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ABSTRACT 

 

Nervous system function is closely tied to its structure, which ensures 

proper connectivity and neural activity. Neuronal architecture is assembled by a 

series of morphogenetic events, including the coordinated migrations of neurons 

and axons during development. Subsequently, the neuronal architecture 

established earlier must persist in the face of further growth, maturation of the 

nervous system, and the mechanical stress of body movements. In this work, we 

have shed light on the molecular mechanisms governing both the initial assembly 

of the nervous system and the long-term maintenance of neural circuits. In 

particular, we identified heparan sulfate proteoglycans (HSPGs) as regulators of 

neuronal migrations. Our discovery and analysis of viable mutations in the two 

subunits of the heparan sulfate co-polymerase reveals the importance of the 

coordinated and dynamic action of HSPGs in neuronal and axon guidance during 

development. Furthermore, we uncovered that the HSPG LON-2/glypican 

functions as a modulator of UNC-6/netrin signaling through interactions with the 

UNC-40/DCC receptor. During larval and adult life, molecules such as the protein 

SAX-7, homologous to mammalian L1CAM, function to protect the integrity of 

nervous system architecture. Indeed, loss of sax-7 leads to progressive 

disorganization of neuronal architecture. Through a forward genetic screen, we 

identified LON-1 as a novel maintenance molecule that functions post-

embryonically with SAX-7 to maintain the architecture of the nervous system. 

Together, our work highlights the importance of extracellular interactions to 
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modulate signaling events during the initial development of the nervous system, 

and to subsequently maintain neuronal architecture for the long-term.   
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Nervous system development  

Proper function of the nervous system is essential for life and dependent upon 

the execution of a series of exquisitely regulated spatial and temporal events that 

take place during embryonic and post-natal development. How such a complex 

system is generated has continued to be an intensively researched subject within 

the field of neurobiology. While our knowledge surrounding the stages of nervous 

system development and their corresponding molecular programs has greatly 

expanded, many basic biological questions remain to be answered concerning 

the formation of a functional nervous system.  

 

Embryonic vertebrate nervous system development begins when the ectoderm is 

molecularly induced to give rise, in part, to neural tissue which goes on to 

become neurons or glial cells of the central and peripheral nervous system. 

Following this induction of neural tissue, patterning sets up the regional 

differences along the axes of the nervous system, and immature neurons migrate 

to their final positions, becoming fully differentiated neurons. Growth cones 

extend from neurons to guide axons across long distances to reach and 

innervate their targets to assemble neural circuits within the brain and the 

peripheral nervous system. Within neural circuits, neurons communicate with 

neurons and other cells through synaptic connections via dendrites and axons, 

which function to receive and transmit information, respectively. In addition to the 
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proliferations of neurons and glia during nervous system development, cell death 

and the elimination of synapses also occur.  

 

Axon guidance  

How particular growth cones can precisely and efficiently guide axons though a 

complex molecular environment, dynamically responding to specific cues while 

ignoring others, remains to be fully determined. Axons are often guided over long 

distances to reach their final target. During this process, neurons extend an actin-

rich growth cone at the tip of their developing axon which integrates and 

responds to the molecular environment to precisely guide the axon to its 

appropriate target. Insight into this process first came from the observations of 

Ramón y Cajal, who described the existence of a growth cone as a “terminal 

lump, that we will call a growth cone, [that] sometimes displays fine short, spiny 

and divergent expansions” (Ramón y Cajal 1890a, Ramón y Cajal 1890b). He 

was the first to point out the precision with which growth cones guide axons to 

their targets, and proposed his “neurotropic hypothesis” that attractive chemical 

cues direct the guidance of neuronal processes (Ramón y Cajal 1892). Despite 

making these observations more than a century ago, they remarkably remain 

generally true today.  

 

Axons are guided to their targets by short- and long-range attractants and 

repellents, as well as by contact-mediated attraction and repulsion (Tessier-
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Lavigne & Goodman 1996). Attractants and repellents are sensed through 

receptors expressed on the growth cone at the tip of the growing axon, which 

upon transduction of these cues, responds with cytoskeletal rearrangements to 

affect axon guidance (reviewed by (O'Donnell et al 2009)). Research dedicated 

to the identification of the molecular cues that impact axon guidance identified 

four major classes of axon guidance molecules: netrins, semaphorins, ephrins, 

and slits (Chan et al 1996, Flanagan & Vanderhaeghen 1998, Ishii et al 1992, 

Kidd et al 1999, Kidd et al 1998a, Kolodkin et al 1993, Kolodkin et al 1992, 

Kolodkin & Tessier-Lavigne 2011, Seeger et al 1993). In addition to these 

molecules, morphogens, cell adhesion molecules, extracellular matrix molecules, 

and growth factors also play important roles in axon guidance events (Kolodkin & 

Tessier-Lavigne 2011, Raper & Mason 2010, Tessier-Lavigne & Goodman 

1996). The work in this thesis on guidance investigates UNC-6/netrin and SLT-

1/Slit-mediated guidance events and therefore these pathways will be described 

in more detail.   

 

A screen for Drosophila mutants with CNS axon guidance defects led to the 

identification of the Slit signaling pathway through the isolation of mutants for the 

Slit receptor Robo (Seeger et al 1993). robo mutants isolated from the screen 

exhibited an increase in midline axon crossing events, due to its normal role in 

the repulsion of axons away from the midline (Seeger et al 1993). While Robo 

functions in the subset of axons that are not meant to cross the midline, Robo 
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also functions in axons that do cross the midline to ensure they only cross the 

midline once (Kidd et al 1998a).  Following the identification of the Robo receptor 

as an immunoglobulin superfamily protein (Kidd et al 1998b), its secreted ligand 

Slit was also identified in Drosophila (Kidd et al 1999). Robo and Slit signaling 

pathway molecules were found to be highly conserved in C. elegans (Hao et al 

2001, Zallen et al 1998) and in mammals (Brose et al 1999, Kidd et al 1998a, Li 

et al 1999) where they also function in repulsive midline axon guidance.   

 

UNC-6/netrin was first molecularly cloned in C. elegans (Ishii et al 1992) after 

unc-6 mutants were initially identified by their uncoordinated locomotion in a 

screen (Brenner 1974) and found to exhibit defects in circumferential and 

sensory axon guidance (Hedgecock et al 1990, Hedgecock et al 1985). UNC-

6/netrin is a secreted laminin-like molecule and can function as either an 

attractive or a repulsive cue, depending on the receptors expressed in the 

developing growth cone (Chan et al 1996, Ishii et al 1992, Leung-Hagesteijn et al 

1992). UNC-6/netrin signaling through the UNC-40/DCC receptor mediates 

attractive guidance towards netrin at the ventral midline, whereas UNC-6/netrin 

signaling through either the UNC-5/UNC5 receptor alone or the UNC-5/UNC5 

and UNC-40/DCC receptors together mediates repulsive guidance away from 

netrin at the ventral midline (Chan et al 1996, Hedgecock et al 1990, Leung-

Hagesteijn et al 1992). Both the UNC-5/UNC5 and UNC-40/DCC receptors are 

members of the immunoglobulin superfamily (Chan et al 1996, Leung-Hagesteijn 
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et al 1992) and these UNC-6/netrin pathway molecules were found to be highly 

conserved in flies and mammals where they also function to mediate attractive 

and repulsive guidance (Harris et al 1996, Hong et al 1999, Keino-Masu et al 

1996, Keleman & Dickson 2001, Kennedy et al 1994, Kolodziej et al 1996, 

Leonardo et al 1997, Mitchell et al 1996, Serafini et al 1994). 

 

Our understanding of axon guidance has been emerging over the past century in 

a step-wise fashion. After the initial hypothesis that axons were guided to their 

targets though chemical cues, this was shown to be true with in vitro studies 

where axons would turn towards or away from tissues expressing unidentified 

attractants or repellents, respectively. Genetic studies in model organisms have 

molecularly identified a number of guidance cues, receptors, and downstream 

effectors (Tessier-Lavigne & Goodman 1996). This brings us to a point where 

another layer of understanding is required to fully grasp how growth cones 

precisely and efficiently guide axons to their targets. Tackling the mechanisms 

that modulate the ligands and receptors of axon guidance pathways will likely 

provide the most insight into how a specific pathway is extracellularly regulated to 

guide axons, as cytoskeletal rearrangements downstream of multiple axon 

guidance pathways have been shown to converge onto the same molecules to 

alter growth cone mobility. For instance, both the UNC-6/netrin and SLT-1/slit 

signaling pathways have been shown to mediate cytoskeletal rearrangements 

through MIG-10/lamellipodin, CED-10/rac1, UNC-34/enabled, and UNC-
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115/abLIM to guide the axon of the AVM neuron ventrally in C. elegans (Chang 

et al 2006, Gitai et al 2003, Quinn et al 2006, Quinn et al 2008, Yu et al 2002). 

Therefore, mechanisms that impart specificity onto the UNC-6/netrin and SLT-

1/slit signaling pathways are likely to do so upstream of cytoskeletal 

rearrangements, either though regulation of the ligands, receptors, or both.    

 

C. elegans as a model to study nervous system development 

During C. elegans nervous system development 222 neurons are born 

embryonically, and 80 are born post-embryonically during the first and second 

larval stages in hermaphrodites (Sulston & Horvitz 1977, Sulston et al 1983, 

White et al 1986). These 302 neurons fall into 118 classes and form roughly 

7000 synaptic connections (White et al 1986). Although most neurons are born 

close to their final positions, a handful of neurons in C. elegans undergo long-

range migrations after their birth, including the CAN, HSN, and ALM neurons 

(Hedgecock et al 1987, Sulston et al 1983). Embryogenesis comprises the 

majority of neurodevelopmental events, including the guidance of axons into the 

nerve ring as well as the two largest nerve cords, the ventral and dorsal nerve 

cords, in addition to the assembly of neurons into multiple distinct ganglia in the 

head and tail. 

 

The nematode C. elegans has proven to be an invaluable model organism with 

which to study the mechanisms of axon guidance during nervous system 
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development. Studies using the worm have pioneered our knowledge of the 

molecular pathways that guide axons. For example, the first chemotropic axon 

guidance molecule, UNC-6/netrin, was molecularly identified using C. elegans 

(Ishii et al 1992), prior to its identification in vertebrates (Serafini et al 1994). In 

addition, molecules identified in C. elegans have a high level of conservation to 

flies, mice, and humans. Therefore, mechanisms of axon guidance that we 

uncover using C. elegans are likely to be conserved as well.  

 

There are many reasons why C. elegans is an ideal model organism for the study 

of nervous system development. C. elegans is an extremely genetically tractable 

model organism allowing for the fast identification of molecules important for 

nervous system development. For example, forward genetic screens can be 

carried out rapidly and whole-genome sequencing can be used to quickly identify 

causal genetic mutations (Doitsidou et al 2010, Minevich et al 2012, Zuryn et al 

2010). Transgenic animals can quickly and easily be generated by microinjection 

(Mello & Fire 1995), which has a variety of experimental applications. One 

application is CRISPR, a new genome-editing technique (Jinek et al 2012) which 

functions efficiently in many organisms including C. elegans (Friedland et al 

2013), and can be used to manipulate the genome, for example to engineer a 

mutation into the genome or to tag a gene of interest. Worms are easy to 

maintain and have a short life cycle, which means that experimental 

manipulations can be assessed quickly and repeated with large sample sizes in a 
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short time span. Specifically in regards to analysis of neurodevelopmental 

phenotypes for mutants of essential genes, RNAi knockdown by feeding can be 

performed specifically in subsets of neurons to circumvent lethality (Firnhaber & 

Hammarlund 2013).    

 

Painstakingly detailed reconstructions have provided an abundance of 

information concerning developmental processes in C. elegans. The complete 

cell lineage has been reconstructed from electron micrographs (Kimble & Hirsh 

1979, Sulston & Horvitz 1977, Sulston et al 1983) and appears to be largely 

invariant between animals. C. elegans is especially suited for 

neurodevelopmental studies, as its simple nervous system consists of just 302 

neurons in the hermaphrodite, and it is the only model organism for which we 

have a complete neural wiring diagram detailing all of the connections of the 

nervous system (White et al 1986). Adult human brains are estimated to contain 

roughly 86 billion neuronal cells and 84 billion non-neuronal cells (Azevedo et al 

2009), which creates a major obstacle in the study of reproducible cell and axon 

guidance events. Fortunately in C. elegans, cell and axon guidance can be easily 

studied at a single-cell resolution in intact, living animals on account of their 

transparent bodies and the ease of labeling their cells with fluorescent markers. 

This coupled with the knowledge of when every neuron is born, its final position, 

and its synaptic partners (Sulston et al 1983, White et al 1986) makes studies 

concerning cell and axon migrations particularly powerful in C. elegans.  
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Postnatal challenges to the nervous system 

Assembling a functional nervous system is not an easy task. It requires a 

complex molecular interplay of spatially and temporally regulated factors sensed 

and integrated by developing cells to ensure proper assembly of critical 

connections. After the completion of these early neurodevelopmental events, the 

challenge of maintaining the structural and functional integrity of the nervous 

system begins. These initially established structures and features of the nervous 

system are not static, and instead undergo dynamic alterations even through 

adulthood. In the face of these changes, the embryonically established 

neuroanatomical structures must persist to maintain the integrity of the nervous 

system (Benard & Hobert 2009).    

 

Postnatal growth, addition and elimination of neurons, glia, and synapses, 

myelination, and movement are examples of the challenges the prenatally 

established neuroanatomical structures face postnatally and through adulthood 

(Benard & Hobert 2009). Growth is not limited to an increase in height and body 

weight, but also a postnatal increase in the weight of the brain, roughly four-fold 

in the first several years after birth (Dekaban 1978, Dobbing & Sands 1973) 

which includes a 100% increase in volume in the first year alone (Knickmeyer et 

al 2008). Brain weight continues to increase roughly until the age of 19, and then 

begins to decline between the ages of 45 and 50, reaching its lowest around the 

age of 86 (Dekaban 1978). These changes in overall weight and volume likely 
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reflect the combined effect of a number of maturation events that occur in the 

brain during childhood, adolescence, and adulthood. For instance, myelination of 

axons is highly active during the first several years of life, and continues well into 

adulthood (Benes et al 1994, Holland et al 1986, Yakovlev & Lecours 1967), and 

this accounts for an overall increase in white matter through the age of 20 (Giedd 

et al 1999).      

 

In addition to growth, the nervous system must also accommodate the 

proliferation and elimination of cells. Even in adulthood a small fraction of new 

neurons are born and migrate to specific regions of the human brain, namely the 

hippocampus (Eriksson et al 1998) and the olfactory bulb (Curtis et al 2007). In 

rodents these adult-born neurons become functionally integrated within existing 

circuits (Carleton et al 2003, van Praag et al 2002). Therefore these adult-born 

neurons create a challenge not only for the new neurons which must integrate 

into pre-existing circuits, but also for the neuronal structures that must 

accommodate the integration of new cells and processes.  Programmed cell 

death occurs not only prenatally, but postnatally and into adulthood as well, 

eliminating glial cells and a small fraction of neurons (Buss et al 2006), therefore 

leaving the remaining cells with the task of adapting to the loss.  

 

Density of synapses increases postnatally, to ultimately decline to reach the level 

observed in adulthood (reviewed in (Stiles & Jernigan 2010)), and overall 
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changes in synaptic density are a reflection of changes in timing of synaptic 

proliferation and elimination observed in different brain regions (reviewed in 

(Toga et al 2006)). For example, in the auditory cortex the maximum synaptic 

density is achieved by three months, and synaptic elimination continues until age 

12 (Huttenlocher & Dabholkar 1997). Conversely, in the prefrontal cortex the 

highest density of synapses is observed at 15 months with elimination continuing 

into adolescence (Huttenlocher & Dabholkar 1997). Moreover, in the visual 

cortex maximum synaptic density is achieved by eight months and synaptic 

elimination occurs through the age of three (Huttenlocher et al 1982). Nervous 

systems must remain flexible in order to adapt to these changes, while 

simultaneously maintaining the stability necessary to preserve the integrity of 

preexisting structures and circuits essential for function. 

  

Another challenge that the nervous system encounters on a daily basis is the 

mechanical stress of movement, especially on the peripheral nervous system 

(Benard & Hobert 2009). Physical stress theory proposes that physical stress 

leads to adaptive responses in tissues, including the nervous system (Mueller & 

Maluf 2002). Nerves experience mechanical stresses from normal conditions of 

posture and movement, and respond adaptively through elongation and 

displacement (reviewed in (Topp & Boyd 2006)). In extreme cases outside of 

normal daily movements, traumatic physical stress, especially to the central 

nervous system, cannot be tolerated. For example, repetitive concussive head 
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injuries in athletes and combat soldiers leads to neurodegeneration, indicating 

that the trauma resulting from the mechanical impact to the nervous system 

cannot be rectified over the long term (McKee et al 2009). Expanding our 

understanding of the basic mechanisms that function to maintain the integrity of 

the nervous system in the face of mechanical stress may provide insight into both 

the impacts of mechanical stress on normal physiological conditions as well as in 

the face of traumatic injury.  

  

C. elegans as a model to study long-term maintenance of nervous system 

architecture   

In order to understand the basic mechanisms of how the integrity of the nervous 

system is maintained over time in the face of these challenges, we have turned 

to the model organism C. elegans. C. elegans also encounters many of the same 

challenges as mammalian nervous systems in the long-term preservation of 

nervous system integrity. For example, C. elegans also undergoes post-

embryonic addition of new neurons. At hatch, C. elegans has 222 neurons, and 

80 additional neurons are added postembryonically (Sulston & Horvitz 1977, 

Sulston et al 1983) and therefore are faced with the challenge of integrating 

within existing circuits. Additionally, worms also undergo a great deal of growth 

between hatch and adulthood that amounts to an approximately six-fold increase 

in length and 100-fold increase in volume (Benard & Hobert 2009, Knight et al 

2002). Furthermore, the sinusoidal body waves of locomotion as well as 
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pharyngeal pumping are likely to exert mechanical stress on nervous system 

structures (Benard & Hobert 2009). Indeed, molecules have been identified that 

function to counteract the mechanical stress of locomotion and protect the 

architecture of the nervous system (Benard et al 2009, Benard et al 2006, 

Pocock et al 2008, Sasakura et al 2005).  

 

C. elegans is an unparalleled model with which to ask how the structural and 

functional integrity of the nervous system is preserved in the face of maturational 

changes and physical stress. With the tools and information currently available, it 

would be highly challenging to address these questions in any other model. C. 

elegans has a simple nervous system which in the hermaphrodite consists of just 

302 neurons. The entire neural wiring diagram has been solved for C. elegans 

and its neuroanatomy is largely invariable between animals (White et al 1986). It 

is the only model organism for which a complete neural wiring diagram exists. 

This allows for the observation of changes across genotypes and ages in 

positioning, organization, fasciculation, or other aspects of neuroanatomy that 

would generally be consistent among individual animals. In addition, this means 

that we have the information needed to know where specific neuronal cell bodies 

and axons are meant to be initially, and so we can compare this to their 

positioning in later stages in different genotypic backgrounds. This level of 

information is not available for any other model system.  
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C. elegans becomes a reproductively mature adult within three days and its 

mean life span is roughly three weeks. This short life cycle allows for the rapid 

study of post-embryonic and adult phenotypes, making C. elegans an ideal 

model for the study of changes to the nervous system over time. In addition, 

knockdown of gene function by RNAi can be started at any life stage, therefore 

allowing for the investigation of genes with post-embryonic functions while 

circumventing any developmental roles.  

 

Perhaps the most compelling rationale for the use of C. elegans for studies on 

the long-term maintenance of nervous system architecture is that molecules with 

dedicated functions in the post-embryonic maintenance of nervous system 

architecture have been identified using C. elegans (Aurelio et al 2002, Barsi-

Rhyne et al 2013, Benard et al 2009, Benard et al 2006, Bülow et al 2004, 

Cherra & Jin 2016, Johnson & Kramer 2012, Pocock et al 2008, Sasakura et al 

2005, Shao et al 2013, Wang et al 2005, Woo et al 2008, Zallen et al 1999). One 

of the molecules critical for the long-term maintenance of neural architecture in 

C. elegans is SAX-7/L1CAM, which is homologous to vertebrate L1 cell adhesion 

molecule family members (Chen et al 2001, Pocock et al 2008, Sasakura et al 

2005, Wang et al 2005). Roles for L1 family members in the postnatal nervous 

system have been shown through conditional ablation studies (Amor et al 2014, 

Kolata et al 2008, Kriebel et al 2011, Law et al 2003, Zonta et al 2011). In 

addition, rodent models lacking L1 family members exhibit an altered distribution 
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of neurons (Demyanenko et al 2004, Demyanenko et al 2001), though whether 

these defects are developmental or a result of a failure to maintain neuronal 

positioning remains to be determined.  

 

Despite the identification of molecules that function to maintain the architecture of 

the nervous system, our mechanistic understanding of how these molecules 

carry out these functions remains limited. It is clear that mechanisms exist to 

preserve the long-term integrity of the nervous system in the face of challenges, 

and that C. elegans is an ideal model for this type of investigation. Research 

dedicated to understanding the mechanisms by which these molecules function 

will provide important insight into how the nervous system adopts the flexibility 

needed to accommodate to important maturational changes and physical 

stresses, while providing stability to early-developed structures integral to the 

structure and function of the nervous system. 
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ABSTRACT 

The regulation of cell migrations is essential to animal development and 

physiology. Heparan sulphate proteoglycans (HSPGs) shape interactions 

between morphogens and guidance cues with their respective receptors to elicit 

appropriate cellular responses. Dysfunction of HSPG synthesis results in 

pleiotropic consequences, including tumorous growth. Human mutations in the 

genes EXT1 and EXT2 that encode the two subunits of the heparan sulphate 

(HS) copolymerase result in osteosarcomas called multiple exostoses. Analysis 

of mutations in the Drosophila HS copolymerase of the tout-velu family has 

uncovered key roles of HSPGs during morphogenesis. The use of the powerful 

C. elegans model for understanding HSPGs functions has been precluded, 

however, by the unavailability of viable mutations in the HS copolymerase genes. 

Here, we report our identification and analysis of viable mutations in the genes 

rib-1 and rib-2, which encode the HS copolymerase. We show that these 

hypomorphic mutations of rib-1 and rib-2 severely reduce the levels of HS 

synthesis and lead to dramatic morphogenetic defects and abnormal cell and 

axonal migrations during the development of the nematode. We analyze the 

expression pattern of the HS copolymerase and find that it is very dynamic during 

embryonic and larval morphogenesis, while also being sustained in distinct 

tissues throughout life, consistent with both developmental and post-

developmental roles for HSPGs. We analyze neuronal migrations and find that 

multiple HSPGs synthesized in the migrating neuron and neighboring cells 
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together contribute to regulate their guidance. Our findings establish a model to 

dissect the diverse and specific functions of HSPGs in C. elegans and uncover 

general principles of their roles in development and tissue homeostasis. 

 

INTRODUCTION  

Cell migrations are a key feature of animal development and physiology. The 

orientation of migrating cells relies on molecular cues present in their 

extracellular environment to reach their targets. Many guidance factors and 

morphogens are regulated by heparan sulfate proteoglycans (HSPGs), which are 

cell-surface or extracellular proteins characterized by the attachment of heparan 

sulfate (HS) chains to their extracellular domain (Bernfield et al 1999). HSPGs 

interact with molecules at the cell surface and in the extracellular matrix via both 

their HS chains and core proteins, and are part of multiple signaling pathways, 

including of guidance cues (Slit, netrin) and morphogens (Hedgehog, FGF, Sonic 

Hedgehog, Wnts, and BMPs) (Bernfield et al 1999, Bishop et al 2007, Bülow & 

Hobert 2006). HSPGs function as co-factors, for instance to regulate the gradient 

formation of morphogens and to modulate the interactions between extracellular 

ligands and their receptors, playing crucial roles in morphogenesis, nervous 

system development, and physiology (Bülow & Hobert 2006, Lin 2004).  

 

The HS chains of HSPGs are linear glycosaminoglycan polysaccharides 

composed of alternating repeats of D-glucuronic acid (GlcA) and N-
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acetylglucosamine (GlcNAc) (reviewed in (Esko & Selleck 2002)). HS chain 

synthesis in the Golgi apparatus is initiated by the addition of a tetrasaccharide 

linker on specific Serine residues on the core protein. HS chains are then 

elongated by the HS copolymerase, which is a heterodimer composed of two 

glycosyltransferases of the EXT family. HS chains are subsequently chemically 

modified (e.g. by epimerases and sulfotransferases). Dysfunction of the 

biosynthesis of HS chains results in pleiotropic consequences across metazoans, 

including developmental defects and tumor growth. In humans, mutations in the 

genes EXT1 and EXT2, which encode the two subunits of the HS copolymerase, 

result in osteosarcomas called multiple exostoses (Cook et al 1993, Francannet 

et al 2001, Le Merrer et al 1994, Wu et al 1994, Wuyts & Van Hul 2000). In 

Drosophila, mutations in the HS copolymerase genes tout-velu, brother of tout-

velu and sister of tout-velu lead to striking defects, including the loss of segment 

polarity and disruption of Hh diffusion (Bellaiche et al 1998, Han et al 2004, The 

et al 1999), and their analysis has yielded key insights into general principles of 

morphogenesis. 

 

In C. elegans, the mutations of the HS copolymerase genes rib-1 and rib-2 

available to date are embryonic lethal (Franks et al 2006, Kitagawa et al 2007, 

Morio et al 2003), which has restricted their analysis. The field has been limited 

to study these lethal alleles by examining homozygous mutant animals that are 

maternally rescued (M+/- Z-/-), which are virtually normal thanks to the 
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contribution of wild-type gene product from their heterozygous mothers (Edwards 

& Hammarlund 2014, Franks et al 2006, Morio et al 2003). RNAi has been used 

to knockdown the genes rib-1 and rib-2, but the resulting phenotypes are weak at 

best (Edwards & Hammarlund 2014, Pedersen et al 2013), indicating low 

efficiency of the interference for these genes. Mutations in the enzymes that 

catalyze the initiation of the HS chains (production of the tetrasaccharide linker) 

are not specific for HS as they also catalyze the initiation of chondroitin sulfate 

(CS) chains, leading to phenotypic consequences that are the result of the 

combined loss of HSPGs and CSPGs. Mutations disrupting individual HSPG core 

proteins (e.g. sdn-1/syndecan, lon-2/glypican, cle-1/collagen type XVIII, and unc-

52/perlecan) and HS modifying enzymes (e.g. the hse-5 epimerase and the hst-

1, hst-2, hst-3.1, hst-3.2 and hst-6 sulfotransferases) have been identified and 

studied, revealing specific roles of individual HSPGs and their chemical 

modifications during development, respectively (Ackley et al 2003, Blanchette et 

al 2015, Bülow et al 2002, Bülow & Hobert 2004, Bulow et al 2008, Diaz-Balzac 

et al 2014, Gysi et al 2013, Kinnunen et al 2005, Merz et al 2003, Pedersen et al 

2013, Rhiner et al 2005). However, a general view of the function of heparan 

sulfate proteoglycans has not been available in this powerful model organism. 

 

Here we report a C. elegans model of loss of function of the two subunits of the 

HS copolymerase genes. We identified viable mutations in each of the HS 

copolymerase genes rib-1 and rib-2, which severely reduce HS levels and result 
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in dramatic morphogenetic defects and abnormal cell and axonal migrations. We 

find the HS copolymerase is expressed dynamically during development, as well 

as later in adulthood, consistent with HSPGs functioning in both morphogenesis 

and physiology. Our findings indicate that proper neuronal migration is ensured 

by the coordinated synthesis of HSPGs in the migrating neuron itself as well as in 

adjacent cells that secrete the extracellular matrix along which the growth cone 

extends. Our analysis highlights the functional importance of HSPGs and 

establishes a model for dissecting their roles during animal development and 

homeostasis. 

 

RESULTS 

 

Cell and axonal migrations are impaired in mum-1/rib-1 and mum-3/rib-2 

mutants 

In order to identify genes required for neural development, a genetic screen for 

maternal-effect mutants was carried out (Hekimi et al 1995). Mutations qm32 and 

qm46 were identified in this screen and define the genes mum-1 and mum-3, 

respectively (mum stands for maternal-effect uncoordinated and morphologically 

abnormal). mum-1 and mum-3 mutants display very similar defects, which 

include severe uncoordination, defective egg-laying, and morphological 

abnormalities, as well as some embryonic and larval lethality (Hekimi et al 1995, 

Takagi et al 1997). As we report below, mum-1(qm32) and mum-3(qm46) are 
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loss-of-function alleles in the genes rib-1 and rib-2, respectively, which encode 

the two subunits of the HSPG copolymerase. For clarity, we henceforth refer to 

mum-1(qm32) as rib-1(qm32), and to mum-3(qm46) as rib-2(qm46). 

 

To characterize the underlying neuroanatomical defects of rib-1(qm32) and rib-

2(qm46), we built strains of these mutants carrying a number of integrated 

transgenes, which drive the expression of fluorescent proteins and allow the 

visualization of specific neurons (see Table 2.1). We examined the nervous 

system of rib-1 and rib-2 mutants with single-cell resolution and found that 

numerous neuronal migrations are affected by loss of function of rib-1 or rib-2 

compared to wild type. For instance, we found that the CAN neuron, which 

migrates from the head region towards the midbody region in wild-type animals, 

was frequently positioned too anterior or too posterior in rib-1 and rib-2 mutants 

(Fig. 2.1A). Also, the HSN neuron that migrates from the tail region to the 

midbody region in the wild type is often located too posterior in rib-1 and rib-2 

mutants (Fig. 2.1B). Moreover, the AVM neuron is frequently located in the 

posterior of the body in rib-1 and rib-2 mutants, instead of being anterior to the 

vulva (Fig. 2.1C). The penetrance and expressivity of these defects is similar in 

both rib-1 and rib-2 single mutants. Thus, loss of function of the genes rib-1 or 

rib-2 disrupts the guided migration of several neurons that undergo long-range 

migrations during development. 
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We also found that axonal projections are defective in rib-1 and rib-2 single 

mutants. For example, we observed that the axon of the interneuron PVQ, which 

projects into the ipsilateral fascicle of the ventral nerve cord in the wild type, 

frequently projects in the contralateral fascicle or even laterally in rib-1 and rib-2 

mutants (Fig. 2.1D). Similarly, the axon of the motorneuron HSN, which projects 

ventrally and into the ipsilateral fascicle of the ventral nerve cord in the wild type, 

is misguided in rib-1 and rib-2 mutants as it projects into the contralateral fascicle 

or laterally in these mutants (Fig. 2.1D). Another example is the axon of the 

mechanosensory neuron AVM, which extends ventrally towards the ventral nerve 

cord in the wild type, but projects laterally in rib-1 and rib-2 mutants (Fig. 2.1C). 

The axons of cholinergic and GABAergic motorneurons are also misguided in rib-

1 and rib-2 mutants: contrary to the wild type, where most motorneuron axons 

exit the ventral midline on the right side to migrate along on the right side of the 

worm’s body wall, many motorneuron axons abnormally project to the left side in 

rib-1 and rib-2 mutants (Fig. 2.1E). Finally, the dorsal nerve cord, which is 

composed of several motor axons that run as a single fascicle in the wild type, is 

frequently defasciculated into several bundles in rib-1 and rib-2 mutants (Fig. 

2.1F). It is worth nothing that the capacity to migrate is not lost in rib-1 and rib-2 

mutants as soma and axons often overshoot their target. Rather, the guidance of 

migrations during development is disrupted by the loss of function of the genes 

rib-1 and rib-2. 
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Fig. 2.1. Neuronal migration defects in mum-1/rib-1(qm32) and mum-3/rib-2(qm46) 

mutants. 

A. Lateral views of animals expressing the transgene Pceh-10::gfp to visualize the CAN 

neurons (CANL and CANR). In the wild type, the soma of the CAN neuron is located laterally 

in the midbody region and its axon extends laterally along the antero-posterior axis. mum-

1/rib-1 and mum-3/rib-2 mutants display defective CAN soma migration and are frequently 

observed in very anterior positions. In addition, the CAN axon in mum-1/rib-1 and mum-3/rib-

2 mutants project in abnormal directions (arrowhead), or fail to extend fully in the posterior 

direction. The table indicates the sum of soma and axon defects of the CAN neurons (axon 

guidance was only scored in animals that had normal soma migration). 

B. Ventral views of animals expressing the transgene Ptph-1::gfp to visualize the HSN 

neurons (HSNL and HSNR). In wild type, the soma of HSN is located laterally just posterior 

to the vulva and its axon extends ventrally and projects along the ipsilateral side of the 

ventral nerve cord. mum-1/rib-1 and mum-3/rib-2 mutants display defective HSN soma 

positions and defective axons that extend laterally or project into the opposite side of the 

ventral nerve cord. The table indicates the sum of soma and axon defects of the HSN 

neurons (axon guidance was only scored in animals that had normal soma position). White 

asterisk denotes position of the vulva.  

C. Lateral views of animals expressing the transgene Pmec-4::gfp to visualize the AVM 

neuron. In the wild type, the AVM soma is located in the anterior midbody region and its axon 

projects ventrally to reach the ventral nerve cord and then extends anteriorly. mum-1/rib-1 

and mum-3/rib-2 mutants display defective AVM soma (posterior to the vulva), as well as 

defective axons that project laterally instead of ventrally. The table indicates the sum of soma 

and axon defects of the AVM neuron (axon guidance was only scored in animals that had 

normal soma position). 

D. Ventral views of animals expressing the transgene Psra-6::DsRed2 to visualize the PVQ 

neurons (PVQL and PVQR). In the wild type, the axon of PVQ extends along the ipsilateral 

side of the ventral nerve cord. mum-1/rib-1 and mum-3/rib-2 mutants display defective PVQ 

axons, including axons that extend laterally or project into the opposite side of the ventral 

nerve cord. 

E. Ventral views of animals expressing the transgenes Punc-17::gfp and Punc-47::mCherry 

to visualize the cholinergic (green) and GABAergic (red) motorneurons, respectively. The 

position of the vulva is indicated by an asterisk. In the wild type, most motorneuron axons 

extend along the right side of the animal, whereas on the left side only three cholinergic and 

no GABAergic axons extend in the area shown in the picture. mum-1/rib-1 and mum-3/rib-2 

mutants display defective guidance of motorneuron axons of both cholinergic and GABAergic 

motorneuron axons, as more axons project along the left side of the animal compared to wild 

type (arrowheads). 

F. Dorsal views of animals expressing the transgene Prgef-1::gfp to visualize the dorsal 

nerve cord. The dorsal nerve cord runs as one tight fascicle in the wild type. In mum-1/rib-1 

and mum-3/rib-2 mutants, the dorsal nerve cord is frequently split into two or more fascicles. 

Indicated area is enlarged in insets. 

Scale bars 20 μm. *** P ≤ 0.001 (z-tests, P values were corrected by multiplying by the 

number of comparisons). 
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In a similar way, the migration of mesodermal cells, which share guidance 

mechanisms with neurons (Hedgecock et al 1990), is defective in rib-1 and rib-2 

single mutants. For instance, the canals of the excretory cell (two anterior and 

two posterior canals) run laterally in the wild type but are frequently too short or 

extend along the ventral or dorsal aspect of the body in rib-1 and rib-2 mutants 

(Fig. 2.2A). Another example of misguided mesodermal cells in rib-1 and rib-2 

mutants is that of the distal tip cell (DTC), whose path determines the shape of 

the gonad. In wild-type animals, the anterior DTC migrates anteriorly along the 

right side of the animal and the posterior DTC migrates posteriorly along the left 

side of the animal; then, the DTCs turn dorsally, and turn again to migrate 

towards the midbody region, resulting in the anterior arm of the gonad being on 

the right side of the animal and the posterior arm of the gonad being on the left 

side. In rib-1 and rib-2 mutants, the anterior arm of the gonad is often found on 

the left side of the animal and the posterior arm on the right side, and in some 

cases, both gonad arms can lie on the opposite side of the animal (Fig. 2.2B). 

Lastly, the excretory gland is also found in abnormal positions in rib-1 and rib-2 

mutants (Fig. 2.2C). Thus, loss of function of the genes rib-1 or rib-2 disrupts the 

guidance of migrations of neuronal and mesodermal cells during development. 
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mum-1(qm32) and mum-3(qm46) are viable hypomorphic mutations of the 

genes rib-1 and rib-2 that encode the two subunits of the HSPG 

copolymerase 

To gain insight into the molecular mechanisms that are disrupted in the mum-1 

and mum-3 mutants, we determined the molecular identity of the mutations qm32 

and qm46. First, we narrowed down the genetic position of the mum-1(qm32) 

mutation by genetic mapping and assayed cosmids corresponding to the genetic 

position of mum-1 for transformation rescue of the mum-1(qm32) mutants (Fig. 

2.3B). We found that cosmid F12F6 fully rescued the mum-1 mutants for larval 

development, uncoordination and egg laying defects (Fig. 2.3A,B). We tested 

PCR products corresponding to each of the genes located on this cosmid and 

found that a 9 kb PCR product containing the gene F12F6.3/rib-1 fully rescued 

the mum-1 mutants for larval development, uncoordination and egg-laying 

Fig. 2.2. Other migration defects in mum-1/rib-1(qm32) and mum-3/rib-2(qm46) 

mutants. 

A. Ventral views of animals expressing the transgene Ppes-6::gfp to visualize the canals of 

the excretory cell. In the wild type, the excretory cell extends four lateral canals, two that are 

anteriorly-directed along the sides of the head and two that are posteriorly-directed along the 

sides of the body. mum-1/rib-1 and mum-3/rib-2 mutants display defective excretory canals 

that can be too short (arrows), or extend ventrally or dorsally instead of laterally 

(arrowheads). Scale bar, 10 μm. Asterisk denotes significant difference: *** P ≤ 0.001 (z-

tests, P values were corrected by multiplying by the number of comparisons). 

B. Diagrams of the gonad arms (dorsal view). In the wild type, the anterior arm of the gonad 

is located on the right side of the animal, and the posterior arm is located on the left side. 

Gonad arms are abnormally positioned in mum-1/rib-1 and mum-3/rib-2 mutants, where one 

or both gonad arms can lie on the opposite side of the animal. 

C. Diagrams of the excretory glands (dorsal view). In the wild type, the excretory glands are 

located just posterior of the terminal bulb of the pharynx. mum-1/rib-1 and mum-3/rib-2 

mutants display abnormally located excretory glands, where one or both lie anterior of the 

terminal bulb. 
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defects (Fig. 2.3A,B). In addition, construct Prib-1::rib-1(+) completely rescued 

the axon guidance defects of AVM and PVQ in mum-1 mutants (Fig. 2.3C). We 

verified the predicted gene structure by sequencing the cDNA clone yk187a9. 

We sequenced the genomic region of the gene rib-1 in mum-1(qm32) mutants 

and found that the qm32 molecular lesion is a T to A base pair change at position 

39528 of cosmid F12F6, which converts the Stop codon of rib-1 into a Lys 

residue (Fig. 2.3B). This mutation likely results in the translation of an open 

reading frame present in the 3’UTR, which would extend the protein RIB-1 by 

114 aa residues, until the next in-frame Stop codon. The activity of the mutant 

RIB-1 protein in rib-1(qm32) is likely impaired by the presence of the abnormal 

extension or the instability of the translated protein. Stronger mutations of rib-1, 

namely deletion alleles tm516 and ok556, result in complete embryonic lethality 

(Franks et al 2006, Kitagawa et al 2007). Thus, qm32 is a viable hypomorphic 

mutation in the gene rib-1 that encodes one of the two subunits of the HSPG 

copolymerase and is homologous to Drosophila tout-velu and mammalian EXT1 

(Fig. 2.3D). 

 

The second subunit of the C. elegans HSPG copolymerase is encoded by the 

gene rib-2. Given the phenotypic similarities between the rib-1(qm32) and mum-

3(qm46) mutants and that the genetic position of mum-3(qm46) corresponds to a 

chromosomal interval containing the gene rib-2, we tested whether mum-

3(qm46) was an allele of the gene rib-2. We tested the rescue of mum-3(qm46)  
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mutants by a 5.6 kb PCR product of the gene rib-2(+) and found that it fully 

rescued their larval development, locomotion, and egg laying (Fig. 2.4A,B). In 

addition, construct Prib-2::rib-2(+) completely rescued the axon guidance defects 

of AVM and PVQ in mum-3 mutants (Fig. 2.4C). We verified the predicted gene 

structure by sequencing the cDNA clone yk3c1. We sequenced the genomic 

region of the gene rib-2 in mum-3(qm46) mutants and found that the qm46 

molecular lesion is a G to A transition at position 4366 of cosmid K01G5. The 

qm46 mutation results in an Arg to Gln amino acid substitution at residue 434, 

which is near the exostosin domain in the 814 amino acid long RIB-2 protein. A 

stronger mutation of rib-2, deletion allele tm710, results in complete embryonic  

Fig. 2.3. mum-1(qm32) is a viable hypomorphic mutation of the gene rib-1, which 

encodes one of the two HS copolymerase subunits. 

