explain the dichotomous role of RUNX1 in different contexts.  

  From an architectural point of view, Hi-C analysis revealed that the vast majority 

of both the compartments and the TADs are maintained upon RUNX1 depletion (Figure 

5.34).  Even though only a small fraction of the genome displayed an alteration in 

genomic compartments, the changes in gene expression were correlated with the 

compartmental changes for a subset of genes and regions.  This implies a strong 

relationship between genomic compartmentalization and gene expression.  It is still not 

very well understood whether compartment switching affects gene expression or vice 

versa.  There is literature evidence favoring both cases, where the relocation of a gene 

inside the nucleus precedes its transcription [317], or alternatively chromatin 

decondensation (i.e gene positioning) plays a major role in gene expression [221].   

  In the three dimensional genome, TADs are regarded as the functional 

transcriptional units where the genes inside a given TAD are regulated differently 

compared to the genes inside another TAD [75].  Remarkably, we identified an 

enrichment of RUNX1 binding at TAD boundaries (Figure 5.36).  This is consistent 

with the fact that TAD boundaries are also enriched for genes [73].  It has been shown 

that, in flies, combinatorial binding of multiple architectural proteins are associated with 

TAD boundary strength [79].  In vertebrates, the insulators cohesin, condensin, and 

especially CTCF, were shown to be strongly associated with TAD boundaries and 

looping formation [78; 81].  There are ~1400 sequence specific transcription factors in 

the human genome [268].  Therefore, it is possible that, either directly or indirectly, 
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RUNX1 may also contribute to the TAD structure as a genome regulator along with 

these other important insulators.  Finally, RUNX1 loss resulted in the disruption and 

emergence of thousands of individual interactions, demonstrating a structural role for 

RUNX1 in the organization of chromatin structure throughout the genome (Figure 5.39 

and Figure 5.40). 

  Taken together, these results provide insight into how several cellular processes, 

including transcription and genomic organization, are perturbed upon RUNX1 loss.  

Further studies assessing the architectural consequences of RUNX1 loss in different 

tumor subtypes will shed light into the underlying mechanisms of RUNX1 action in 

breast cancer.  
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CHAPTER 6: Outlook and Future Directions 

6.1 Long-range gene regulation and higher-order genome structure 

  The transcriptional programs that establish and maintain specific cell states are 

orchestrated by the binding of regulatory proteins to specific genomic elements [318].  

There are thousands of enhancers within a given cell [312; 319].  The mechanisms of 

how individual enhancers regulate the expression of their target genes in a specific 

manner is not fully understood.  Insulator proteins are known to block enhancer function 

across an insulator element [320].  Apart from regulatory proteins, it is now widely 

accepted that long non-coding RNAs are also a fundamental part of transcriptional 

regulation and genome organization [321; 322].  For instance, the expression of non-

coding RNAs from enhancer regions, known as eRNAs [323], orchestrated with the 

binding of chromatin modifiers and transcription factors (reviewed in [324] ), result in 

the long-range looping interaction with their cognate gene promoter [94].  Several recent 

studies suggest that the transcriptional regulation occurs in the context of three-

dimensional chromatin structures.  Understanding the patterns of mechanisms and 

underlying principles in this molecular “lego” will be a long-lasting vocation for many 

scientists.  It is becoming increasingly evident that studying a physiological process in 

the context of a linear genome is not sufficient to elucidate the full picture of the nuclear 

processes.  Therefore, it becomes vital to understand the higher-order chromatin 

structure during physiological and disease states.  The key question is: What is the 

difference in the genome structure that results in massive changes in cellular physiology, 
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including the morphology and phenotype of the cells, the transcriptional landscape and 

the different characteristics that the cell acquire? 

  In this thesis, I aimed to understand the higher-order structural chromatin 

structure alterations using bone differentiation and breast cancer as model systems 

(Chapters 2 and 3).  Moreover, in the context of breast cancer, I studied the architectural 

role of the ATPase subunit of the SWI/SNF chromatin remodeling complex, BRG1 

(Chapter 4); and a transcription factor, RUNX1 (Chapter 5), both of which have been 

implicated in breast tumorigenesis, and identified previously unknown effects for these 

factors in three-dimensional genome organization. 

6.2 Implications in bone biology and bone metastasis 

  The findings in Chapter 2 provides an important foundation for future studies 

regarding bone-related diseases and cancer metastasis to bone.  Our 3C analysis have 

identified dynamic three-dimensional interactions between the Runx2-P1 and the 

syntenic Supt3h promoters.  I have furthermore presented a mechanistic insight into the 

effect of this looping interaction on Runx2-P1 expression.  These results provide a 

model for many dimensions in higher-order genome structure.  Firstly, from the 

developmental point of view, the Runx2 gene expression stands high in the hierarchy in 

the transcriptional cascade, as Runx2 null embryos are impaired in bone development.  

Our 3C work provides the first framework in which the higher-order genome structure 

affects the gene expression.  The osteogenic progenitor cells appear in fusiform, 

fibroblast cell-like morphology; however upon osteogenic differentiation they start to 

mineralize and their size is significantly reduced, forming the cobblestone-like 
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structures.  It is of great interest to find out what nuclear structural changes accompany 

these dramatic morphological changes.   This study, in the future, can be followed by 

performing more high-throughput chromosome conformation capture approaches (4C, 

5C and Hi-C) to obtain a bigger picture of the nuclear architecture in conjunction with 

transcriptional changes.  To obtain an alternate view of genomic structure during 

osteogenesis, ChIA-PET experiments using an antibody against the RUNX2 protein can 

be performed, thereby providing a RUNX2-centric point of view of the genome at high 

resolution.  The resulting RUNX2-bound interactome dataset can be combined with 

other available ChIP-seq and DNase1 hypersensitivity data [167] to infer the underlying 

mechanisms of bone differentiation-dependent changes in the transcriptional cascade 

and chromatin structure.  These approaches need not only be followed during 

osteoblastogenesis.  Several bone related diseases, such as cleidocranial dysplasia, 

harbor mutations or contain single nucleotide polymorphisms in the Runx2 gene locus.  

Even though certain mutations fall in the exonic regions and cause a change in the 

RUNX2 protein structure leading to perturbed protein functions, many other mutations 

are either in the introns or in other cis-regulatory regions of the Runx2 gene.  By 

performing 3C-based approaches in patient cells and utilizing the current findings in this 

thesis as a reference point may help us decipher the underlying causative effects of these 

mutations on the disease prognosis.  With the emerging more precise CRISPR-Cas9 

genome editing techniques [325; 326], there is a therapeutic potential in correcting the 

the malfunctioning genomic regions of the Runx2 locus. 
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  These possible approaches outlined are not only deemed for the contexts of 

differentiation and disease.  RUNX2 is significantly implicated in several types of 

cancer, and especially cancer metastasis to bone.  A part of my study in Chapter 2,  I 

probed the long-range interactions of Runx2-P1 in silico in various cancer cell lines. 

Further experiments comparing the interactions between non-metastatic cancer cells and 

cells metastasizing to the bone, where Runx2 is frequently over-expressed, may yield 

prognostic biomarkers in the future.   

  From an evolutionary point of view, the Runx2 gene locus is an interesting locus, 

where the spatial distance between Runx2-P1, Runx2-P2 and Supt3h promoters are 

conserved from sponges to humans.  In this study we show that, at least in mice and 

humans, there is a steady state detectable interaction frequency between the Runx2-P1 

and Supt3h promoters.  It is very possible that this spatial proximity appeared early in 

the evolutionary tree, which can be followed up by performing 3C between these two 

regions in a myriad of species not limited to model organisms.  This finding also hints at  

the higher-order structural relationships between the homologous genomic regions in 

different species.  It is known that the TAD structures are conserved in homologous 

regions in different species [78].  Therefore, the outstanding question is: can we say 

whether the local looping interactions at tightly linked loci stable across evolution?  A 

supporting evidence comes from a recent study applying the 4C technique in flies and 

humans showing that the enhancer-promoter looping interactions are more dynamic and 

cell-type specific in developmentally regulated genes (example: the β-globin gene), but 

more stable in housekeeping gene loci [327]. 
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6.3 Implications in breast cancer 

   Cancer is pathologically charaterized by iregularly shaped nuclei, and the 

pattern of the heterochromatin / euchromatin distribution inside the nucleus is perturbed.  

Understanding the molecular alterations in the cancer nucleus has been and still is a 

long-standing challenge involving scientists from several fields of biology and medicine.    

There are numerous studies charting the mutational, transcriptional and epigenomic 

landscape between the normal and cancer cells.  Emerging trends and patterns of 

regulations from these studies result in many thereupeutic agents to increase the 

prognosis of the disease.  For instance, histone demethylase or bromo-domain inhibitors 

have been successfully used to treat a subset of cancer patients [328; 329].  Thus, a 

deeper understanding of the cancer-specific alterations in the nucleus is of great 

importance in developing new treatments. 