A. Pictures of wild type and mum-1/rib-1 mutant animals. Some of the mum-1/rib-1 mutants 

die as embryos or misshapen larvae, but the majority reach adulthood and display 

morphological defects, as described in (Hekimi et al 1995). 

B. Molecular identification of mum-1(qm32). mum-1 was previously mapped between dpy-13 

and unc-31 on linkage group I (Hekimi et al 1995). We narrowed down its genetic position by 

a combination of three-factor and two-factor mapping (results were unc-24 70/79 mum-1 

9/79 dpy-20; 10 Dpy-20 non Mum-1/4320 F2s ; and lin-3 6/7 mum-1 1/7 dpy-20; which 

placed mum-1 between lin-3 and dpy-20, between 4.98 and 5.07 cM, according to the 95% 

confidence intervals). Cosmids (thin lines) and PCR products (thick lines) encompassing the 

gene rib-1(+) rescued the morphological and uncoordination defects of the mum-1 mutants. 

mum-1(qm32) is a missense mutation at base 39528 of cosmid F12F6 and changes the Stop 

into a Lys codon, which leads to a putative extension of 114 amino acids until the first in 

frame Stop codon. 

C. Rescue of the guidance defects of the neurons AVM and PVQ of mum-1(qm32) with DNA 

corresponding to the genomic region of rib-1(+) (plasmid Prib-1::rib-1::Venus). Error bars are 

standard error of the proportion. Asterisks denote significant difference: *** P ≤ 0.001 (z-

tests, P values were corrected by multiplying by the number of comparisons). 

D. An alignment of the predicted amino acid sequences of C. elegans RIB-1 and its 

homologues from D. melanogaster (Ttv), M. musculus (EXT1), and H. sapiens (EXT1). 
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lethality (Franks et al 2006). Thus, qm46 is a viable hypomorphic mutation in the 

gene rib-2 that encodes the second subunit of the HSPG copolymerase and is 

homologous to Drosophila brother of tout-velu and mammalian EXT2 and EXTL3 

family members (Fig. 2.4D). 

 

HS levels are impaired in rib-1(qm32) and rib-2(qm46) mutants  

The genes rib-1 and rib-2 encode the two subunits of the C. elegans HS 

copolymerase that synthesizes HS chains onto core proteins to generate HSPGs 

(Fig. 2.5A; (Kitagawa et al 2007)). HS chains are composed of alternating 

glucuronic acid and N-acetylglucosamine residues. The first step of HS chain 

biosynthesis is the addition of a tetrasaccharide linker onto specific Ser residues 

of the core protein. Next, proteins homologous to RIB-2, like mammalian EXTL3 

Fig. 2.4. mum-3(qm46) is a viable hypomorphic mutation of the gene rib-2, which 

encodes the second HS copolymerase subunit. 

A. Pictures of wild type and mum-3/rib-2 mutant worms. Some of the mum-3/rib-2 mutants 

die as embryos or deformed larvae, but the majority reach adulthood and display 

morphological defects, as described in (Hekimi et al 1995). 

B. Molecular identification of mum-3. mum-3(qm46) was previously mapped on linkage 

group III, between unc-32 and dpy-18 (Hekimi et al 1995), which includes the second HSPG 

copolymerase gene rib-2. A PCR product containing the genomic locus of rib-2(+) rescued 

the morphological and uncoordination defects of the mum-3(qm46) mutants. mum-3(qm46) 

is a missense mutation at base 4366 on cosmid K01G5 that changes an Arg to a Gln at 

residue 434. 

C. Rescue of the guidance defects of the neurons AVM and PVQ of mum-3(qm46) with DNA 

containing the genomic region of rib-2(+) (PCR product Prib-2::rib-2). Error bars are standard 

error of the proportion. Asterisks denote significant difference: *** P ≤ 0.001 (z-tests, P 

values were corrected by multiplying by the number of comparisons). 

D. An alignment of the predicted amino acid sequence of C. elegans RIB-2 and its 

homologues from D. melanogaster (Botv), M. musculus (EXT2), and H. sapiens (EXT2). 
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and Drosophila sister of tout-velu (Sotv), catalyze the addition of the initial N-

acetylglucosamine residue onto the tetrasaccharide linker (Kitagawa et al 2001). 

Subsequently, proteins homologous to RIB-1 and RIB-2 together, like 

mammalian EXT1 and EXT2 or Drosophila tout-velu (Ttv) and brother of tout-velu 

(Botv), function as a complex to polymerize HS chains by adding disaccharide 

units of glucuronic acid and N-acetylglucosamine (Kitagawa et al 2007). To 

directly determine the impact of the mutations rib-1(qm32) and rib-2(qm46) on 

HS biosynthesis, we probed for total HS content by western blot analysis. We 

extracted proteins from wild-type (N2) animals, rib-1(qm32) and rib-2(qm46) 

single mutants, as well as transgenic rib-1(qm32) animals expressing rib-1(+) 

and transgenic rib-2(qm46) animals expressing rib-2(+), which rescue their 

developmental defects. We treated the extracts with heparinases I and III, and 

performed western blot analysis using an antibody that specifically recognizes 

heparinase-digested HS chains (3G10, (David et al 1992)). As expected, no 

signal was detected in untreated control samples (Fig. 2.5B). We found that the 

total HS content was severely reduced in the rib-1(qm32) and the rib-2(qm46) 

mutants compared to the wild type (Fig. 2.5B). Providing wild-type transgenic 

copies of rib-1 or rib-2 rescued HS biosynthesis, confirming that loss of the genes 

rib-1 or rib-2 leads to the disruption of HS biosynthesis in the qm32 and qm46 

mutants (Fig. 2.5B). The partial rescue of HS levels is likely due to the transgenic 

strains in fact being a mixture of rescued transgenic animals as well as non-

rescued non-transgenic animals, as the strains were grown for several  
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Fig. 2.5. Loss of function of the genes rib-1 and rib-2 impairs HS synthesis. 

A. Schematic representation of the biochemical synthesis of HS chains onto HSPG core 

proteins in the Golgi. HS chain synthesis starts by the addition of a tetrasaccharide linker 

(xylose-galactose-galactose-glucuronic acid) onto specific Ser residues on the core proteins to 

serve as a primer for HS polysaccharide growth. RIB-1 and RIB-2, homologous to the exostosin 

(EXT) proteins, catalyze the extension of HS chains, which are composed of repeating 

glucuronic acid (square) and N-acetylglucosamine (hexagon) residues. RIB-2, like mammalian 

EXTL3 and Drosophila Sotv, catalyzes the first step with the addition of the first N-

acetylglucosamine onto the tetrasaccharide linker on HSPG core proteins. Then, RIB-1 and RIB-

2 together, like mammalian EXT1 and EXT2, and Drosophila Ttv and Botv, function as a 

heterodimer to extend the HS chains. 

B. Western blot analysis of HS chains in rib-1(qm32) mutants (top) and in rib-2(qm46) mutants 

(bottom). HS chains were detected with antibodies specific for HS epitope 3G10, which is 

detectable after cleavage by heparinase. For the three left lanes, protein extracts were not 

heparinase treated (control, indicated by “-“), and as expected no HS signal is detected. For the 

three right lanes, protein extracts were treated with heparinases I and III (Hep I+III, indicated by 

“+”). The HS signal is severely reduced in the rib-1(qm32) and the rib-2(qm46) mutants 

compared to wild type (N2), indicating that HS chain synthesis is strongly affected in rib-1 and 

rib-2 mutants. The HS signal is partially rescued in rib-1 mutants expressing the transgene Prib-

1::rib-1(+) and rib-2 mutants expressing the transgene Prib-2::rib-2(+). Therefore, HS 

biosynthesis is disrupted in the rib-1(qm32) and the rib-2(qm46) mutants, and their 

developmental and biochemical phenotypes can be rescued by reintroducing wild-type rib-1(+) 

and rib-2(+), respectively. 

C. Western blot analysis of LON-2::GFP in the rib-1(qm32) and rib-2(qm46) mutants. The anti-

GFP antibody detects high molecular weight bands in extracts of transgenic animals expressing 

LON-2::GFP; as controls, these high molecular weight bands are absent in wild type N2 and in 

three GFP controls that do not express LON-2::GFP (lqIs4, rib-1;lqIs4, and rib-2;lqIs4). In 

transgenic animals expressing a mutant version of LON-2 lacking the three HS attachment sites 

(LON-2ΔGAG::GFP; Gumienny & Taneja-Bageshwar, 2012), the detected band is smaller than 

LON-2::GFP. Similarly, the band detected in extracts of the rib-1 and rib-2 mutants expressing 

LON-2::GFP is smaller, indicating that the HS chains of glypican/LON-2 are affected in rib-1 and 

rib-2 mutants. 

D. Western blot analysis of SDN-1::GFP (Rhiner et al., 2005) in the rib-1(qm32) mutants. The 

anti-GFP antibody detects high molecular weight bands in extracts of transgenic animals 

expressing SDN-1::GFP; as controls, these high molecular weight bands are absent in the wild 

type N2 or the GFP control rib-1; lqIs4. In extracts of rib-1 mutants expressing SDN-1::GFP, the 

band detected is smaller, indicating that the HS chains of syndecan/SDN-1 are affected in rib-1 

mutants.  

α-HSP-90 was used as a loading control. 
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generations and the extrachromosomal array carrying the transgene is lost 

during cell divisions. Nevertheless, our results indicate that the alleles of rib-

1(qm32) and rib-2(qm46) strongly disrupt HS chain synthesis. 

 

Having examined the impact of rib-1 or rib-2 function on global HS levels, we 

tested how two distinct HSPGs, namely LON-2/glypican and SDN-1/syndecan, 

are affected in rib-1(qm32) and rib-2(qm46) single mutants. To detect LON-

2/glypican, we expressed LON-2 tagged with GFP (using transgene LON-

2::GFP, (Gumienny et al 2007)) in wild type (N2), rib-1(qm32), and rib-2(qm46) 

mutant backgrounds, and carried out western blot analysis with anti-GFP 

antibodies. Whereas two high molecular weight bands corresponding to LON-

2::GFP were detected in wild-type lysates, only one of the bands is detected in 

lysates of rib-1 and rib-2 mutants (Fig. 2.5C), indicating that HS synthesis onto 

LON-2/glypican is affected by the loss of function of rib-1 or rib-2. In support of 

this, we found that wild-type worms expressing a mutant version of LON-2 in 

which the HS attachment sites are mutated (LON-2ΔGAG::GFP, (Taneja-

Bageshwar & Gumienny 2012)) also produced only one high molecular weight 

band similar to the migration of LON-2::GFP in the rib-1 and rib-2 mutants (Fig. 

2.5C). To detect the HSPG SDN-1/syndecan, we expressed SDN-1/syndecan 

tagged with GFP (SDN-1::GFP, (Rhiner et al 2005)) in wild-type (N2) and rib-1 

mutant worms, and probed for GFP in lysates of these worms. In wild-type 

lysates, we detected two high molecular weight bands corresponding to SDN-
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1::GFP, but detected a single band in lysates of rib-1 mutants (Fig. 2.5D), 

indicating that loss of rib-1 impairs HS synthesis onto SDN-1/syndecan. Our 

results show that the mutants rib-1(qm32) and rib-2(qm46) drastically reduce the 

HS content and affect the biosynthesis of HSPGs. 

 

The HS copolymerase is dynamically expressed during development 

To gain insight into the roles of HSPGs during development, we determined the 

expression pattern of the HS copolymerase. We constructed expression 

reporters for the genes rib-1 and rib-2. First, we designed a transcriptional fusion 

(Prib-1::gfp) between the upstream regulatory region of rib-1 and the green 

fluorescent protein gene (gfp). Since rib-1 is the second gene in an operon of two 

genes (Blumenthal et al 2002), we included the region upstream of the first gene 

in the operon, as well as the intergenic region of the operon that lies immediately 

upstream of rib-1 (see Materials and Methods). Second, we constructed a 

translational fusion (Prib-1::rib-1::venus) using the same upstream regulatory 

region as for Prib-1::gfp (see Materials and Methods) and fusing the coding 

region of rib-1 with the gene venus (a translational fusion of rib-1 with gfp gave 

no detectable expression; venus encodes a variant of gfp that fluoresces in acidic 

cellular environments (Nagai et al 2002)). We generated at least five transgenic 

lines for each of these two rib-1 reporters and examined transgenic animals by 

fluorescence microscopy. We observed that GFP fills the cytoplasm of cells 

expressing the transcriptional fusion Prib-1::gfp, as expected, and that VENUS 
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has a punctate cytoplasmic pattern in cells expressing the translational fusion 

Prib-1::rib-1::venus, consistent with the HS copolymerase being localized to the 

Golgi apparatus (Fig. 2.6A). Moreover, we found that both the transcriptional and 

the translational fusions have a very similar spatial and temporal expression 

pattern during development: expression was visible in neurons, some 

hypodermal cells, pharynx, and muscles of the digestive system and reproductive 

tissues (Fig. 2.6A). Importantly, we found that the translational fusion Prib-1::rib-

1::venus is functional, as it fully rescued the defective locomotion, egg-laying, 

morphology, and axon guidance of rib-1(qm32) mutants, indicating that the 

observed expression pattern of the translational fusion, and thus also of the 

transcriptional fusion, is functionally relevant and largely reflects the sites of 

endogenous expression of the gene rib-1.  

 

Since the transcriptional and translational fusions for rib-1 have similar 

expression patterns, and Prib-1::gfp expresses at higher levels and readily allows 

the identification of expressing cells, we characterized the expression pattern of 

Prib-1::gfp in more detail. One salient feature of the expression pattern of rib-1 is 

that it is very dynamic in hypodermal cells during development. During 

embryogenesis, Prib-1::gfp was detected along the entire layer of 

hypodermoblasts that surrounds the gastrulating embryo at about 200 minutes 

after fertilization (at this stage, numerous more interiorly located cells, likely 

mesodermal cells, also expressed Prib-1::gfp). By the early comma stage of  



41 

 

 

 

 



42 

 

 

embryogenesis, Prib-1::gfp was expressed at high levels in hypodermal cells of 

the elongating embryo (Fig. 2.6C), including in hypodermal cells that extend 

ventrally during ventral closure and in the two rows of dorsal hypodermal cells 

undergoing dorsal intercalation. Subsequent to these embryonic morphogenetic 

events, expression of Prib-1::gfp in body wall hypodermal cells was no longer 

visible during larval and adult stages, except for seam cells undergoing fusion 

during larval development. During vulva development, however, hypodermal cells 

that compose the developing vulva, including the utse, strongly expressed Prib-

1::gfp (Fig. 2.6D). At first, a very low expression level was detected in vulval cells 

Fig. 2.6. Dynamic expression of the HS copolymerase during development. 

A. A transcriptional reporter and a functional translational reporter for the gene rib-1, Prib-

1::gfp and Prib-1::rib-1::venus, respectively, display similar expression patterns. Expression of 

rib-1 is observed in numerous cell types, including in the pharynx, hypodermal cells, neurons 

(arrows), the enteric muscle (triangle) and the anal depressor (circle). The RIB-1::Venus signal 

is punctate, consistent with a Golgi localization. Scale bars: 50 μm in top panels of entire 

worms, and 5 μm in lower panels. 

B. Larval and adult expression of rib-1. (i) Throughout larval and adult stages, the expression 

of Prib-1::gfp is observed in the pharynx, including in the pharyngeal-intestinal valve (ii, closed 

arrowhead) and muscles of the anterior and terminal pharyngeal bulbs (iii, pharyngeal muscle 

pm6); in the enteric muscle (open arrowhead, see a); in the ventral nerve cord (arrows, iv, see 

a); and the dorsal nerve cord (v). Prib-1::gfp expression in spermathecae (asterisks, vi, seen 

enlarged by an oocyte in vii) and in uterine muscles (viii) is first detected in adults, initially at 

very low levels, and becoming increasingly stronger as the reproductive phase progresses. 
Scale bars, 50 μm in panels of entire worms, and 5 μm in the rest of the panels. 

C. Embryonic expression of rib-1. Views of comma stage embryos in GFP epifluorescence 

and DIC. The transcriptional reporter Prib-1::gfp is predominantly expressed in lateral and 

ventral epidermal cells that undergo major morphogenetic movements during dorsal 

intercalation and ventral enclosure of the embryo. Scale bar, 5 μm. 

D. rib-1 is expressed during vulva development. Views of the developing vulva in fourth larval 

stage animals by GFP and DIC epifluorescence. Prib-1::gfp is expressed in epidermal cells of 

the developing vulva at a time when these cells undergo major rearrangements. Scale bar, 10 

μm. 
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of late L3 larvae, then expression became strong in these cells in L4 larvae and 

young adults that had just molted, and finally expression ended in adults. These 

dynamic expression patterns in cells undergoing dramatic changes during 

morphogenesis suggest that HSPGs play important and acute roles during 

development. 

 

The nervous and digestive systems express Prib-1::gfp stably and continuously 

from embryogenesis into larval stages and throughout adulthood. Strong and 

sustained expression was seen in motorneurons, interneurons, sensory neurons 

(including AVM), neurons in the head and tail ganglia, with the GFP signal filling 

axons running along the ventral and dorsal nerve cords, the commissures, and 

sublaterals. Neurons of the ventral nerve cord and of the head ganglia were 

observed expressing Prib-1::gfp already in 1.5-, 2-, and 3-fold embryos, and 

expression persisted well into adulthood (Fig. 2.6A,B). Strong expression of Prib-

1::gfp was also observed in the pharynx from the 2-fold stage of embryogenesis 

onwards and remained strong even in adults (procorpus, metacorpus, terminal 

bulb, grinder, and pharyngeal-intestinal valve). The anal depressor, the anal 

sphincter, and the two enteric muscles also strongly expressed Prib-1::gfp 

throughout life. The continued expression of rib-1 in the nervous and digestive 

systems indicates that HSPGs not only play developmental roles in these cell 

types, but also have post-developmental roles in a variety of cellular contexts. 
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Another set of cells initiated expression of rib-1 only during the adult reproductive 

phase: Prib-1::gfp first became detectable in the spermathecae in young adults 

and accumulated at very high levels in adults during the peak of fertilization and 

embryo production (Fig. 2.6B). Also, the uterine muscles expressed Prib-1::gfp 

only in reproducing adults and the signal became strongest around day three of 

adulthood (Fig. 2.6B). The observation that the HS copolymerase is expressed in 

cells of reproductive tissues coinciding with the time of active reproduction further 

indicates that the synthesis of HSPGs is required in diverse post-developmental 

contexts. 

 

We also constructed transcriptional and translational reporters for rib-2, the 

second gene encoding the HS copolymerase. Despite numerous attempts, the 

detected expression level was extremely weak in transgenic worms carrying 

these constructs. We could nonetheless observe diffuse Prib-2::gfp expression in 

comma-stage embryos, as well as in neurons, the pharynx, seam cells, and the 

developing vulva at later developmental stages. Thus, the expression pattern of 

rib-2 appears to overlap with that of rib-1, consistent with the notion that these 

genes encode proteins that function together as the HS copolymerase complex. 

 

Synthesis of HSPGs in multiple cell types contributes to axon guidance 

A prominent site of expression of the HS copolymerase is the nervous system, 

including at times of axon migrations during embryonic and larval development 
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(Fig. 2.6), and disruption of the HS copolymerase leads to numerous defects of 

axon guidance (Fig. 2.1). To determine which cells produce HSPGs required for 

axon guidance, we provided wild-type copies of rib-1(+) in subsets of cells to rib-

1 mutants and assessed whether the axon guidance defects of the PVQ neurons 

could be rescued. The axon of PVQ extends along the ventral nerve cord during 

embryogenesis, following the path of other axons, and is in proximity with the 

hypodermis and body wall muscles. We built several constructs to express rib-

1(+) in neurons including PVQ (using the heterologous promoter Prgef-1), in 

hypodermis (using the heterologous promoter Pdpy-7), or in body wall muscles 

(using the heterologous promoter Pmyo-3). We generated transgenic rib-1(qm32) 

worms expressing rib-1(+) in these tissues and analyzed PVQ axon guidance. As 

a control, expression of rib-1(+) under its own promoter completely rescued the 

guidance defects of the PVQ axon (Fig. 2.7A). Targeted expression of rib-1(+) 

only in neurons, only in hypodermis, or only in body wall muscles did not rescue 

the PVQ axon guidance defects of rib-1 mutants. However, co-expression of rib-

1(+) in the hypodermis, neurons, and body wall muscles led to rescue of the PVQ 

guidance defects (Fig. 2.7A), suggesting that HSPGs from distinct cell types 

together contribute to properly guide the PVQ axon. The rescue of the PVQ axon 

was strong but incomplete, possibly due to the expression level or timing of rib-1 

under these heterologous promoters being inappropriate. Nonetheless, 

expressing rib-1 simultaneously in these three tissues significantly rescued the 
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PVQ defects, indicating a functional requirement for HSPGs in several cell types 

to regulate the guidance of the PVQ axon. 

 

We next analyzed the spatial requirements for HS biosynthesis in the context of 

another migrating axon, that of the mechanosensory neuron AVM. During the 

first larval stage, the AVM axon pioneers its own ventral migration through a 

basement membrane along the body wall, sandwiched between the hypodermis 

and the body wall muscles. We expressed rib-1(+) in the hypodermis (using the 

heterologous promoter Pdpy-7), in body wall muscles (using the heterologous 

promoter Pmyo-3), or in the neuron AVM itself (using the heterologous promoter 

Pmec-7) in rib-1(qm32) mutants, and analyzed AVM axon guidance. As a control, 

expression of rib-1(+) under its own promoter completely rescued the guidance 

defects of the AVM axon (Fig. 2.7B). We found that the AVM axon guidance 

defects of rib-1 mutants were rescued by expression of rib-1(+) in the neuron 

AVM itself, or by expression of rib-1(+) from the hypodermis (Fig. 2.7B). These 

results suggest that HSPGs produced both in the AVM neuron itself and in the 

hypodermis crucially impact the guidance of the axon of AVM. Taken together, 

our results support the notion that HSPGs synthesized in distinct cell types 

contribute to guided axonal migrations during development. 
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HS chain synthesis is required for unc-6/netrin- and slt-1/Slit-mediated 

axon guidance  

To gain understanding of the role of HSPGs during neural development, we 

analyzed the requirements of HS chain synthesis for unc-6/netrin- or slt-1/Slit-

mediated axon guidance. For this, we focused on the guidance of the axon AVM 

(Fig. 2.8A), which has been extensively studied and is known to be guided by 

two complementary and highly conserved guidance pathways: attraction towards 

ventral UNC-6/netrin through its receptor UNC-40/DCC and repulsion away from 

dorsal SLT-1/Slit through its receptor SAX-3/Robo (Fig. 2.8B) (Chan et al 1996, 

Hao et al 2001, Hedgecock et al 1990, Hedgecock et al 1987, Ishii et al 1992, 

Leung-Hagesteijn et al 1992, Zallen et al 1998). rib-1 and rib-2 mutants are 

defective in AVM axon guidance (Fig. 2.1C), suggesting the loss of HS chain 

synthesis may be affecting unc-6/netrin signaling, slt-1/Slit signaling, or both. 

 

Disrupting HS chain synthesis is expected to impact all HSPGs. Therefore, if the 

Fig. 2.7. HS chain synthesis in multiple cell types contributes to axon guidance. 

A. The defects in the guidance of the PVQ axons in rib-1(qm32) mutants are rescued by the 

combined expression of rib-1(+) in the hypodermis (under the heterologous promoter Pdpy-7), 

neurons (under the heterologous promoter Prgef-1), and muscles (under the heterologous 

promoter Pmyo-3). 

B. The defects in the guidance of the AVM axon in rib-1(qm32) mutants are rescued by 

expression of rib-1(+) in the migrating neuron itself (under the heterologous promoter Pmec-7) 

or by expression in the hypodermis (under the control of the heterologous promoter Pdpy-7). 

Error bars are standard error of the proportion. Asterisks denote significant difference: *** P ≤ 

0.001, ** P ≤ 0.01, * P ≤ 0.05 (z-tests, P values were corrected by multiplying by the number of 

comparisons). ns, not significant.  
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HS chains contribute significantly to axon guidance by both signaling pathways, 

then the defects of both unc-6/netrin and slt-1/Slit single mutants would be 

enhanced by loss of function of rib-1 or rib-2. We constructed several double 

mutant strains and indeed found that the two double mutants rib-1;unc-6 and rib-

2;unc-6, as well as the two double mutants rib-1;slt-1 and rib-2;slt-1, have 

stronger AVM axon guidance defects than the respective single mutants (Fig. 

2.8B). Mutation of rib-1 or rib-2 also enhanced AVM guidance defects in Pmyo-

3::slt-1 animals (Yu et al 2002) in which slt-1 is misexpressed from all body wall 

muscles (Fig. 2.8B). Given that the two key forces guiding the AVM axon are 

unc-6/netrin and slt-1/Slit, our observations support the model that HS chain 

synthesis plays a critical role in both unc-6/netrin- and slt-1/Slit- guidance 

pathways. 

 

To directly test the functional importance of the HS chain synthesis on unc-

6/netrin signaling, we used a netrin-dependent gain-of-function approach in the 

PVM axon. Similar to AVM, the axon of the neuron PVM is attracted ventrally 

towards secreted UNC-6/netrin via the UNC-40/DCC receptor. However, 

misexpression of a second receptor for UNC-6/netrin that mediates repulsive 

guidance, namely UNC-5/UNC5, using the transgene Pmec-7::unc-5 ((Hamelin 

et al 1993), Fig. 2.8C), results in the abnormal extension of the PVM axon to the 

dorsal side of the animal that is unc-6/netrin- and unc-40/DCC-dependent.  
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Dorsal extension of the PVM axon never occurs in the wild type or mutants for 

the unc-6/netrin or slt-1/Slit signaling pathways (Fig. 2.8C). The AVM axon also 

extends dorsally upon misexpression of unc-5; however the axons of AVM and 

neighboring ALMR cannot be reliably distinguished in Pmec-7::unc-5 transgenic 

animals. We built strains mutant for rib-1 or rib-2 that carry the transgene Pmec-

7::unc-5 (Hamelin et al 1993) to misexpress unc-5 in PVM. If loss of rib-1 and rib-

2 functionally disrupts unc-6/netrin signaling, we would expect to see a decrease 

Fig. 2.8. unc-6/netrin and slt-1/Slit signaling pathways require functional HS chains to 

guide axons during development.  

A. We visualized the morphology of the AVM and PVM axons using the transgene Pmec-

4::gfp. Scale bar, 50 µm. 

B. During the first larval stage of wild-type C. elegans, the pioneer neuron AVM extends 

ventrally along the body wall until it reaches the ventral nerve cord. Its migration results from 

the combined attractive response to UNC-6/netrin (secreted at the ventral midline) via the 

UNC-40/DCC receptor and the repulsive response to SLT-1/Slit (secreted by the dorsal 

muscles) via its SAX-3/Robo receptor. Mutations rib-1(qm32) or rib-2(qm46) enhance the 

AVM guidance defects of animals where slt-1/Slit signaling is disrupted, either in mutants for 

slt-1/Slit or in animals misexpressing slt-1 in all body wall muscles (using a Pmyo-3::slt-1 

transgene). Mutation of rib-1 or rib-2 also enhances the AVM axon guidance defects of unc-

6/netrin mutants. That AVM guidance defects of mutants in both key guidance pathways, slt-1 

and unc-6, are enhanced by loss of rib-1 or rib-2 suggests that HS chains function in both the 

slt-1/Slit- and the unc-6/netrin-mediated pathways. Scale bar, 5 µm. 

C. unc-6/netrin signaling via the unc-5/UNC5 receptor requires functional HS chains. The 

pioneer axon of PVM normally migrates ventrally; however, upon misexpression of unc-

5/UNC5 in PVM using the transgene Pmec-7::unc-5, the axon of PVM projects dorsally in an 

unc-6/netrin- and unc-40/DCC-dependent manner. Loss of function of rib-1 or rib-2 partially 

suppresses this forced dorsal migration, indicating that unc-6/netrin signaling depends on 

functional HS chains. Scale bar, 5 µm. 

D. HS modifying enzymes function in the unc-6/netrin- and slt-1/Slit mediated-guidance of the 

AVM axon. Loss of HS modifying enzymes including the epimerase hse-5 and the 

sulfotransferases hst-2 and hst-6 enhance the AVM guidance defects of unc-6/netrin and slt-

1/Slit mutants, indicating that proper modifications of the heparan sulfate chains are important 

in guiding AVM through the unc-6/netrin and slt-1/Slit pathways.  

Error bars are standard error of the proportion. Asterisks denote significant difference: *** P ≤ 

0.001, ** P ≤ 0.01, * P ≤ 0.05 (z-tests, P values were corrected by multiplying by the number of 

comparisons). ns, not significant 
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in the unc-5-mediated dorsal migration of PVM. We found that loss of function of 

rib-1 and rib-2 significantly suppressed the unc-6/netrin-dependent unc-5-

mediated dorsal migration of PVM (Fig. 2.8C), indicating that unc-6/netrin 

signaling requires HS chains. This suppression of the dorsal extension of the 

PVM axon by mutations in rib-1 and rib-2 is specific as loss of function of other 

genes such as sdn-1/syndecan, slt-1/Slit and sax-3/Robo, could not suppress 

these abnormal dorsal extensions (Fig. 2.8C). Taken together, our findings 

suggest a requirement for HS chains synthesis in regulating unc-6/netrin- and slt-

1/Slit-mediated axon guidance. 

 

Modifications of the HS chains are required for unc-6/netrin and slt-1/Slit 

mediated axon guidance  

Our results indicate that the biosynthesis of HS chains onto core proteins is 

required for axon guidance mediated by unc-6/netrin and slt-1/Slit signaling. 

Once synthesized by the HS copolymerase, HS chains become extensively 

modified by epimerases and sulfotransferases (reviewed in (Bülow & Hobert 

2006)). In C. elegans, key modifying enzymes have been studied, including the 

glucuronyl C5-epimerase encoded by the gene hse-5, the 2O-sulfotransferase 

encoded by the gene hst-2, and the 6O-sulfotransferase encoded by the gene 

hst-6 (Bülow et al 2002, Bülow & Hobert 2004, Bulow et al 2008, Kinnunen et al 

2005, Townley & Bulow 2011). These HS modifying enzymes are required for 

axon guidance as mutations disrupting their function impair axon guidance 



53 

 

(Bülow et al 2002, Bülow & Hobert 2004, Bülow & Hobert 2006, Bulow et al 2008, 

Kinnunen et al 2005), but their specific roles in unc-6/netrin- and slt-1/Slit-

mediated guidance of AVM is unclear. To determine the functional importance of 

specific HS modifications in unc-6/netrin- and slt-1/Slit-mediated AVM axon 

guidance, we first analyzed single, double, and triple mutants of the genes 

coding for the HS modifying enzymes hse-5, hst-2 and hst-6, and found that loss 

of each single modifying enzyme led to minimal AVM axon guidance defects 

(Fig. 2.8D). However, the double mutants hse-5; hst-6 and hst-2 hst-6, in which 

the 6O-sulfotransferase and either the 2O-sulfotransferase or the C5-epimerase 

are mutant, display significant AVM guidance defects (Fig. 2.8D). The defects of 

these two double mutants are not further enhanced by the loss of the third key 

HS modifying enzyme in the triple mutant hse-5; hst-2 hst-6 (Fig. 2.8D). These 

observations indicate some level of compensation between the HS chain 

modifying enzymes and suggest that combinations of modifications on the HS 

chains impact unc-6/netrin- and slt-1/Slit-mediated AVM axon guidance. Next, we 

analyzed AVM ventral axon guidance in double mutant animals lacking one of 

the HS modifying enzymes encoded by hse-5, hst-2, and hst-6 as well as lacking 

unc-6/netrin or slt-1/Slit. We found that loss of function of any of the HS 

modifying enzymes hse-5, hst-2, or hst-6 enhanced the AVM guidance defects of 

null mutants for unc-6/netrin. Similarly, loss of function of any of the HS modifying 

enzymes hse-5, hst-2, or hst-6 enhanced the AVM guidance defects of 

presumptive null mutants for slt-1/Slit (Fig. 2.8D, ((Hao et al 2001)). These 
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results suggest that the sulfations and epimerizations of HS chains carried out by 

the enzymes encoded by hse-5, hst-2, or hst-6 are important for both unc-

6/netrin- and slt-1/Slit-mediated signaling in AVM axon guidance. Thus, not only 

is the polymerization of the HS chains on core proteins required for axon 

guidance during nervous system development, but also the subsequent 

modifications, as has been observed in other neurodevelopmental contexts 

(Bülow & Hobert 2006). These observations confirm the importance of HSPGs 

for neural development.  

 

 

DISCUSSION 

Animal development and tissue homeostasis rely on the regulation of molecules 

that instruct cellular responses. HSPGs regulate morphogens and guidance cues 

in the extracellular environment, but their mechanisms of action are still not 

understood, including how several HSPGs may together coordinate cellular 

responses. Here, we identify previously unavailable viable hypomorphic 

mutations for the genes rib-1 and rib-2, which encode the HS copolymerase of C. 

elegans. These mutations severely reduce HS biosynthesis and disrupt 

morphogenesis and nervous system development. We show that the action of 

HSPGs from various tissues contributes to the guidance of cellular migrations 

during development.  
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Viable mutations of the HS copolymerase in C. elegans 

The human EXT genes, namely EXT1, EXT2, EXTL1, EXTL2 and EXTL3, are 

members of the hereditary multiple exostoses gene family of tumor suppressors 

and are glycosyltransferases required for the biosynthesis of HS (reviewed in 

(Busse-Wicher et al 2014, Sugahara & Kitagawa 2000)). Only two genes in the 

C. elegans genome, rib-1 and rib-2, have recognizable homology to the 

mammalian EXT genes. Together, the RIB-1 and RIB-2 proteins form a 

functional heterodimer that catalyzes the elongation of HS chains. RIB-2 protein 

has alpha1,4-N-acetylglucosaminyltransferase activity involved in both the 

initiation and elongation steps of heparan sulfate biosynthesis, as it displays 

GlcNAc transferase I and II activities (Kitagawa et al 2001, Morio et al 2003), and 

RIB-1 and RIB-2 together have glycosyltransferase activity and catalyze the 

polymerization of HS chains (Kitagawa et al 2007). 

 

Through a forward genetic screen for mutants defective in nervous system 

development, we have identified viable partial loss-of-function mutations of the 

HS copolymerase in C. elegans. Each of the single mutants, rib-1(qm32) and rib-

2(qm46), displays severe mutant phenotypes, indicating that the genes rib-1 and 

rib-2 are not redundant, as their encoded products cannot substitute for each 

other, consistent with their specific biochemical roles in HS chain initiation and 

elongation. The point mutations rib-1(qm32) and rib-2(qm46) profoundly disrupt 

the function of these genes; we find that the global HS levels are severely 
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reduced in the viable single mutants, and that high molecular species of 

glypican/LON-2 and syndecan/SDN-1 are absent in homozygous populations of 

these viable mutants. Our results indicate that as predicted by sequence 

homology, the functions of RIB-1 and RIB-2 are indeed required for HS 

biosynthesis in C. elegans, consistent with the biochemical demonstration of the 

enzymatic activities of RIB-1 and RIB-2 and the observation that HS levels are 

decreased in maternally rescued null lethal mutants of rib-1 and rib-2 (Kitagawa 

et al 2007, Morio et al 2003).  

 

Despite the severe reduction in HSPGs in the rib-1(qm32) and rib-2(qm46) single 

mutants, it appears that residual HS copolymerase activity allows for viability. 

Approximately a third of the rib-1(qm32) and rib-2(qm46) animals are able to 

complete development and become fertile adults. In contrast, previously isolated 

deletion alleles that completely abolish the function of rib-1or rib-2 are embryonic 

lethal (Franks et al 2006, Kitagawa et al 2007, Morio et al 2003), which precluded 

their detailed analysis. Therefore, rib-1(qm32) and rib-2(qm46) are hypomorphic 

mutations and it is possible that HS copolymerase dimers composed of one 

mutant protein and one wild-type protein in the single mutants (e.g. mutant RIB-1 

and wild-type RIB-2) may be stabilized by the presence of one normal protein in 

the complex. Consistent with this notion, simultaneous disruption of both the rib-1 

and rib-2 genes in double hypomorphic mutants rib-1(qm32); rib-2(qm46), 

drastically impairs HS copolymerase and leads to early embryonic lethality. 
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In support of the possibility that in single mutants the HS copolymerase may be 

stabilized by one of the two subunits being wild type, the hypomorphic mutants 

rib-1(qm32) or rib-2(qm46) are completely maternally rescued (Hekimi et al 

1995), whereas null mutants are incompletely maternally rescued (Kitagawa et al 

2007, Morio et al 2003). rib-1(qm32) or rib-2(qm46) single hypomorphic mutant 

animals of the first homozygous mutant generation (m+/- z-/-) are phenotypically 

indistinguishable from the wild type throughout life when their mother was 

heterozygous for the mutation (Hekimi et al 1995). In contrast, for rib-1 or rib-2 

null alleles, animals of the first homozygous mutant generation (m+/- z-/-) are 

maternally rescued only to the extent that the animals survive and become 

adults, but display abnormal locomotion and egg laying, becoming filled with 

dead embryos of the next homozygous generation (Kitagawa et al 2007, Morio et 

al 2003). The maternal rescue effect is also incomplete in the double 

hypomorphic rib-1(qm32); rib-2(qm46) mutants, as the first generation of double 

homozygous animals (m+/- z-/-) are severely egg-laying defective and become 

bloated with dead embryos. Thus, it appears that maternal product deposited in 

the oocyte is sufficient to support HS copolymerase activity and allow 

development to unfold normally in single rib-1(qm32) and rib-2(qm46) 

hypomorphic mutants, but insufficient for single null mutants. These observations 

highlight the importance of HS copolymerase activity, and therefore HSPGs, for 

the earlier stages of development as well as later in life. These observations 
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indicate that rib-1(qm32) and rib-2(qm46), while severe loss-of-function alleles, 

are hypomorphic, and their viability offers the opportunity to study the functional 

requirements of HSPGs throughout development. 

 

RIB-1 and RIB-2 are not expected to affect the biosynthesis of 

glycosaminoglycans other than HS. In C. elegans, both heparan sulfate and 

chondroitin sulfate (CS) have been detected (not hyaluronate, nor dermatan 

sulfate; (Toyoda et al 2000, Yamada et al 1999)). Like HS, CS chains are 

covalently linked to the polypeptide at serine residues through a tetrasaccharide 

linker. However, the initiation and elongation of the chains of HS and CS are 

carried out by different enzymes. In the case of CS, a polymer of alternating GlcA 

(glucuronic acid) and N-acetyl galactosamine (GalNAc) residues is synthesized, 

which is catalyzed by a bifunctional glycosyltransferase encoded by the sqv-5 

gene (Hwang et al 2003b). Furthermore, enzymes transporting and synthesizing 

precursors of HS and CS include a UDP-glucose dehydrogenase, UDP-

glucuronic acid decarboxylase, and nucleotide-sugar transporter, encoded by the 

genes sqv-4, sqv-1 and sqv-7, respectively (Hwang & Horvitz 2002a, Hwang & 

Horvitz 2002b). Mutations in these genes cause more severe phenotypes than 

mutations of rib-1 and rib-2 because synthesis of both types of proteoglycans, 

HSPGs and chondroitin sulfate proteoglycans (CSPGs), are affected. 

Interestingly, mutations in these sqv genes all display maternal effect, consistent 

with proteoglycans playing crucial roles from the earliest stages of development. 
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Mutations in other proteoglycan biosynthesis enzymes also display maternal 

effect (Hwang et al 2003a, Mizuguchi et al 2003). In contrast, null mutations of 

hst-1, hst-6, and hse-5 that affect specific modifications of the HS chains 

(epimerizations, sulfations) are less severe and viable (Bülow & Hobert 2004), as 

they affect later steps in the HSPG production. Thus, rib-1(qm32) and rib-

2(qm46) mutations allow for the study of the impact of a global and specific 

disruption of HSPG biosynthesis in the context of live animals. 

 

HSPGs required for morphogenesis and cell migrations 

Disruption of HS chain synthesis by the rib-1(qm32) and rib-2(qm46) mutations 

leads to pleiotropic phenotypic consequences, including abnormal 

morphogenesis during embryonic and larval development, where embryos and 

larvae can be misshapen, with concomitant lethality. Among escapers that reach 

adulthood, locomotion and egg-laying behaviors are defective, and the 

underlying neuroanatomy is highly abnormal. Whereas we detected no defects in 

neuron identity, the migrations of numerous neurons and their axons are 

misguided, including migrations that occur during embryonic and post-embryonic 

development, as well as along both body axes (antero-posterior and dorso-

ventral). It is worth nothing that the motility per se of migrating cells is not lost in 

rib-1 and rib-2 mutants as soma and axons often overshoot their targets. Rather, 

the guidance of migrations during development is disrupted by the loss of 

function of the genes rib-1 and rib-2.  
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The numerous and penetrant defects of neuronal migrations observed in rib-

1(qm32) and rib-2(qm46) mutants suggest that disruption of HSPG biosynthesis 

impacts numerous guidance pathways. In particular, our analysis of the guidance 

of the AVM pioneer neuron reveals that HS chains are required for unc-6/netrin- 

and slt-1/Slit-mediated axon guidance. HS has been shown in vitro to be required 

for netrin- and slit-mediated axon guidance using mouse neuronal explant assays 

(Matsumoto et al 2007, Ogata-Iwao et al 2011). As HS chains are attached to 

HSPGs, this result suggests that specific HSPGs are required for unc-6/netrin- 

and slt-1/Slit-mediated axon guidance. Indeed, sdn-1/syndecan has documented 

roles in the slt-1/Slit pathway in worms and flies (Blanchette et al 2015, Johnson 

et al 2004, Rhiner et al 2005, Steigemann et al 2004), though it has not been 

directly tested whether in these contexts the HS chains on SDN-1/syndecan are 

required for its function. Our work, along with the in vitro mouse neuronal explant 

assays (Matsumoto et al 2007, Ogata-Iwao et al 2011) suggests that the HS 

chains on SDN-1/syndecan may play an important role in slt-1/Slit-mediated axon 

guidance. We have also found that HS chains are important for in vivo unc-

6/netrin-mediated axon guidance, suggesting that a specific HSPG functions in 

unc-6/netrin-mediated axon guidance. Recent work from our lab has shown that 

lon-2/glypican functions in unc-6/netrin-mediated guidance, though we found that 

this function was independent of the HS chains on LON-2/glypican (Blanchette et 

al 2015). This suggests the possibility that another HSPG could interact with the 

unc-6/netrin signaling pathway to mediate axon guidance in a HS-dependent 
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manner. Alternatively, this result suggests that possibly the HS chains on LON-

2/glypican serve a role that we did not detect with our previous studies, for 

example in trafficking LON-2/glypican molecules to the membrane or in 

regulating the stability of LON-2/glypican. 

 

HSPGs are expressed and function from multiple tissues throughout 

development 

Given that HSPGs decorate most cells in metazoans and are implicated in 

numerous cellular processes at the cell surface, including cell-matrix, cell-cell, 

and ligand-receptor interactions, the HS copolymerase could be expected to be 

expressed ubiquitously. We indeed found that the HS copolymerase is broadly 

expressed, as functional reporter rib-1::gfp was detected in virtually all cell types 

at some point during development. Interestingly, the expression pattern of the HS 

copolymerase is dynamic, as the levels differed across tissues and at different 

stages of development. Expression was strong and transient in hypodermal cells 

of the embryo, the larva, and the developing vulva, likely reflecting the 

developmental needs of cells that undergo complex shape changes and/or 

migration during morphogenesis. It is possible that hypodermal cells, which 

secrete a basement membrane along which cells migrate, express the HS 

copolymerase at high levels. Also, cells that migrate during development may 

dynamically regulate the HSPGs at their surface to alter their adhesion 
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properties, reflected in the HS copolymerase expression peaking at times of 

migration. 

 

In addition to this dynamic expression pattern, the HS copolymerase is 

continuously expressed throughout the life of the animal in a number of 

structures, including the pharynx, the pharyngeal-intestinal valve, the anal 

depressor, sphincter, and enteric muscles, as well as the nervous system. These 

are morphologically complex cells and are under continuous mechanical stress 

throughout larval and adult life; for instance, the pharynx is constantly pumping 

bacteria exerting pressure on the pharynx itself and the pharyngeal-intestinal 

valve; the enteric muscles, the anal depressor, the sphincter, all contract to expel 

the worm’s waste; and the relatively long axons of neurons within the nerve cords 

are constantly subjected to being stretched as the animal moves. Other cell types 

accumulate increasing levels of HS copolymerase in reproducing adults, such as 

the spermatheca, which stretches to welcome oocytes to be fertilized and 

contracts to expel the zygotes, and the uterine muscles, which contract to lay 

embryos. Our observations point to a role for HSPGs in maintaining the integrity 

of tissues, possibly by regulating the attachment of cells that undergo 

considerable mechanical stress from repeated body contractions, and thus 

contribute to tissue homeostasis. 
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We analyzed the spatial requirements for the HS copolymerase by focusing on 

two specific migrating neurons, namely the embryonically migrating PVQ axon 

and the AVM axon that extends during the first larval stage. In both cases we 

found that combined expression of rib-1 from several cell types was necessary to 

restore a more complete function during development. For the guidance of the 

migrating PVQ axon, the combined expression of the HS copolymerase in the 

hypodermis, neurons, and body wall muscles was able to rescue PVQ axon 

guidance defects, while single tissue expression of rib-1 was not sufficient. This 

observation indicates that combined expression of HSPGs from multiple tissues 

is required to properly pattern the ventral midline. Distinct HSPGs from specific 

tissues may contribute to properly guide the PVQ axons at the ventral midline 

(Fig. 2.9A). Interestingly, the combined loss of two HSPGs, a glypican and a 

syndecan, in the double mutant lon-2 sdn-1 leads to a similar penetrance of 

defects in PVQ guidance as rib-1(qm32) and rib-2(qm46) mutants (Diaz-Balzac 

et al 2014), suggesting that the PVQ axon guidance defects observed in rib-1 

and rib-2 mutants may reflect the disruption of the glypican/LON-2 in the 

hypodermis and syndecan/SDN-1 in the PVQ neurons specifically. Consistent 

with this, glypican/lon-2 has been found to function non-cell autonomously from 

the hypodermis to guide the axon of AVM (Blanchette et al 2015), and 

syndecan/sdn-1 has been shown to function cell autonomously in the migrating 

neuron in a variety of contexts, such as to guide the AVM axon (Blanchette et al 

2015), HSN soma, ALM soma, and PVQ axons (Rhiner et al 2005). 
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Furthermore, PVQ axon guidance likely requires that the specific HSPGs 

contributing to its guidance be not only synthesized but also modified, as the 

combined loss of HS modifying enzymes leads to PVQ axon guidance defects. 

Indeed, loss of the C5-epimerase hse-5 and the 6-O-sulfotransferase hst-6 in 

hse-5; hst-6 double mutants, or loss of the 2-O-sulfotransferase hst-2 in double 

mutants hst-2 hst-6 leads to a similar penetrance of PVQ axon guidance defects 

as rib-1 and rib-2 mutants (Bülow & Hobert 2004). Together, it appears that the 

coordinated action of specific modified HS chains synthesized in different tissues 

onto distinct core proteins function to properly guide the PVQ axons at the ventral 

midline.  

 

Similarly, the defective guidance of the axon of the AVM neuron is strongly 

rescued by expression of the HS copolymerase in the AVM neuron itself, but 

expression in the underlying hypodermis also contributes to normal AVM 

development. In this case too, possible HSPGs functioning to guide AVM may be 

syndecan/sdn-1 in AVM and lon-2/glypican in the hypodermis (Fig. 2.9B), as 

previously identified by analysis of core protein mutants (Blanchette et al 2015).  

 

Our studies uncovered viable mutations in each of the two subunits of the HS 

copolymerase in C. elegans, which severely disrupt HS biosynthesis and lead to 

profound developmental defects. Given the evolutionary conservation of the 

guidance cues and signaling pathways and of HSPGs, analysis of HS 



65 

 

copolymerase in C. elegans is likely to provide insights into the coordinated roles 

of HSPGs in mammals as well. Our findings provide a model to to dissect the 

functions of HSPGs in C. elegans and uncover general principles of their roles in 

development and tissue homeostasis. 

 

Fig. 2.9. A model for the role of 

HSPGs in the guidance of PVQ 

and AVM axons.  

A. The PVQ axons extend along 

the ventral nerve cord, following 

preceding pioneer axons. PVQ 

axons are in contact with the 

extracellular matrix and in close 

proximity to muscles and 

hypodermis (skin). For proper 

guidance of the PVQ axons, 

combined HS function from the 

muscles, skin, and neurons is 

required, suggesting that multiple 

HSPGs coordinate the guidance of 

the PVQ axon.  

B. The ventral axon guidance of 

AVM requires HS function from the 

migrating neuron itself, or from the 

skin, and HS chains are required 

for both unc-6/netrin and slt-1/Slit 

guidance systems. Taken together, 

AVM is guided by a HSPG 

functioning from AVM, likely sdn-

1/syndecan, and a HSPG 

functioning from the skin, likely lon-

2/glypican (Blanchette et al 2015). 
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MATERIALS AND METHODS 

 

Nematode strains and genetics 

Nematode cultures were maintained at 20oC on NGM plates seeded with OP50 

bacteria as described (Brenner 1974). mum-1(qm32) and mum-3(qm46) alleles 

were outcrossed 5 times before building strains with reporters. Strains were 

constructed using standard genetic procedures and are listed in Table 2.1 with 

allele details listed in Table 2.2. When needed, genotypes were confirmed by 

genotyping PCR or sequencing, using primers listed in Table 2.3. 

 

Observations of cell and axon guidance 

Guidance of cells and axons was examined in L4 larvae and adult animals using 

specific reporters. Animals were mounted on agarose pads, anaesthetized with 

100 mM sodium azide, and examined under a Zeiss Axio Scope.A1 or a Zeiss 

Axioskop 2 Plus.  

CAN soma and axon: CAN was examined using the reporter lqIs4. Axons were 

scored as defective when they were located away from the lateral aspect of the 

animal, either ventrally or dorsally, when they failed to extend fully, or exhibited 

branching. Cell bodies were scored as defective for migration when they were 

located anterior to the midpoint between the pharynx and the vulva (the wild-type 

CAN soma position near the vulva). CAN soma was virtually never found 

posterior to the vulva.  
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PVQ axon:  PVQ was examined using the reporter hdIs29. Animals were scored 

as defective when axons projected laterally, fasciculated inappropriately, or failed 

to extend fully.  

AVM axon and AVM axon and soma: AVM neurons were examined in L4 larvae 

and adult animals using the reporter zdIs5. Worms were counted as having an 

AVM soma migration defect when it was located posterior to the vulva. Animals 

with the cell body of AVM posterior to the vulva (cell migration defect) were 

excluded from axon guidance analysis, but included in Fig. 2.1C for % Defective 

soma and axon. Worms were counted as mutant for AVM ventral axon guidance 

if: a) AVM failed to send an axon ventrally and instead projected laterally to the 

anterior; or b) the AVM axon projected laterally, in the anterior or the posterior 

direction, for at least ~15 μm (>3 AVM cell body diameters) before projecting to 

the ventral side. When the angle between the initial anterior/posterior axon 

projection and the ventral axon projection was >45°, it was counted as mutant; 

thus, AVM axons with a slight curve in their ventral trajectory were not 

considered defective.  

PVM axon: Axons of neurons PVM were examined in L4 larvae and adult 

animals using the reporter zdIs5. Worms were counted as having their PVM axon 

misoriented dorsally if the axon of PVM was projecting to the dorsal side of the 

animal. The vulva was used as a reference for the ventral side. Worms carrying 

the transgene evIs25 (Pmec-4::unc-5) whose zdIs5 labeled neurons were too 

misplaced to be reliably identified were excluded from the analysis. 
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HSN soma and axon: HSN was examined using the reporter zdIs13 in young 

adult animals. Animals were scored as defective for HSN axon guidance when 

axons projected laterally, posteriorly, fasciculated inappropriately, or failed to 

extend fully. Cell bodies were scored as defective for migration when they were 

either anterior to the vulva, or more posterior than the midpoint between the 

vulva and the tail.  

Motor neuron commissures: Cholinergic and GABAergic motor neurons were 

examined using the reporters ufIs34 and vsIs48, respectively. Cholinergic: In 

wild-type animals, only seven cholinergic motor neurons (DA3, DB4, DA4, DB5, 

DA5, DA6, DA7) have left-handed commissures between the terminal bulb of the 

pharynx and the anal depressor. Animals were scored as defective when more 

than seven cholinergic motor neuron commissures were on the left side of the 

animal between the posterior end of the terminal bulb of the pharynx and the anal 

depressor. GABAergic: Only the commissures of motor neuron DD1 and VD2 are 

left-handed in wild-type animals. Animals were scored as defective when 

additional GABAergic commissures were present on the left side of the animal. 

Dorsal cord: The dorsal nerve cord was examined using the reporter evIs111. 

Animals were scored as having a defasciculated dorsal nerve cord when the cord 

was split into two or more bundles for any length of the dorsal nerve cord, instead 

of running as a single tight bundle as seen in the wild type. 

Excretory canals: Excretory canals were examined using reporter bgIs312. Wild-

type animals exhibit four lateral canals, two projecting anteriorly in the head and 



69 

 

two projecting posteriorly along the length of the body. Animals were scored as 

defective when a canal was located in an abnormal position (including when an 

anterior canal extended posteriorly, or a posterior canal extended anteriorly, or a 

canal laid ventrally or dorsally instead of laterally), when canals were too short 

(i.e., a posterior canal did not extend beyond the vulva), or when an abnormal 

number of canals was present. 

Distal tip cell guidance analysis: The path of migration of the distal tip cells (DTC) 

brings about the shape of the mature gonad arms. In the wild type, the DTC 

migrates away from the vulva location along the antero-posterior axis of the 

animal. The DTC then turns dorsally to reach the dorsal side of the animal. Once 

the DTC reaches the dorsal aspect, it migrates back towards the vulva along the 

antero-posterior axis of the animal. To infer the path of DTC migration, gonad 

arms were examined in late L4 and young adult animals using DIC microscopy. 

Animals were counted as having abnormal gonad arms when a) the anterior 

gonad arm was on the left side instead of being on the right side; b) the posterior 

gonad arm was located on the right side instead of the left side; c) the distal 

portion of a gonad arm was located ventrally instead of dorsally; d) the proximal 

portion of the gonad arm was located dorsally instead of ventrally; or e) the 

proximal gonad arm was too short, resulting from a premature turn of the DTC 

towards the dorsal side. 

Excretory glands: Excretory glands were examined in larvae using DIC 

microscopy. Animals were counted as having abnormally located excretory 
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glands when they were anterior of the pharyngeal terminal bulb (excretory glands 

are located just posterior of the pharyngeal terminal bulb in wild-type animals). 

 

Genetic mapping of mum-1/rib-1 

For mapping mum-1, a three-point mapping experiment was carried out by 

picking Unc-non-Dpy and Dpy-non-Unc recombinants from heterozygous 

mothers of the genotype mum-1/unc-24 dpy-20, and the presence of mum-1 was 

assessed among the progeny of the homozygosed recombinants. Two-point 

mapping was carried out by picking Dpy worms from mum-1 dpy-20/++ 

heterozygous mothers, and the presence of mum-1 was assessed in the next 

generation. Also, Lin-non-Dpy recombinants were picked from heterozygous 

mum-1/lin-3 dpy-20.  

 

Microinjections and transgenic animals 

As the rib-1 and rib-2 mutants are severely morphologically abnormal, cosmids, 

constructs, and PCR products were injected into strains carrying the mum-1/rib-1 

or mum-3/rib-2 mutations in a heterozygous state, balanced by flanking visible 

markers. For rib-1, we used rib-1(qm32)/unc-24(e138) dpy-20(e1282ts) and for 

rib-2, we used rib-2(qm46)/unc-32(e189) dpy-18(e364) (see Table 2.1). 

Transgenic F1s were isolated and lines homozygous for rib-1 or rib-2 were 

established. 
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Transgenic animals were generated by standard microinjection techniques (Mello 

& Fire 1995). Each construct or PCR amplicon was injected at 5 to 25 ng/µl with 

one or two coinjection markers which included pRF4-rol-6(su1006d) (100 - 150 

ng/µL), Pttx-3::mCherry (50 ng/µl), Pceh-22::gfp (50 ng/µL), pCB101.1 Prgef-

1::DsRed2 (50 ng/µL) , and Punc-122::rfp (50 ng/µL). pBSK+ (90-100 ng/µL) 

used to increase total DNA concentration if needed. For coinjection markers used 

for each rescued transgenic line, see Table 2.1. 

 

Rescue and expression constructs 

The gene rib-1/F12F6.3 is downstream of the gene srgp-1/F12F6.5 in an operon 

of two genes. The nearest gene upstream of the operon is transcribed in the 

opposite direction. The genomic region between the operon of srgp-1 and rib-1, 

and the upstream neighboring gene is 4352 bp, corresponding to coordinates 

22290 – 26642 on cosmid F12F6.  

 Prib-1::rib-1 (PCR product): A PCR product containing bases 34593 – 

39595 of cosmid F12F6 of the rib-1 locus was amplified with Pfu polymerase.  

 Prib-2::rib-2 (PCR product): A PCR product containing bases 581 to 

6196 of cosmid K01G5 of the rib-2 locus was amplified with Phusion polymerase.  

 Prib-1::gfp (pCB78): A PCR generated piece containing bases 23701 to 

26662 of cosmid F12F6 corresponding to the promoter region of the rib-1 operon, 

as well as the initial 7 codons of srgp-1, was cloned upstream of gfp in the 

pPD95.77 vector using enzymes PstI and XbaI.  
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 Prib-1::rib-1::Venus (pCB221): The rib-1 promoter region containing 

bases 23701 – 26580 of cosmid F12F6 was PCR amplified and cloned upstream 

of gfp in the pPD95.77 vector using enzymes SphI and PstI. A PCR generated 

piece containing bases 34452 - 39527 of cosmid F12F6 corresponding to the 

intergenic sequence between the genes rib-1 and srgp-1, as well as the rib-1 

coding sequence, was cloned downstream of the rib-1 promoter and upstream of 

gfp using enzymes PstI and AvrII. Then, gfp was replaced with a PCR amplified 

Venus and cloned in frame with rib-1 using enzymes MscI and ApaI. 

 Pdpy-7::rib-1 cDNA (pCB186): The rib-1 cDNA was amplified from 

yk1228g12 and ligated into a Pdpy-7 vector with a pPD95.75 backbone using 

enzymes XmaI – NcoI.  

 Pmyo-3::rib-1 cDNA (pCB196): A Pmyo-3 HindIII – XbaI fragment was 

ligated upstream of the rib-1 cDNA in a pCB186 HindIII – XbaI fragment in place 

of Pdpy-7. 

 Pmec-7::rib-1 cDNA (pCB204): The rib-1 cDNA was amplified from 

yk1228g12 and cloned into the pPD96.41 vector using enzymes AgeI – BglII.  

 Prib-1::rib-1 cDNA (pCB225): The rib-1 cDNA was ligated downstream of 

the rib-1 promoter (bases 23,701 to 26,580 of cosmid F12F6) using enzymes 

XmaI – ApaI in the pPD95.77 backbone.  

 Prgef-1::rib-1 cDNA (pCB199): The rib-1 cDNA was ligated downstream 

of Prgef-1 in place of DsRed2 using enzymes XmaI – ApaI in the pCB101.1 

vector.  
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 All inserts of finalized clones were verified by sequencing. 

 

Molecular analysis of mum-1/rib-1 and mum-3/rib-2 mutant alleles 

The genomic regions of mum-1/rib-1 and mum-3/rib-2 were PCR amplified using 

Pfu polymerase and sequenced on two independent PCR products amplified 

from genomic DNA of qm32 and qm46, respectively, using primers to cover the 

entire genomic region. Primers listed in Table 2.3 sequence over the mutation in 

each of the two mutants.  

 

Western blot analysis of SDN-1::GFP expressed in worms 

Mixed-stage wild type (N2), SDN-1::GFP (opIs171), rib-1; SDN::GFP (rib-1; 

opIs171) and rib-1 GFP control (rib-1; lqIs4) worms were collected from plates 

devoid of bacteria in buffer and protease inhibitors (Roche). Worm pellets were 

subjected to repeated freeze-thaw cycles. Protein concentration was measured 

using the Pierce 660 nm Protein Assay on a Nanodrop. 80 µg of samples mixed 

with 2x Laemmli sample buffer (Bio-Rad) were frozen in liquid nitrogen, then 

boiled, separated by SDS-PAGE on a 4-20% Mini-Protean TGX gel (Bio-Rad), 

and transferred to PVDF membrane. Membranes were incubated in 1:3000 anti-

GFP primary antibody (Millipore #AB3080) and 1:9000 goat anti-rabbit HRP 

secondary antibody (Bio-Rad #166-2408EDU). For the loading control, 

membranes were incubated in 1:5000 anti-HSP90 antibody (CST #4874) and 

1:10000 goat anti-rabbit HRP secondary antibody (Bio-Rad #166-2408EDU). 
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Signal was revealed using Clarity Western ECL Substrate (Bio-Rad), and imaged 

using film (LabScientific). 

 

Western blot analysis of LON-2::GFP and LON-2ΔGAG::GFP expressed in 

worms 

Mixed-stage wild type (N2), GFP control (lqIs4), LON-2::GFP (TLG257), LON-

2ΔGAG::GFP (TLG199), rib-1; LON-2::GFP (VQ525), rib-2; LON-2::GFP 

(VQ528), rib-1 GFP control (rib-1; lqIs4) and rib-2 GFP control (rib-2; lqIs4) 

worms were collected from plates devoid of bacteria in buffer and protease 

inhibitors (Roche), mixed with 2x Laemmli sample buffer (Bio-Rad), and frozen in 

liquid nitrogen. Samples were boiled and spun down, separated by SDS-PAGE 

on a 4-20% Mini-Protean TGX gel (Bio-Rad), and transferred to PVDF 

membrane. Membranes were incubated in 1:3000 anti-GFP primary antibody 

(Millipore #AB3080) and 1:9000 goat anti-rabbit HRP secondary antibody (Bio-

Rad #166-2408EDU). For the loading control, membranes were incubated in 

1:5000 anti-HSP90 antibody (CST #4874) and 1:10000 goat anti-rabbit HRP 

secondary antibody (Bio-Rad #166-2408EDU). Signal was revealed using Clarity 

Western ECL Substrate (Bio-Rad), and imaged using film (LabScientific). 

 

Analysis of HS levels by western blot in worms   

Protein extraction: Mixed-stage worms from plates devoid of bacteria were 

collected in 50 mM Tris buffer and protease inhibitors (Roche # 11697498001), 
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and frozen in liquid nitrogen. Worm pellets were subjected to repeated freeze-

thaw cycles and protein concentration was measured using the 660 nm Protein 

Assay (Pierce # 22660) on a Nanodrop.  

Detection of HS: 80 µg of protein suspended in buffer and protease inhibitors 

(Roche) were used per sample. Undigested controls were treated exactly like the 

digested samples, except for the heparinase I and III enzyme treatment. To the 

digested samples, 10 mU of heparinase I and III enzyme (Sigma-Aldrich # 

H3917) was added. All samples were incubated at 37°C for 3 hours.  2x Laemmli 

sample buffer (Bio-Rad) was added and samples were frozen in liquid nitrogen. 

Samples were boiled, separated by SDS-PAGE on a 4-20% Mini-Protean TGX 

gel (Bio-Rad), and transferred to PVDF membrane. Membranes were incubated 

in 1:200 anti-Δ-Heparan Sulfate (3G10 epitope) primary antibody (Amsbio 

#370260-1) and 1:10000 horse anti-mouse HRP secondary antibody (Vector 

Labs #PI-2000). For the loading control, membranes were incubated in 1:5000 

anti-HSP90 antibody (CST #4874) and 1:9000 goat anti-rabbit HRP secondary 

antibody (Bio-Rad #166-2408EDU). Signal was revealed using Clarity Western 

ECL Substrate (Bio-Rad), and imaged using film (LabScientific).  
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TABLES 

Table 2.1 Strains used in this study  

Strain  Genotype Transgene Reference 

N2   (Brenner 1974) 

LE311 lqIs4 III Pceh-10::gfp (Tsalik et al 2003) 

 hdIs29 V Podr-2::cfp; Psra-6::DsRed2 (Schmitz et al 2008) 

MT4005 zdIs5 I Pmec-4::gfp; lin-15(+) (Clark & Chiu 2003) 

SK4013 zdIs13 IV Ptph-1::gfp (Clark & Chiu 2003) 

VQ84 
 

vsIs48 X; ufIs34 Punc-17::gfp; Punc-47::mCherry (Chase et al 2004, 
Petrash et al 2013) 

NW1229 evIs111 III  Prgef-1::gfp; dpy-20(+) (Altun-Gultekin et al 
2001) 

OH1360 bgIs312 Ppes-6::gfp (Berry et al 2003) 

rib-1 and rib-2 alone and with AVM guidance factors  

VQ344 rib-1(qm32) IV; lqIs4 III  This study 

VQ355 rib-2(qm46) III; lqIs4 III  This study 

VQ196 rib-1(qm32) IV; hdIs29 V  This study 

VQ212 rib-2(qm46) III; hdIs29 V  This study 

VQ252 rib-1(qm32) IV; zdIs5 I  This study 

VQ200 rib-2(qm46) III; zdIs5 I  This study 

VQ661 rib-1(qm32 ) zdIs13 IV  This study 

VQ402 rib-2(qm46 )III; zdIs13 IV  This study 

VQ202 rib-1(qm32) IV; vsIs48; ufIs34  This study 

VQ208 rib-2(qm46) III; vsIs48; ufIs34  This study 

VQ209 rib-1(qm32) IV; evIs111 III  This study 

VQ213 rib-2(qm46) evIs111 III  This study 

VQ342 rib-1(qm32) IV; bgIs312  This study 

VQ343 rib-2(qm46) III; bgIs312  This study 

VQ230 rib-1(qm32)/unc-24(e138) dpy-
20(e1282ts) IV; hdIs29 V 

 This study 

VQ265 rib-1(qm32)/unc-24(e138) dyp-
20(e1282ts) IV; zdIs5 I 

 This study 

VQ465 rib-1(qm32) IV; unc-6(e78) X; zdIs5 I  This study 

VQ449 rib-2(qm46) IV; unc-6(e78) X; zdIs5 I  This study 

VQ405 rib-1(qm32) IV; slt-1(eh15) X; zdIs5 I  This study 

VQ404 rib-2(qm46) IV; slt-1(eh15) X; zdIs5 I  This study 

VQ443 rib-1(qm32) IV; kyIs209 X; zdIs5 I  This study 

VQ456 rib-2(qm46) IV; kyIs209 X; zdIs5 I  This study 

HS-modifying enzymes and AVM axon guidance factors 
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VQ551 hse-5(tm472) III; zdIs5 I   This study 

VQ547 hst-2(ok595) X; zdIs5 I  This study 

VQ546 hst-6(ok273) X; zdIs5 I  This study 

VQ569 hse-5(tm472) III; hst-2(ok595) X; 
zdIs5 I 

 This study 

VQ560 hse-5(tm472) III; hst-6(ok273) X; 
zdIs5 I 

 This study 

VQ571 hst-2(ok595) hst-6(ok273) X; zdIs5 I  This study 

VQ599 hst-2(ok595) hst-6(ok273) X; hse-
5(tm472) III; zdIs5 I 

 This study 

VQ395 unc-6(e78) X; zdIs5 I  (Blanchette et al 2015) 

VQ577 hse-5(tm472) III; unc-6(ev400) X; 
zdIs5 I 

 This study 

VQ573 hst-2(ok595) unc-6(ev400) X; zdIs5 I  This study 

VQ579 hst-6(ok273) unc-6(ev400) X; zdIs5 I  This study 

VQ401 slt-1(eh15) X; zdIs5 I  (Blanchette et al 2015) 

VQ427 kyIs209 X; zdIs5 I  (Blanchette et al 2015) 

VQ602 hse-5(tm472) III; slt-1(eh15) X; zdIs5 
I 

 This study 

VQ604 hst-2(ok595) slt-1(eh15) X; zdIs5 I  This study 

VQ606 hst-6(ok273) slt-1(eh15) X; zdIs5 I  This study 

VQ616 hse-5(tm472) III;  hst-2(ok595) hst-
6(ok273) slt-1(eh15)X; zdIs5 I 

 This study 

LON-2::GFP and SDN-1::GFP strains 

WS3404 opIs171 Psdn-1::sdn-1::gfp; lin-15(+) (Rhiner et al 2005) 

VQ450 rib-1(qm32) IV; opIs171 Psdn-1::sdn-1::gfp; lin-15(+) This study 

TLG257 lon-2(e678) X; texEx164 Plasmid HW483 (Plon-2::lon-2::gfp), 
Pttx-3::mCherry 

(Taneja-Bageshwar 
& Gumienny 2012) 

TLG199 lon-2(e678) X; texEx144 pSBL3SG006 (Plon-2::LON-
2ΔGAG::gfp), Pttx-3::mCherry 

(Taneja-Bageshwar 
& Gumienny 2012) 

VQ525 rib-1(qm32) IV; texEx164 Plasmid HW483 (Plon-2::lon-2::gfp), 
Pttx-3::mCherry 

This study 

VQ528 rib-2(qm46) III; texEx144 Plasmid HW483 (Plon-2::lon-2::gfp), 
Pttx-3::mCherry 

This study 

Transgenic Lines    

VQ370 rib-1(qm32) IV; zdIs5 I; 
qvEx80  

pCB221 (Prib-1::rib-1::Venus), Pttx-
3::mCherry, pRF4.  Line #1 

This study 

VQ684 rib-1(qm32) IV; zdIs5 I; 
qvEx148 

pCB221 (Prib-1::rib-1::Venus), Pttx-
3::mCherry, pRF4.  Line #2 

This study 

VQ502 rib-2(qm46) III; zdIs5 I; 
qmEx329  

PCR product of bases 604..6196 of 
cosmid K01G5, pRF4.  Line #1 

This study 

VQ503 rib-2(qm46) III; zdIs5 I; 
qmEx330  

PCR product of bases 604..6196 of 
cosmid K01G5, pRF4.  Line #2 

This study 

VQ381 rib-1(qm32) IV; hdIs29 V; 
qvEx86  

pCB221 (Prib-1::rib-1 ::Venus), Pttx-
3::mCherry, pRF4.  Line #1 

This study 
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VQ673 rib-1(qm32) IV; hdIs29 V; 
qvEx140  

pCB221 (Prib-1::rib-1::Venus), Pttx-
3::mCherry, pRF4.  Line #2 

This study 

VQ504 rib-2(qm46) III; hdIs29 V; 
qmEx329 

PCR product of bases 604…6196 of 
cosmid K01G5, pRF4.  Line #1 

This study 

VQ505 rib-2(qm46) III; hdIs29 V; 
qmEx330  

PCR product of bases 604…6196 of 
cosmid K01G5, pRF4.  Line #2 

This study 

VQ663 rib-1(qm32) IV; zdIs5 I; 
qvEx131  

pCB225 (Prib-1::rib-1), Pttx-
3::mCherry, pRF4.  Line #1 

This study 

VQ376 rib-1(qm32) IV; zdIs5 I; 
qvEx81  

pCB225 (Prib-1::rib-1), Pttx-
3::mCherry, pRF4.  Line #2 

This study 

VQ664 rib-1(qm32) IV; zdIs5 I; 
qvEx132  

pCB225 (Prib-1::rib-1), Pttx-
3::mCherry, pRF4.  Line #3 

This study 

VQ665 rib-1(qm32) IV; zdIs5 I; 
qvEx133  

pCB204 (Pmec-7::rib-1), Pceh-
22::gfp, pRF4.  Line #1 

This study 

VQ334 rib-1(qm32) IV; zdIs5 I;  
qvEx85 

pCB204 (Pmec-7::rib-1), Pceh-
22::gfp, pRF4.  Line #2 

This study 

VQ508 rib-1(qm32) IV; zdIs5 I; 
qvEx101 

pCB204 (Pmec-7::rib-1), pRF4, 
Prgef-1::DsRed2. Line #3 

This study 

VQ509 rib-1(qm32) IV; zdIs5 I; 
qvEx102 

pCB204 (Pmec-7::rib-1), pRF4, 
Prgef-1::DsRed2. Line #4 

This study  

VQ667 rib-1(qm32) IV; zdIs5 I; 
qvEx134  

pCB196 (Pmyo-3::rib-1), Pttx-
3::mCherry, pRF4.  Line #1 

This study 

VQ666 rib-1(qm32) IV; zdIs5 I; 
qvEx141 

pCB196 (Pmyo-3::rib-1), Pttx-
3::mCherry, pRF4.  Line #2 

This study 

VQ668 rib-1(qm32) IV; zdIs5 I; 
qvEx135 

pCB196 (Pmyo-3::rib-1), Pttx-
3::mCherry, pRF4.  Line #3 

This study 

VQ487 rib-1(qm32) IV; zdIs5 I;  
qvEx94 

pCB196 (Pmyo-3::rib-1), Pttx-
3::mCherry, pRF4.  Line #4 

This study 

VQ488 rib-1(qm32) IV; zdIs5 I; 
 qvEx95  

pCB186 (Pdpy-7::rib-1), Pttx-
3::mCherry, pRF4.  Line #1 

This study 

VQ669 rib-1(qm32) IV; zdIs5 I; 
qvEx136 

pCB186 (Pdpy-7::rib-1), Pttx-
3::mCherry, pRF4.  Line #2 

This study 

VQ670 rib-1(qm32) IV; zdIs5 I; 
qvEx137 

pCB186 (Pdpy-7::rib-1), Pttx-
3::mCherry, pRF4.  Line #3 

This study 

VQ672 rib-1(qm32) IV; zdIs5 I; 
qvEx139 

pCB186 (Pdpy-7::rib-1), Pttx-
3::mCherry, pRF4.  Line #4 

This study 

VQ391 +; qvEx90  pCB78 (Prib-1::gfp), pRF4.  Line #1 This study 

VQ204 +; qvEx36  
 

pCB78 (Prib-1::gfp), Pttx-
3::mCherry, pBSK+.   Line #2 

This study 

VQ205 +; qvEx37 
 

pCB78 (Prib-1::gfp), Pttx-
3::mCherry, pBSK+.   Line #3 

This study 

VQ356 +; qvEx79  
 

pCB221 (Prib-1::rib-1 ::Venus), 
pRF4, Punc-122::rfp. Line #1 

This study 

VQ379 +; qvEx84  pCB221 (Prib-1::rib-1 ::Venus), 
pRF4.    
Line #2 

This study 

VQ694 rib-1(qm32) IV; hdIs29 V; 
qvEx153 

pCB199 (Prgef-1::rib-1), Pttx-
3::mCherry, pRF4. Line #1 

This study 

VQ695 rib-1(qm32) IV; hdIs29 V; 
qvEx154 

pCB199 (Prgef-1::rib-1), Pttx-
3::mCherry, pRF4. Line #2 

This study 

VQ696 rib-1(qm32) IV; hdIs29 V; 
qvEx155 

pCB199 (Prgef-1::rib-1), Pttx-
3::mCherry, pRF4. Line #3 

This study 
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VQ253 rib-1(qm32) IV; hdIs29 V; 
qvEx43 

pCB186 (Pdpy-7::rib-1), Pttx-
3::mCherry, pRF4. Line #1 

This study 

VQ698 rib-1(qm32) IV; hdIs29 V; 
qvEx157 

pCB186 (Pdpy-7::rib-1), Pttx-
3::mCherry, pRF4. Line #2 

This study 

VQ699 rib-1(qm32) IV; hdIs29 V; 
qvEx158 

pCB186 (Pdpy-7::rib-1), Pttx-
3::mCherry, pRF4. Line #3 

This study 

VQ260 rib-1(qm32) IV; hdIs29 V; 
qvEx47 

pCB196 (Pmyo-3::rib-1), Pttx-
3::mCherry, pRF4. Line #1 

This study 

VQ261 rib-1(qm32) IV; hdIs29 V; 
qvEx48 

pCB196 (Pmyo-3::rib-1), Pttx-
3::mCherry, pRF4. Line #2 

This study 

VQ702 rib-1(qm32) IV; hdIs29 V; 
qvEx161 

pCB196 (Pmyo-3::rib-1), Pttx-
3::mCherry, pRF4. Line #3 

This study 

VQ703 rib-1(qm32) IV; hdIs29 V; 
qvEx162 

pCB199 (Prgef-1::rib-1), pCB186 
(Pdpy-7::rib-1), pCB196 (Pmyo-
3::rib-1), Pttx-3::mCherry, pRF4. 
Line #1 

This study 

VQ704 rib-1(qm32) IV; hdIs29 V; 
qvEx163 

pCB199 (Prgef-1::rib-1), pCB186 
(Pdpy-7::rib-1), pCB196 (Pmyo-
3::rib-1), Pttx-3::mCherry, pRF4. 
Line #2 

This study 

VQ705 rib-1(qm32) IV; hdIs29 V; 
qvEx164 

pCB199 (Prgef-1::rib-1), pCB186 
(Pdpy-7::rib-1), pCB196 (Pmyo-
3::rib-1), Pttx-3::mCherry, pRF4. 
Line #3 

This study 

evIs25 strains and controls 

VQ396 unc-6(ev400) X; zdIs5 I  (Blanchette et al 2015) 

VQ470 unc-40(e271) zdIs5 I  (Blanchette et al 2015) 

VQ473 sax-3(k123) X; zdIs5 I  (Blanchette et al 2015) 

VQ423 sdn-1(zh20) X; zdIs5 I  (Blanchette et al 2015) 

VQ536 evIs25 X; zdIs5 I  (Blanchette et al 2015) 

VQ538 unc-6(ev400) evIs25 X; zdIs5 I  (Blanchette et al 2015) 

VQ540 unc-40(e271) zdIs5 I; evIs25 X  (Blanchette et al 2015) 

VQ556 slt-1(eh15) evIs25 X; zdIs5 I  (Blanchette et al 2015) 

VQ557 sax-3(ky123) evIs25 X; zdIs5 I  (Blanchette et al 2015) 

VQ572 sdn-1(zh20) evIs25 X; zdIs5 I  (Blanchette et al 2015) 

VQ554 rib-1(qm32) IV; evIs25 X; zdIs5 I  This study  

VQ539 rib-2(qm46) III; evIs25 X; zdIs5 I  This study  
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Table 2.2 Mutant alleles used in this study 

 

 

 

 

 

 

Gene Allele Nature of allele Reference 

rib-1 qm32 Stop codon converted into a Lys codon, likely 

extending the open reading frame into the 3’UTR 

This study 

 

rib-2 qm46 Arg to Gln amino acid substitution at residue 434 This study 

 

hse-5 

 

tm472 1249 bp deletion and addition of an adenosine, 

which deletes most of exons 4 – 7 and generates 

a frame shift after exon 4 

(Bülow & Hobert 

2004) 

hst-2 

 

ok595 1336 bp deletion, deleting from exon 4 to part of 

exon 7 

(Bülow & Hobert 

2004) 

hst-6 

 

ok273 1064 bp deletion, with the addition of nucleotides 

CTTT, which deletes exons 4 and 5 and 

generates a frameshift after exon 3 

(Bülow & Hobert 

2004) 

unc-6 ev400 Early stop Q78*. Null. (Wadsworth et al 

1996) 

unc-6 e78 C410Y. Partial loss of function. (Lim & 

Wadsworth 2002) 

slt-1 eh15 Duplication and deletions. First copy contains a 

1900 bp deletion. Both duplicated copies have a 

100 bp deletion. First copy produces no mRNA 

while second copy produces mRNA with a 

frameshift.  

(Hao et al 2001) 

unc-40 e271 Early stop R824*. Null. (Stavoe et al 

2012) 

sax-3 

 

ky123 Deletion of signal peptide and first exon.  (Zallen et al 

1998) 

sdn-1 zh20 1258 bp deletion. (Rhiner et al 

2005) 
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Table 2.3 Primers used for strain building 

Gene Primer  Sequence 
 

PCR 
product 

 (bp) 

rib-1(qm32) sequencing   

 oCB1026 gggtgcgtaaggagatgagg 456 
 oCB1027 ggcaaccagccatcacagcc  

rib-2(qm46) sequencing   

 oCB1028 caacttatcggatcttcaacc 437 
 oCB1029 ttccagcggtccaaggagg  

slt-1(eh15)    

Mutant specific  oCB919 tatgacgtgttccggaaacc 467 
 oCB920 atttctctaatacgggtagc  
Wild-type specific  oCB922 tctcaattctaacatccatgtc 339 
 oCB920 atttctctaatacgggtagc  

sax-3(ky123)    

Mutant specific  oCB1038 agaatgtggctctctagtcc ~330 
 oCB1039 tcgtttccgcgcattcagtc  
Wild-type specific  oCB1038 agaatgtggctctctagtcc 527 
 oCB1042 agcttcggattactgcttgc  

sdn-1(zh20)    

Mutant specific  oCB837 aaagagatgccggtcaggtg 410 
 oCB842 aatggacgggatgagtgtcc  
Wild-type specific  oCB837 aaagagatgccggtcaggtg 293 
 oCB876 cttcagattcgagcctgctttgc  

evIs25:  Detection of insertion Pmec-7::unc-5 
 oCB933 ttgtcagtcgagcctcaagg ~631 
 oCB966 tccactgtctgataatctgg  

kyIs209:  Detection of insertion Pmyo-3::slt-1 
 oCB945 tcattcgggatattttgtgg 592 
 oCB950 aagaagaagcatgcttctgg  

hse-5(tm472)    

Mutant specific  oCB1055 atcgtgtacgatgtgtcagc 546 
 oCB1056 attcgcctcatacggtttcc  
Wild-type specific  oCB1055 atcgtgtacgatgtgtcagc 779 
 oCB1057 aactttctctcggcaattg  

hst-2(ok595)    

Mutant specific  oCB1052 tattacaacatggacggagc 692 
 oCB1054 aacattatgcgcatgaacgc  

    
   Wild-type specific  oCB1052 tattacaacatggacggagc 486 
 oCB1053 ttagcagtgattcaattacg  

hst-6(ok273)    

   Mutant specific  oCB1049 ttagacgtggctgttctcac 723 
 oCB1051 tgtgagtctgttaagggtgg  
   Wild-type specific  oCB1049 ttagacgtggctgttctcac 804 
 oCB1212 agaaatgttgtgtagaagtag  
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ABSTRACT 

Netrin is a key axon guidance cue that orients axon growth during neural circuit 

formation. However, the mechanisms regulating netrin and its receptors in the 

extracellular milieu are largely unknown. Here we demonstrate that in C. elegans, 

LON-2/glypican, a heparan sulfate proteoglycan, modulates UNC-6/netrin 

signaling, and may do this through interactions with the UNC-40/DCC receptor. 