  In Chapter 3 of this thesis, I present for the first time in the literature, a genome-

wide molecular view of differential genomic-organization between normal and cancer 

cells.  We observed extensive differential interactions in small chromsomes, and at 

telomeres between normal and breast cancer cells.  These changes were accompanied by 

the transcriptional differences, thereby providing a nice evidence of the connection 

between gene expression and nuclear architecture.  Even though this study involves two 

cell lines commonly used to study the progression of breast cancer, further experiments 

inlcuding more cell lines with diverse hormonal backgrounds (ER, PR and HER 

markers) will yield insight into biology of breast cancer modesl.  The Hi-C technique 

allows us to obtain interaction data from as low as ~5 million cells, in which the 
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resulting data will have enough resolution to obtain infromation about the chromosomal 

interactions and the genomic compartments.  Therefore, further extending these findings 

with primary tumors, and their matched controls will no doubt shed light on the common 

architectural abnormalities in breast cancer.  Another finding in Chapter 3 is the 

differential telomeric interactions between  normal and cancer cells.  Telomere biology 

is a growing field with severe implications in cellular transformation, and have been 

frequenctly implicated in cancer.  In this thesis, alterations in telomeric interactions 

provide a fundemental resource for future studies on a number of aspects, including 

telomere length and prognosis, the effect of telomere length in telomere clustering, and 

different telomere maintenance mechanisms including the alternative lengthening of 

telomere (ALT) mechanism.   

  More importantly, the Hi-C datasets provided in Chapter 3 can be utilized in a 

myriad of ways.  First, one can integrate SNP and copy number variation analysis of 

these cells and examine whether higher-order structure is associated with common or 

unique genomic signatures.  Furthermore, the MCF-7 breast cancer cell is part of the 

ENCODE consortium, and there are many different types of genome-wide epigenomic 

marks readily available in these cells.  Further meta-analysis of the epigenomic 

signatures integrated with the expression and chromatin interaction datasets would 

provide mechanistic perspective about how the binding of different factors, the presence 

of different histone modifications and the chromatin accesibility is affected by or affect 

higher-order chromatin structure.   
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  In Chapter 5, we characterize the consequences of RUNX1 perturbation in breast 

cancer cells.  The RUNX1 transcription factor is most studied in the context of 

leukemia.  However, RUNX1 is also a significant contributor to breast cancer and the 

molecular effects of its perturbation is not well-understood.  Here, I presented RUNX1-

dependent transcriptional and structural changes, and how these changes associated with 

RUNX1 binding in breast cancer cells.  Even though there are some studies which 

demonstrate the effects of RUNX1 in the tissue or the organismal level in the context of 

breast cancer, this study stands out as one of the first molecular characterization of 

RUNX1 deficiency in breast cancer.  Future studies dissecting the causative effects of 

ectopic RUNX1 binding, or disruption of RUNX1 binding at target loci, especially in 

relationship with its co-regulatory interaction partners, will help us understand the exact 

roles of RUNX1.  For instance, performing a mass spectrometry analysis of RUNX1, 

followed by ChIP-seq analysis of the RUNX1-interacting partners that bind to DNA 

would yield significant views in transcriptional regulation and chromatin structure that is 

RUNX1 dependent.  Finally, by combining the Hi-C data from the MCF-7 cells in 

Chapter 3 and Chapter 5, one can achieve a very high resolution (<20kb) interaction 

map of the MCF-7 cells.  A similar approach has been used previously by combining the 

Hi-C data from TNFalpha treated and control fibroblast cells [170].  The same approach 

for achieving high resolution Hi-C data can also be followed for BRG1 and MCF-10A 

cells.   As a result, the findings in this thesis open up new avenues for many different 

types of basic and therapeutic research projects.  
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6.4 Implications in the biology of TAD structures 

  One of the main results in Chapters 3, 4 and 5 of this thesis is that the TAD 

boundaries are largely invariant between normal epithelial and breast cancer cells 

following BRG1 and RUNX1 depletion, respectively.  These results are consistent with 

earlier reports that the TAD boundaries are largely invariant across species, 

physiological cues, tumorigenesis, and factor depletion including histone H1 [73; 76; 77; 

98; 263; 330]. Even though the genes inside a single TAD are co-regulated, the 

formation and disappearance of TAD boundaries is not necessarily correlated with gene 

expression [73; 74; 98; 263].  A recent study in fly cells in which the global gene 

expression has been shut off by heat shock demonstrates that the localization of the 