We show that developing axons misorient in the absence of LON-2/glypican 

when the SLT-1/slit guidance pathway is compromised, and that LON-2/glypican 

functions in both the attractive and repulsive UNC-6/netrin pathways. We find 

that the core LON-2/glypican protein, lacking its heparan sulfate chains, and 

secreted forms of LON-2/glypican, are functional in axon guidance. We also find 

that LON-2/glypican functions from the epidermal substrate cells to guide axons, 

and provide evidence that LON-2/glypican associates with UNC-40/DCC 

receptor-expressing cells. We propose that LON-2/glypican acts as a modulator 

of UNC-40/DCC-mediated guidance to fine-tune axonal responses to UNC-

6/netrin signals during migration. 

 

INTRODUCTION 

Directed migrations of developing axons are essential for the proper wiring of the 

nervous system. A host of guidance cues and their receptors instruct axon 

guidance decisions. However, how these cues and the growth cone’s responses 

to them are spatially and temporally regulated in vivo remains largely unknown. 
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Answering this question is central to our understanding of how growing axons 

navigate in complex environments to reach their targets during development and 

regeneration. 

 

UNC-6/netrin is a highly conserved secreted guidance cue with structural 

similarity to the extracellular matrix protein laminin (Ishii et al 1992, Kennedy et al 

1994, Serafini et al 1994). UNC-6/netrin directs attractive guidance through 

receptors of the UNC-40/DCC family, and repulsive guidance through both UNC-

40/DCC and UNC-5/UNC5 receptors (Chan et al 1996, Hedgecock et al 1990, 

Leung-Hagesteijn et al 1992). Notably, whereas netrin receptors and 

downstream transduction pathways have been well characterized, how netrin 

signals are regulated extracellularly remains largely unknown. UNC-6/netrin was 

identified through genetic analysis in C. elegans (Ishii et al 1992), and 

biochemically purified and cloned from vertebrate embryos (Serafini et al 1994). 

A second biochemical component that synergized with netrin to elicit axon 

outgrowth was termed “netrin synergizing activity” (NSA) (Kennedy et al 1994) 

and remains unidentified. Vertebrate netrin-1 and its receptor DCC can bind 

heparin, a fully sulfated version of heparan sulfate (HS), in vitro (Bennett et al 

1997, Geisbrecht et al 2003, Kennedy et al 1994), and a general disruption of HS 

chain synthesis is detrimental to netrin-1-mediated axon outgrowth in vitro 

(Matsumoto et al 2007, Ogata-Iwao et al 2011). While heparan sulfate 

proteoglycans (HSPGs) might be intriguing candidates for NSA, it is not yet 
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known whether a specific HSPG is required for netrin signaling, nor how 

interactions with HSPGs might regulate netrin signals to direct axons during 

nervous system development. 

 

We addressed these questions using the nematode Caenorhabditis elegans, 

which has been instrumental for discovering major conserved axon guidance 

pathways. During larval development, the axon of the mechanosensory neuron 

AVM migrates ventrally as its growth cone integrates signals from two 

complementary guidance cues (Fig. 3.1a) (Chan et al 1996, Hao et al 2001, 

Hedgecock et al 1990, Hedgecock et al 1987, Ishii et al 1992, Leung-Hagesteijn 

et al 1992, Zallen et al 1998): (1) UNC-6/netrin is secreted at the ventral midline 

and attracts the growth cone ventrally via the receptor UNC-40/DCC (Chan et al 

1996, Wadsworth et al 1996), and (2) SLT-1/Slit is secreted by the dorsal 

muscles and repels the growth cone away from the dorsal side via the receptor 

SAX-3/Robo (Hao et al 2001, Zallen et al 1998). Animals null for the guidance 

cues unc-6/netrin or slt-1/Slit exhibit partial AVM ventral axon guidance defects, 

and loss of both cues in unc-6 slt-1 double mutants results in fully penetrant 

guidance defects ((Hao et al 2001), Fig. 3.2). AVM axons defective in guidance 

fail to extend ventrally and instead migrate laterally in the anterior direction (Fig. 

3.1). In this study, we use the AVM axon as a model to elucidate mechanisms 

that regulate UNC-6/netrin signaling. 



87 

 

Here we provide a missing link in understanding the modulation of UNC-6/netrin 

signaling in the extracellular milieu. We demonstrate that LON-2/glypican, a 

HSPG secreted from epidermal cells, acts as a modulator of the UNC-6/netrin 

signaling pathways to guide migrating cells and axons. We show that LON-

2/glypican modulates UNC-6/netrin signaling in both attractive guidance 

mediated by the UNC-40/DCC receptor, and repulsive guidance mediated by the 

UNC-40/DCC and UNC-5/UNC5 receptors. We provide evidence that LON-

2/glypican associates with UNC-40/DCC-receptor-expressing cells. We show that 

the N-terminal globular region of LON-2/glypican, lacking the three HS chain 

attachment sites, is functional in UNC-6/netrin-mediated guidance. Our studies 

unravel a novel mechanism by which LON-2/glypican is produced by substrate 

epidermal cells and released from the membrane to likely associate with UNC-

40/DCC-expressing neurons, enabling the modulation of their responses to UNC-

6/netrin during axon migrations. 

 

 

RESULTS 

 

lon-2/glypican and sdn-1/syndecan cooperate to guide unc-6/netrin- and 

slt-1/Slit-mediated axon migration 

To address whether a specific HSPG interacts with the netrin signaling system to 

guide axons, we first examined axon guidance in mutants lacking core HSPGs. 
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HSPGs are composed of a core protein with covalently attached long 

unbranched heparan sulfate (HS) chains (Bülow & Hobert 2006). HSPGs can be 

associated with the plasma membrane through either a transmembrane domain 

(e.g., syndecans) or a glycerophosphatidylinositide (GPI)-anchor (e.g., 

glypicans), or be secreted into the extracellular milieu (e.g., perlecans, agrins). 

We examined the axon morphology of AVM in single, double, and triple mutants 

for several core HSPG proteins (see Table 3.1 for alleles). These included the 

sole C. elegans syndecan (sdn-1), the two glypicans (lon-2, gpn-1), perlecan 

(unc-52), and agrin (agr-1). We found that the mild AVM axon guidance defects 

of sdn-1/syndecan mutants, including a null, (Rhiner et al 2005) were enhanced 

by the complete loss of lon-2/glypican in double mutants lon-2 sdn-1 (Fig. 3.1b), 

revealing a role for lon-2/glypican in AVM axon guidance. Similarly, loss of lon-

2/glypican enhances sdn-1/syndecan mutants in motorneuron guidance (Gysi et 

al 2013). Although the C. elegans genome encodes two glypicans, loss of 

function of the second glypican, gpn-1, using two likely null mutant alleles (see 

Fig. 3.3), did not enhance the defects of lon-2/glypican or sdn-1/syndecan null 

mutants, in double or triple mutants (Fig. 3.1b). Moreover, we did not observe 

abnormal phenotypes in the single mutants for agr-1/agrin or unc-52/perlecan. 

These observations highlight the specificity of lon-2/glypican function in this axon 

guidance process, and raise the possibility that lon-2/glypican might be a 

component of the pathways guiding the AVM axon towards the ventral midline.    
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lon-2/glypican acts in the attractive and repulsive unc-6/netrin guidance 

pathways 

Considering that AVM axon guidance occurs via the unc-6/netrin and slt-1/Slit 

pathways, mutations in genes such as lon-2/glypican and sdn-1/syndecan that 

affect AVM axon guidance may point towards interactions with either of these two 

guidance systems. Since the AVM axon guidance defects in lon-2 sdn-1 double 

mutants are qualitatively similar to those of mutants lacking unc-6/netrin or slt-

1/Slit, we determined how lon-2/glypican and sdn-1/syndecan impact unc-6/netrin 

and slt-1/Slit signaling. In animals that completely lack slt-1/Slit function, the 

complete loss of a gene functioning independently of slt-1/Slit is expected to 

enhance the AVM guidance defects, such as in the double null mutants unc-

Figure 3.1. lon-2/glypican functions in the attractive unc-6/netrin guidance pathway. 

(a) During the first larval stage of C. elegans, the pioneer neuron AVM extends ventrally along 

the body wall until it reaches the ventral nerve cord. Its migration results from the combined 

attractive response to UNC-6/netrin (secreted at the ventral midline) via the UNC-40/DCC 

receptor, and the repulsive response to SLT-1/Slit (secreted by the dorsal muscles) via its 

SAX-3/Robo receptor. We visualized the morphology of the AVM axon using the transgene 

Pmec-4::gfp. (b) The heparan sulfate proteoglycans lon-2/glypican and sdn-1/syndecan 

cooperate to guide the axon of AVM, as their simultaneous loss enhances guidance defects. 

The role of lon-2/glypican in axon guidance is specific as the loss of lon-2/glypican, but not the 

loss of the other C. elegans glypican, gpn-1, enhances the defects of sdn-1/syndecan 

mutants. (c) Complete loss of lon-2/glypican enhances the axon guidance defects resulting 

from disrupted slt-1/Slit signaling in mutants for slt-1/Slit or its receptor sax-3/Robo, as well as 

in animals misexpressing slt-1 in all body wall muscles (using a Pmyo-3::slt-1 transgene). 

Data for wild type and lon-2 are the same as in (b). (d) Complete loss of lon-2/glypican does 

not enhance the AVM guidance defects of unc-6/netrin mutants, nor of mutants for its receptor 

unc-40/DCC, suggesting that lon-2/glypican functions in the same genetic pathway as unc-

6/netrin. Data for wild type, and lon-2 are the same as in (b). (e) Loss of sdn-1/syndecan 

function does not enhance the defects of slt-1/Slit or sax-3/Robo mutants, but enhances the 

defects of unc-40/DCC mutants. Data for wild type, sdn-1, slt-1, sax-3, and unc-40 same as in 

(b-d). Error bars are standard error of the proportion. Asterisks denote significant difference: 

*** P ≤ 0.001,** P ≤ 0.01, and * P ≤ 0.05 (z-tests, P values were corrected by multiplying by 

the number of comparisons). ns, not significant.  
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6/netrin slt-1/Slit (see Fig. 3.2). We tested the interactions of lon-2/glypican with 

the slt-1/Slit pathway in AVM axon guidance, and found that the complete loss of  

 

 

lon-2/glypican enhanced a presumptive null allele of slt-1/Slit in lon-2 slt-1 double 

mutants (Fig. 3.1c), suggesting that lon-2/glypican functions in a pathway 

separate from slt-1/Slit. Loss of lon-2/glypican also enhanced guidance defects 

when signaling through sax-3/Robo, the slt-1/Slit receptor, was disrupted in lon-2 

sax-3 double null mutants, providing further evidence that lon-2/glypican 

functions in a pathway separate from that of slt-1/Slit (Fig. 3.1c). As an additional 

method to investigate the impact of lacking lon-2/glypican function when slt-1/Slit 

signaling is perturbed, we used a transgene that ectopically expresses slt-1/Slit 

from both ventral and dorsal body wall muscles (using Pmyo-3::slt-1), and 

Figure 3.2. Ventral guidance of the 

AVM axon. Mutations in unc-6/netrin 

and slt-1/slit pathways result in partially 

redundant defects, as previously 

established by the Culotti and 

Bargmann labs (Hao et al 2001). 

Mutants displayed here never exhibit a 

dorsally migrated AVM axon. Error bars 

are standard error of the proportion. 

Asterisks denote significant difference: 

*** P ≤ 0.001 (z-tests, P values were 

corrected by multiplying by the number 

of comparisons). ns, not significant. 
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Figure 3.3. gpn-1(ok377) and gpn-1(tm595) are likely null alleles. (a) gpn-1(ok377) and 

gpn-1(tm595) are deletions (brackets) in the gpn-1 locus. (b) RT-PCR using primers oCB834 

and oCB1321 yields truncated products in gpn-1(ok377) and gpn-1(tm595). Y45F10D.4 is a 

housekeeping gene used as an RT-PCR control (Hoogewijs et al 2008). Sequencing of the 

gpn-1 RT-PCR products for ok377 (blue) reveals that the transcript lacks most of exon 3 and 

has several in-frame Stop codons (*), as intronic sequence (hatch pattern) gets incorporated 

into the mature transcript. Sequencing of the gpn-1 RT-PCR product for tm595 (red) reveals 

that the transcript lacks exons 2 and 3, and has several in-frame Stop codons (*), as intronic 

sequence (hatch pattern) gets incorporated into the mature transcript. No alternatively spliced 

products were detected in the mutants ok377 and tm595. (c) gpn-1(ok377) and gpn-1(tm595) 

are strong loss-of-function mutations, likely nulls, in which, at most, small truncated proteins 

would get produced. 
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misguides the axon of AVM (Yu et al 2002). Loss of lon-2/glypican enhanced  

the defects caused by slt-1/Slit misexpression (Fig. 3.1c), consistent with the 

above findings that lon-2/glypican mediates its axon guidance effects 

independently of slt-1/Slit.  

 

The unc-6/netrin pathway functions independently of slt-1/Slit to guide AVM. To 

address whether lon-2/glypican functions in the unc-6/netrin axon guidance 

pathway, we examined the AVM axon in double mutants of lon-2/glypican and 

unc-6/netrin. In animals that completely lack unc-6/netrin function, the complete 

loss of a gene functioning in the same unc-6/netrin pathway is expected to not 

enhance the AVM guidance defects, such as in the double null mutants unc-6; 

unc-40 (see Fig. 3.2). We found that the complete loss of lon-2/glypican did not 

enhance the guidance defects displayed by unc-6/netrin null mutants ev400 (Fig. 

3.1d). Given that loss of lon-2 enhances the defects of other guidance mutants 

(see doubles with sdn-1, slt-1, sax-3, Pmyo-3::slt-1, in Fig. 3.1b,c and sqv-5 in 

Fig. 3.4), the lack of enhancement when combined with the unc-6 null mutation 

suggests that lon-2/glypican functions in the same pathway as unc-6/netrin.  

 

Consistent with this idea, we also found that complete loss of lon-2/glypican did 

not enhance the AVM guidance defects of two null mutant alleles of the netrin 

receptor unc-40/DCC in the double mutants unc-40; lon-2 (Fig. 3.1d), suggesting 

that lon-2/glypican functions in the same pathway as unc-40/DCC in AVM ventral  
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guidance. These observations raise the interesting possibility that lon-2/glypican 

may be the HSPG dedicated to modulate unc-6/netrin signaling through unc-

40/DCC during axon guidance. 

 

Since lon-2/glypican functions independently of slt-1/Slit (Fig. 3.1c) and partly 

separate from sdn-1/syndecan (Fig. 3.1b), we tested whether sdn-1/syndecan 

and slt-1/Slit function together to guide the axon of AVM. We found that defects 

in slt-1 sdn-1 double null mutants were not enhanced compared to the single 

mutants (Fig. 3.1e), consistent with findings in Drosophila (Johnson et al 2004, 

Steigemann et al 2004) and C. elegans (Rhiner et al 2005). We also found that 

double null mutants for sdn-1/syndecan and the slt-1/Slit receptor sax-3/Robo 

were not enhanced compared to the single mutants (Fig. 3.1e). Our results 

Figure 3.4. Loss of lon-2 enhances 

AVM guidance defects of sqv-5. Loss of 

function of sqv-5, the gene coding for the 

chondroitin sulfate polymerase (Hwang et 

al., 2003), leads to defective AVM ventral 

axon guidance, which is significantly 

enhanced by loss of lon-2 function. Error 

bars are standard error of the proportion. 

Asterisks denote significance: *** P ≤ 

0.001 (z-tests, P values were corrected 

by multiplying by the number of 

comparisons). (see also Table 3.6). 
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support the notion that sdn-1/syndecan acts in the same genetic pathway as slt-

1/Slit to guide AVM. Consistent with this, we found that the double null mutants 

for sdn-1/syndecan and the netrin receptor unc-40/DCC were enhanced, 

indicating that sdn-1/syndecan functions in a pathway separate from unc-6/netrin. 

The analysis of axon guidance in double mutants of unc-6/netrin and sdn-

1/syndecan was precluded by their lethality (data not shown). Our results are 

consistent with the notion that unc-6/netrin and sdn-1/syndecan act in different 

pathways of axon guidance. 

 

In addition to unc-6/netrin acting as an attractive cue for cells expressing the unc-

40/DCC receptor in ventral guidance, unc-6/netrin also acts as a repulsive cue 

for cells expressing both the unc-5/UNC5 and unc-40/DCC receptors, which 

together mediate dorsal guidance away from unc-6/netrin (Chan et al 1996, 

Hedgecock et al 1990, Leung-Hagesteijn et al 1992). To address whether lon-

2/glypican functions in unc-6/netrin-mediated repulsive guidance as well, we 

examined the dorsal migration of the distal tip cells (DTCs) and of the GABAergic 

motorneuron axons (Hedgecock et al 1990, Hedgecock et al 1987). We found  

that lon-2/glypican single null mutants are defective in dorsal DTC migrations  



96 

 

 



97 

 

 

(Fig. 3.5a,b), and that the complete loss of lon-2/glypican did not enhance the 

dorsal DTC migration defects of unc-6/netrin, unc-40/DCC or unc-5/UNC5 null 

mutants (Fig. 3.5b, Table 3.2), indicating that lon-2/glypican functions in the unc-

6/netrin-repulsive-guidance pathway as well. Similarly, complete loss of lon-

2/glypican did not enhance the defects of unc-40/DCC mutants in the dorsal 

guidance of motorneuron axons (Fig. 3.5c, Table 3.3). Given that loss of lon-

2/glypican enhances the motorneuron axon guidance defects of sdn-1 mutants 

as shown in (Gysi et al 2013), lon-2/glypican plays a role in the dorsal guidance 

of motorneuron axons. The lack of enhancement of the defects in the dorsal 

guidance of motorneuron axons of unc-40/DCC mutants by loss of lon-2/glypican 

further supports that lon-2/glypican functions in the unc-6/netrin pathway 

Figure 3.5. lon-2/glypican functions in the repulsive unc-6/netrin guidance pathway. (a) 

Schematics of the migration path of the DTCs in the wild type, and examples of defective DTC 

migration in lon-2/glypican mutants (the anterior and the posterior DTCs exhibit similar 

defects). In wild-type animals, the DTCs migrate away from the vulva along the antero-

posterior axis (1), then turn dorsally (2), and turn again to migrate towards the midbody region 

(3). Loss of lon-2/glypican leads to defective DTC guidance, including a failure to migrate 

dorsally, premature dorsal turning, or a failure to remain dorsal. (b) Quantification of the DTC 

migration defects in lon-2/glypican mutants and rescue by lon-2(+) (see Table 3.7). For each 

transgenic line, transgenic animals were compared to non-transgenic sibling controls. 

Complete loss of lon-2/glypican does not enhance the defects of the unc-6/netrin null mutants, 

nor of the null mutants for unc-5/UNC5 and unc-40/DCC, suggesting that lon-2/glypican 

functions in the same guidance pathway as unc-5/UNC5, unc-40/DCC and unc-6/netrin (see 

Table 3.2). (c) The axons of the GABAergic motorneurons project dorsally from the ventral 

midline towards the dorsal nerve cord. unc-6/netrin, unc-5/UNC5, and unc-40/DCC are 

required for this dorsal guidance of GABAergic axons. Complete loss of lon-2/glypican does 

not enhance the partially penetrant defects of unc-40/DCC null mutants, suggesting that lon-

2/glypican functions in the same pathway as unc-40/DCC and unc-6/netrin to guide axons 

dorsally (see Table 3.3). Error bars are standard error of the proportion. Asterisks denote 

significant difference: *** P ≤ 0.001 and * P ≤ 0.05 (z-tests, P values were corrected by 

multiplying by the number of comparisons). ns, not significant. 
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mediating dorsal guidance. Thus, lon-2/glypican may modulate unc-6/netrin 

signaling not only during attractive guidance, but also during repulsive guidance. 

 

unc-6/netrin signaling via the unc-5/UNC5 receptor requires lon-2/glypican 

To complement the above loss-of-function approach, we next used a gain-of-

function strategy to test the model that lon-2/glypican functions in the unc-6/netrin 

signaling pathway. We focused on the axon of the PVM neuron instead of AVM, 

because it could reliably be identified (AVM cannot be distinguished from ALMR 

in these experiments). In wild-type animals, PVM, like AVM, expresses the 

receptor unc-40/DCC and its axon grows ventrally towards unc-6/netrin (Fig. 

3.6a). In mutants lacking unc-6/netrin signaling, PVM axons that fail to extend  
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ventrally, instead extend anteriorly (never dorsally, see Table 3.4). The PVM 

axon normally does not express the receptor unc-5/UNC5 that mediates 

repulsive guidance away from ventral unc-6/netrin (Leung-Hagesteijn et al 1992), 

but misexpression of the receptor unc-5/UNC5 (using transgene Pmec-7::unc-5 

(Hamelin et al 1993)) in PVM forces its axon to extend dorsally in an unc-

6/netrin- and unc-40/DCC-dependent manner (Hamelin et al 1993), Fig. 3.6a,b). 

We used this unc-6/netrin-dependent unc-5/UNC5-mediated abnormal dorsal 

migration to further investigate the function of lon-2/glypican in netrin signaling. 

By analyzing lon-2/glypican mutants carrying Pmec-7::unc-5, we found that 

compete loss of lon-2/glypican function significantly suppressed the unc-6/netrin-

dependent unc-5-mediated abnormal dorsal migration of the PVM axon, 

indicating that unc-6/netrin signaling is lon-2/glypican-dependent (Fig. 3.6b). In 

contrast, the complete loss of sdn-1/syndecan, of slt-1/Slit, or of sax-3/Robo 

function did not suppress these PVM abnormal dorsal migrations (Fig. 3.6b, see 

Table 3.4), highlighting the specificity of lon-2/glypican action on unc-6/netrin 

Figure 3.6. unc-6/netrin signaling via the unc-5/UNC5 receptor requires lon-2/glypican.  

(a) The axon of PVM normally migrates ventrally in the wild type, but it can be forced to 

migrate dorsally by misexpressing the repulsive receptor unc-5/UNC5. We quantified PVM 

since AVM could not be reliably identified (both AVM and neighboring ALMR axons project 

dorsally in Pmec-7::unc-5 transgenic animals.) (b) Upon misexpression of unc-5/UNC5 in 

PVM, using the transgene Pmec-7::unc-5, the axon of PVM projects dorsally in an unc-

6/netrin-, unc-40/DCC-, and unc-34/enabled-dependent manner. Loss of lon-2/glypican 

partially suppresses this forced dorsal migration, indicating that unc-6/netrin signaling 

depends on lon-2/glypican. Scale bar, 5 μm. Error bars are standard error of the proportion. 

Asterisks denote significant difference: *** P ≤ 0.001 (z-tests, P values were corrected by 

multiplying by the number of comparisons). ns, not significant. (see Table 3.4). Wild type 

(without evIs25) is the same as in Fig. 3.1b). 
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signaling. As expected, lon-2 sdn-1 double mutants lacking both lon-2/glypican 

and sdn-1/syndecan and expressing unc-5/UNC5 in PVM did not further 

suppress the abnormal unc-5/UNC-5-mediated dorsal migration of PVM as 

compared to lon-2 single mutants, further supporting the specificity of lon-

2/glypican on unc-6/netrin signaling. 

 

To investigate whether lon-2/glypican functions in the same genetic pathway as 

known downstream mediators of unc-6/netrin signaling, we tested for genetic 

interactions between lon-2/glypican and unc-34/enabled. unc-34/enabled is a 

regulator of actin polymerization for axonal filopodia outgrowth (Chang et al 

2006, Fleming et al 2010, Gertler et al 1995, Gertler et al 1990, Gitai et al 2003, 

Yu et al 2002), and its role in both unc-6/netrin and slt-1/Slit guidance pathways 

renders the analysis of genetic interactions in the context of normal AVM axon 

guidance challenging. Therefore, we used the unc-6/netrin-specific gain-of-

function approach as above, where the dorsal migration of the PVM axon upon 

ectopic expression of unc-5/UNC5 is unc-34/enabled-dependent ((Colavita & 

Culotti 1998, Hamelin et al 1993); Fig. 3.6b). We asked whether loss of lon-

2/glypican could enhance the extent of suppression of PVM dorsal migration 

induced by loss of unc-34/enabled. We found that the PVM dorsal migration was 

suppressed to the same degree in the double null mutants lon-2; unc-34 and the 

single mutant unc-34/enabled upon expression of unc-5/UNC5 in PVM (Pmec-
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7::unc-5, Fig. 3.6b). These results support that lon-2/glypican functions with unc-

6/netrin and unc-34/enabled during axon guidance. 

 

Epidermal lon-2/glypican functions in axon guidance  

The AVM growth cone extends along a basement membrane, located between 

the epidermis, referred to as hypodermis, and body wall muscles (Hedgecock et 

al 1987). lon-2/glypican is expressed in the hypodermis and the intestine 

(Gumienny et al 2007). We asked in which cell type lon-2/glypican needs to be 

produced to guide AVM. We found that wild-type lon-2(+) transgenes expressed 

under the heterologous epidermal promoters Pdpy-7 and Pelt-3 (that drive 

expression in the hypodermis underlying the AVM growth cone, hyp7), rescued 

lon-2 slt-1 double mutants back to slt-1 single mutant levels, as efficiently as 

when expressed under the endogenous promoter Plon-2 (Fig. 3.7a, Table 3.5). 

Rescue was not observed when we expressed lon-2/glypican in other epidermal 

cells (seam cells, Pgrd-10), in the migrating neuron itself (Pmec-7), in the 

intestine (Pelt-2), or in body wall muscles (Pmyo-3) (Fig. 3.7a, Table 3.5). Our 

results suggest that lon-2/glypican is produced by the hypodermis underlying the 

growth cone of AVM to function in axon guidance.  

 

sdn-1/syndecan functions cell autonomously 

We found that expressing wild-type copies of sdn-1(+) in the AVM neuron (using 

the heterologous promoter Pmec-7) rescued axon defects of lon-2 sdn-1 double  
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mutants (Fig. 3.7b, Table 3.6).  Accordingly, our examination of a transgene 

reporting sdn-1/syndecan expression (sdn-1::gfp ((Rhiner et al 2005)) revealed 

that sdn-1/syndecan is indeed expressed in the AVM neuron (Fig. 3.8), at the 

time of its ventral migration during the first larval stage. Thus, sdn-1/syndecan 

appears to function in the migrating neuron in the slt-1/Slit-sax-3/Robo guidance 

pathway, whereas lon-2/glypican appears to function non-autonomously, as it is 

produced by the hypodermis underlying the migrating neuron to modulate the 

unc-6/netrin guidance pathway. Consistent with this, we found that sdn-1(+)  

Figure 3.7. lon-2/glypican functions in the epidermal cells underlying the developing 

axon. (a) Epidermal expression of lon-2/glypican is sufficient for function. Providing wild-type 

lon-2(+) in the hypodermis (under the heterologous hypodermal promoters Pdpy-7 and Pelt-3) 

rescues the function of lon-2 in the double mutants lon-2 slt-1, as it brings the defects down to 

the level of slt-1 single mutants. In contrast, expression of lon-2(+) in other epidermal cells 

(seam cells), the migrating neuron AVM, the intestine, or the body wall muscles, fails to 

rescue the function of lon-2. For each rescued transgenic line, transgenic animals were 

compared to non-transgenic sibling controls (see Tables 3.6 and 3.5). Data for wild type, lon-

2, slt-1, and lon-2 slt-1 are the same as in Fig. 3.1b,c. (b) Expression of sdn-1/syndecan in the 

migrating neuron is sufficient for function. Providing wild-type copies of sdn-1(+) in AVM 

(expressed under the heterologous promoter Pmec-7) rescues the axon guidance function of 

sdn-1 in a lon-2 sdn-1 double mutant. We assayed rescue of sdn-1 function using the double 

mutant lon-2 sdn-1 since it is easier to rescue defects that are 33% penetrant (as in the 

double lon-2(e678) sdn-1(zh20)) than to rescue defects that are 12% penetrant (as in the 

single mutant sdn-1(zh20)). For each transgenic line, transgenic animals were compared to 

non-transgenic sibling controls (see Table 3.6). Data for wild type, lon-2, sdn-1, and lon-2 sdn-

1 the same as in Fig. 3.1b-d. Scale bar, 5 μm. Error bars are standard error of the proportion. 

Asterisks denote significant difference: *** P ≤ 0.001, ** P ≤ 0.01 and * P ≤ 0.05 (z-tests, P 

values were corrected by multiplying by the number of comparisons). ns, not significant.  
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cannot replace the function of lon-2/glypican; expressing sdn-1/syndecan in 

either the cells that normally express lon-2/glypican (using Plon-2::sdn-1) or the 

migrating neuron itself (Pmec-7::sdn-1) did not rescue the loss of lon-2/glypican 

(Fig. 3.9), supporting that lon-2/glypican and sdn-1/syndecan have specific roles 

in axon guidance. 

 

 

 

 

Figure 3.8. SDN-1::GFP expression in the neuron AVM. Using the translational fusion sdn-

1::gfp (opIs171), we found that SDN-1::GFP is expressed in hypodermal cells and neurons, as 

previously reported (Rhiner et al 2005). Importantly, we observed expression in the AVM 

neuron, including during the L1 stage, when the AVM growth cone migrates ventrally. This 

expression pattern is consistent with our finding that sdn-1/syndecan expression in AVM 

(Pmec-7::sdn-1) rescues the defects of sdn-1 mutants (Fig. 3.7c), supporting a cell-

autonomous role for sdn-1/syndecan in AVM. 
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LON-2/glypican lacking its heparan sulfate chain attachment sites  

functions in axon guidance  

Glypicans are composed of a core protein moiety with covalently linked heparan 

sulfate (HS) chains attached via a tetrasaccharide linker at specific Ser residues  

 

 

Figure 3.9. lon-2/glypican cannot be replaced by sdn-1/syndecan. lon-2 slt-1 double 

mutants exhibit enhanced AVM guidance defects as compared to slt-1 single mutants. The 

defects of the double mutants can be rescued back down to slt-1 single mutant levels with 

expression of wild-type Plon-2::lon-2(+). In contrast, expression of sdn-1(+) where lon-

2/glypican is normally expressed (using the Plon-2 promoter) or in the AVM neuron (using the 

heterologous promoter Pmec-7), cannot rescue the axon guidance defects of lon-2 slt-1 

double mutants. Data for wild type, lon-2, slt-1, lon-2 slt-1, and Plon-2::lon-2 in lon-2 slt-1 are 

as in Fig. 3.1b-c, and Fig. 3.7a. *** P ≤ 0.001, * P ≤ 0.05. (z-tests, P values were corrected by 

multiplying by the number of comparisons) (see Tables 3.6 and 3.5). 
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(Bülow & Hobert 2006); Fig. 3.10a). Prior studies on the role of HSPGs in other 

developmental pathways indicate that both the identity of the HSPG core proteins 

and the heterogeneity of their HS chains modified by epimerization and sulfations 

(Bülow & Hobert 2006) contribute to the specificity of the interactions between 

particular HSPGs and the proteins that they bind (Bülow & Hobert 2006, Van 

Vactor et al 2006, Xu & Esko 2014).  

 

To address the importance of the HS chains linked to LON-2/glypican during 

axon guidance, we tested whether a mutated form of LON-2/glypican lacking its 

HS chains could still function in axon guidance. For this experiment, the three 

Ser residues serving as HS chain attachment sites were mutated to Ala residues, 

generating the mutant LON-2ΔGAG (Taneja-Bageshwar & Gumienny 2012). 

Western blot analysis confirmed that LON-2ΔGAG severely reduced HS chains 

associated with LON-2, in both worms and S2 cells (Fig. 3.10b and Fig. 3.11). 

We then expressed LON-2ΔGAG under the Plon-2 endogenous promoter, and 

found that the AVM guidance defects of lon-2 slt-1 double mutants were rescued 

back to the level of slt-1 single mutants (Fig. 3.10c). Similarly, the DTC migration 

defects of lon-2/glypican mutants were rescued by LON-2ΔGAG expression (Fig. 

3.10d, Table 3.7). Our results indicate that LON-2/glypican devoid of its HS-

chain attachment sites can function in unc-6/netrin-mediated guidance, 

suggesting that the core protein is the critical part of LON-2/glypican for its 

function in unc-6/netrin-mediated guidance of cell and axon migrations. 
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Figure 3.10. A secreted form of LON-2/glypican that lacks the heparan sulfate chain 

attachments is functional in axon guidance. (a) The HSPG LON-2/glypican is composed of 

a core protein and three HS chains. The core protein is predicted to fold into a globular 

domain on its N-terminal region and to be GPI-anchored. (b) Schematics of the engineered 

forms of LON-2 that we used: LON-2ΔGAG, where the HS chain attachment sites are 

mutated; LON-2ΔGPI, where the GPI anchor is deleted; N-LON-2, where the C-terminus is 

deleted; and C-LON-2, where the N-terminal globular domain is deleted. Western blot analysis 

of protein extracts of worms expressing LON-2::GFP or LON-2ΔGAG::GFP confirms that 

deleting the HS attachment sites on LON-2 affects HS addition on LON-2. Protein extracts 

from wild type (N2) and an unrelated GFP strain (lqIs4) are negative controls. (c) A form of 

LON-2/glypican lacking HS chain attachment sites (LON-2ΔGAG) functions in axon guidance. 

LON-2ΔGAG rescues the AVM guidance defects of double mutants lon-2 slt-1 back to the 

level of slt-1 single mutants. Secreted globular LON-2/glypican is functional in axon guidance. 

LON-2/glypican was engineered to be secreted by deleting its GPI anchor (LON-2ΔGPI), or by 

deleting the C-terminus, thus lacking the GPI anchor and the HS attachment sites (N-LON-2). 

Both LON-2ΔGPI and N-LON-2 function in axon guidance, as assayed by their ability to 

rescue axon guidance defects of lon-2 slt-1 back down to the level of slt-1 single mutants. In 

contrast, a form of LON-2/glypican containing its C-terminus including the three HS 

attachment sites, but lacking its N-terminal globular domain (C-LON-2), is not functional (see 

Tables 3.6 and 3.5), indicating that the N-terminal globular domain of the core protein is key 

to the function of LON-2/glypican in axon guidance. For each rescued transgenic line, 

transgenic animals were compared to non-transgenic sibling controls (see Tables 3.6 and 

3.5). Data for wild type, lon-2, slt-1, and lon-2 slt-1 are the same as in Fig. 3.1b,c. (d) A form 

of LON-2/glypican lacking HS chain attachment sites is functional in DTC guidance. The DTC 

migration of lon-2 mutants carrying the transgene Plon-2::LON-2ΔGAG is rescued back to 

wild-type levels. Secreted N-terminus globular LON-2/glypican (N-LON-2) is functional in DTC 

guidance, as DTC guidance defects of lon-2 mutants are rescued by N-LON-2. Transgenic 

animals were compared to non-transgenic sibling controls (see Table 3.7). Data for wild type 

and lon-2 the same as in Fig. 3.5b. Error bars are standard error of the proportion. Asterisks 

denote significant difference: *** P ≤ 0.001, ** P ≤ 0.01 (z-tests, P values were corrected by 

multiplying by the number of comparisons).  
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LON-2/glypican associates with cells expressing UNC-40/DCC 

Our above observations provide evidence that the HSPG lon-2/glypican functions 

in the same genetic pathway as unc-6/netrin to guide migrating axons. It has 

been shown in several models that HSPGs play multifaceted roles across various 

signaling pathways, such as facilitating ligand-receptor interactions, transporting 

morphogens, as well as localizing and stabilizing ligands (Lander & Selleck 2000, 

Yan & Lin 2009). We asked if the LON-2/glypican molecules might interact with 

either UNC-6/netrin or its receptor UNC-40/DCC, suggesting a potential 

mechanism of action for LON-2/glypican in unc-6/netrin-mediated guidance. To 

test these interactions, we generated epitope-tagged versions of LON-2/glypican, 

UNC-6/netrin, and UNC-40/DCC proteins, with HA, superfolder-GFP (SfGFP), 

and FLAG, respectively (Fig. 3.12a) and used cell-mixing experiments. We  

Figure 3.11. Detection of LON-2 and LON-2ΔGAG in the supernatant and cell extracts of 

S2 cell cultures by western blot analysis. (a) Diagram of LON-2/glypican variants 

expressed in S2 cells, HA::LON-2::myc and HA::LON-2ΔGAG::myc, in which the three HS 

attachment sites were mutated from Ser to Ala residues. The core protein of LON-2/glypican 

is red, and the heparan sulfate chains (HS) are yellow. (b) In the supernatant of cells 

expressing HA::LON-2::myc, high molecular weight species were detected with the anti-myc 

antibody, which likely corresponds to full length HA::LON-2::myc with HS chains attached. In 

contrast, the species detected in the supernatant of HA::LON-2ΔGAG::myc-expressing cells 

are smaller and fainter, indicating that HA::LON-2ΔGAG::myc indeed affects the synthesis of 

HS chains onto the LON-2/glypican core protein. No signal was detected with the anti-HA 

antibody in the supernatants, likely due to technical limitations. In the cell extracts from 

HA::LON-2::myc-expressing cells, the main species runs at ~90 kDa, and it is detected with 

both the anti-myc and anti-HA antibodies, suggesting that it is full length. This signal likely 

corresponds to the LON-2/glypican core protein devoid of HS chains, as it runs as a tight 

band. The slight mobility shift in cell extracts of HA::LON-2ΔGAG::myc-expressing cells 

compared to HA::LON-2::myc might correspond to a difference of mass and isoelectric point 

between HA::LON-2::myc and HA::LON-2ΔGAG::myc. Anti-actin and anti-HSP90 antibodies 

were used as loading controls. Representative blots of more than four independent repeats. 
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Figure 3.12. LON-2/glypican associates with UNC-40/DCC-expressing cells. 

(a) Experimental design. Each construct was individually and transiently transfected in S2 

cells. After 2 days, cells from independent single transfections were mixed and incubated 

overnight, and then immunostained for the corresponding tags. HA::LON-2-conditioned 

medium was mixed with UNC-40::FLAG expressing cells. (b) HA::LON-2 is released from 

cells that produce it and associates with UNC-40-expressing cells. HA::LON-2 fills the 

cytoplasm of the cells that produce it (indicated by an asterisk, see also Fig. 3.14). Notably, 

HA::LON-2 is observed decorating the outline of UNC-40::FLAG expressing cells 

(experiments 1,6,7,8). HA::LON-2ΔGAG also associates with UNC-40::FLAG expressing cells 

(experiment 2). Cells expressing UNC-40ΔNt::FLAG that lacks the extracellular domain do not 

have HA::LON-2 signal, indicating that the association of LON-2 with UNC-40-expressing cells 

requires the extracellular domain of UNC-40 (experiment 3). HA::LON-2 conditioned medium 

contains HA::LON-2 that associates with UNC-40::FLAG expressing cells, indicating that 

HA::LON-2 is released from the cells that produce into a diffusible form that interacts with 

UNC-40::FLAG cells (experiment 8). HA::LON-2 does not associate with cells expressing 

SfGFP::UNC-6 (experiments 4,6,7), or with untransfected cells. UNC-40-FLAG expressing 

cells can simultaneously associate with HA::LON-2 and SfGFP::UNC-6 (experiment 6). 

HA::LON-2 associates with cells expressing a mutant form of UNC-40/DCC that is unable bind 

SfGFP::UNC-6, as it lacks the Fn4/5 UNC-6 binding domains (UNC-40ΔFn4/5::FLAG; 

experiment 7). Scale bars, 10 μm. (c) Quantification of the association of HA::LON-2 (from 

expressing cells, from medium of expressing cells, or from cells expressing HA::LON-2ΔGAG) 

with cells expressing UNC-40::FLAG, UNC-40ΔNt::FLAG, SfGFP::UNC-6, or UNC-

40ΔFn4/5::FLAG, and untransfected. Ten different optical fields containing ~300 cells from 

three independent experiments were quantified and averaged. (d) Cells expressing UNC-

40::FLAG can display irregular morphology, which is enhanced by the presence of HA::LON-

2. Images of the different morphologies displayed by UNC-40::FLAG-expressing cells: with a 

smooth edge, with an irregular edge, or with membrane extensions. The morphology of S2 

cells expressing mCherry alone or co-expressing UNC-40::FLAG and mCherry, that were 

mixed with control untransfected cells or with HA::LON-2-expressing cells, were quantified for 

irregular edges (grey bars) or membrane extensions (black bars). A higher percentage of 

UNC-40::FLAG expressing cells show membrane extensions or irregular edges when mixed 

with HA::LON-2-expressing cells,  as compared to when they are mixed with control mCherry 

cells.  

Error bars are standard error of the mean. Asterisks denote significant difference: *** P ≤ 

0.001, * P ≤ 0.05. ns, not significant. In (d), significant differences in irregular cell shape are 

indicated by grey asterisks, and significant difference in membrane extensions is indicated by 

the black asterisk. 
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independently expressed each of these labeled proteins in separate populations 

of Drosophila S2 cells for 2 days, then co-cultured them overnight, and detected 

the tagged proteins by western blot analysis (see Figure 3.13) and by 

immunostaining (Fig. 3.12a).  

 

We observed that the HA::LON-2 signal filled the cytoplasm of HA::LON-2 

producing cells (indicated by white asterisks in Fig. 3.12b experiment 1 and Fig. 

3.14). Notably, HA::LON-2 was also found decorating the outline of UNC-

40::FLAG expressing cells (Fig. 3.12b,c experiments 1,6,7,8). This observation 

suggests that LON-2/glypican is released from the cells that produce it, diffuses 

in the extracellular medium, and associates with UNC-40/DCC expressing cells. 

In contrast, HA::LON-2/glypican did not bind to cells expressing SfGFP::UNC-6 

(Fig. 3.12b,c experiments 4,6,7), nor to cells expressing an unrelated type I 

transmembrane receptor, Evi (see Fig. 3.15), nor to untransfected cells (Fig. 

3.12b,c experiments 1-8). Furthermore, we found that another HSPG, SDN-

1/syndecan, did not bind UNC-40-expressing cells (see Fig. 3.15). These 

findings provide evidence for a specific interaction between LON-2/glypican and 

UNC-40-expressing cells.  
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Figure 3.13. Detection of LON-2, UNC-40 and UNC-6 expression in S2 cells by Western 

blot analysis. (a) Diagram of constructs used to express these proteins in S2 cells, showing 

the tags used to detect them. (b) Western blots for detection of HA::LON-2::myc, UNC-

40::FLAG and SfGFP::UNC-6. Constructs were individually and transiently transfected in S2 

cells. Two days later, cells from single transfections were mixed and incubated overnight. 

Cells were harvested and combined with their corresponding supernatant from each of these 

cell mixes. Samples of each cell mix were split into 3 to run 3 parallel western blots and detect 

the proteins. As shown in Figure 3.11, a main species (~90 kDa, bottom arrow) and high 

molecular weight species (top arrows) are detected with the anti-myc antibody against 

HA::LON-2::myc. UNC-40::FLAG and SfGFP::UNC-6 run at ~156 kDa and ~99 kDa as 

expected, respectively. Representative blots of more than four independent repeats. 
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Figure 3.14. HA::LON-2 is released from cells 

(co-transfected with GFP) and associates with 

cells expressing UNC-40::FLAG. In order to 

distinguish HA::LON-2-producing cells from 

HA::LON-2-acquiring cells, two separate 

populations of cells were transfected. One 

population of S2 cells was transfected with UNC-

40::FLAG. A second population of S2 cells was 

simultaneously transfected with both GFP and 

HA::LON-2. Two days later, the two populations of 

cells were mixed, incubated overnight, and 

immunostained with anti-HA and anti-FLAG 

antibodies, as described for Fig. 3.12. In GFP 

expressing cells (indicated by white asterisks), 

which had also been transfected with HA::LON-2, 

the HA::LON-2 signal was observed filling the 

cytoplasm. HA::LON-2 was also observed 

decorating the outline of UNC-40-expressing cells 

(indicated by white triangles, see Fig. 3.12), 

supporting that LON-2/glypican associates with 

UNC-40-expressing cells. Occasionally, HA::LON-

2 was observed on cells in which no UNC-

40::FLAG was detected (indicated by the empty 

triangle). Scale bar 10 μm. 
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We tested whether the HS chains of LON-2/glypican were necessary for its 

association with UNC-40-expressing cells. We used a mutated form of LON-

2/glypican lacking its three HS chain attachment sites, HA::LON-2ΔGAG (Taneja-

Bageshwar & Gumienny 2012), see Fig. 3.11). Western blot analysis confirmed 

that LON-2ΔGAG severely reduced HS chains associated with LON-2/glypican 

(Fig. 3.11). We found that LON-2ΔGAG associated with UNC-40/DCC-

expressing cells (Fig. 3.12b,c experiment 2), suggesting that the association of 

LON-2/glypican with UNC-40/DCC-expressing cells is HS-chains independent. 

 

The HA::LON-2 signal outlined the UNC-40/DCC expressing cells (Fig. 3.12b, 

experiments 1,6,7,8) suggesting a potential interaction at the cell surface. To 

further support this idea, we asked whether LON-2/glypican would associate with 

cells expressing a mutated form of UNC-40/DCC that lacks the extracellular 

domain, and contains only the intracellular and transmembrane domains (UNC-

40ΔNt::FLAG). We found that HA::LON-2 did not associate with cells expressing 

the UNC-40ΔNt::FLAG (Fig. 3.12b,c experiment 3), indicating that the 

extracellular domain of UNC-40/DCC is required for LON-2/glypican to associate,  
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as would be predicted if LON-2/glypican and UNC-40/DCC interact, directly or 

indirectly, at the cell surface. 

 

Interestingly, HA::LON-2 was absent from cells expressing SfGFP::UNC-6 (Fig. 

3.12b,c experiments 4,6,7), indicating that while LON-2/glypican interacts with 

cells expressing UNC-40/DCC, it does not bind to UNC-6/netrin-expressing cells 

in this assay. Moreover, the presence of SfGFP::UNC-6 did not reduce the ability 

of HA::LON-2 to associate with UNC-40/DCC-expressing cells in experiments 

where the three singly-transfected cell populations were mixed (Fig. 3.12b,c 

experiment 6). These results suggest that if LON-2/glypican interacted directly or 

indirectly with UNC-40/DCC, then the interactions of LON-2/glypican and UNC-

6/netrin would occur with different regions of UNC-40/DCC. Consistent with this 

Figure 3.15. Controls for the specificity of the association of LON-2/glypican with UNC-

40-expressing cells. (a) Experiments 1 and 2 show that HA::LON-2 does not associate with 

cells expressing the unrelated Drosophila type I transmembrane receptor Evi. Evi-expressing 

cells were mixed with cells expressing LON-2/glypican and/or UNC-40/DCC. As shown in 

experiment 2 and Fig. 3.12b,c, while LON-2/glypican associates with cells expressing UNC-

40/DCC, LON-2/glypican does not associate with cells expressing Evi::GFP (experiments 1,2). 

Experiment 3 shows that SDN-1::myc/syndecan, another heparan sulfate proteoglycan, does 

not associate with UNC-40/DCC expressing cells. This SDN-1::myc was engineered to be 

secreted as it lacks its transmembrane and intracellular C-terminal domains. These results 

indicate that the association of LON-2/glypican with UNC-40/DCC expressing cells is specific, 

and not a general feature of any HSPG. (b) Quantification of the association of HA::LON-2 

with cells expressing UNC-40::FLAG, Evi::GFP, and untransfected cells. Ten different optical 

fields containing ~300 cells from three independent experiments were quantified and 

averaged. Error bars are standard error of the mean. Asterisks denote significant difference: 

*** P ≤ 0.001 (t-test versus untransfected cells). ns, not significant. (c) Quantification of the 

association of SDN-1::myc with cells expressing UNC-40::FLAG, HA::LON-2, and 

untransfected cells. Ten different optical fields containing ~300 cells from three independent 

experiments were quantified. 
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possibility, we found that LON-2/glypican still associated with cells expressing 

UNC-40ΔFn4/5::FLAG, a mutated form of UNC-40/DCC that lacks the UNC-

6/netrin-binding sites (FnIII domains 4 and 5) ((Wang et al 2014, Xu et al 2014); 

Fig. 3.12b,c experiment 7). Our results indicate that for LON-2/glypican to 

associate with UNC-40/DCC-expressing cells, the FnIII domains 4 and 5 of UNC-

40/DCC are dispensable and UNC-6/netrin does not need to be bound to UNC-

40/DCC. 

 

LON-2/glypican increases membrane outgrowths triggered by UNC-40/DCC 

Previous work has suggested that overexpression of DCC in cells overactivates 

DCC downstream signaling pathways, leading to cytoskeletal rearrangements 

that result in increased membrane extensions and cell surface area (Shekarabi & 

Kennedy 2002). Similarly, expression of UNC-40/DCC leads to changes in 

cellular morphology in our cell assays (Fig. 3.12d). To test whether the 

association of LON-2/glypican with UNC-40/DCC-expressing cells results in an 

activation of signaling downstream of UNC-40/DCC, we examined the impact of 

LON-2/glypican on the morphology of UNC-40/DCC-expressing cells. For these 

experiments, we mixed mCherry expressing cells with either untransfected 

control cells or LON-2/glypican-expressing cells, and we also mixed UNC-

40/mCherry-expressing cells with either untransfected control cells or LON-

2/glypican-expressing cells. Examination of the morphology of these cells one 

day after mixing revealed that UNC-40/mCherry-expressing cells mixed with 
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LON-2/glypican exhibited an increased frequency of irregular shapes and 

membrane extensions, compared to UNC-40/mCherry cells mixed with control 

cells (Fig. 3.12d). Thus, consistent with a model in which LON-2/glypican 

functions in the UNC-6/netrin signaling pathway to guide developing axons, the 

association of LON-2/glypican with UNC-40/DCC-expressing cells leads to 

increased membrane extensions, suggestive of increased signaling downstream 

of the UNC-40/DCC receptor. 

 

LON-2/glypican is released extracellularly and its N-terminal domain is 

functional 

While LON-2/glypican possesses a signature GPI anchor that mediates its 

attachment to plasma membranes (Fig. 3.10a), our experiments indicate that 

LON-2/glypican is released into the extracellular milieu through cleavage where it 

can diffuse to associate with UNC-40/DCC-expressing cells. This is consistent 

with prior work demonstrating that many glypicans are shed or cleaved into a 

soluble form (Bernfield et al 1999). To verify that LON-2/glypican is indeed 

released into the extracellular medium, we collected cell-free media from 

HA::LON-2 cultures (HA::LON-2-conditioned medium) and added it to cells 

expressing UNC-40::FLAG. We found that HA::LON-2-conditioned medium 

contained HA::LON-2 that associated with UNC-40::FLAG-expressing cells. As 

above, this interaction was specific, as no HA::LON-2 signal was found on 

adjacent untransfected cells (Fig. 3.12b,c experiment 8). This result provides 
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compelling evidence that LON-2/glypican can be released from the membrane of 

LON-2/glypican-expressing cells, diffuses, and associates with UNC-40/DCC-

expressing cells. We propose that using a similar mechanism, LON-2/glypican 

may be shed from epidermal cells and may interact with migrating axons that 

express UNC-40/DCC. This is consistent with our finding that LON-2/glypican is 

produced by the hypodermis to function non-autonomously in unc-6/netrin-

mediated AVM axon guidance. 

 

To provide evidence for the model that LON-2/glypican can function in axon 

guidance when detached from the plasma membrane, we used a form of LON-

2/glypican lacking the GPI anchor, LON-2ΔGPI, which should be directly 

secreted into the extracellular milieu (Taneja-Bageshwar & Gumienny 2012). 

LON-2ΔGPI rescued the AVM guidance defects of lon-2 slt-1 double mutants 

back to the level of slt-1 single mutants (Fig. 3.10c). We also used a truncated 

form of LON-2/glypican (N-LON-2) containing the N-terminal globular domain, but 

lacking the C-terminal region, thus removing the three HS attachment sites and 

the GPI membrane anchor. N-LON-2 also rescued the AVM guidance defects of 

lon-2 slt-1 double mutants back to the level of slt-1 single mutants (Fig. 3.10c). In 

contrast, a reciprocal construct containing only the C-terminus with the three HS 

attachment sites and the GPI anchor (C-LON-2) did not rescue the AVM axon 

guidance defects of lon-2 slt-1, consistent with the model that the N-terminal 

globular domain of LON-2/glypican is the key functional domain during guidance 
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(Fig. 3.10c). A secreted form of LON-2/glypican is also functional in DTC 

guidance, as we found that DTC guidance defects of lon-2/glypican mutants 

could be rescued by expression of N-LON-2, containing only the N-terminal 

globular domain (Fig. 3.10d). These findings also support the hypothesis that 

LON-2/glypican may normally be released from the hypodermis to interact with 

the unc-6/netrin pathway to direct the migrating growth cone during development 

(Fig. 3.16). 
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DISCUSSION 

Growth cone responses to guidance cues require precise regulation as 

developing axons traverse complex extracellular environments in order to reach 

their targets. The mechanisms by which guidance cue signals are regulated in 

the extracellular milieu are still poorly understood (Lai Wing Sun et al 2011). 

Here, we demonstrate that the unc-6/netrin-unc-40/DCC guidance system is 

modulated by the HSPG lon-2/glypican. 

 

lon-2/glypican is a component of the unc-6/netrin signaling pathways 

Our studies identify the HSPG LON-2/glypican as a component of the unc-

6/netrin attractive and repulsive signaling pathways that guide axons during 

development. We show that LON-2/glypican specifically acts on unc-6/netrin 

signaling independently of slt-1/Slit. We demonstrate that lon-2/glypican functions 

from the hypodermis, the epidermal cells that secrete the substrate along which 

growth cones extend (Hedgecock et al 1987), and that a secreted form of LON-

2/glypican, containing only its N-terminal globular region and lacking its HS 

chains, guides cells and axons in vivo. In addition, we provide evidence that 

Figure 3.16. A model for the role of LON-2/glypican in UNC-6/netrin-UNC-40/DCC-

mediated axon guidance. HSPG LON-2/glypican (red) is expressed from the hyp7 epidermal 

cells (pink) underlying the migrating growth cone of the AVM neuron (tan). LON-2/glypican is 

released from the hypodermal cell surface and may associate with the developing axon 

expressing the receptor UNC-40/DCC (blue), directly or indirectly interacting with UNC-

40/DCC, to modulate UNC-6/netrin (green) signaling. A second HSPG, SDN-1/syndecan 

(black), acts in the SLT-1/Slit-SAX-3/Robo (grey) axon guidance pathway. 
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LON-2/glypican is released from cells producing it and associates with cells 

expressing UNC-40/DCC receptors. Taken together, our observations support a 

hypothetical model where GPI-linked LON-2/glypican is produced by substrate 

epidermal cells, is released into the extracellular milieu, and binds growth cones 

expressing UNC-40/DCC receptors to regulate attractive and repulsive 

responses of the growth cone to UNC-6/netrin. 

 

The impact of lon-2/glypican on the unc-6/netrin signaling pathway is highly 

specific. First, loss of lon-2/glypican, but not of sdn-1/syndecan, suppresses the 

guidance phenotypes elicited by the gain-of-function condition in which unc-

5/UNC5 was misexpressed. Second, the complete loss of lon-2/glypican does 

not enhance the guidance defects observed in null mutants for unc-6/netrin or its 

receptors unc-40/DCC and unc-5/UNC5, whereas it does enhance the defects of 

several other axon guidance mutants, including sdn-1/syndecan, slt-1/Slit, 

misexpressed slt-1/Slit (Pmyo-3::slt-1), sax-3/Robo, and sqv-5, suggesting that 

lon-2/glypican functions specifically in the unc-6/netrin pathway. Third, sdn-

1/syndecan, cannot replace lon-2/glypican function, highlighting a requirement for 

lon-2/glypican that cannot be achieved by any HSPG. Given that the core protein 

of LON-2/glypican, devoid of its HS chains, is fully functional in guidance, the 

specificity of action of LON-2/glypican in netrin-mediated guidance appears to 

reside in the core protein itself. As a note, whereas lon-2/glypican mutants are 

defective in DTC migration, the lon-2/glypican mutant by itself does not show 
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drastic alterations in AVM axon guidance as is observed with other modulators 

(Lander & Selleck 2000). It is possible that in the absence of lon-2/glypican, 

another HSPG may provide compensation, or that our scoring of strong 

alterations in pathfinding did not include more subtle phenotypes, as could be 

expected from a modulator of the signal (Lander & Selleck 2000).  

 

The core protein of LON-2/glypican is functional in UNC-6/netrin-mediated 

guidance 

We show that the LON-2/glypican core protein, devoid of HS attachment sites, is 

able to associate with UNC-40-expressing cells and is functional in unc-6/netrin-

mediated guidance. Thus, the core protein is the critical region of LON-2/glypican 

for netrin-mediated axon guidance. This is in line with previous studies showing a 

contextual dependence of HS chains for glypican function. For instance, the core 

protein of C. elegans LON-2/glypican and of Drosophila glypican Dally do not 

require HS chains to function in the TGFβ pathway (Kirkpatrick et al 2006, 

Taneja-Bageshwar & Gumienny 2012). Similarly, Drosophila glypican Dally-like 

interacts with Wg and Hh through their protein core in a HS-independent manner 

(Williams et al 2010, Yan & Lin 2009, Yan et al 2010), and mammalian Glypican-

3 does not require HS chains for its role in Wnt and Hh signaling (Capurro et al 

2005, Capurro et al 2008, Gonzalez et al 1998, Song et al 2005). While the HS 

chains are not critical for the role of LON-2/glypican in guidance, a contribution of 

HS chains to modulate functionality, as observed for other glypicans in the 
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context of BMP4, Wnt3, Wg, and Hh signaling (Capurro et al 2005, Kirkpatrick et 

al 2006, Yan & Lin 2009, Yan et al 2010) cannot be ruled out. For instance, it is 

conceivable that the normal endogenous HS chains of LON-2/glypican may 

impact its trafficking, levels, release from the membrane, recruitment of binding 

partners, or recycling. 

 

LON-2/glypican is released from the cell surface to guide axons 

LON-2/glypican is predicted to localize at the cell surface via its GPI anchor 

(Taneja-Bageshwar & Gumienny 2012). However, in our cell culture studies we 

demonstrate that LON-2/glypican can be released as a soluble molecule from 

producing cells. We also show that two truncated forms of LON-2/glypican, LON-

2ΔGPI and N-LON-2, which are no longer associated with the plasma membrane 

and are secreted into the extracellular milieu, can function to guide axons in vivo. 

This indicates that LON-2/glypican is likely released from the epidermal cells to 

reach the growth cone to modulate its guidance. This finding raises the question 

of how LON-2/glypican is released from the cell membrane and how this process 

might be regulated during development. The release of LON-2/glypican from the 

surface of cells could involve phospholipases that cleave the GPI anchor and/or 

proteases that cleave its extracellular domain, such as at a predicted furin-

cleavage site (Taneja-Bageshwar & Gumienny 2012); Fig. 3.10a).  
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Glypican cleavage by lipases and proteases has been demonstrated to occur 

and to be functionally important in other contexts, such as in regulating FGF and 

Wnt signaling during morphogenesis (Bernfield et al 1999, Matsuo & Kimura-

Yoshida 2013). For instance, the Drosophila glypican Dally-like protein is cleaved 

at the GPI anchor by the lipase Notum, to negatively regulate Wnts (Giraldez et 

al 2002). Similarly, several mammalian glypicans, including glypican-3, are 

cleaved by Notum (Traister et al 2008). The functional importance of glypican 

proteolytic cleavage is illustrated by the processing of glypican-3 by a furin-like 

convertase to modulate Wnt signaling in zebrafish (De Cat et al 2003). In 

addition, glypican-1 and glypican-4 are proteolytically cleaved to stimulate long-

range FGF signaling in the Xenopus embryo (Hou et al 2007), and increase the 

efficiency of myogenic differentiation in the presence of FGF in mammalian cells 

(Velleman et al 2013), respectively. Our studies show that glypican processing 

also functions during axon guidance. 

 

LON-2/glypican associates with the surface of UNC-40/DCC-expressing 

cells  

We demonstrate that LON-2/glypican is secreted into the extracellular medium 

and decorates the outline of UNC-40/DCC-expressing cells. Deleting the 

extracellular domain of UNC-40 (UNC-40ΔNt) abrogated the association of LON-

2/glypican with UNC-40/DCC expressing cells, indicating that LON-2/glypican 

may interact with UNC-40/DCC at the cell surface. The association of LON-
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2/glypican with UNC-40/DCC may be direct, or indirect through interactions with 

other molecules (Fig. 3.16). Our experiments demonstrate that UNC-6/netrin 

binding to UNC-40/DCC was undisturbed by the association of UNC-40/DCC 

with LON-2/glypican, suggesting that the possible interaction of LON-2/glypican 

with UNC-40/DCC likely involves a region of UNC-40/DCC other than the netrin 

binding sites. Indeed, we found that LON-2/glypican associates with UNC-

40/DCC-expressing cells even when the UNC-40/DCC receptors lack the UNC-

6/netrin binding domains. 

 

We found that LON-2/glypican leads to increased irregular morphology of UNC-

40/DCC-expressing cells. Ectopic expression of DCC in mammalian cells 

activates downstream signaling via Cdc42 and Rac1, producing cytoskeletal 

rearrangements that lead to filopodia outgrowth and cell surface extensions 

(Shekarabi & Kennedy 2002). Our finding that the presence of LON-2/glypican 

enhances the UNC-40/DCC-induced irregular cell morphology and filopodia-like 

extensions, suggests that the association of LON-2/glypican with UNC-40/DCC-

expressing cells may increase signaling downstream of UNC-40/DCC. 

Consistent with this notion, we show that lon-2/glypican functions in the same 

signaling pathway as the UNC-40/DCC downstream mediator unc-34/enabled 

during axon guidance.  
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Our results suggest a possible regulatory mechanism in the extracellular space in 

which secreted LON-2/glypican modulates the activity of the receptor UNC-

40/DCC. LON-2/glypican may directly bind UNC-40/DCC, or alternatively, LON-

2/glypican may instead interact with other molecules to impact UNC-40/DCC to 

modulate its stability, distribution, or activity. Alternatively, LON-2/glypican could 

potentially function as a co-receptor for UNC-6/netrin, where it may facilitate the 

formation of UNC-6/netrin-UNC-40/DCC-LON-2/glypican signaling complexes, 

similar to the situation in FGF signaling (Bülow & Hobert 2006). It is also 

conceivable that LON-2/glypican could bind UNC-6/netrin directly as well, even if 

undetected in our assays, as netrin has been found to bind heparin in vitro 

(Kappler et al 2000, Kennedy et al 1994, Shipp & Hsieh-Wilson 2007). Previous 

studies have also documented the binding of DCC to heparin in vitro (Bennett et 

al 1997, Geisbrecht et al 2003), and while we have found that the core protein is 

the critical portion of LON-2/glypican in netrin-mediated axon guidance, it 

remains possible that the endogenous HS chains contribute to the function of 

LON-2/glypican in axon guidance.  

 

In summary, our studies uncover a novel mechanism by which UNC-6/netrin 

signaling through its UNC-40/DCC receptor is modulated by the HSPG LON-

2/glypican during axon pathfinding. Given the evolutionary conservation of the 

UNC-6/netrin pathway components (UNC-6/netrin and its receptors UNC-

40/DCC and UNC-5/UNC5), and of glypicans (LON-2 is most similar to 
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mammalian glypican-3), and that synthesis of HS chains is required for 

mammalian axons to respond to netrin-1 in vitro (Matsumoto et al 2007, Ogata-

Iwao et al 2011), glypicans are likely to play a role in netrin-mediated axon 

pathfinding in mammals as well. Our findings provide a general mechanism for 

the extracellular regulation of growth cone responses to netrin during the 

development of nervous systems. 

 

MATERIALS AND METHODS 

 

Nematode strains and genetics 

Nematode cultures were maintained at 20oC on NGM plates seeded with OP50 

bacteria as described (Brenner 1974). Strains were constructed using standard 

genetic procedures and are all listed in Table 3.8. Genotypes were confirmed by 

genotyping PCR or by sequencing when needed, using primers listed in Table 

3.9.  

 

S2 cell culture, transfection, mixing, and immunostaining 

S2 cells were maintained in SFX Insect Media (HyClone) containing 10% Fetal 

Bovine Serum (HyClone) and Penicillin-Streptomycin (50 units-50 μg/mL) 

(Sigma). 70-90% confluent S2 cells were transfected with 500 ng of each 

construct using Effectene® (Qiagen) according to manufacturer’s protocol. 48 hr 

after transfection, old culture media was removed and new media was added to 



131 

 

resuspend the cells. Equal volumes of resuspended cells that had been 

transfected with individual constructs were plated onto coverslips and co-cultured 

overnight. Cells were then fixed with 4% paraformaldehyde and immunostained 

with rabbit anti-HA (Life Technologies #715500) and mouse anti-FLAG (Sigma 

#F3165) primary antibodies, and Alexa594 donkey anti-rabbit (Life Technologies 

#R37119) and Alexa647 goat anti-mouse (Life Technologies #A21235) 

secondary antibodies. Confocal analysis was performed on a Zeiss LSM 5 

Pascal confocal microscope. Confocal images were processed using ImageJ. 

Each experiment was repeated at least three times.  

     For the experiment in which we use HA::LON-2-conditioned medium 

(supernatant) of cells expressing HA::LON-2, the culture media was also 

changed 48 hr after transfection, fresh media was added, and the cells were 

incubated for another 48 hr. This media was collected and centrifuged at 1500 

rpm to remove cells and debris. This supernatant was added onto cells 

expressing UNC-40::FLAG, incubated overnight, and as above, fixed, stained, 

and imaged. 

 

RT-PCR for gpn-1 alleles 

Total RNA was extracted from worm samples using Trizol (Invitrogen) according 

to manufacturer’s instructions. 500 ng RNA was used to reverse transcribe using 

the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) and 

random primers. PCR reactions were carried out with 1st strand cDNA template 
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and primers oCB834 (ATCAAGACCGAGTGATAGTG) and oCB1321 

(TGGCGAGTATTCCCGTTTAG) were used for gpn-1 cDNA amplification, and 

primers oCB992 (TCGCTTCAAATCAGTTCAGC) and oCB993 

(GCGAGCATTGAACAGTGAAG) were used for the control gene Y45F10D.4 

(Hoogewijs et al 2008) cDNA amplification. 

 

Neuroanatomical and distal tip cell observations 

Animals were mounted on agarose pads, anaesthetized with 100 mM sodium 

azide, and examined under a Zeiss Axio Scope.A1 or a Zeiss Axioskop 2 Plus. 

AVM and PVM axon guidance analysis. Axons of neurons AVM and PVM were 

examined in L4 larvae and adult animals using zdIs5, an integrated Pmec-4::gfp 

reporter (Clark & Chiu 2003). Animals with the cell body of AVM posterior to the 

vulva (cell migration defect) were excluded from axon guidance analysis.  

AVM analysis: Worms were counted as mutant for AVM ventral axon guidance if: 

a) AVM failed to send an axon ventrally and instead projected laterally to the 

anterior; or b) the AVM axon projected laterally, in the anterior or the posterior 

direction, for at least ~15 μm (>3 AVM cell body lengths) before projecting to the 

ventral side. The angle between the anterior/posterior axon projection and the 

ventral axon projection had to be >45° to be counted as mutant therefore 

excluding animals with a slight curve in the ventral axon of AVM from the mutant 

count. Values reported in Table 3.6.  
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PVM analysis criteria: Worms were counted as having their PVM axon 

misoriented dorsally if the axon of PVM was projecting to the dorsal side of the 

animal. The vulva was used as a reference for the ventral side. Worms whose 

zdIs5 labeled neurons were too misplaced to be identified were excluded from 

analysis. 

Distal tip cell guidance analysis: The path of migration of the distal tip cells (DTC) 

brings about the shape of the mature gonad arms (Fig. 3.5a, (Hedgecock et al, 

1987)). In the wild type, the DTC migrates away from the vulva location along the 

antero-posterior axis of the animal. The DTC then turns dorsally to reach the 

dorsal side of the animal, where it then migrates towards the vulva along the 

antero-posterior axis of the animal. To infer the path of DTC migration, gonad 

arms were examined in late L4 and young adult animals using DIC microscopy. 

Animals were counted as having abnormal gonad arm shapes when a) the distal 

arm of the gonad was located ventrally instead of dorsally, indicating a failure of 

the DTC to migrate dorsally; b) the proximal gonad arm was too short, resulting 

from a premature turn of the DTC towards the dorsal side; or c) the gonad arm 

was twisted over itself. 

GABAergic motorneuron axon analysis: Commissures of the GABAergic 

motorneurons were analyzed in L4 larvae and adults using ufIs34, an integrated 

Punc-47::mCherry reporter (Petrash et al 2013). For each animal, all GABAergic 

commissures (except DD1 and VD2) were counted and categorized as either 

reaching the dorsal cord, or failing to reach the dorsal cord. The fraction of 
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commissures failing to reach the dorsal cord among all the commissures 

extending from the ventral cord was determined for each animal, averaged for 

the genotype, and expressed as percentage.  

 

C. elegans constructs and microinjections to generate transgenic animals 

All inserts of finalized clones were verified by sequencing.  

 Plon-2::lon-2 (PCR product): Primers oCB1070 

(CATGATAAGCTTTTCAAATTGGCGGTTAACTG) and oCB1124 

(ATCATGGGGCCCTAAGCTGAATTCCCATAAC) were used to amplify a PCR 

product out of N2 genomic DNA containing bases 13,104 of cosmid C39E6 to 

26,408 of cosmid F55D10 of the lon-2 locus.  

 Pdpy-7::lon-2 (pCB268): Vector Pdpy-7 was cut with XmaI and ApaI and 

ligated with insert of lon-2 cDNA digested out of pCB251 (Pmec-7::lon-2) with 

XmaI and ApaI. 

 Pelt-3::lon-2 (pCB304): Vector Pdpy-7::lon-2 (pCB268) was digested with 

HindIII and XmaI to release Pdpy-7 and ligated with insert of Pelt-3 2-kb 

promoter (coordinates on cosmid K02B9: 16,117 to 18,081) amplified out of N2 

genomic DNA (modeled after (Maduzia et al., 2002)) using primers oCB1063 

(CATGATAAGCTTTGTGACACGTTGTTTCACG) and oCB1064 

(ATCATGCCCGGGGAAGTTTGAAATACCAGGTAG) to add on HindIII and XmaI 

sites. 
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 Pgrd-10::lon-2 (pCB266): Vector Pgrd-10::GFP (in pPD95.75 backbone) 

was digested with KpnI and EcoRI to release GFP and ligated with insert of lon-2 

cDNA (yk1346g07) amplified with primers oCB1034 

(CATGATGGTACCATGGTCTTCCGGTGGCTCATTC) and oCB1035 

(ATCATGGAATTCTCAAAAAAGTTTAATAACTGC) to add on KpnI and EcoRI 

sites. 

 Pmec-7::lon-2 (pCB251): Vector pPD96.41 was digested with XmaI and 

NheI and ligated with insert of lon-2 cDNA (yk1346g07) amplified by primers 

oCB963 (CATGATCCCGGGATGGTCTTCCGGTGGCTCATTC) and oCB964 

(ATCATGGCTAGCTCAAAAAAGTTTAATAACTGC) to add on XmaI and NheI 

sites. 

 Pelt-2::lon-2 (pCB218): Vector Pdpy-7::lon-2 (pCB268) was digested with 

HindIII and XmaI to release Pdpy-7 and ligated with insert of Pelt-2 1-kb 

promoter (coordinates on cosmid C33D3: 2933 - 3875) amplified out of N2 

genomic DNA (modeled after (Maduzia et al 2002)) using primers oCB1059 

(CATGATAAGCTTTTGATTTTGTTTCACTCTGTG) and oCB1060 

(ATCATGCCCGGGTATAATCTATTTTCTAGTTTC) to add on HindIII and XmaI 

sites. 

 Pmyo-3::lon-2 (pCB332): Vector pCB268 (Pdpy-7::lon-2) was digested 

with HindIII and XbaI to release Pdpy-7, and was ligated with insert of Pmyo-3 

digested out of vector pPD95.86 with HindIII and XbaI.  
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 Plon-2::lon-2 (pCB246): Vector Pdpy-7::lon-2 (pCB268) was digested 

with HindIII and XmaI to release Pdpy-7 and ligated with insert of lon-2 3-kb 

promoter (coordinates on cosmid C39E6: 13,104 - 10,105) amplified out of N2 

genomic DNA (modeled after (Gumienny et al 2007)) using primers oCB1070 

(CATGATAAGCTTTTCAAATTGGCGGTTAACTG) and oCB1069 

(ATCATGCCCGGGTCTGAAATTTTGAATATGTAAGC) to add on HindIII and 

XmaI sites. 

 Plon-2::LON-2ΔGPI (pCB269): Vector pCB246 (Plon-2::lon-2) was 

digested with XmaI and EcoRI to release the lon-2 cDNA and ligated with insert 

of lon-2 cDNA (yk1346g07) amplified with primers oCB963 

(CATGATCCCGGGATGGTCTTCCGGTGGCTCATTC) and oCB1074 

(ATCATGCTCGAGTCAATCCGGCTGAATTTCTTTTTCC) to add on XmaI and 

EcoRI sites and generate a truncated form of LON-2 after amino acid 488 to 

remove the GPI anchor (modeled after (Taneja-Bageshwar & Gumienny 2012)). 

 Plon-2::N-LON-2 (pCB270): Vector pCB268 (Pdpy-7::lon-2) was digested 

with XmaI and EcoRI to release the lon-2 cDNA and was ligated with insert of 

lon-2 cDNA (yk1346g07) amplified by primers oCB963 

(CATGATCCCGGGATGGTCTTCCGGTGGCTCATTC) and oCB1075 

(ATCATGGAATTCTCACCTTCCGAGTCGGTCCCACG), to add on XmaI and 

EcoRI sites and generate a truncated form of LON-2 after amino acid 368, ie, 

containing amino acids 1-368 (modeled after (Gumienny et al 2007)). 



137 

 

 Plon-2::C-LON-2 (pCB311): Vector pCB246 (Plon-2::lon-2) was digested 

with XmaI and NheI to release lon-2 cDNA and was ligated with insert of lon-2 

cDNA amplified by primers oCB964 

(ATCATGGCTAGCTCAAAAAAGTTTAATAACTGC) and 1) oCB1253 

(TCCGTCCTACCTGCAGAAGAAGTGAAAATCTGTGATCACTCG) 2) oCB1254 

(ATTCTTTTTGTATTGCTCTACCGGTCCGTCCTACCTGCAGAAG) and 3) 

oCB1255 

(CATGATCCCGGGATGGTCTTCCGGTGGCTCATTCTTTTTGTATTGCTCTACC

) to add on XmaI and NheI sites, to add on the 22 amino acid lon-2 signal peptide 

sequence, and to truncate LON-2 to begin at amino acid 369. Thus, this 

construct codes for 22 amino acid residues of the signal peptide of LON-2, 

followed by residues 369 – 508. 

 Pmec-7::sdn-1 (pCB242): Vector pPD96.41 was digested with XmaI and 

XhoI, and ligated with insert of sdn-1 cDNA (yk139f3) amplified with primers 

oCB903 (CATGATCCCGGGATGATTCTGAAACTCAATTTC) and oCB904 

(ATCATGCTCGAGTTACGCGTAAAATTCTTTTG) to add on XmaI and XhoI 

sites. 

 Plon-2::sdn-1 (pCB312): Vector pCB246 (Plon-2::lon-2) was digested 

with XmaI and EcoRI to release lon-2, and was ligated with an insert of sdn-1 

cDNA digested out of pCB242 (Pmec-7::sdn-1) with XmaI and EcoRI. 
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Transgenic animals were generated by standard microinjection techniques (Mello 

& Fire 1995). Each construct or PCR amplicon was injected at 1, 5, 10, or 25 

ng/μL with one or two coinjection markers which included pRF4 (125-150 ng/µL), 

Pttx-3::mCherry (50 ng/µL), Pceh-22::gfp (50-75 ng/µL), and/or Punc-122::rfp 

(50-75 ng/µL). pBSK+ (90-100 ng/µL) used to increase total DNA concentration if 

needed. For details on specific coinjection marker(s) used for each rescued 

transgenic line, see Table 3.8.  

 

Western blot analysis of LON-2::GFP and LON-2ΔGAG::GFP expressed in 

worms 

Mixed-stage wild-type (N2), GFP control (lqIs4), LON-2::GFP (TLG257), and 

LON-2ΔGAG::GFP (TLG199) worms were collected in buffer and protease 

inhibitors (Roche). Worm pellets were subjected to repeated freeze-thaw cycles. 

Protein concentration was measured using the Pierce 660 nm Protein Assay on a 

Nanodrop. 70 µg of samples mixed with 2x Laemmli sample buffer (Bio-Rad) 

were boiled, separated by SDS-PAGE on a 4-20% Mini-Protean TGX gel (Bio-

Rad), and transferred to PVDF membrane. Membranes were incubated in 1:3000 

anti-GFP primary antibody (Millipore #AB3080) and 1:9000 goat anti-rabbit HRP 

secondary antibody (Bio-Rad #166-2408EDU). For the loading control, 

membranes were incubated in 1:5000 anti-HSP90 antibody (CST #4874) and 

1:10000 goat anti-rabbit HRP secondary antibody (Bio-Rad #166-2408EDU). 
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Signal was revealed using Clarity Western ECL Substrate (Bio-Rad), and imaged 

using film (LabScientific). 

 

Constructs to express variants of LON-2, UNC-40, UNC-6, SDN-1 and Evi in 

S2 cells 

All inserts of finalized clones were verified by sequencing. 

 HA::LON-2 (pCB285): The C. elegans lon-2 full length cDNA (yk1346g07) 

was amplified by PCR with primers adding the EcoRI and ApaI restriction 

enzyme sites and cloned into pBlueScript II (Life Technologies). HA::LON-2 was 

made by synthesizing a DNA fragment, carrying the restriction sites EcoRI and 

HincII, and containing the 5’ end of the lon-2 cDNA with the HA tag added after 

the signal peptide sequence (at cDNA position 61) and cloned into 

pBlueScript/lon-2. The HA::LON-2 EcoRI/ApaI fragment was then cloned into the 

pActin5.1/V5-His vector (Life Technologies).  

 HA::LON-2::myc (pCB313): The HA::LON-2::myc construct was made by 

synthesizing the 3’ end of the lon-2 cDNA (bases 739-1527) with the myc tag 

DNA sequence before the GPI anchor domain sequence (at cDNA position 1375) 

and an ApaI restriction site at the 3’ end. The PmlI/ApaI synthesized fragment 

was then cloned into the pActin5.1/HA::LON-2 (pCB285) construct cut with the 

same restriction enzymes. 

 HA::LON-2ΔGAG (pCB295): The LON-2ΔGAG construct was made by 

replacing the XhoI/BsmI fragment (bases 803-1340 of the lon-2 cDNA) in the 
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pBlueScript/HA::lon-2 plasmid with synthesized fragment where the lon-2 

sequence is mutated at the three predicted heparan sulfate chain attachment 

sites (S374A, S442A and S444A) modeled after (Taneja-Bageshwar & Gumienny 

2012). Similar to the wild type version of lon-2, the HA::LON-2ΔGAG EcoRI/ApaI 

fragment was then cloned into the pActin5.1/V5-His vector (Life Technologies). 

 HA::LON-2ΔGAG::myc (pCB330): The double tagged HA::LON-

2ΔGAG::myc construct was made by replacing the BsmI/ApaI fragment (bases 

1340-1527 of the lon-2 cDNA) in the pBlueScript/HA::LON-2ΔGAG plasmid with 

a synthesized fragment containing the myc tag DNA sequence before the GPI 

anchor domain sequence (at cDNA position 1375) and an ApaI restriction site at 

the 3’ end. The HA::LON-2ΔGAG::myc EcoRI/ApaI fragment was then cloned 

into the pActin5.1/V5-His vector (Life Technologies). 