TAD boundaries is not altered; rather the strength of the boundaries is decreased, 

allowing more inter-TAD interactions [80]. It has been suggested that the TADs are the 

principle units of DNA replication [72].  The biology of TAD structures is still not very 

much understood.  In flies, it was shown that the localization of architectural binding 

proteins at TAD boundaries affected the strength of a TAD boundary, as demonstrated 

by the presence of increased number of architectural binding proteins at stronger TAD 

boundaries [79; 267].  The definition of a TAD boundary is a stretch of a genomic 

region, ranging from a few to tens of kilobases, rather than a localized spot.  Thus, it is 

still unclear what underlying characteristics establish a TAD boundary.  It is known that 

the presence of genes, active histone marks, and certain transcription factors are 

enriched across the TAD boundaries.  Is the enrichment of these characteristics at 

localized regions sufficient enough to generate a TAD boundary?  If one used the 
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CRISPR/Cas9 technique to cut a defined TAD boundary and paste it into a non-

boundary region, would it create a new TAD boundary?  How would the expression of 

the genes proximal to the new TAD boundary be affected?  What is the localization (i.e 

radial positioning) of the TAD boundaries in the nucleus?  Is the separation of two 

neighboring TADs a result of an active biological consequence of protein (and lncRNA) 

binding at/near gene bodies, or a passive biophysical separation of different genomic 

regions, similar to the notion of nuclear bodies?  These are all outstanding questions 

regarding TAD boundaries and their biological roles as they are conserved in evolution, 

evidenced by the presence of TADs, chromatin interaction domains (CIDs) and gene 

crumples in worm, bacteria and yeast, respectively [171; 213; 331].  

  A growing evidence of TAD boundary formation comes from the meta-analysis 

of CTCF bound sites in the genome.  It was shown by multiple groups that the 

convergent binding of CTCF is very strongly associated with TAD boundaries [81; 217; 

332; 333]. In this thesis, I showed that RUNX1 and BRG1 are enriched at TAD 

boundaries.  Following the depletion of BRG1, a reduction in TAD boundary strength 

was observed (Chapter 4).  Given complexity of the protein repertoire of the nucleus at 

any given time,  and given the regulatory mechanisms of many proteins at the post-

translational level, the complex architectural regulation at TAD boundaries likely 

involves binding of several proteins.  This can be achieved dependent or independent of 

the recruitment of CTCF to TAD boundaries by co-regulatory proteins.  The multiplicity 

and the redundancy in transcription factor binding especially at TAD boundaries may 

explain why the localization of TADs are not that easy to disrupt.  
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  Rao et al. suggests an alternative view of TADs, claiming that each individual 

TAD is a single chromatin looping event and the intervening enriched interactions inside 

a TAD appear as a consequence of closer proximity resulting from the looping of the 

two elements located at the boundaries.  They also suggest that instead of millions, there 

are only ~10,000 interaction events in the human genome [217].  An appropriate 

analogy would be to fold the ends of a piece of paper, where the ends represent the TAD 

boundaries, and as a result all the mid-sections of the piece of paper are now in 

proximity in 3D space.  This phenomenon is evidenced by the fact that in certain TADs, 

there is a significantly elevated single interaction event between the boundaries of the 

TAD, and the rest of the interactions inside the same TAD are seen as an averaged 

interaction pattern, rather than sharp, discrete spots [217].  Even though this hypothesis 

may be true for a subset of TADs, there are several TADs without such a prominent 

discrete boundary-to-boundary interactions [217; 263].  Therefore, the proposed 

hypothesis does not necessarily explain the second type of TAD structures.  It may be 

that the genome contain two different types of TAD structures.  It was recently predicted 

by computational modeling that the chromatin acquires diverse fluctuating 

configurations inside a TAD rather than displaying stable structures [334].  A more 

recent study investigated the higher-order interactions that the TADs make with each 

other, and identified hierarchical structures with domains-within-domains which they 

termed “meta-TADs” [335]. The meta-TADs are stable during differentiation and are 

correlated with epigenetic signatures and gene expression, and the tight packaging of the 

genome without losing contact-specificity [335].  With all these important findings at 
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hand, it is still under discussion whether it is the dynamic interactions inside a TAD that 

form the topologically associating domains, or is it the molecular and physical barriers 

at the TAD boundaries that form them [82].  I propose a possible alternative view for 

TADs, that each TAD, in conjunction with the interactions the TAD makes with other 

TADs (meta-TADs), may represent different nuclear bodies in the nucleus.  A testable 

hypothesis is provided by two recent studies where the authors determine the viscosity 

(or phasing) of the nuclear body emanating from the introduction of an RNA-protein 

complex [336; 337].  Therefore, it could be possible that each TAD, and its interacting 

TAD partners, may constitute a separate nuclear body in the nucleus.  This hypothesis 

would be consistent with the correlated expression of genes inside a TAD (and other 

TADs), and the notion of transcription factories [338], splicing sites [339], and many 

other nuclear bodies such as the RUNX2 nuclear bodies, or any protein that has a 

“puncta” pattern of immunoflourescence staining.  The findings in this thesis add 

significant insights into the missing TAD puzzle, by providing evidence that chromatin 

modifiers other than well-studied insulators can also in fact affect TAD boundaries.  

This important finding opens up new exploratory avenues for other factors that 

potentially affect TAD boundaries.   
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APPENDIX 

1. Table of 3C primers in Chapter 2. 
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