 SfGFP::UNC-6 (pCB292): The C. elegans unc-6 full length cDNA 

(yk603d12) was amplified by PCR with primers adding the EcoRI and ApaI 

restriction enzyme sites and cloned into pBlueScript II. The superfolder-

GFP::UNC-6 construct was made by synthesizing a DNA fragment, carrying the 

restriction sites EcoRI and HincII, and containing the 5’ end of the unc-6 cDNA 

with the superfolder-GFP sequence after the signal peptide sequence (cDNA 

position 70) and cloned into pBlueScript/unc-6. The superfolder-GFP::UNC-6 

EcoRI/ApaI fragment was then cloned into the pActin5.1/V5-His vector. 

 UNC-40::FLAG (pCB301): The C. elegans full length unc-40 cDNA 

(yk449d8) was amplified by two sequential PCR reactions that added the XhoI 



141 

 

and ApaI restriction enzyme sites, as well as the FLAG tag at the 3’ end before 

the stop codon (adding the FLAG tag at the C-terminus of UNC-40 after the 

intracellular domain). This UNC-40::FLAG cDNA was then cloned into the 

pActin5.1/V5-His vector. 

 UNC-40ΔNt::FLAG (pCB310): The unc-40 intracellular fragment (cDNA 

bases 3022-4245 that include the coding sequence for the transmembrane and 

intracellular domains of UNC-40), along with the FLAG tag, was amplified by 

PCR using the UNC-40::FLAG cDNA as template and primers carrying the EcoRI 

and ApaI sites. A start codon (ATG) was added to the forward primer. The UNC-

40ΔNt::FLAG fragment was then cloned into the pActin5.1/V5-His vector. 

 UNC-40ΔFn4/5::FLAG (pCB334): The UNC-40ΔFn4/5 construct was 

made by PCR amplifying a 2-kb DNA fragment from genomic DNA from the 

strain NK821 qyIs155 containing a deletion of fibronectin III domains 4 and 5 of 

the unc-40 cDNA using nested primers ((Wang et al., 2014)). The nested PCR 

added the FLAG tag to the 3’ end of the UNC-40ΔFn4/5 cDNA fragment. This 

final fragment was cloned into the pActin5.1/unc-40 vector using DraIII and ApaI 

restriction enzymes, thus generating an unc-40 full length cDNA with a deletion 

of the fibronectin III domains 4 and 5. 

 SDN-1::myc (pCB336): The C. elegans sdn-1 cDNA, excluding the 

coding region for the transmembrane and intracellular C-terminal tail (cDNA 

bases 1-678), was amplified by two sequential PCR reactions adding the EcoRI 

and ApaI restriction sites and the myc tag sequence at the 3’ end before the stop 
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codon. The sdn-1::myc EcoRI/ApaI fragment was then cloned into the 

pActin5.1/V5-His vector (Life Technologies). 

 The pAc/Evi::EGFP (Bartscherer et al., 2006) and pAc/GFP constructs 

were a gift from V. Budnik (University of Massachusetts Medical School). 

 

Western blot analysis of HA::LON-2::myc and HA::LON-2ΔGAG::myc 

expressed in S2 cells 

S2 cells were transfected with HA::LON-2::myc (pCB313) and HA::LON-

2ΔGAG::myc (pCB330) constructs. Cells were washed once with 1X Phosphate 

Buffered Saline and lysed for 30 min at 4°C in 1X Phosphate Buffered Saline, 

0.5% Triton X-100 and 1X Protease Inhibitor Cocktail (Roche). Samples of 

supernatant and cell lysates were each mixed with 2X Laemmli sample buffer 

(BioRad). Proteins were separated by SDS-PAGE and transferred to PVDF 

membrane. Membranes were incubated with rabbit anti-HA (Life Technologies 

#715500) and rabbit anti-myc (Santa Cruz #sc-789) primary antibodies and HRP-

linked goat anti-rabbit (Bio-Rad #166-2408EDU) secondary antibody. Signals 

were revealed by chemiluminescence with Clarity™ Western ECL Substrate 

(BioRad) and imaged using the ChemiDocTM System (BioRad). 

 

Western blot analysis of HA::LON-2::myc, UNC-40::FLAG and SfGFP::UNC-

6 expressed in S2 cells 
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S2 cells were independently transfected with HA::LON-2::myc (pCB313), UNC-

40::FLAG (pCB301) or SfGFP::UNC-6 (pCB292) constructs. 48 hr after 

transfection, old culture media was removed and new media was added to 

resuspend the cells. Equal volumes of resuspended cells that had been 

transfected with individual constructs were mixed and co-cultured overnight. 

Cells were harvested, centrifuged, and combined with their corresponding 

supernatant from each of these cell mixes. 100 μL of supernatant of each mixture 

was saved and kept on ice. Cell pellets were washed once with 1X Phosphate 

Buffered Saline and lysed for 30 min at 4°C in 100 μL of ice-cold RIPA buffer (50 

mM Tris HCl pH 7.5, 150 mM NaCl, 1% Triton-X100, 0.5% sodium deoxycholate, 

0.1% SDS, 1mM EDTA pH 8.0) supplemented with Protease Inhibitor Cocktail 

(Roche) and PMSF. Cell lysates were combined with their corresponding 

supernatant and mixed with 2X Laemmli sample buffer (BioRad). Each sample 

was split into 3 to run 3 protein gels in parallel. Proteins were separated by SDS-

PAGE and transferred to PVDF membrane. Membranes were incubated with 

rabbit anti-myc (Santa Cruz #sc-789), mouse anti-FLAG (Sigma #F3165) and 

rabbit anti-GFP (Millipore AB3080) primary antibodies as well as HRP-linked goat 

anti-rabbit (Bio-Rad #166-2408EDU) and HRP-linked horse anti-mouse (Vector 

Labs PI-2000) secondary antibodies. Signals were revealed by 

chemiluminescence with Clarity™ Western ECL Substrate (BioRad) and imaged 

using the ChemiDocTM System (BioRad). 
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Analysis of the shape of UNC-40-expressing cells 

Independent populations of S2 cells were transfected with (1) 450 ng of 

pActin5.1::mCherry alone, (2) 50 ng of the UNC-40::FLAG construct plus 450 ng 

of the co-transfection marker pActin5.1::mCherry, or (3) 500 ng of HA::LON-2. 

The media was changed and cells were mixed 48 hr after transfection. Control 

mCherry expressing cells were mixed with untransfected cells, or with HA::LON-2 

expressing cells. Similarly, UNC-40::FLAG/mCherry expressing cells were mixed 

with untransfected cells or with HA::LON-2 expressing cells. To maintain the total 

number of cells constant in our different mixes, one volume of UNC-

40::FLAG/mCherry cells was mixed with either (a) one volume of 

control/untransfected cells, or (b) one volume of LON-2-transfected cells. Cell 

mixes were co-cultured overnight. Cells were then fixed with 4% 

paraformaldehyde and examined under a Zeiss LSM 5 Pascal confocal 

microscope. Control mCherry expressing cells or UNC-40::FLAG/mCherry 

expressing cells were identified by the co-transfection marker mCherry. 20 fields 

of ~300 cells each per mix per were photographed for each of 3 independent 

experiments. Cells were categorized as having the typical S2 cell round and 

smooth shape, irregular edges, and/or extensions protruding from the cell. 
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TABLES 
 
 
Table 3.1. List of mutant alleles used. 

 
 
 

 

 

 

Gene Allele Nature of allele Reference 

unc-52 e444 Early stop in exon 18. Partial loss of 

function. 

(Rogalski et al 1995) 

agr-1 tm2051 423 bp deletion, deleting exons 26 and 27 

resulting in an in frame loss of 42 amino 

acids. 

(Hrus et al 2007) 

gpn-1 ok377 1194 bp deletion, deletes most of exon 3, 

and introduces early Stop codons. Likely 

null. (see Figure S2) 

(Hudson et al 2006) 

This study 

gpn-1 tm595 1411 bp deletion, deletes part of exon 2, 

exon 3, and introduces early Stop 

codons. Likely null. (see Figure S2) 

(Hudson et al 2006) 

This study 

lon-2 e678 ~9 kb deletion. Null. (Gumienny et al 2007) 

sdn-1 zh20 1258 bp deletion. Null. (Rhiner et al 2005) 

sdn-1 ok449 483 bp in-frame deletion. Produces 

truncated SDN-1. 

(Minniti et al 2004) 

unc-6 ev400 Early stop Q78*. Null. (Wadsworth et al 1996) 

unc-6 e78 C410Y. Partial loss of function. (Lim & Wadsworth 

2002) 

unc-40 e271 Early stop R824*. Null. (Stavoe et al 2012) 

unc-40 e1430 Early stop R157*. Likely null. (Colon-Ramos et al 

2007) 

slt-1 eh15 Duplication of locus and deletions. First 

copy contains a 1900 bp deletion. Both 

copies have a 100 bp deletion. First copy 

produces no mRNA while second copy 

produces mRNA with a frameshift. 

(Hao et al 2001) 

sax-3 ky123 Deletion of signal peptide and first exon. (Zallen et al 1998) 

unc-34 e566 A likely null mutation. (Bloom 1993) (Fleming 

et al 2010) 

sqv-5 k172 G663E. Partial loss of function. (Suzuki et al 2006) 
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Table 3.2. Distal tip cell guidance defects in strains examined. 

Genotype N % Defective distal 

tip cell guidance 

s.e.p. 

ufIs34; vsIs48 140 4 1.7 

lon-2(e678); ufIs34 251 17 2.4 

unc-6(ev400); zdIs5 172 62 3.7 

lon-2(e678) unc-6(ev400); zdIs5 160 65 3.8 

unc-40(e271); ufIs34; vsIs48 122 25 3.9 

lon-2(e678); unc-40(e271); ufIs34 136 22 3.6 

unc-5(e53); vsIs48; ufIs34 134 46 4.3 

lon-2(e678); unc-5(e53); ufIs34 138 49 4.3 

 

Table 3.3. Motorneuron axon dorsal guidance defects in strains examined. 

Genotype N % GABA 

commissures failing 

to reach dorsal cord 

s.e.p. 

ufIs34; vsIs48 104 0.1 0.3 

lon-2(e678); ufIs34 86 0.2 0.5 

unc-40(e271); ufIs34; vsIs48 73 55 5.8 

lon-2(e678); unc-40(e271); ufIs34 67 50 6.1 
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Table 3.4. PVM dorsal guidance defects quantified in wild-type and mutant 

strains with or without misexpression of unc-5 in the PVM neuron using 

transgene evIs25 Pmec-7::unc-5.  

 

Genotype N % Dorsal PVM axon 

^ 

s.e.p. 

PVM controls 

zdIs5 52 0 0.0 

unc-6(ev400); zdIs5 44 0 0.0 

unc-40(e271) zdIs5 30 0 0.0 

unc-34(e566); zdIs5 73 0 0.0 

lon-2(e678) unc-6(ev400); zdIs5 65 0 0.0 

slt-1(eh15); zdIs5 60 0 0.0 

sax-3(ky123); zdIs5 41 0 0.0 

lon-2(e678); zdIs5 54 0 0.0 

sdn-1(zh20); zdIs5 58 0 0.0 

lon-2(e678) sdn-1(zh20); zdIs5 44 0 0.0 

Strains with evIs25 Pmec-7::unc-5 

evIs25; zdIs5 228 66 3.1 

unc-6(ev400) evIs25; zdIs5 41 0 0.0 

unc-40(e271) zdIs5; evIs25 191 18 2.8 

unc-34(e566); evIs25; zdIs5 159 13 2.7 

unc-6(ev400) lon-2(e678) evIs25; 

zdIs5 

62 0 0.0 

unc-40(e271) zdIs5; lon-2(e678) 

evIs25 

249 25 2.7 

slt-1(eh15) evIs25; zdIs5 212 63 3.3 

unc-34(e566); lon-2(e678) evIs25; 

zdIs5 

207 8 1.9 

sax-3(ky123) evIs25; zdIs5 201 66 3.3 

lon-2(e678) evIs25; zdIs5 330 48 2.8 

sdn-1(zh20) evIs25; zdIs5 259 64 3.0 

lon-2(e678) sdn-1(zh20) evIs25; 

zdIs5 

343 42 2.7 

N, number of AVM axons examined. s.e.p., standard error of the proportion. 
^  PVM axons normally never extend dorsally, not even in the complete absence of the slt-1/slit 
and the unc-6/netrin guidance pathways in unc-6 slt-1 double null mutants, where axons defective 
in guidance extend anteriorly. Dorsal axon extension is only observed with unc-5/UNC5 ectopic 
expression, which overpowers the endogenous signaling mechanism within PVM and thus forces 
its axon to extend dorsally. This highlights the power of this ectopic-unc-5-expression system to 
uncover molecules specifically involved in unc-6/netrin signaling through the unc-5/UNC5 
receptor, independently of other endogenous signals. 
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Table 3.5. Transgenic rescue of lon-2 function in AVM guidance.  

We assayed rescue of the AVM guidance defects in lon-2 slt-1 double mutants 

back to slt-1 single mutant levels. Underlined indicates “rescued”. Non-transgenic 

sibling controls of rescued transgenic lines were examined to ascertain that the 

rescue was transgene-dependent. 

 

Genotype Transgene  Transgenic  Non-transgenic controls 

   N % 
Mut. 

s.e.p N % 
Mut. 

s.e.p 

lon-2 slt-1; 

qvEx107 

Plon-2::lon-

2(+) (14kb 

lon-2 locus) 

line 

#1 

184 52 3.7 221 71 3.1 

lon-2 slt-1; 

qvEx110 

Plon-2::lon-

2(+) (Plon-

2::lon-2 

cDNA) 

line 

#2 

263 51 3.1 223 68 3.1 

lon-2 slt-1; 

qvEx108 

Plon-2::lon-

2(+) (Plon-

2::lon-2 

cDNA) 

line 

#3 

223 55 3.3 190 65 3.5 

lon-2 slt-1; 

qvEx113 

Pelt-3::lon-

2(+) 

line 

#1 

116 47 4.6 71 75 5.1 

lon-2 slt-1; 
qvEx116 

Pelt-3::lon-
2(+) 

line 
#2 

248 52 3.2 231 68 3.1 

lon-2 slt-1; 
qvEx112 

Pdpy-
7::lon-2(+) 

line 
#1 

260 52 3.1 381 65 2.4 

lon-2 slt-1; 
qvEx117 

Pdpy-
7::lon-2(+) 

line 
#2 

592 54 2.0 281 65 2.8 

lon-2 slt-1; 
qvEx118 

Pdpy-
7::lon-2(+) 

line 
#3 

450 54 2.3 269 64 2.9 

lon-2 slt-1; 
qvEx184 

Pgrd-
10::lon-2(+) 

line 
#1 

83 63 5.3  n.d.  

lon-2 slt-1; 
qvEx185 

Pgrd-
10::lon-2(+) 

line 
#2 

99 65 4.8  n.d.  

lon-2 slt-1; 
qvEx186 

Pgrd-
10::lon-2(+) 

line 
#3 

80 70 5.1  n.d.  

lon-2 slt-1; 
qvEx187 

Pmec-
7::lon-2(+) 

line 
#1 

81 62 5.4  n.d.  

lon-2 slt-1; 
qvEx188 

Pmec-
7::lon-2(+) 

line 
#2 

76 63 5.5  n.d.  

lon-2 slt-1; 
qvEx189 

Pmec-
7::lon-2(+) 

line 
#3 

99 70 4.6  n.d.  

lon-2 slt-1; 
qvEx190 

Pelt-2::lon-
2(+) 

line 
#1 

55 62 6.5  n.d.  

lon-2 slt-1; Pelt-2::lon- line 49 67 6.7  n.d.  
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qvEx191 2(+) #2 
lon-2 slt-1; 
qvEx192 

Pelt-2::lon-
2(+) 

line 
#3 

65 68 5.8  n.d.  

lon-2 slt-1; 
qvEx193 

Pmyo-
3::lon-2(+) 

line 
#1 

52 63 6.7  n.d.  

lon-2 slt-1; 
qvEx194 

Pmyo-
3::lon-2(+) 

line 
#2 

44 70 6.9  n.d.  

lon-2 slt-1; 
qvEx195 

Pmyo-
3::lon-2(+) 

line 
#3 

54 78 5.6  n.d.  

lon-2 slt-1; 
qvEx204 

Plon-
2::sdn-1(+) 

line 
#1 

51 65 6.7  n.d.  

lon-2 slt-1; 
qvEx205 

Plon-
2::sdn-1(+) 

line 
#2 

37 65 7.8  n.d.  

lon-2 slt-1; 
qvEx206 

Plon-
2::sdn-1(+) 

line 
#3 

47 83 5.5  n.d.  

lon-2 slt-1; 
qvEx207 

Pmec-
7::sdn-1(+) 

line 
#1 

42 74 6.8  n.d.  

lon-2 slt-1; 
qvEx208 

Pmec-
7::sdn-1(+) 

line 
#2 

37 78 6.8  n.d.  

lon-2 slt-1; 
qvEx209 

Pmec-
7::sdn-1(+) 

line 
#3 

39 82 6.2  n.d.  

lon-2 slt-1; 
qvEx121 

Plon-
2::LON-
2ΔGAG 

line 
#1 

233 49 3.3 184 70 3.4 

lon-2 slt-1; 
qvEx122 

Plon-
2::LON-
2ΔGAG 

line 
#2 

204 51 3.5 193 74 3.2 

lon-2 slt-1; 
qvEx196 

Plon-
2::LON-
2ΔGAG 

line 
#3 

158 53 4 215 71 3.1 

lon-2 slt-1; 
qvEx111 

Plon-
2::LON-
2ΔGPI 

line 
#1 

275 52 3.0 130 75 3.8 

lon-2 slt-1; 
qvEx199 

Plon-2::N-
LON-2 

line 
#1 

111 43 4.7 83 71 5.0 

lon-2 slt-1; 
qvEx173 

Plon-2::N-
LON-2 

line 
#2 

147 48 4.1 67 75 5.3 

lon-2 slt-1; 
qvEx174 

Plon-2::N-
LON-2 

line 
#3 

116 58 4.8 145 74 3.6 

lon-2 slt-1; 
qvEx176 

Plon-2::C-
LON-2 

line 
#1 

42 67 7.3  n.d.  

lon-2 slt-1; 
qvEx177 

Plon-2::C-
LON-2 

line 
#2 

52 67 6.5  n.d.  

lon-2 slt-1; 
qvEx178 

Plon-2::C-
LON-2 

line 
#3 

39 69 7.4  n.d.  

N, number of AVM axons examined. s.e.p, standard error of the proportion. n.d., not determined. 
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Table 3.6. AVM ventral guidance defects in strains examined, including 

transgenic lines to rescue sdn-1. 

 

Genotype  N % Defective s.e.p. 

zdIs5  391   0 0.0 

HSPG mutants 

lon-2(e678); zdIs5  238 2 0.9 

sdn-1(zh20); zdIs5  506 12 1.4 

sdn-1(ok449); zdIs5  205 13 2.3 

gpn-1(ok377); zdIs5  58 0 0.0 

gpn-1(tm595); zdIs5  129 0 0.0 

unc-52(e444); zdIs5  190 2 1.0 

agr-1(tm2051); zdIs5  107 1 1.0 

lon-2(e678) gpn-1(ok377); zdIs5  110 1 0.9 

lon-2(e678) gpn-1(tm595); zdIs5  181 2 1.0 

sdn-1(zh20) gpn-1(ok377); zdIs5  222 13 2.3 

sdn-1(zh20) gpn-1(tm595); zdIs5  197 16 2.6 

lon-2(e678) sdn-1(zh20); zdIs5  283 33 2.8 

lon-2(e678) sdn-1(ok449); zdIs5  264 25 2.7 

unc-52(e444); sdn-1(zh20); zdIs5  131 12 2.8 

unc-52(e444) agr-1(tm2051); zdIs5  97 1 1.0 

lon-2(e678) gpn-1(ok377) sdn-1(zh20); zdIs5  218 41 3.3 

lon-2(e678) gpn-1(tm595) sdn-1(zh20); zdIs5  271 29 2.8 

Strains with unc-6 and unc-40 

unc-6(ev400); zdIs5  199 43 3.5 

unc-6(e78); zdIs5  199 32 3.3 

unc-40(e1430) zdIs5  237 15 2.3 

unc-40(e271) zdIs5  190 18 2.8 

unc-40(e271) zdIs5; unc-6(ev400)  290 36 2.8 

lon-2(e678) unc-6(ev400); zdIs5  205 45 3.5 

lon-2(e678) unc-6(e78); zdIs5  262 28 2.8 

unc-40(e271) zdIs5; lon-2(e678)  246 18 2.4 

unc-40(e1430) zdIs5; lon-2(e678)  205 18 2.7 

unc-40(e271) zdIs5; sdn-1(zh20)  94 84 3.8 

unc-6(ev400) slt-1(eh15); zdIs5  188 91 2.1 

Strains with slt-1 and sax-3 

slt-1(eh15); zdIs5  465 50 2.3 

sax-3(ky123); zdIs5  380 44 2.5 

sax-3(ky123) slt-1(eh15); zdIs5  220 51 3.4 

lon-2(e678) slt-1(eh15); zdIs5  233 67 3.1 

sax-3(ky123) lon-2(e678); zdIs5  493 53 2.2 
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sdn-1(zh20) slt-1(eh15); zdIs5  378 41 2.5 

sax-3(ky123) sdn-1(zh20); zdIs5  137 45 4.3 

kyIs209; zdIs5  835 19 1.4 

lon-2(e678) kyIs209; zdIs5  783 25 1.5 

Strains with sqv-5     

sqv-5(k172)  235 9 1.9 

lon-2(e678); sqv-5(k172)  189 23 3.1 

Transgenic strains used to rescue sdn-1 function in AVM guidance in lon-2 sdn-1; 
zdIs5^ 

 Transgene    

lon-2(e678) sdn-

1(zh20); zdIs5; qvEx114 

Pmec-7::sdn-1(+) line #1 129 14 3.1 

lon-2(e678) sdn-

1(zh20); zdIs5; qvEx115 

Pmec-7::sdn-1(+) line #2 136 15 3.1 

lon-2(e678) sdn-

1(zh20); zdIs5; qvEx100 

Pmec-7::sdn-1(+) line #3 99 14 3.5 

N, number of AVM axons examined. s.e.p., standard error of the proportion. 

^ We assayed rescue of sdn-1 function using the double mutants lon-2 sdn-1 since it is easier to 

rescue defects that are 33% penetrant (as in the double lon-2(e678) sdn-1(zh20)) than to rescue 
defects that are 12% penetrant (as in the single mutant sdn-1(zh20)). 

 
 
 
Table 3.7. Transgenic rescue of lon-2 function in distal tip cell guidance. 

 
 
 
 

Genotype Transgene Transgenic  Non-transgenic sibling 
controls 

  N % 

Defective 

s.e.p N % 

Defective 

s.e.p 

lon-

2(e678);ufIs34; 

qvEx200 

Plon-2::lon-

2(+) (Plon-

2::lon-2 cDNA) 

182 5 1.6 100 18 3.8 

lon-2(e678); 

texEx164 

Plon-2::lon-

2(+) 

236 7 1.7 248 13 2.2 

lon-2(e678); 

texEx144 

Plon-2::LON-

2ΔGAG 

108 4 1.9 122 18 3.5 

lon-

2(e678);ufIs34; 

qvEx210 

Plon-2:: N-

LON-2 

124 5 2.0 126 16 3.3 



153 

 

Table 3.8. List of strains used. 
 

Strain  Genotype Transgene Reference 

Inserted transgenes 

N2   (Brenner 1974) 

MT4005 zdIs5 I Pmec-4::gfp; lin-15(+) (Clark & Chiu 2003)  

VQ412 kyIs209 X derived from 
CX5374 

Pmyo-3::slt-1 (Yu et al 2002) 

NW767 evIs25 X Pmec-7::unc-5; Pmec-
7::lac-Z 

(Hamelin et al 1993)  

WS3404 opIs171 Psdn-1::sdn-1::gfp; lin-
15(+) 

(Rhiner et al 2005) 

LE311 lqIs4 Pceh-10::gfp (Tsalik et al 2003) 

  VQ84 vsIs48 X; ufIs34 derived 
from LX949 and IZ829 

Punc-17::gfp; Punc-
47::mCherry 

(Chase et al 2004) 
(Petrash et al 2013) 

HSPG mutants 

VQ398 lon-2(e678) X; zdIs5 I  This study 

VQ423 sdn-1(zh20) X; zdIs5 I  This study 

VQ584 sdn-1(ok449) X; zdIs5 I  This study 

VQ400 gpn-1(ok377) X; zdIs5 I  This study 

VQ728 gpn-1(tm595) X; zdIs5 I  This study 

VQ411 unc-52(e444) II; zdIs5 I  This study 

VQ419 agr-1(tm2051) II; zdIs5 I  This study 

VQ458  lon-2(e678) gpn-1(ok377) 
X; zdIs5 I 

 This study 

VQ730 lon-2(e678) gpn-1(tm595) 
X; zdIs5 I 

 This study 

VQ460 sdn-1(zh20) gpn-1(ok377) 
X; zdIs5 I 

 This study 

VQ737 sdn-1(zh20) gpn-1(tm595) 
X; zdIs5 I 

 This study 

VQ461 lon-2(e678) sdn-1(zh20) 
X; zdIs5 I 

 This study 

VQ587 lon-2(e678) sdn-1(ok449) 
X; zdIs5 I 

 This study 

VQ474 unc-52(e444) II; sdn-
1(zh20) X; zdIs5 I 

 This study 

VQ483 unc-52(e444) agr-
1(tm2051) II; zdIs5 I 

 This study 

VQ486 lon-2(e678) gpn-1(ok377) 
sdn-1(zh20) X; zdIs5 I 

 This study 

VQ740 lon-2(e678) gpn-1(tm595) 
sdn-1(zh20) X; zdIs5 I 

 This study 

VQ693 lon-2(e678) X; ufIs34  This study 

Strains with unc-6, unc-40, unc-34, and unc-5 
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VQ396 unc-6(ev400) X; zdIs5 I  This study 

VQ395 unc-6(e78) X; zdIs5 I  This study 

VQ470 unc-40(e271) zdIs5 I  This study 

VQ565 unc-40(e1430) zdIs5 I  This study 

VQ529 unc-40(e271) zdIs5 I; unc-
6(ev400) X 

 This study 

VQ469 lon-2(e678) unc-6(ev400) 
X; zdIs5 I 

 This study 

VQ567 lon-2(e678) unc-6(e78) X; 
zdIs5 I 

 This study 

VQ522 unc-40(e271) zdIs5 I; lon-
2(e678) X 

 This study 

VQ581 unc-40(e1430) zdIs5 I; 
lon-2(e678) X 

 This study 

VQ738 unc-40(e271) zdIs5 I; sdn-
1(zh20) X 

 This study 

VQ481 unc-6(ev400) slt-1(eh15) 
X; zdIs5 I 

 This study 

VQ686 unc-40(e271) I; vsIs48 X; 
ufIs34 

 This study 

VQ727 unc-40(e271) I; lon-
2(e678) X; ufIs34 

 This study 

VQ722 unc-34(e566) V; zdIs5 I  This study 

VQ724 unc-5(e53) IV; vsIs48 X; 
ufIs34 

 This study 

VQ723 unc-5(e53) IV; lon-2(e678) 
X; ufIs34 

 This study 

Strains with slt-1 and sax-3 

VQ401 slt-1(eh15) X; zdIs5 I  This study 

VQ473 sax-3(ky123) X; zdIs5 I  This study 

VQ578 sax-3(ky123) slt-1(eh15) 
X; zdIs5 I 

 This study 

VQ482 lon-2(e678) slt-1(eh15) X; 
zdIs5 I 

 This study 

VQ501 sax-3(ky123) lon-2(e678) 
X; zdIs5 I 

 This study 

VQ432 sdn-1(zh20) slt-1(eh15) X; 
zdIs5 I 

 This study 

VQ526 sax-3(ky123) sdn-1(zh20) 
X; zdIs5 I 

 This study 

VQ427 kyIs209 X; zdIs5 I  This study 

VQ582 lon-2(e678) kyIs209 X; 
zdIs5 I 

 This study 

Strains with evIs25 

VQ536 evIs25 X; zdIs5 I  This study 

VQ538 unc-6(ev400) evIs25 X; 
zdIs5 I 

 This study 
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VQ540 unc-40(e271) zdIs5 I; 
evIs25 X 

 This study 

VQ555 unc-6(ev400) lon-2(e678) 
evIs25 X; zdIs5 I 

 This study 

VQ645 unc-40(e271) zdIs5 I; lon-
2(e678) evIs25 X 

 This study 

VQ556 slt-1(eh15) evIs25 X; 
zdIs5 I 

 This study 

VQ557 sax-3(ky123) evIs25 X; 
zdIs5 I 

 This study 

VQ541 lon-2(e678) evIs25 X; 
zdIs5 I 

 This study 

VQ572 sdn-1(zh20) evIs25 X; 
zdIs5 I 

 This study 

VQ772 unc-34(e566) V; evIs25 X; 
zdIs5 I 

 This study 

VQ773 unc-34(e566) V; evIs25 
lon-2(e678) X; zdIs5 I 

 This study 

VQ542 lon-2(e678) sdn-1(zh20) 
evIs25 X; zdIs5 I 

 This study 

Strains with sqv-5 

VQ523 sqv-5(k172) zdIs5 I  This study 

VQ530 lon-2(e678) X; sqv-
5(k172) zdIs5 I 

 This study 

Transgenic Lines 

VQ776 lon-2(e678) X; ufIs34; 
qvEx200 

pCB246 (Plon-2::lon-2(+)), 
Pceh-22::gfp, Punc-122::rfp. 
Line #1 

This study 

TLG257 lon-2(e678) X; 
texEx164 

Plasmid HW483 (Plon-2::lon-
2::gfp), Pttx-3::mCherry. Line 
#2 

This study 

TLG199 lon-2(e678) X; 
texEx144 

pSBL3SG006 (Plon-2::LON-
2ΔGAG::gfp), Pttx-
3::mCherry. Line #1 

This study 

  VQ795 lon-2(e678) X; 
qvEx210 

pCB270 (Plon-2::N-LON-2), 
pBSK+, Pceh-22::gfp, 
Punc122::rfp. Line #1 

This study 

VQ596 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx107 

PCR product of bases 13,104 
of cosmid C39E6 to 26,408 of 
F55D10, Pceh-22::gfp, Punc-
122::rfp. Line #1 

This study 

VQ612 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx110 

pCB246 (Plon-2::lon-2), 
Pceh-22::gfp, Punc-122::rfp, 
pBSK+. Line #2 

This study 

VQ597 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx108 

pCB246 (Plon-2::lon-2), 
Pceh-22::gfp, Punc-122::rfp, 
pBSK+. Line #3 

This study 

VQ615 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx113 

pCB218 (Pelt-3::lon-2), Pceh-
22::gfp, Punc-122::rfp, 
pBSK+. Line #1 

This study 
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VQ623 lon-2(e678) slt-1(eh15) 
X; zdIs5 I; qvEx116 

pCB218 (Pelt-3::lon-2), Pceh-
22::gfp, Punc-122::rfp, 
pBSK+. Line #2 

This study 

VQ614 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx112 

pCB268 (Pdpy-7::lon-2), 
Pceh-22::gfp, Punc-122::rfp; 
pBSK+. Line #1 

This study 

VQ624 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx117 

pCB268 (Pdpy-7::lon-2), 
Pceh-22::gfp, Punc-122::rfp, 
pBSK+. Line #2 

This study 

VQ625 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx118 

pCB268 (Pdpy-7::lon-2), 
Pceh-22::gfp, Punc-122::rfp, 
pBSK+. Line #3 

This study 

VQ746 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx184 

pCB266 (Pgrd-10::lon-2), 
Pceh-22:gfp, Punc-122::rfp, 
pBSK+. Line #1 

This study 

VQ747 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx185 

pCB266 (Pgrd-10::lon-2), 
Pceh-22:gfp, Punc-122::rfp, 
pBSK+. Line #2 

This study 

VQ748 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx186 

pCB266 (Pgrd-10::lon-2), 
Pceh-22:gfp, Punc-122::rfp, 
pBSK+. Line #3 

This study 

VQ749 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx187 

pCB251 (Pmec-7::lon-2), 
Pceh-22:gfp, Punc-122::rfp, 
pBSK+. Line #1 

This study 

VQ750 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx188 

pCB251 (Pmec-7::lon-2), 
Pceh-22:gfp, Punc-122::rfp, 
pBSK+. Line #2 

This study 

VQ751 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx189 

pCB251(Pmec-7::lon-2), 
Pceh-22:gfp, Punc-122::rfp, 
pBSK+. Line #3 

This study 

VQ752 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx190 

pCB308 (Pelt-2::lon-2), Pceh-
22:gfp, Punc-122::rfp, 
pBSK+. Line #1 

This study 

VQ753 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx191 

pCB308 (Pelt-2::lon-2), Pceh-
22:gfp, Punc-122::rfp, 
pBSK+. Line #2 

This study 

VQ754 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx192 

pCB308 (Pelt-2::lon-2), Pceh-
22:gfp, Punc-122::rfp, 
pBSK+. Line #3 

This study 

VQ755 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx193 

pCB332 (Pmyo-3::lon-2), 
Pceh-22:gfp, Punc-122::rfp, 
pBSK+. Line #1 

This study 

VQ756 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx194 

pCB332 (Pmyo-3::lon-2), 
Pceh-22:gfp, Punc-122::rfp, 
pBSK+. Line #2 

This study 

VQ757 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx195 

pCB332 (Pmyo-3::lon-2), 
Pceh-22:gfp, Punc-122::rfp, 
pBSK+. Line #3 

This study 

VQ621 lon-2(e678) sdn-
1(zh20) X; zdIs5 I; 
qvEx114 

pCB242 (Pmec-7::sdn-1), 
pRF4, Pttx-3::mCherry. Line 
#1 

This study 

VQ622 lon-2(e678) sdn- pCB242 (Pmec-7::sdn-1), This study 
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1(zh20) X; zdIs5 I; 
qvEx115 

pRF4, Pttx-3::mCherry. Line 
#2 

VQ507 lon-2(e678) sdn-
1(zh20); zdIs5 I; 
qvEx100 

pCB242 (Pmec-7::sdn-1), 
pRF4, Pttx-3::mCherry. Line 
#3 

This study 

VQ781 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx204 

pCB312 (Plon-2::sdn-1), 
Pceh-22::gfp, Punc-122::rfp, 
pBSK+. Line #1 

This study 

VQ782 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx205 

pCB312 (Plon-2::sdn-1), 
Pceh-22::gfp, Punc-122::rfp, 
pBSK+. Line #2 

This study 

VQ783 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx206 

pCB312 (Plon-2::sdn-1), 
Pceh-22::gfp, Punc-122::rfp, 
pBSK+. Line #3 

This study 

VQ784 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx207 

pCB242 (Pmec-7::sdn-1), 
Pceh-22::gfp, Punc-122::rfp, 
pBSK+. Line #1 

This study 

VQ785 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx208 

pCB242 (Pmec-7::sdn-1), 
Pceh-22::gfp, Punc-122::rfp, 
pBSK+. Line #2 

This study 

VQ786 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx209 

pCB242 (Pmec-7::sdn-1), 
Pceh-22::gfp, Punc-122::rfp, 
pBSK+. Line #3 

This study 

VQ646 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx121 

pSBL3SG006 (Plon-2::LON-
2ΔGAG::gfp), Pceh-22::gfp, 
Punc-122::rfp, pBSK+. Line 
#1 

This study 

VQ647 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx122 

pSBL3SG006 (Plon-2::LON-
2ΔGAG::gfp), Pceh-22::gfp, 
Punc-122::rfp, pBSK+. Line 
#2 

This study 

VQ758 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx196 

pSBL35G006 (Plon-2::LON-
2ΔGAG::gfp), Pceh-22::gfp, 
Punc-122::rfp, pBSK+. Line 
#3 

This study 

VQ613 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx111 

pCB269 (Plon-2:: LON-
2ΔGPI), Pceh-22::gfp, Punc-
122::rfp, pBSK+. Line #1 

This study 

VQ761 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx199 

pCB270 (Plon-2::N-LON-2), 
Pceh-22::gfp, Punc-122::rfp, 
pBSK+. Line #1 

This study 

VQ762 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx173 

pCB270 (Plon-2::N-LON-2), 
Pceh-22::gfp, Punc-122::rfp, 
pBSK+. Line #2 

This study 

VQ763 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx174 

pCB270 (Plon-2::N-LON-2),  
Pceh-22::gfp, Punc-122::rfp, 
pBSK+. Line #3 

This study 

VQ766 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx176 

pCB311 (Plon-2::C-LON-2), 
Pceh-22::gfp, Punc-122::rfp, 
pBSK+. Line #1 

This study 

VQ767 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 

pCB311 (Plon-2::C-LON-2), 
Pceh-22::gfp, Punc-122::rfp, 

This study 



158 

 

qvEx177 pBSK+. Line #2 

VQ768 lon-2(e678) slt-
1(eh15) X; zdIs5 I; 
qvEx178 

pCB311 (Plon-2::C-LON-2), 
Pceh-22::gfp, Punc-122::rfp, 
pBSK+. Line #3 

This study 

Note: Plasmid pSBL3SG006 (Plon-2::lon-2(ΔGAG)) is from (Taneja-Bageshwar & Gumienny 
2012) In this plasmid, all 3 GAG attachment sites of lon-2 are mutated. 
 

 
 
 
 
 
Table 3.9. List of primers used for building strains. 
 

Gene Primer Sequence PCR product 
(bp) 

 

sdn-1(zh20)     

Mutant oCB837 aaagagatgccggtcaggtg 410  
 oCB842 aatggacgggatgagtgtcc   

Wild-type oCB837 aaagagatgccggtcaggtg 293  
 oCB876 cttcagattcgagcctgctttgc   

sdn-1(ok449)     
Mutant oCB1114 ttctgcctgtcgacttactc 297  
 oCB1125 aagattgcggtaaaacacatc   
Wild-type oCB1114 ttctgcctgtcgacttactc 478  

 oCB1115 ttcgtcgtcggttgggtagc   

gpn-1(ok377)      

Mutant oCB834 atcaagaccgagtgatagtg 501  
 oCB843 aatcatcagcatcgggaggg   

Wild-type oCB834 atcaagaccgagtgatagtg 412  
 oCB832 ttttttgagggatatcatcg   

gpn-1(tm595)      
Mutant oCB1309 agtcgattgcaaacgaatacg 468  
 oCB1310 tcacacagtacgcttggcacg   
Wild-type  oCB1309 agtcgattgcaaacgaatacg 393  

 oCB1311 aagctttccatgcatactcgc   

agr-1(tm2051)     

Mutant  oCB891 cgaaaaatcgagagcaaaagg 362  
 oCB893 tcagattcttgacacatccc   

Wild-type  oCB890 tttgaactcttggacgaacc 1210  
 oCB891 cgaaaaatcgagagcaaaagg   

 slt-1(eh15)     

Mutant  oCB919 tatgacgtgttccggaaacc 467  
 oCB920 atttctctaatacgggtagc   

Wild-type  oCB922 tctcaattctaacatccatgtc 339  
 oCB920 atttctctaatacgggtagc   

kyIs209: Detection of insertion Pmyo-3::slt-1   

 oCB945 tcattcgggatattttgtgg 592  
 oCB950 aagaagaagcatgcttctgg   
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sax-3(ky123)     

Mutant  oCB1038 agaatgtggctctctagtcc ~330  
 oCB1039 tcgtttccgcgcattcagtc   

Wild-type  oCB1038 agaatgtggctctctagtcc 527  
 oCB1042 agcttcggattactgcttgc   

evIs25: Detection of insertion Pmec-7::unc-5 
 oCB933 ttgtcagtcgagcctcaagg ~631  
 oCB966 tccactgtctgataatctgg   

unc-40(e271) sequencing 
 oCB1077 aattcgtgtaactgcttcc 577  
 oCB1076 ttgaatatttcggaggttgc   

unc-40(e1430) sequencing 
 oCB1079 atcaatgcgctgtacatgtg 366  
 oCB1078 agagaccagggagttacagg   
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ABSTRACT 

After embryonic development of the nervous system, neuronal architecture 

needs to be maintained in the face of further growth, maturation, and the physical 

stress of body movements. sax-7/L1CAM is a key neuronal maintenance 

molecule that functions to maintain neuronal architecture after its initial 

establishment. Through a forward genetic screen using C. elegans, we have 

identified lon-1 as a novel suppressor of the sax-7/L1CAM mutant defects in the 

maintenance of nervous system architecture. Although lon-1 has been 

characterized as a downstream target of the TGF-β pathway to regulate body 

length, our results indicate that the lon-1-mediated suppression of sax-7 mutant 

defects is independent of both body length and the TGF-β signaling pathway. We 

find that an interaction with sax-7/L1CAM is not a general feature of other CAP 

superfamily molecules, highlighting its specificity of action. We found that to 

function with sax-7 in maintaining head ganglia organization, lon-1 acts in 

neurons and the hypodermis. Using a heat shock-inducible expression system as 

well as temporally controlled RNAi knockdown, we found that both lon-1 and sax-

7 function post-embryonically to maintain the architecture of the nervous system. 

We show that lon-1-mediated suppression of sax-7 defects is context dependent, 

as loss of lon-1 does not lead to the suppression all of sax-7 defects. Our 

findings reveal a novel interaction between lon-1 and sax-7, and provide insight 

into the molecular pathways that actively maintain structures of the nervous 

system. 
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INTRODUCTION 

A critical but poorly understood aspect of neurobiology is how the integrity and 

function of an embryonically-established nervous system is protected throughout 

life, despite post-embryonic body growth, movement, and the incorporation of 

new neurons into existing neural circuits (Benard & Hobert 2009). Dedicated 

mechanisms must be in place to actively protect the nervous system in spite of 

these stresses. Research in C. elegans has identified a handful of molecules that 

function to maintain specific structures of the nervous system after their initial 

establishment, such as the precise positioning of axons within fascicles, the 

organization of neuronal soma and axons within ganglia, and the distribution and 

density of synapses. (Aurelio et al 2002, Barsi-Rhyne et al 2013, Benard et al 

2009, Benard et al 2006, Bülow et al 2004, Cherra & Jin 2016, Hammarlund et al 

2007, Johnson & Kramer 2012, Pocock et al 2008, Sasakura et al 2005, Shao et 

al 2013, Wang et al 2005, Woo et al 2008, Zallen et al 1999).    

 

One of these molecules, SAX-7, is the conserved C. elegans homologue of the 

L1 cell adhesion molecule (L1CAM) family, and functions in neurons to maintain 

the position of neuronal soma and axons (Chen et al 2001, Pocock et al 2008, 

Sasakura et al 2005, Wang et al 2005, Zallen et al 1999). SAX-7/L1CAM is a 

transmembrane protein of the immunoglobulin superfamily with roles as a cell 

adhesion molecule (Chen et al 2001, Pocock et al 2008, Sasakura et al 2005, 

Wang et al 2005). Both long (SAX-7L) and short (SAX-7S) isoforms of SAX-7 are 
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expressed in C. elegans. SAX-7L contains six extracellular Ig-like domains while 

SAX-7S contains four, and both contain five extracellular fibronectin type III 

domains, a transmembrane domain, and a cytoplasmic tail containing FERM, 

ankyrin, and PDZ binding motifs (Chen et al 2001, Pocock et al 2008, Sasakura 

et al 2005, Wang et al 2005, Zhou et al 2008); Fig. 4.1). Despite their normal 

initial development, a subset of embryonically developed axons of the ventral 

nerve cord become defasciculated during the first larval stage in sax-7 mutant 

animals, and specific neuronal soma and axons within ganglia become 

progressively disorganized in later larval and adult stages of sax-7 mutant 

animals (Pocock et al 2008, Sasakura et al 2005, Wang et al 2005, Zallen et al 

1999).  

 

In vertebrates, L1CAM carries out developmental roles in migration and 

fasciculation, and in humans, mutations in L1CAM lead to neurodevelopmental 

disorders (reviewed in (Hortsch et al 2014)). Moreover, mammalian L1 family 

members L1CAM, CHL1, NrCAM, and Neurofascin (Hortsch 2000) play roles in 

the adult vertebrate brain, as conditional knockouts in the adult nervous system 

lead to changes in synaptic transmission, alterations to the axon initial segment, 

and behavioral deficits (Amor et al 2014, Kolata et al 2008, Kriebel et al 2011, 

Law et al 2003, Zonta et al 2011). These results highlight that both C. elegans 

SAX-7 and vertebrate L1 family members have continued importance in the adult 

nervous system to actively promote its integrity and functionality.  
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Despite the identification of molecules that function to maintain the architecture of 

the nervous system, our mechanistic understanding of how these molecules 

carry out these functions remains limited. To elucidate the molecular 

mechanisms by which SAX-7 functions to maintain the nervous system, and 

identify conserved neuronal protection molecules, we have carried out a forward 

genetic screen for suppressors of the sax-7 defective maintenance of head 

ganglia organization. Through this screen, we have identified lon-1 as a potent 

suppressor of the sax-7 defect in the maintenance of the relative positioning 

between the ASH/ASI soma and the nerve ring. We show that lon-1-mediated 

suppression of sax-7 defects is both independent of the TGF-β signaling pathway 

and also separate from body length. We find that lon-1, rather than being a 

general suppressor of sax-7 defects, acts in a context-dependent manner, as 

sax-7 defects in ventral cord maintenance and in dendritic arbor development are 

not altered by loss of lon-1. We demonstrate that lon-1 functions in the nervous 

system and hypodermis to maintain nervous system architecture, and provide 

evidence that both lon-1 and sax-7 function post-embryonically to maintain head 

ganglia organization. Our results point to a novel, post-embryonic interaction 

between sax-7 and lon-1, which highlights a newly uncovered role for lon-1 

outside of body length regulation, in the maintenance of nervous system 

architecture.  
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RESULTS 

Identification of qv24, a new allele of sax-7/L1CAM 

While studying two members of the ZIG family of two-Ig domain proteins and 

their role in the maintenance of neuronal architecture (Benard et al 2012), we 

uncovered a novel and spontaneous sax-7 background mutation in one of our 

strains, which we named sax-7(qv24). Following PCR amplification and Sanger 

sequencing of all sax-7 exons and splice sites we identified that sax-7(qv24) is a 

G to A mutation that changes the splice donor site at intron four of the short 

isoform and at intron seven of the long isoform of sax-7, potentially affecting both 

the long and short isoforms of sax-7 (Fig. 4.1A). sax-7(qv24) does not appear to 

be a null allele, as our RT-PCR analysis reveals that sax-7 transcripts are 

present in sax-7(qv24) (Fig. 4.1B). Similarly, sax-7(nj48) is a strong loss-of-

function deletion mutant that affects both the long and short isoforms of sax-7 

(Sasakura et al 2005), but sax-7 transcripts are detected in our RT-PCR analysis 

(Fig. 4.1A,B). These results, along with previous work, indicate that no null 

mutant of sax-7 currently exists (Wang et al 2005, Zhou et al 2008) (Fig. 4.1B), 

and those available are instead, strong loss-of-function alleles.  

 

Prior work has shown that sax-7 mutants exhibit a post-developmental failure to 

maintain the organization of neuronal structures including head ganglia and 

axonal fascicles (Pocock et al 2008, Sasakura et al 2005, Wang et al 2005, 

Zallen et al 1999). We therefore characterized the phenotype of sax-7(qv24) 
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mutants using the integrated oyIs14 (Psra-6::gfp) transgene (Sarafi-Reinach et al 

2001) which labels the ASH, ASI, and PVQ neurons and compared it to the 

phenotype of sax-7(nj48) mutants. We analyzed the maintenance of the relative 

positioning between the ASH/ASI soma and the nerve ring in wild type, sax-

7(nj48), and sax-7(qv24) animals across the first through fourth larval stages and 

Figure 4.1. sax-7(nj48) and sax-7(qv24) are not null alleles. 
A. Diagram of the sax-7 locus depicting the gene structure of both the short (C18F3.2a) 

and long (C18F3.2b) sax-7 isoforms. Exons (black boxes), introns (black lines), and UTRs 

(gray boxes) are to scale. nj48 (Sasakura et al 2005) and qv24 alleles used in this study 

are deletion and splice donor mutation alleles, respectively. Scale bar, 1 kb. Corresponding 

protein structure of SAX-7L and SAX-7S below.  

B. RT-PCR using primers oCB985 and oCB987 to detect all sax-7 isoforms yields products 

similar in size to N2 in both the sax-7(nj48) deletion mutant and the sax-7(qv24) splice 

donor site mutant worms. Y45F10D.4 is a housekeeping gene used as an RT-PCR control 

(Hoogewijs et al 2008). Primers used for RT-PCR of sax-7 depicted in 4.1A. Neither sax-

7(nj48) or sax-7(qv24) appear to be null.  
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into adulthood. Initially, in the first larval stage, both sax-7(nj48) and sax-7(qv24) 

appear identical to wild type with regards to the relative positioning between the 

ASH/ASI soma and the nerve ring (Fig. 4.2). However, by the third larval stage, 

both sax-7(nj48) and sax-7(qv24) mutants begin to display defects in this relative 

positioning between the ASH/ASI soma and the nerve ring, and this 

progressively worsens as the animals go through the fourth larval stage and 

reach adulthood (Fig. 4.2). This suggests that the positioning of the ASH/ASI 

neurons and the nerve ring is initially properly established in sax-7 mutants, but 

that they subsequently fail to maintain the relative positioning between the 

ASH/ASI soma and the nerve ring (Benard et al 2012, Pocock et al 2008). 

Despite the molecular differences between the sax-7(nj48) deletion and the sax-

7(qv24) splice donor mutation, these mutants exhibit a very similar onset and 

severity in their failure to maintain the relative positioning between the ASH/ASI 

soma and the nerve ring.   

 

We confirmed that the defects displayed by sax-7(qv24) mutants are indeed the 

result of the loss of sax-7 function, by introducing wild-type copies of sax-7(+) in 

sax-7(qv24) mutants and assaying for rescue. Previous work has shown that 

sax-7S is the adhesive isoform and the active form in the maintenance of head 

ganglia organization (Pocock et al 2008, Sasakura et al 2005) and that sax-7 

functions in the nervous system to maintain the relative positioning between the 

ASH/ASI soma and the nerve ring (Pocock et al 2008). Thus, we expressed sax- 
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Figure 4.2. sax-7 mutants exhibit a progressive decline in the maintenance of 

head ganglia organization.  
A. Images of the ASH/ASI soma and the nerve ring visualized using oyIs14 (Psra-

6::gfp) in wild type, sax-7(nj48), and sax-7(qv24) mutants in the first (L1), second (L2), 

and fourth (L4) larval stages, and adulthood (Adult). In wild-type animals through 

adulthood, and sax- 7 mutants until L2, the ASH/ASI soma (closed white arrowhead) 

are maintained posterior relative to the position of the nerve ring (open white 

arrowhead). In sax-7 mutants, this relative positioning is disrupted (closed red arrow) 

in later larval stages and adults. Scale bar, 10 µm.  
B. Quantification of animals defective for the relative positioning between the ASH/ASI 

soma and the nerve ring in wild type, sax-7(nj48) mutants, and sax-7(qv24) mutants 

from L1 through adulthood. Error bars are standard error of the proportion. ** P ≤ 

0.01, *** P ≤ 0.001. (z-tests, P values were corrected by multiplying by the number of 

comparisons). ns, not significant. 
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7S(+) pan-neuronally under the control of the heterologous promoter Punc-14 

and found that expression of sax-7S(+) in the nervous system was sufficient to 

fully rescue the sax-7(qv24) defects (Fig. 4.3). This result indicates that 

disruption of the function of sax-7 by the qv24 mutation results in post-

developmental defects in head ganglia organization. Our identification and 

analysis of the sax-7(qv24) mutation further confirms the functional importance of 

sax-7 in maintaining neuronal architecture during post-embryonic development.  

 

 

Expression of sax-7S(+) after establishment of head ganglia organization is 

sufficient for function  

sax-7 mutants display defects in the organization of the ASH/ASI neurons with 

respect to the nerve ring starting at the third larval stage and progressively 

worsening into adulthood. The appearance of these defects could be the result of 

either (1) an active role for sax-7 during larval and adult stages, or (2) a 

Figure 4.3. sax-7(qv24) mutants are rescued 

by neuronal sax-7S(+) expression.  
sax-7(qv24) mutant defects are rescued by 

expression of sax-7S(+) in the nervous system 

using the heterologous promoter Punc-14. Error 

bars are standard error of the proportion. 

Asterisks denote significant difference: *** P ≤ 

0.001. (z-tests, P values were corrected by 

multiplying by the number of comparisons). 
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secondary consequence of undetectable developmental defects during 

embryogenesis that get amplified as the animal grows and moves. To distinguish 

between these possibilities, we induced transgenic expression of sax-7S(+) in 

sax-7(nj48) mutants at different time points and assayed for rescue of the sax-7 

mutants’ defects. For this, we expressed the rescuing sax-7S(+) cDNA under the 

control of Phsp-16.2, a heat shock inducible promoter that expresses in neurons 

and other tissues (Fire et al 1990, Jones et al 1986, Stringham et al 1992), in 

sax-7(nj48) mutant worms. As a control, sax-7(nj48) transgenic animals carrying 

Phsp-16.2::sax-7S were not rescued for the head ganglia defects when grown at 

15°C and without heat shock. They were as defective as our reference sax-

7(nj48) mutant strain and as their non-transgenic siblings under the same 

conditions (Fig. 4.4). These controls indicate that in the absence of heat shock, 

SAX-7S is not expressed from Phsp-16.2::sax-7S(+).  

 

We heat shocked sax-7(nj48) mutants carrying Phsp-16.2::sax-7S as freshly 

hatched first larval stage animals, kept the animals at 15°C at all times except 

during heat shock, and examined them as 1-day old adults. The sax-7(nj48) 

transgenic worms that were heat shocked in the first larval stage showed a 

significant rescue of the relative positioning between the ASH/ASI soma and the 

nerve ring compared to their non-transgenic control siblings that were also heat 

shocked (Fig. 4.4). Thus, sax-7(nj48) mutants can undergo embryogenesis and 

hatch lacking normal sax-7 function and be rescued when provided with  
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wild-type copies of sax-7S(+) post-hatch, indicating that post-embryonic sax-7S 

is sufficient for the maintenance of neuronal organization.  

 

To determine when during larval development sax-7 function is required for the 

maintenance of neuronal organization, we heat shocked transgenic sax-7(nj48) 

mutants carrying Phsp-16.2::sax-7S at the second and third larval stages. 

Figure 4.4. Onset of sax-7S(+) expression in larval stages is sufficient for rescue of 

sax-7(nj48) mutants’ defects.  
The top four lanes on the histogram correspond to non-heat shock controls of wild type, sax-

7(nj48) mutants, transgenic sax-7(nj48) mutants carrying Phsp-16.2::sax-7S(+) (hatched 

bar), and non-transgenic controls (black bar). All were grown at 15°C and analyzed. The six 

bottom bars of the histogram correspond to heat-shocked animals, Phsp-16.2::sax-7S(+) 

transgenic (hatched bars), and non-transgenic controls (black bars). These heat-shocked 

animals were maintained at 15°C at all times except during heat shock at 37°C (pink box), 

which was done at the first, second, or third larval stage. All conditions tested showed a 

significant rescue of the sax-7(nj48) mutant defects with larval heat-shock induced sax-

7S(+) expression, as compared to non-transgenic controls. Error bars are standard error of 

the proportion. Asterisks denote significant difference: *** P ≤ 0.001. (z-tests, P values were 

corrected by multiplying by the number of comparisons). ns, not significant.  
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Transgenic Phsp-16.2::sax-7S animals heat shocked in either the second or third 

larval stages showed a partial but significant rescue of the relative positioning 

between the ASH/ASI soma and the nerve ring compared to heat-shocked non-

transgenic sibling controls (Fig. 4.4). By the third larval stage these sax-7 mutant 

animals have been moving and growing for up to 42 hours without normal sax-7 

function, and roughly 40% already exhibit defects in head ganglia organization 

(Fig. 4.2). Despite these factors, sax-7S expression starting in the third larval 

stage can rescue, which suggests these structures have not been irreparably 

damaged by the stresses they’ve encountered, and can still be protected by the 

presence of sax-7S.  

 

lon-1 identified as a novel suppressor of sax-7 maintenance defects 

To gain understanding of the mechanism of action of sax-7 we set out to identify 

molecules that function with sax-7 to maintain the architecture of the nervous 

system. For this, we carried out an F2 clonal forward genetic screen to find 

suppressors of the sax-7 mutant defect in the maintenance of head ganglia 

organization. We mutagenized P0 sax-7(qv24); oyIs14 worms with EMS and 

screened F3s to find broods of adults that maintained the ASH/ASI soma 

posterior to the nerve ring, despite harboring the sax-7(qv24) mutation (Fig. 4.5). 

Potential suppressors with impaired locomotion were not analyzed further, as 

paralysis is known to suppress sax-7 defects in head ganglia organization 

(Benard et al 2012, Pocock et al 2008, Sasakura et al 2005). We isolated ten  



173 

 

 

 

suppressors, including qv10 which displays profound suppression of the sax-7 

defects. We outcrossed this suppressor four times. 

 

Next we set out to determine the molecular identity of the qv10 suppressor 

mutation. Over the course of four outcrosses, we observed that the qv10 worms 

were also longer than wild-type worms, and this Lon phenotype could not be 

segregated away from the suppression of the sax-7 mutant phenotype. This 

Figure 4.5. A forward genetic screen to find suppressors of sax-7.  
Schematic of the EMS forward genetic screen carried out to find suppressors of the sax-7 

mutant defect in the maintenance of head ganglia organization. P
0 
sax-7(qv24) worms were 

mutagenized with EMS. F1 progeny of the mutagenized P
0
s were singled, those containing a 

suppressor mutation would be heterozygous. Seven F2s were singled from each F1 brood. If 

F1 was heterozygous for a suppressor mutation, expect one quarter of F2 broods to be 

homozygous for suppressor mutation (green worms). Adult F3s were screened to find broods 

of adults with properly maintained head ganglia organization.  
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suggested that either the suppression was due to a lon mutation, or the 

suppressor mutation was tightly linked to one of the lon loci. We tested whether a 

mutation in one of the lon genes could suppress the sax-7 neuronal maintenance 

defect. We built strains mutant for both sax-7(nj48) and lon mutants lon-1(e185) 

(Maduzia et al 2002, Morita et al 2002), lon-2(e678) (Gumienny et al 2007), lon-

3(e2175) (Nystrom et al 2002, Suzuki et al 2002), and lon-8(hu187) (Soete et al 

2007) and analyzed the relative positioning between the ASH/ASI soma and the 

nerve ring. We found that loss of function of lon-1 in the sax-7(nj48) background 

suppressed the failure to maintain neuronal organization to a similar degree as 

our qv10 suppressor. The other lon mutants showed either minimal or no 

suppression of the sax-7 neuronal maintenance phenotype (Fig. 4.6). This 

finding suggested that qv10 is an allele of lon-1. To directly test whether qv10 

harbors a mutation in the gene lon-1, we PCR amplified and Sanger sequenced 

all exons and splice sites of the lon-1 locus in our qv10 suppressor strain. We 

found that the qv10 worms contain a G to A mutation at position 33,209 on 

cosmid F48E8, which converts a tryptophan residue to an early STOP at position 

197 within the protein LON-1 (Fig. 4.7). To determine the impact of this allele on 

lon-1 expression, we carried out RT-PCR which revealed that neither qv10 nor 

e185 are null, as lon-1 transcripts are present in both mutant alleles (Fig. 4.7), 

indicating that lon-1(qv10) and lon-1(e185) are partial loss-of-function alleles.  
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To test whether the suppression of the sax-7(qv24) neuronal maintenance 

defects by loss of lon-1(qv10) was allele-specific, we built and analyzed double 

mutants between two alleles of lon-1 (qv10 and e185) with two alleles of sax-7 

(qv24 and nj48). We found that all four combinations of these alleles as double 

mutants between lon-1 and sax-7 produced a similar suppression of the sax-7 

mutant defects in maintaining the positioning of ASH/ASI soma with respect to 

the nerve ring (Fig. 4.8).  

 

Figure 4.6. Investigation of Lon mutants and their effect on the sax-7 mutant 

phenotype.  
Isolated suppressor qv10 was Lon. Analysis of head ganglia organization of double 

mutants between lon-1,-2,-3,-8 with sax-7(nj48) revealed lon-1 as the candidate with the 

highest degree of suppression. Gray dashed line indicates degree of suppression of sax-

7 mutant defects by loss of lon-1. Error bars are standard error of the proportion. 

Asterisks denote significant difference: *** P ≤ 0.001. (z-tests, P values were corrected 

by multiplying by the number of comparisons). 
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Figure 4.7. qv10 and e185 are partial loss-of-function lon-1 alleles.  
A. Diagram of the lon-1 locus depicting the lon-1a and lon-1b isoforms. Exons (black 

boxes), introns (black lines), and UTRs (gray boxes) are to scale. qv10 creates an early 

stop (*) at W197. e185 is a missense mutation converting a cysteine residue at position 

185 to a tyrosine residue (C185Y) (Maduzia et al 2002, Morita et al 2002). Scale bar, 

500 bp. 
B. RT-PCR using primers oCB977 and oCB979 to detect all lon-1 isoforms yields a 

similar size product in N2, lon-1(qv10), and lon-1(e185). Primers specific to lon-1a 

(primers oCB977 and oCB980) and lon-1b (primers oCB977 and oCB981) also yield 

products of similar size in N2, lon-1(qv10), and lon-1(e185). Y45F10D.4 is a 

housekeeping gene used as an RT-PCR control (Hoogewijs et al 2008). Primers used 

for RT-PCR of lon-1 depicted in 4.7A on top of gene diagram. Neither lon-1(qv10) nor 

lon-1(e185) appear to be null.  
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To directly determine if the suppression of the sax-7 neuronal maintenance 

defects is due to loss of lon-1 function, we carried out rescue assays for lon-1. 

We introduced wild-type copies of lon-1(+) driven by its endogenous promoter 

including Plon-1::lon-1(+) genomic in the lon-1; sax-7 double mutant background, 

and reasoned that if the suppression of sax-7 defects was dependent on the loss 

of lon-1 function, then the sax-7 mutant phenotype would resurface in transgenic 

animals rescued for lon-1. Indeed, upon introduction of wild-type copies lon-1(+) 

Figure 4.8.  Loss of lon-1 suppresses the sax-7 mutant defects in maintenance of 

head ganglia organization. 
Images of wild type, lon-1(qv10), sax-7(qv24), and lon-1(qv10); sax-7(qv24) double 

mutants expressing oyIs14 (Psra-6::gfp) to label head neurons ASH/ASI and the nerve 

ring. The nerve ring (closed white arrowhead) is maintained anterior to the ASH/ASI 

soma (open white arrowhead) in wild type, lon-1, and lon-1; sax-7 double mutants, while 

sax-7 mutants exhibit a failure to maintain this relative positioning (closed red arrow). 

Quantification (on the right) of animals defective in the maintenance of this relative 

positioning indicates that loss of lon-1(qv10) or lon-1(e185) is able to suppress the sax-

7(qv24) or sax-7(nj48) mutant defects in the maintenance of head ganglia organization. 

Error bars are standard error of the proportion.  
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DNA in the lon-1; sax-7 double mutant background, we found that the sax-7 

mutant phenotype reappeared (Fig. 4.9A). This indicates that loss of lon-1 

indeed suppresses the maintenance defects of sax-7 mutants and identifies lon-1 

as a novel suppressor of the sax-7 mutant defects in maintenance of neuronal 

architecture. As a control, we also overexpressed the same Plon-1::lon-1(+) 

genomic rescuing construct in the lon-1 single mutants (without a sax-7 mutation) 

and analyzed the relative positioning between the ASH/ASI soma and the nerve 

ring. We found that overexpression of lon-1(+) in the lon-1 mutant background 

did not lead to neuronal defects (Fig. 4.9B), further confirming that the 

reappearance of neuronal maintenance defects in the lon-1; sax-7 double 

mutants expressing lon-1(+) was indeed due to rescue of lon-1  and not 

overexpression-induced defects. Taken together, these results indicate that loss 

of function of lon-1 is able to suppress the sax-7 mutant defect in the 

maintenance of the relative positioning between the ASH/ASI soma and the 

nerve ring.  

 

LON-1 comes as two major isoforms, the a (313 aa) and b (302 aa) isoforms 

(Fig. 4.7). To determine which isoform is functional in maintaining neuronal 

architecture, we carried out lon-1 rescue assays with each isoform individually. 

We found that expression of either lon-1a(+) cDNA or lon-1b(+) cDNA under the 

endogenous promoter in the lon-1; sax-7 double mutant could rescue the loss of  
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lon-1 function and bring back the sax-7 mutant defects.  Additionally, we found 

that overexpression of either lon-1a(+) or lon-1b(+) in the lon-1 mutant 

background did not lead to neuronal defects (Fig. 4.9B). These results indicate 

that both isoforms, LON-1a and LON-1b, are active in the maintenance of 

neuronal architecture.  

 

Loss of lon-1 specifically suppresses head ganglia maintenance defects of 

sax-7  

Having identified lon-1 as a novel suppressor of the head ganglia maintenance 

defects of sax-7, we wondered if lon-1 also participates in other functions of sax-

7, such as in the maintenance of neuronal architecture in other areas of the 

nervous system or during neuronal development. For instance, sax-7 mutants fail 

to maintain the precise positioning of axons along the ventral nerve cord, 

including the PVQ axons (Pocock et al 2008). In wild-type animals, the axon of 

the PVQ neurons is located ipsilaterally along the left or the right fascicle of the 

ventral nerve cord. However, in sax-7 mutants, although in early first larval stage 

Figure 4.9. Rescue of lon-1-mediated suppression of sax-7 by lon-1(+) expression. 
A. Loss of lon-1 in the sax-7 mutant background suppresses the sax-7 defects in 

maintaining head ganglia organization. Expression of wild type copies of lon-1(+) under its 

endogenous promoter in lon-1(e185); sax-7(nj48) double mutants brings back the sax-7 

mutant phenotype and therefore rescues this lon-1-mediated suppression. Transgenic 

animals were compared to non-transgenic sibling controls.  
B. Wild type copies of lon-1(+) under its endogenous promoter were expressed in lon-

1(qv10) mutants. These animals exhibited no defects in the maintenance of the 

organization of the head ganglia. Therefore, the rescue observed in 4.9A is not due to the 

creation of an overexpression-induced phenotype.  
Error bars are standard error of the proportion. Asterisks denote significant difference: *** P 

≤ 0.001. (z-tests, P values were corrected by multiplying by the number of comparisons). 
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worms the PVQ axons appear indistinguishable from wild type, by the late first 

larval stage the PVQ axons are not maintained within their specific fascicle along 

the ventral nerve cord and instead flip over to the opposite side (Pocock et al 

2008). To determine whether loss of lon-1 could suppress this sax-7 defect in 

maintaining the PVQ axons within their appropriate fascicle, we analyzed the 

maintenance of the positioning of the PVQ axons in lon-1; sax-7 double mutants 

compared to the single mutants. We found that the PVQ axons of lon-1 appeared 

identical to wild type, and that lon-1; sax-7 double mutants had a similar 

penetrance of PVQ axon flipover defects as sax-7 single mutants (Fig. 4.10A). 

This result indicates that loss of lon-1 did not suppress the sax-7 defects in the 

maintenance of the axon positioning within their proper fascicle in the ventral 

nerve cord. This specificity suggests that loss of lon-1 suppressing sax-7 defects 

in the maintenance of neuronal architecture is context-dependent rather than lon-

1 acting as a general suppressor of sax-7 maintenance defects.  

 

In addition to defects in the maintenance of neuronal architecture, sax-7 mutants 

also exhibit other neuronal phenotypes that are developmental in origin, including 

a defect in the development of the dendritic branches of the PVD neurons (Dong 

et al 2013, Salzberg et al 2013). In wild-type animals the PVD neurons are born 

postembryonically in the second larval stage (Sulston & Horvitz 1977) and  

extend their primary, secondary, tertiary, and quaternary dendritic branches that 

together have a menorah-like appearance during the second through fourth larval 
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stages (Oren-Suissa et al 2010, Smith et al 2010). sax-7 mutants fail to develop 

this structure properly, as their PVD dendrites are highly disorganized (Dong et al 

2013, Salzberg et al 2013). To address whether loss of lon-1 could suppress 

developmental sax-7 mutant phenotypes, we analyzed the development of the 

PVD dendrites in lon-1; sax-7 double mutants compared to the single mutants, 

using the integrated transgene wdIs52 (Smith et al 2010, Watson et al 2008). 

Whereas the dendritic structures between the secondary and tertiary PVD 

branches in lon-1 mutants were indistinguishable from the wild type (T-shaped), 

we observed that they were severely disrupted in sax-7 mutants, as previously 

reported (Dong et al 2013, Salzberg et al 2013) (Fig. 4.10B).  We found that the 

PVD dendritic defects in lon-1; sax-7 double mutants were as severely defective 

as in sax-7 single mutants (Fig. 4.10B), indicating sax-7 mutant defects in PVD 

dendrite development could not be suppressed by loss of lon-1. This observation 

supports the notion that lon-1, rather than functioning as a general suppressor of 

sax-7, may act in specific contexts depending on the cell types and/or the timing 

of action. 
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Suppression of sax-7 defects by loss of lon-1 is independent of the TGF-β 

signaling pathway 

lon-1 is a downstream target of the Sma/Mab TGF-β signaling pathway and 

regulates body length in a dose-dependent manner (Fig. 4.11). To gain 

mechanistic insight into how loss of function of lon-1 might suppress the sax-7 

mutant defects in the maintenance of head ganglia organization, we investigated 

the role of the TGF-β signaling pathway and the impact of body length on the 

maintenance of neuronal architecture. We first determined the importance of 

TGF-β signaling in the maintenance of the neuronal architecture by analyzing the 

relative positioning between the ASH/ASI soma and the nerve ring in null or 

severe loss-of-function mutants for genes functioning in the TGF-β signaling 

pathway. This included mutants for a TGF-β ligand dbl-1(nk3) (Morita et al 1999), 

a type I TGF-β receptor sma-6(wk7) (Krishna et al 1999), the R-Smads sma-

2(e502) and sma-3(e491), the Co-Smad sma-4(e729) (Savage et al 1996), the 

extracellular TGF-β regulators lon-2(e678) (Gumienny et al 2007), sma-

10(ok2224) (Gumienny et al 2010), crm-1(tm2218) (Fung et al 2007), adt-

Figure 4.10. Loss of lon-1 does not suppress other sax-7 mutant defects.  
A. The positioning of the PVQ axons along the ventral nerve cord is maintained in wild 

type animals and lon-1(e185) mutants, but is not in sax-7(nj48) mutants. Similar to sax-

7(nj48) mutants alone, lon-1(e185); sax-7(nj48) double mutants exhibit defects in PVQ 

axon maintenance. 
B. Wild type and lon-1(e185) mutants exhibit normal PVD dendritic branch development, 

whereas sax-7(nj48) mutants and lon-1(e185); sax-7(nj48) double mutants exhibit defects 

in the development of the PVD dendritic branches.  
Error bars are standard error of the proportion. Asterisks denote significant difference: *** 

P ≤ 0.001. (z-tests, P values were corrected by multiplying by the number of 

comparisons). ns, not significant. 
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2(wk156) (Fernando et al 2011), and drag-1(tm3773) (Tian et al 2010), and other 

associated genes related by homology, namely unc-129(tm5461) (Colavita et al 

1998) and tig-2(ok3416) (Patterson & Padgett 2000). We found that loss of any 

of these TGF-β pathway components did not affect the maintenance of the 

relative positioning between the ASH/ASI soma and the nerve ring (Fig. 4.12A).  

Although loss of these TGF-β pathway components alone, including loss of lon-1, 

did not disrupt the maintenance of head ganglia organization, we addressed 

whether loss of these TGF-β pathway components could affect the sax-7 mutant 

phenotype, as the loss of lon-1 does. For this, we created double mutants 

between sax-7(nj48) and null/severe mutants for each of these TGF-β pathway 

components. Loss of four TGF-β pathway components other than lon-1, namely 

lon-2, sma-10, sma-2, and adt-2, reduced the penetrance of the sax-7(nj48) 

mutant defects but to a much lesser extent than the suppression elicited by loss 

of lon-1 (Fig. 4.12B). Importantly, loss of the other eight TGF-β pathway 

components tested did not suppress the sax-7(nj48) neuronal maintenance 

mutant defects at all (Fig. 4.12B). Taken together, our results indicate that 

suppression of sax-7 defects by loss of lon-1 is independent of the TGF-β 

signaling pathway.  

 

Other than loss of lon-1, the next best suppression of the sax-7(nj48) mutant 

defects by TGF-β components was by loss of sma-2. Since sma-2 functions as a  
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Figure 4.11. Sma/Mab branch of the TGF-β signaling pathway. One function of the 

Sma/Mab branch of the TGF-β signaling pathway is to regulate body length. TGF- β ligand 

(DBL-1) signals through a heteromeric complex of two type I (SMA-6) and two type II (DAF-

4) receptor subunits. This is regulated by extracellular modulators including LON-2, CRM-1, 

DRAG-1, and SMA-10. Smads (SMA-2, SMA-3, and SMA-4) along with transcription factors 

regulate downstream targets, such as LON-1, to control body length. Diagram modeled 

after (Gumienny & Savage-Dunn 2013, Morck & Pilon 2006).  
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transcription factor to regulate gene expression in a pathway that normally 

inhibits lon-1 expression (Savage et al 1996), perhaps the suppression of sax-7 

by sma-2 is due to an upregulation of lon-1 in the absence of sma-2. To test this, 

we overexpressed the lon-1(+) genomic sequence under its endogenous 

promoter (using Plon-1::lon-1(+) genomic) in the sax-7(nj48) mutant background. 

We analyzed the relative positioning between the ASH/ASI soma and the nerve 

ring in our transgenic animals compared to sax-7(nj48) single mutants at the 

fourth larval stage, and found that overexpression of lon-1 in the sax-7(nj48) 

background did not significantly alter the sax-7 mutant phenotype (Fig. 4.13). 

This suggests that loss of sma-2 suppressing the sax-7 mutant defects is unlikely 

simply due to increase in expression of lon-1. Alternatively, loss of sma-2 may 

result in changes in the expression of other target genes, which could in turn 

Figure 4.12. Maintenance of head ganglia organization is independent of TGF-β 

signaling.  
A. Loss of TGF-β signaling does not affect maintenance of head ganglia organization. 

ASH/ASI were visualized using oyIs14 (Psra-6::gfp) in mutants for TGF-β pathway 

components including TGF-β ligand dbl-1(nk3), type I TGF-β receptor sma-6(wk7), the R-

smads sma-2(e502) and sma-3(e491), the Co-Smad sma-4(e729), the extracellular TGF-β 

regulators lon-2(e678), sma-10(ok2224), crm-1(tm2218), adt-2(wk156), and drag-1(tm3773), 

and genes related by homology including unc-129(tm5461) and tig-2(ok3416). Animals mutant 

for these TGF-β signaling pathway components are able to maintain the relative positioning 

between the ASH/ASI soma and the nerve ring, similar to wild type. 
B. Loss of TGF-β signaling in sax-7 mutants does not suppress defects in head ganglia 

organization to the same degree as loss of lon-1. ASH/ASI were visualized using oyIs14 

(Psra-6::gfp) in double mutants between sax-7(nj48) and the TGF-β components listed in A. 

Gray dashed line indicates level of suppression of sax-7 defects elicited by loss of lon-1.  
Error bars are standard error of the proportion. Asterisks denote significant difference: ** P ≤ 

0.01, *** P ≤ 0.001. (z-tests, P values were corrected by multiplying by the number of 

comparisons). ns, not significant. 
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affect the sax-7 mutant phenotype. Overall these results suggest that the TGF-β 

pathway per se does not regulate the maintenance of neuronal architecture.  

 

  

lon-1-mediated suppression of the neuronal maintenance defects of sax-7 

mutants is independent of body length  

While our results suggest that the lon-1-mediated suppression of the sax-7 

defects is independent of TGF-β signaling, the possibility remained that the 

mechanism of lon-1-mediated suppression of sax-7 defects was dependent upon 

body length. Therefore, we investigated whether the suppression of sax-7 mutant 

defects by loss of lon-1 is due to the increased body length of the animals. As 

previously mentioned, our results show that loss of lon-2(e678), lon-3(e2175), 

and lon-8(hu187) did not suppress the sax-7 defects to the same degree as lon-

1, which suggests that this lon-1–mediated suppression is independent of body 

Figure 4.13. Overexpression of lon-

1(+) does not alter the sax-7 mutant 

phenotype.  
sax-7(nj48) mutants overexpressing 

lon-1(+) show no significant difference 

compared to sax-7(nj48) alone in the 

maintenance of head ganglia 

organization. Animals were analyzed in 

the fourth larval stage when sax-7(nj48) 

mutant defects are not yet fully 

penetrant, to allow the detection of a 

potential enhancement of the defects. 

Error bars are standard error of the 

proportion. (z-tests, P values were 

corrected by multiplying by the number 

of comparisons). ns, not significant. 
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length (Fig. 4.6). One caveat is that lon-2, lon-3, and lon-8 mutants, while also 

Lon, are not as long as lon-1(e185) or lon-1(qv10) mutants (Nystrom et al 2002, 

Soete et al 2007). To directly test whether the Lon phenotype suppresses the 

sax-7 mutant defects, we used an alternative approach to increase body length. 

Overexpression of the TGF-β ligand dbl-1 using the integrated transgene ctIs40 

(Suzuki et al 1999) increases body length due to a downregulation of lon-1 

(Morita et al 1999, Suzuki et al 1999). Overexpression of dbl-1 reduces lon-1 

expression but does not eliminate it completely (Maduzia et al 2002, Morita et al 

2002) and also increases body length to a similar degree as lon-1 mutants 

(Morita et al 1999). Therefore, we wondered if an increase in body length due to 

the overexpression of dbl-1 in sax-7(nj48) mutants would lead to a suppression 

of the defects in the maintenance of the relative positioning between the 

ASH/ASI soma and the nerve ring. We found that sax-7(nj48) mutants 

overexpressing dbl-1 in the sax-7; ctIs40 strain did not exhibit a difference in 

phenotype compared to sax-7(nj48) mutants alone (Fig. 4.14A). This result 

suggests that an increase in body length is not responsible for the suppression, 

and that a greater reduction in lon-1 expression than that triggered by 

overexpression of dbl-1 is required to suppress the sax-7 mutant defects.  

To further address the relationship between body length and the lon-1-mediated 

suppression of defective maintenance of head ganglia organization, we 

examined whether loss of lon-1 could suppress the defects of dig-1, another 

neuronal maintenance mutant unrelated to sax-7. dig-1 encodes a large, 
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secreted protein required for proper basement membrane structure and 

maintenance of neuronal architecture (Benard et al 2006). Loss of function of dig-

1 leads to a failure to maintain head ganglia organization, similar to sax-7(nj48) 

mutants (Fig. 4.14B) (Benard et al 2006). We analyzed the relative positioning 

between the ASH/ASI soma and the nerve ring in dig-1(ky188) single mutants as 

compared to lon-1(e185) dig-1(ky188) double mutants and found that loss of lon-

1 did not suppress the dig-1(ky188) mutant defects (Fig. 4.14B). This finding 

indicates that the suppression of the head ganglia maintenance defect in sax-7 

mutants by loss of lon-1 is highly specific, as the same defect in another mutant, 

dig-1, cannot be suppressed by loss of lon-1. Moreover, this result further 

corroborates that the increase in body size does not suppress defects in the 

maintenance of the relative positioning between the ASH/ASI soma and the 

nerve ring. Taken together, our results indicate that the mechanism by which lon-

1 impacts the sax-7-mediated maintenance of head ganglia organization is not 

via the TGF-β pathway and is not due to its effect on body size. 
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Figure 4.14. lon-1-mediated suppression of sax-7 defects is independent of body 

length.  
A. Increased body length cannot suppress sax-7(nj48) mutant defects. Animals 

overexpressing TGF-β ligand dbl-1 (transgene ctIs40) are longer than wild type due to a 

decrease in lon-1 expression (Morita et al 1999, Suzuki et al 1999), and maintain head 

ganglia organization similar to wild type. sax-7(nj48); ctIs40 animals that overexpress dbl-1 

are long, yet do not display a significant difference compared to sax-7(nj48) mutants alone 

in the maintenance of head ganglia organization. This indicates increased body length 

alone cannot suppress sax-7(nj48) mutant defects. 
B. dig-1(ky188) mutants, like sax-7 mutants, exhibit a defective maintenance of the relative 

positioning between the ASH/ASI soma and the nerve ring (Bénard et al., 2006). Double 

mutant lon-1(e185) dig-1(ky188) exhibits defects in the maintenance of head ganglia 

organization that are not significantly different than dig-1(ky188) mutants alone. This 

suggests specificity of loss of lon-1 in suppressing head ganglia organization defects 

resulting from loss of sax-7.  Analysis done with two-day adults.  
Error bars are standard error of the proportion. (z-tests, P values were corrected by 

multiplying by the number of comparisons). ns, not significant. 
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Suppression of sax-7 unlikely to be a general feature of CAP superfamily  

LON-1 is a member of the diverse CAP (cysteine-rich secretory proteins, antigen 

5, and pathogenesis-related 1) superfamily (Maduzia et al 2002), which contains 

28 members in C. elegans, 33 in mice, and 31 in humans (Gibbs et al 2008). This 

designation is based on LON-1 containing a cysteine-rich domain with homology 

to other CAP superfamily members which spans from approximately aa 78 to aa 

217 of LON-1. Both the lon-1(e185) and lon-1(qv10) mutations fall within this 

conserved region ((Maduzia et al 2002); Fig. 4.7), highlighting the functional 

importance of this sequence.  CAP superfamily molecules are often secreted or 

associated with the membrane via a GPI-anchor (Gibbs et al 2008) and LON-1 

contains a signal peptide sequence at the N-terminus (Maduzia et al 2002). We 

wondered whether the lon-1-mediated suppression of sax-7 neuronal 

maintenance defects could be related to the presence of a CAP domain in LON-1 

and if loss of other members of the CAP superfamily in C. elegans could 

suppress the sax-7 mutant defects. We built double mutants between sax-7(nj48) 

and the three available CAP superfamily mutants, vap-1(ok392) (Cantacessi et al 

2009, Hawdon et al 1999), scl-1(ok1185) (Ookuma et al 2003), and scl-

9(ok1138) (Ashrafi et al 2003). Loss of any of these molecules did not lead to 

neuronal defects (Fig. 4.15). We found that loss of scl-1 or scl-9 did not 

significantly alter the sax-7(nj48) mutant phenotype (Fig 4.15). While loss of vap-

1 in the sax-7(nj48) mutant background decreases the defects compared to sax-

7(nj48) single mutants, this suppression 
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is far from that seen with loss of lon-1 (Fig. 4.15). While we cannot rule out a role 

for other untested CAP superfamily molecules, these results suggest that the lon- 

1-mediated suppression of sax-7 defects does not reflect a general function of 

CAP superfamily members in the maintenance of neuronal architecture.  

 

LON-1 functions in neurons and hypodermis to maintain neuronal 

architecture 

4.15. CAP superfamily mutants are unable to suppress sax-7 mutant defects to the 

same degree as lon-1.  
LON-1 is a member of the CAP superfamily. Mutants for other CAP superfamily members 

such as vap-1(ok392), scl-1(ok1185), and scl-9(ok1138) are able to maintain the relative 

positioning between the ASH/ASI soma and the nerve ring like wild-type and lon-1 mutant 

animals. Loss of scl-1(ok1185) or scl-9(ok1138) does not alter the sax-7(nj48) mutant 

phenotype. While loss of vap-1(ok392) in the sax-7(nj48) mutant background does 

significantly decrease the phenotype compared to sax-7(nj48) alone, this is not to the same 

degree as seen with loss of lon-1. Gray dashed line indicates the degree of suppression of 

sax-7 mutant defects by loss of lon-1. Error bars are standard error of the proportion. 

Asterisks denote significant difference: *** P ≤ 0.001. (z-tests, P values were corrected by 

multiplying by the number of comparisons). ns, not significant. 
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To gain insight into the function of lon-1 in neuronal maintenance, we 

characterized the focus of action of lon-1. lon-1 is expressed in hypodermal cells 

and in the intestine and has been shown to function in the hypodermis for its role 

in the regulation of body length (Maduzia et al 2002, Morita et al 2002). To 

determine where lon-1 functions to suppress the sax-7 mutant defects, we 

expressed lon-1a(+) cDNA pan-neuronally (under the heterologous promoter 

Punc-14), in hypodermal cells (under the heterologous promoter Pelt-3), in the 

intestine (under the heterologous promoter Pelt-2), and in body wall muscles 

(under the heterologous promoter Pmyo-3) in lon-1; sax-7 double mutants. We 

assayed for rescue of lon-1 in these lon-1; sax-7 double mutants by looking for a 

restoration of the sax-7 mutant phenotype. We observed that the sax-7 mutant 

phenotype resurfaced in lon-1; sax-7 double mutants when lon-1(+) was 

expressed from either the nervous system or the hypodermis (Fig. 4.16A), 

suggesting that lon-1 can function from the nervous system or the hypodermis for 

its role in the suppression of the sax-7 mutant defects. Rescue was not observed 

upon expression of lon-1 from the intestine or the body wall muscles (Fig. 

4.16A). As a control, we ensured that this lon-1-induced reappearance of head 

ganglia disorganization in lon-1; sax-7 double mutants was not due to an 

artefactual lon-1(+)-overexpression phenotype. For this, we expressed lon-1(+) in 

neurons, hypodermis, intestine, or muscles in lon-1 mutants and analyzed the 

relative positioning between the ASH/ASI soma and the nerve ring.   
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Overexpression of lon-1(+) from all tissues tested had no effect on head ganglia 

organization (Fig. 4.16B). This result confirms that the mutant defects seen in 

lon-1; sax-7 double mutants upon expression of lon-1(+) in neurons or 

hypodermis reflects the rescue of the lon-1-mediated suppression of sax-7, and 

suggests that for neuronal maintenance of head ganglia organization, lon-1 

functions from neurons or hypodermis.  

 

SAX-7 functions in multiple adjacent neurons to maintain nervous system 

architecture 

sax-7 functions in the nervous system to maintain the relative positioning 

between the ASH/ASI soma and the nerve ring ((Pocock et al 2008); Fig. 4.3). 

To learn more about how sax-7 functions to maintain the architecture of the 

nervous system and how it might interact with lon-1, we investigated whether 

Figure 4.16. lon-1 functions in the nervous system and hypodermis to maintain head 

ganglia organization.  
A. Expression of lon-1(+) in the nervous system (under the heterologous promoter Punc-14) 

or the hypodermis (under the heterologous promoter Pelt-3), brings back the sax-7(nj48) 

mutant phenotype in the lon-1(e185); sax-7(nj48) double mutant, indicating LON-1 functions in 

the nervous system or hypodermis to maintain head ganglia organization. Expression of lon-

1(+) in the intestine (under the heterologous promoter Pelt-2), or muscles (under the 

heterologous promoter Pmyo-3), could not rescue. Transgenic animals were compared to 

non-transgenic sibling controls.   
B. Overexpression of lon-1(+) in lon-1(qv10) mutants in the nervous system (using the 

heterologous promoter Punc-14), the hypodermis (using the heterologous promoter Pelt-3), 

the intestine (using the heterologous promoter Pelt-2), or the muscles (using the heterologous 

promoter Pmyo-3), did not affect the maintenance of head ganglia organization. This indicates 

the resurfaced mutant phenotype in 4.16A is due to rescue and not due to a lon-1(+) 

overexpression phenotype.  
Error bars are standard error of the proportion. Asterisks denote significant difference: *** P ≤ 

0.001. (z-tests, P values were corrected by multiplying by the number of comparisons). ns, not 

significant. 
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sax-7 could function cell-autonomously or whether multi-neuron expression was 

required to maintain the relative positioning between the ASH/ASI soma and the 

nerve ring. To test this, we expressed sax-7S in sax-7(nj48) mutants under the 

heterologous promoter Psra-6, which restricts expression to the head neurons 

ASH and ASI, and to tail neurons PVQ. This restricted expression did not rescue 

the sax-7(nj48) mutant defects, suggesting that sax-7 cannot function cell-

autonomously in this context and is instead required from multiple neurons. To 

test this, we used the heterologous promoter Posm-6, to drive sax-7S in the 

ciliated sensory neurons, including ASH and ASI, in sax-7(nj48) mutants (this 

expression is much more restricted than the pan-neuronal Punc-14 promoter that 

had previously conferred robust rescue of the sax-7 mutant defects ((Pocock et 

al 2008); Fig. 4.3). Expression of sax-7S in the ciliated sensory neurons was 

sufficient to rescue the sax-7(nj48) defects in the maintenance of the relative 

positioning between the ASH/ASI soma and the nerve ring (Fig. 4.17). Our 

results indicate that sax-7S needs to be expressed from multiple neurons in close 

proximity to ASH/ASI, suggesting that homophilic interactions between SAX-7S 

molecules across neurons are required to maintain the relative positioning of the 

ASH/ASI soma with respect to the nerve ring, as has been observed in other 

contexts (Pocock et al 2008, Sasakura et al 2005).  
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Post-embryonic loss of lon-1 is sufficient to suppress sax-7 mutant defects 

To help understand the function of lon-1 in neuronal maintenance, we studied the 

timing of action of lon-1. Since we uncovered a post-embryonic role for sax-7 in 

maintaining head ganglia organization (Fig. 4.4), we speculated that loss of lon-1 

function post-embryonically might be sufficient to suppress this sax-7 mutant 

defect. To test this, we knocked down lon-1 function at different times of larval 

development using RNAi against lon-1 in sax-7(nj48) mutants. We used three 

different timing strategies (Fig. 4.18A). First, we verified that chronic lon-1(RNAi) 

4.17. sax-7 functions in multiple 

neurons to maintain head ganglia 

organization.  
Expression of wild-type copies of 

sax-7(+) in the ASH/ASI head 

neurons and PVQ tail neurons (using 

the heterologous promoter Psra-6) is 

not sufficient to rescue the sax-

7(nj48) mutant defects in head 

ganglia organization. Expression of 

wild-type copies of sax-7(+) in all 

ciliated sensory neurons (using the 

heterologous promoter Posm-6) is 

sufficient to rescue the sax-7(nj48) 

mutant defects. This indicates sax-7 

does not function cell autonomously 

but rather in multiple neurons to 

maintain head ganglia organization. 

Error bars are standard error of the 

proportion. Asterisks denote 

significant difference: *** P ≤ 0.001. 

(z-tests, P values were corrected by 

multiplying by the number of 

comparisons). ns, not significant. 
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phenocopied the suppression of sax-7 by lon-1 mutations. P0 sax-7(nj48) 

mutants were allowed to lay progeny on lon-1(RNAi), and these F1 progeny were 

maintained under lon-1(RNAi) conditions until they were 1-day old adults, when 

their neuroanatomy was examined (Fig. 4.18A). In this chronic lon-1(RNAi) 

condition, we found that sax-7(nj48) mutants grown on lon-1(RNAi) were 

significantly suppressed for head ganglia defects compared to the empty vector 

RNAi controls (Fig. 4.18B), indicating that lon-1(RNAi) phenocopied the lon-1 

loss-of-function mutations in suppressing sax-7 defects.  

  

Second, we addressed whether knock down of lon-1 function post-embryonically 

would be sufficient to suppress sax-7 head ganglia disorganization. For this, we 

collected freshly hatched first larval stage sax-7(nj48) mutants and raised them 

on lon-1(RNAi) bacteria until they were 1-day old adults, when we completed the 

analysis (Fig. 4.18A). Despite developing and hatching as a sax-7 mutant and 

with wild-type lon-1(+), the worms subjected to post-embryonic knock down of 

lon-1 by lon-1(RNAi) displayed a significant reduction in the penetrance of 

defects as compared to empty vector RNAi controls (Fig. 4.18B). This result 

suggests that loss of lon-1 function from the first larval stage onwards, well after 

the development of the head ganglia and of the nerve ring had been completed 

during embryogenesis, is sufficient to suppress the sax-7 defects in head ganglia 

maintenance. These observations point to a post-embryonic role of lon-1 in 

neuronal maintenance.  
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Third, we knocked down lon-1 function from the second larval stage onwards and 

asked whether this could suppress sax-7 head ganglia disorganization. For this, 

we collected second larval stage sax-7(nj48) mutants and raised them on lon-

1(RNAi) until they were 1-day old adults, when we completed the analysis (Fig. 

4.18A). We found that sax-7 mutants on lon-1(RNAi) from the second larval 

stage onwards did not exhibit a significant difference from the control RNAi 

worms (Fig. 4.18B), indicating that loss of lon-1 during and after the second 

larval stage is not sufficient to suppress these sax-7 defects. This suggests that 

for the sax-7 mutant defects to be suppressed the function of lon-1 must be lost 

from the first larval stage; alternatively, lon-1 might function during later larval 

stages as well, but the lon-1 RNAi knockdown might be less efficient when 

started at the second larval stage. Nonetheless, these results indicate that sax-7 

mutants that undergo embryonic development and hatch lacking sax-7 function 

can still become phenotypically wild type in adulthood through a post-embryonic 

intervention such as the loss of lon-1 via RNAi.  
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DISCUSSION 

Although a handful of molecules that maintain the architecture of the nervous 

system have been identified, the mechanisms by which they function remain 

poorly understood. In this study we have identified a conserved, novel neuronal 

maintenance factor, lon-1, and determined that it functions from the neurons 

themselves or the nearby hypodermis during larval development, to somehow 

impact the maintenance factor sax-7 in maintaining nervous system architecture.  

 

Novel and specific interaction between lon-1 and sax-7 mediates the 

maintenance of head ganglia organization  

Our study has identified lon-1 as a suppressor of the sax-7 defects in the 

maintenance of head ganglia organization. The lon-1-mediated suppression of 

sax-7 defects is context dependent, as loss of lon-1 does not impact all defects in 

neuronal architecture resulting from the disruption of sax-7. Although loss of lon-

1 powerfully suppresses the head ganglia disorganization defects of sax-7 

4.18. Post-embryonic loss of lon-1 is sufficient to suppress sax-7 mutant defects. 
A. Diagram showing experimental set up of chronic RNAi, RNAi from L1, and RNAi from 

L2. sax-7(nj48) mutants were either on RNAi (gray bars) starting at P
0
, L1, or L2 (ages on 

top), or off RNAi (white bars), and analyzed as adults (black vertical bar).  
B. sax-7(nj48) mutants subjected to either chronic lon-1 RNAi or lon-1 RNAi from L1 exhibit 

a significant suppression of sax-7(nj48) mutant defects in the maintenance of head ganglia 

organization compared to control RNAi, while knockdown of lon-1 from L2 in sax-7(nj48) 

mutants did not significantly alter the phenotype compared to control RNAi. This indicates 

that loss of lon-1 function post-embryonically is sufficient to suppress sax-7(nj48) mutant 

defects. Error bars are standard error of proportion. Asterisks denote significant difference: 

*** P ≤ 0.001. (z-tests, P values were corrected by multiplying by the number of 

comparisons). ns, not significant. 
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mutants, loss of lon-1 does not modify the defective maintenance of axon 

positioning in the ventral nerve cord, or the abnormal development of PVD 

dendrites of sax-7 mutants (Fig. 4.10). 

 

Several factors may contribute to the specificity of action of lon-1 in neuronal 

maintenance. One factor may be the timing of action of lon-1. sax-7 is required to 

maintain aspects of neuronal architecture at different time points during larval 

and adult stages, and defects resulting from the loss of sax-7 manifest at 

different ages. For instance, it is during the first larval stage that axons of the 

ventral nerve cord lose their normal position and flip over into the opposite 

fascicle in sax-7 mutants (Pocock et al 2008), as well as in other neuronal 

maintenance mutants (Aurelio et al 2002, Benard et al 2009, Benard et al 2006). 

On the other hand, head ganglia disorganization emerges in the third larval stage 

and progresses through adulthood in sax-7 mutants ((Benard et al 2012); Fig. 

4.2B). Perhaps lon-1 functions at later larval stages, interacting with sax-7 in a 

way that influences head ganglia organization at the third larval stage and 

onwards, but cannot impact the maintenance of the ventral nerve cord during the 

first larval stage.  

 

Consistent with this possibility, we found that knock down of lon-1 from post-

hatch and throughout larval stages via RNAi is sufficient to suppress sax-7 head 

ganglia defects (Fig. 4.18), indicating that lon-1 acts during larval stages. It is 
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unclear, however, how quickly lon-1 actually gets knocked down via RNAi, 

precluding our conclusion about its role during the first larval stage. Perhaps 

onset of PVQ axon flipover defects in sax-7 mutants during the first larval stage 

occurs at a time when lon-1 is not normally functionally required. In agreement 

with this, lon-1 appears to have very low expression in embryos and L1s, with 

peak expression in L2 and L3 (Celniker et al 2009), when the sax-7 PVQ axon 

flipover events have already occurred (Pocock et al 2008). It is possible that 

other early-acting molecular components function to maintain this structure along 

with sax-7. As a note, lon-1 function is also temporally restricted in the context of 

its role in body length regulation, as lon-1 mutants are initially wild type and 

display their Lon phenotype only at later larval stages (Maduzia et al 2002, Morita 

et al 2002).  

 

A second factor that may contribute to lon-1 suppressing specific neuronal 

defects of sax-7 mutants relates to the distinct cellular contexts in which the 

neuronal structures exist, and the associated molecular differences in the 

extracellular milieu and neighboring tissues. For instance, the soma of the ASI 

and ASH neurons are located in head ganglia, in close proximity with numerous 

other neurons, which are all ensheathed by a basement membrane that defines 

each of the ganglia (White et al 1986), and are located sandwiched between the 

pharynx on one side and the muscles and hypodermis on the other side. The 

axons of ASI and ASH are part of the nerve ring, which is composed of 
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numerous other axons and runs around the pharyngeal isthmus, and is also 

wrapped by cephalic sheath glia (Ware et al 1975, White et al 1986). On the 

other hand, the PVD neurons are located along the body wall on the sides of the 

animal, and are largely isolated from other neurons (White et al., 1986). The PVQ 

axons are yet in a different context, spanning the length of the ventral midline 

where they run along the fascicles of the ventral nerve cord, along with other 

axons, and in close proximity to the hypodermis (White et al 1986).  

 

One possible level of molecular specificity could come from interactions with the 

underlying basement membrane. The basement membrane is a specialized form 

of extracellular matrix that covers the interior surfaces of muscles, gonad, 

intestine, hypodermis, and pharynx (White et al 1976), structures which the 

nervous system is in contact with. Diversity in composition and thickness of 

basement membranes can vary in a tissue and temporal-specific manner 

(reviewed (Clay & Sherwood 2015, Kramer 2005) and could play a key role in 

creating a diverse environment for cell-cell interactions required for the 

development and maintenance of specific neuronal structures. Consistent with 

this, the large secreted maintenance factor DIG-1 plays important roles in 

maintaining the structure of the basement membrane (Benard et al 2006). 

Further research into the effect these maintenance factors, including LON-1, 

have on basement membrane regulation may provide insight into how these 

molecules function in long-term maintenance of neuronal architecture.  
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A third factor that may contribute to the specificity of action of lon-1 in 

suppressing some of the neuronal defects of the sax-7 mutants is the different 

tissue requirements for sax-7 function by a given neuronal structure. Consistent 

with this, SAX-7 functions in distinct tissues to mediate its developmental and 

maintenance roles. For example, SAX-7 functions within the nervous system in 

trans across different neurons in a non-cell-autonomous manner for maintaining 

head ganglia (Pocock et al 2008, Sasakura et al 2005), but functions in the 

hypodermis to guide developing PVD dendrites (Dong et al 2013, Salzberg et al 

2013), and loss of lon-1 could suppress the maintenance of head ganglia 

organization but not PVD development. Also, for a pair of neurons in the 

retrovesicular ganglion, AIY and AVK, expression of sax-7S(+) in both cells is 

required for maintaining proper cell contact (Pocock et al 2008). Likewise, we find 

that expression of sax-7S(+) in only the ASH/ASI and PVQ neurons is not 

sufficient for rescue, but rather that expression in multiple neurons within the 

head ganglia is required (Fig. 4.3 and 4.17). This suggests that neuron-to-

neuron interactions are an important aspect of the maintenance of head ganglia 

organization, which is distinct from the neuronal-hypodermal interaction which 

dictates the proper development of the PVD dendrites. Perhaps lon-1 function is 

specifically important for certain neuron-to-neuron sax-7-mediated interactions, 

yet is dispensable for neuron-hypodermis sax-7-mediated interactions.  
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Specificity of action in neuronal maintenance has also been observed in other 

mutants defective for the maintenance of neuronal architecture. While sax-7 and 

the large secreted maintenance factor dig-1 are required to maintain both the 

organization of the head ganglia and PVQ axon positioning, the two-Ig domain 

molecules zig-3 and zig-4 and a specific isoform of the FGF receptor egl-15 are 

required to maintain PVQ axon positioning but are dispensable for the 

maintenance of head ganglia organization (Aurelio et al 2002, Benard et al 2009, 

Benard et al 2006, Bülow et al 2004, Pocock et al 2008). This highlights that the 

maintenance of these different structures requires different molecular 

interactions, and our results indicate that lon-1 likely provides a level of molecular 

specificity in the maintenance of nervous system architecture.  

 

lon-1 specifically, and not other CAP superfamily molecules, functions to 

maintain nervous system architecture 

LON-1 is a member of the highly conserved CAP superfamily of molecules 

(Gibbs et al 2008, Maduzia et al 2002, Morita et al 2002), which is characterized 

by signature sequence motifs (Gibbs et al 2008). The CAP superfamily contains 

28 members in C. elegans, 33 in mice, and 31 in humans (Gibbs et al 2008). The 

functions of CAP superfamily molecules are not well understood, yet are 

implicated in a diverse set of functions (Gibbs et al 2008). In C. elegans, CAP 

superfamily molecules (reviewed in (Cantacessi et al 2009)) function to regulate 

body length (Maduzia et al 2002, Morita et al 2002), stress resistance, longevity 
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and aging (Patterson 2003), fat storage (Ashrafi et al 2003), as well as apoptosis 

and immune responses (Pinkston-Gosse & Kenyon 2007). In mammals, CAP 

superfamily proteins are implicated in the regulation of extracellular matrix, 

regulation of ion channels, cell-cell adhesion, and cancer (Gibbs et al 2008).  

 

We found that loss of three other CAP superfamily molecules (vap-1, scl-1, and 

scl-9), unlike loss of lon-1, did not affect the sax-7 mutant phenotype, highlighting 

the specificity of lon-1 function (Fig. 4.15). It is possible that the function of LON-

1 in neuronal maintenance involves its conserved CAP domain. In fact, both the 

e185 and qv10 mutations fall within this conserved domain ((Maduzia et al 2002, 

Morita et al 2002); Fig. 4.7), suggesting that this area of the protein is functionally 

important for neuronal maintenance. Future work will likely shed light on the 

relevance of this new function of lon-1 to its characterization as a CAP 

superfamily molecule.   

 

lon-1 functions to maintain nervous system architecture independent of 

body length and the TGF-β pathway  

lon-1 was first identified by its Lon phenotype (Brenner 1974) and was later 

characterized as a downstream target of the TGF-β signaling pathway to regulate 

body length (Maduzia et al 2002, Morita et al 2002). We find that the lon-1-

mediated suppression of sax-7 defects is independent of body length and the 

TGF-β signaling pathway (Fig. 4.12, 4.14, 4.16). Through this analysis we found 
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that both Lon and Sma mutants, which have drastically different body lengths 

and diameters, are able to consistently maintain the organization of head ganglia 

(Fig. 4.6, 4.12). Additionally, we have focused our attention on the Sma/Mab 

DBL-1 branch of the TGF-β pathway in which lon-1 functions as a downstream 

target (Maduzia et al 2002, Morita et al 2002), as lon-1 is not known to function in 

the other DAF-7/TGF-β branch of the pathway, which regulates dauer formation. 

DAF-7 functions from the ASI neurons to control dauer formation (Ren et al 1996, 

Schackwitz et al 1996), and the DAF-7 pathway regulates chemoreceptor 

expression in the ASH and ASI neurons (Lesch & Bargmann 2010, Nolan et al 

2002). Therefore, we expect that future work investigating the impact of this 

branch of the pathway on the maintenance of nervous system architecture either 

alone or in a sax-7-dependent way might be informative. 

 

lon-1 functions from the neurons or the underlying hypodermis to maintain 

nervous system architecture 

LON-1 is expressed in the hypodermis and intestine, which overlaps with its 

transcriptional expression pattern (Maduzia et al 2002, Morita et al 2002). CAP 

superfamily molecules, like LON-1, are often either secreted or GPI-anchored 

(Gibbs et al 2008). The primary amino acid sequence of LON-1 contains an N-

terminal signal peptide sequence (Maduzia et al 2002); therefore, it is possible 

that after being produced, LON-1 is secreted into the extracellular milieu. While it 

has been proposed that LON-1 could possibly function as a transmembrane 
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molecule, the data are lacking proper controls, and the hydrophobic sequence 

proposed to be the LON-1 transmembrane domain (Morita et al 2002) is instead 

where the signal peptide sequence and cleavage site reside (Maduzia et al 

2002). Therefore, it seems likely that LON-1 functions as a secreted molecule. 

Our work finds that LON-1 must be expressed in the neurons or underlying 

hypodermis to function in the maintenance of head ganglia organization (Fig. 

4.16). We found that expression from more distant tissues such as the body wall 

muscles or gut did not rescue. This suggests that if LON-1 is indeed a secreted 

molecule, it may function locally to maintain head ganglia organization. In support 

of LON-1 acting locally to its secretion site, LON-1 antibody staining reveals co-

localization with adherens junction marker MH27 in hypodermal and seam cells 

(Morita et al 2002). This puts LON-1 in a position to function in close proximity to 

transmembrane SAX-7 molecules, which act in the nervous system to maintain 

head ganglia organization. 

 

lon-1 and sax-7 function post-embryonically to maintain nervous system 

architecture  

Thus far, only a handful of molecules have been identified that function to 

maintain specific aspects of the nervous system. This likely is a reflection of the 

difficulty associated with determining an adult role for molecules that also play 

critical roles during development. Through the use of a heat-shock-induced 

expression system and temporally regulated gene knockdown by RNAi, we 
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determined that both sax-7 and lon-1 are actively required during larval 

development to maintain the organization of the head ganglia (ASH/ASI soma) 

and the nerve ring (Fig. 4.4 and 4.18), which are structures that develop during 

embryogenesis. This finding ruled out the possibility that the neuronal 

maintenance defects of sax-7 mutants were a result of an embryonic defect that 

was amplified by growth and movement of the animal. Instead, our finding is 

consistent with an active requirement for sax-7 and lon-1 post-embryonically to 

subsequently maintain the organization of an already established nervous 

system structure.  

  

A post-embryonic neuronal role for sax-7, the C. elegans homologue of the 

mammalian L1CAM family, is a conserved property of this gene family. Indeed, 

loss of L1CAM specifically from the adult mouse brain led to an increase in basal 

excitatory synaptic transmission and behavioral alterations (Law et al 2003).  In 

rats, post-developmental nervous system knockdown of Neurofascin severely 

compromised the already established composition of the axon initial segment 

and led to an onset of motor deficits (Kriebel et al 2011, Zonta et al 2011). 

Postnatal disruption of CHL1 in excitatory neurons of the forebrain affected the 

duration of working memory (Kolata et al 2008). Together these results highlight 

the continued importance of L1 family members in the adult nervous system for 

proper function, and also underscore the power of conditional loss of molecules 

to determine post-developmental roles. These results also point to a high degree 
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of functional conservation between sax-7 and L1CAM and indicate that findings 

from our work in C. elegans will likely have broad implications in other organisms. 

Through this work, we have identified LON-1 as a novel maintenance factor that 

functions with SAX-7 post-embryonically to maintain the architecture of the 

nervous system. Future studies that identify and characterize the other isolated 

sax-7 suppressor mutations from our screen might also shed light into the cellular 

and molecular basis of neuronal maintenance. 

 

MATERIALS AND METHODS 

 

Nematode strains and genetics 

Nematode cultures were maintained at 20oC (unless otherwise noted) on NGM 

plates seeded with OP50 bacteria as described (Brenner 1974). Alleles used 

listed in Table 4.1. Strains were constructed using standard genetic procedures 

and are all listed in Table 4.2. Genotypes were confirmed by genotyping PCR or 

sequencing when needed, using primers listed in Table 4.3, or by visible 

phenotypes for lon-1(qv10), lon-1(e185), lon-2(e678), lon-3(e2175), lon-

8(hu187), sma-6(wk7), sma-2(e502), sma-3(e491), and sma-4(e729). All mutant 

alleles and reporters were outcrossed at least three times prior to use for 

analysis or strain building.  

 

Neuroanatomical observations  
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Animals were mounted on agarose pads, anaesthetized with 100 mM sodium 

azide, and examined under a Zeiss Axio Scope.A1 or Zeiss Axioskop 2 Plus.  

Analysis of ASH/ASI cell body positioning with respect to the nerve ring 

Cell bodies of ASH/ASI and the nerve ring were visualized in adults using oyIs14 

(Sarafi-Reinach et al 2001), an integrated Psra-6::gfp reporter; hdIs29 (Schmitz 

et al 2008), an integrated Psra-6::DsRed2; Podr-2::gfp reporter; or hdIs26 (Hutter 

2003), an independent integrated Psra-6::DsRed2; Podr-2::gfp reporter. Unless 

otherwise noted, animals were selected as L4s and analyzed as 1-day adults. 

Animals were only analyzed when in a lateral orientation. Normally, both the two 

ASH and also the two ASI soma are located posterior to the nerve ring. Animals 

were counted as mutant when at least one ASH or ASI soma was touching, on 

top of, or anterior to the nerve ring. Animals were counted as wild type when all 

ASH/ASI soma were positioned posterior to the nerve ring.  

Analysis of PVQ axon flipover defects 

PVQ axons were visualized in L4 animals using oyIs14, an integrated Psra-6::gfp 

reporter (Sarafi-Reinach et al 2001). The axon of the PVQL and the PVQR 

neurons are normally maintained within the left and right fascicle of the ventral 

nerve cord, respectively. Animals were counted as having an axon flipover defect 

when one of the PVQ axons was flipped to the opposite fascicle at any point 

along the ventral nerve cord.  

Analysis of PVD dendritic branch development 
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PVD dendritic branches were visualized in L4 animals using wdIs52, an 

integrated F49H12.4::gfp reporter (Smith et al 2010, Watson et al 2008). The 

shape of the structure formed by the secondary and tertiary dendritic branches of 

PVD normally resembles a “T” shape, as described (Dong et al 2013, Smith et al 

2010). For each genotype, this shape was analyzed for multiple branches within 

a region anterior to the PVD cell body and categorized as the normal “T” shape, 

or abnormal variations such as “L”, “I”, loop, closed “Y”, open “Y”, or diagonally 

shaped. Percentage of animals with two or more non-T shaped branches was 

calculated.  

 

Identification of sax-7(qv24)  

Initially we were carrying out a zig-5(ok1065) zig-8(ok561) double mutant 

suppressor screen, as we were studying two members of the ZIG family of two-Ig 

domain proteins, zig-5 and zig-8, and their role in the maintenance of neuronal 

architecture. Our zig-5(ok1065) zig-8(ok561) double mutant strain exhibited 

defects similar to sax-7 mutants in the relative positioning between the ASH/ASI 

soma and the nerve ring (Benard et al 2012). We later found out, after the screen 

had been completed, that this neuronal maintenance defect in the zig-5(ok1065) 

zig-8(ok561) double mutant strain was in fact due to the presence of a 

spontaneous novel background mutation, which we have called sax-7(qv24). 

Following the screen, we determined that the phenotypic defects observed in our 

zig-5(ok1065) zig-8(ok561); sax-7(qv24) strain were solely due to the presence 
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of the sax-7(qv24) mutation and that loss of zig-5(ok1065) and zig-8(ok561) was 

dispensable for this phenotype.  

 

EMS forward genetic screen 

We carried out our forward screen for suppressors of neuronal maintenance 

defects using VQ90 sax-7(qv24); zig-5(ok1065) zig-8(ok561); glp-4(bn2ts); 

oyIs14) as our screening strain. glp-4(bn2ts), a temperature sensitive sterile 

mutation (Beanan & Strome 1992), was used to ease the analysis of populations 

of adult worms on a large scale, without being confused by their progeny. VQ90 

worms were grown at 15°C, mutagenized with 25 µM EMS, and allowed to 

recover at 15°C. Following recovery, five P0 mutagenized worms were plated 

onto five plates (25 P0s in total) and put back at 15°C to lay broods. From P0 

broods, 250 F1s were singled at the L4 or young adult stage (approximately 50 

F1s from each P0 plate). From each of the 250 F1 plates, seven F2s were singled 

for a total of 1750 F2s per mutagenesis round. After two days, these F2 plates 

were shifted to 25°C to prevent the production of progeny. Once reaching at least 

day five of adulthood, animals were incubated on ice to temporarily immobilize 

them and screened using Zeiss M2 Discovery stereo fluorescence microscopes 

to find broods that exhibited a high frequency of animals with the ASH/ASI soma 

posterior to the nerve ring, compared with control plates.  
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Upon identification of a candidate suppressor, animals were re-singled from the 

corresponding F1 plate to re-isolate the suppressor and analyze the animals 

mounted on slides and quantify the degree of suppression using the Zeiss 

Axioskop 2 Plus.  

 

Outcrossing candidate suppressors 

Successfully re-isolated alleles were outcrossed with the strain VQ47 sax-

7(qv24); zig-5(ok1065) zig-8(ok561); hdIs29 to confirm candidates, clean 

background EMS-induced mutations, and get rid of the glp-4(bn2ts) mutant allele 

when possible. F3s were analyzed for re-isolation of the sax-7 suppression using 

the Zeiss Axioskop 2 Plus microscope.   

 

Removing the zig-5 and zig-8 mutations from the background of all the sax-

7(qv24) and lon-1(qv10) suppressor strains 

Due to the presence of zig-5(ok1065) and zig-8(ok561) mutations in our 

screening and outcrossing strains, all isolated suppressors and outcrossed 

suppressors also contained these mutations. For isolated sax-7 suppressor lon-

1(qv10), we crossed lon-1(qv10) away from zig-5(ok1065), zig-8(ok561), glp-

4(bn2ts), and sax7(qv24), before rebuilding as a double mutant with sax-7(qv24) 

to generate the lon-1(qv10); sax-7(qv24) double mutant. We ensured that all 

strains constructed and used in this work are wild type for zig-5(ok1065), zig-
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8(ok561), and glp-4(bn2ts) to be confident that our suppressor was not 

dependent upon the presence of these mutations. 

 

C. elegans constructs and microinjections to generate transgenic animals 

All inserts of finalized clones were verified by sequencing.  

Plon-1::lon-1a cDNA (pCB315): Vector Prgef-1::lon-1a (pCB254) was digested 

with PstI and BamHI to release Prgef-1 and ligated with insert of Plon-1 3-kb 

promoter (coordinates on cosmid F48E8: 28,244 to 31,288) amplified out of N2 

genomic DNA using nested primers oCB1266 (TTCAGCGTGTAAGAGTTGAG) 

and oCB1267 (TAGGTCTTCAAATACGAAGG) followed by oCB1268 

(CATGATCTGCAGTTTGATGGCTTGTACCTTGG) and oCB1269 

(ATCATGGGATCCTTTGCCATATGTCGTGACG) to add on PstI and BamHI 

sites. 

Plon-1::lon-1b cDNA (pCB316): Vector Prgef-1::lon-1b (pCB255) was digested 

with PstI and BamHI to release Prgef-1 and ligated with insert of Plon-1 3-kb 

promoter (coordinates on cosmid F48E8: 28,244 to 31,288) amplified out of N2 

genomic DNA using nested primers oCB1266 (TTCAGCGTGTAAGAGTTGAG) 

and oCB1267 (TAGGTCTTCAAATACGAAGG) followed by oCB1268 

(CATGATCTGCAGTTTGATGGCTTGTACCTTGG) and oCB1269 

(ATCATGGGATCCTTTGCCATATGTCGTGACG) to add on PstI and BamHI 

sites. 
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Plon-1::lon-1 genomic (pCB317): Vector Plon-1::lon-1a (pCB315) was digested 

with XmaI and NcoI to release lon-1a cDNA and ligated with insert of lon-1 3.3-kb 

genomic (coordinates on cosmid F48E8: 31,289 to 34,582) amplified out of N2 

genomic DNA using nested primers oCB1270 (AGATACTCTCTTTCCACTGG) 

and oCB1271 (ATAAATGCAGCGGTATGCAC) followed by oCB957 

(CATGATCCCGGGATGAATTATCTGTTGACTGC) and oCB958 

(ATCATGCCATGGTTAAACTCTCATTCGGAACC) to add on XmaI and NcoI 

sites. 

Punc-14::lon-1a  cDNA (pCB318): Vector Pdpy-7::lon-1a (pCB249) was 

digested with HindIII and XmaI to release Pdpy-7 and ligated with insert of Punc-

14 1.4-kb promoter digested with HindIII and XmaI from Punc-14::sax-7L 

(pCB174). 

Pelt-2::lon-1a cDNA (pCB320): Vector Pdpy-7::lon-1a (pCB249) was digested 

with HindIII and XmaI to release Pdpy-7 and ligated with insert of Pelt-2 1-kb 

promoter (coordinates on cosmid C33D3: 2933 to 3875) amplified out of N2 

genomic DNA using nested primers oCB1058 (ACTTTGTAGGGTAATTGAGG) 

and oCB1061 (TCGGCTCATAGTTATTTGTGC) followed by oCB1059 

(CATGATAAGCTTTTGATTTTGTTTCACTCTGTG) and oCB1060 

(ATCATGCCCGGGTATAATCTATTTTCTAGTTTC) to add HindIII and XmaI 

sites. 
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Pelt-3::lon-1a cDNA (pCB322): Vector Prgef-1::lon-1a (pCB254) was digested 

with PstI and BamHI to release Prgef-1 and ligated with insert of Pelt-3 2-Kb 

promoter amplified out of Pelt-3::lon-2 (pCB218) using oCB1272 

(CATGATCTGCAGTGTGACACGTTGTTTCACG) and oCB1273 

(ATCATGGGATCCGAAGTTTGAAATACCAGGTAG) to add on PstI and BamHI 

sites. 

lon-1 RNAi (pCB328): Vector L4440 was digested with XmaI and NcoI and 

ligated with insert of lon-1 3.3-kb genomic (coordinates on cosmid F48E8: 31,289 

to 34,582) amplified out of N2 genomic DNA using nested primers oCB1270 

(AGATACTCTCTTTCCACTGG) and oCB1271 (ATAAATGCAGCGGTATGCAC) 

followed by oCB957 (CATGATCCCGGGATGAATTATCTGTTGACTGC) and 

oCB958 (ATCATGCCATGGTTAAACTCTCATTCGGAACC) to add on XmaI and 

NcoI sites. 

Psra-6:: sax-7S (pCB329): Vector Psra-6 was digested with XhoI and ApaI and 

ligated with insert of sax-7S 4.2-kb cDNA amplified out of Punc-14::sax-7S 

(pRP100) using oCB924 (CATGATCTCGAGATGGGGTTACGAGAGACGATG) 

and oCB886 (ATCATGGGGCCCGTACGGCCGACTAGTAGG) to add XhoI and 

ApaI sites. 

Pmyo-3::lon-1a cDNA (pCB352): Vector Pmyo-3 was digested with XbaI and 

NcoI and ligated with insert of lon-1a 1-kb cDNA digested out of Pdpy-7::lon-1a 

(pCB249) using XbaI and NcoI. 
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Posm-6::sax-7S (pCB363): Vector Punc-14::sax-7s (pRP100) was digested with 

HindIII and BamHI to release Punc-14 and ligated with Posm-6 2.1-kb promoter 

digested out of Posm-6::gfp::unc-54 3’ UTR (in pPD95.75 backbone) using 

HindIII and BamHI.  

Transgenic animals were generated by standard microinjection techniques (Mello 

& Fire 1995). Each construct was injected at 1 ng/μL (pCB191), 5 ng/μL 

(pRP100, pCB317, pCB315, pCB316, pCB318, pCB322, pCB320, and pCB352), 

or 75 ng/μL (pCB329 and pCB363), with two coinjection markers Pttx-3::mCherry 

at 50 ng/µL and Punc-122::rfp at 50 ng/µL. pBSK+ (25-99 ng/µL) was used to 

increase total DNA concentration of the injection mixes to 200 ng/µL.  

 

RT-PCR for sax-7 and lon-1 alleles 

Total RNA was extracted from worm samples using Trizol (Invitrogen) according 

to manufacturer’s instructions. 500 ng RNA was used to reverse transcribe using 

the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) and 

random primers. PCR reactions were carried out with 1st strand cDNA template 

and primers oCB985 (CGATTTGCAACTCAACAGGA) and oCB987 

(GTGTCCCGAACTGATTCGAT) were used for sax-7 cDNA amplification. 

Primers oCB977 (TCCCACATGGTTTTCTCACA) and oCB979 

(CTGAACATAGTGACCGCAACA) were used for lon-1 cDNA amplification of all 

isoforms, while primers oCB977 (TCCCACATGGTTTTCTCACA) and oCB980 

(AAAGCTGTCCTCTCGCAGTG) were used specifically for lon-1a and primers 
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oCB977 (TCCCACATGGTTTTCTCACA) and oCB981 

(CCAGGTGAAAGCTGGCATCGTA) were used specifically for lon-1b.   Primers 

oCB992 (TCGCTTCAAATCAGTTCAGC) and oCB993 

(GCGAGCATTGAACAGTGAAG) were used for the control gene Y45F10D.4 

(Hoogewijs et al 2008) cDNA amplification. 

 

Heat-shock induced expression of sax-7S(+)  

Worms were maintained at 15°C for at least two generations prior to analysis. To 

generate freshly hatched pools of L1s, plates were washed three times with M9 

buffer to remove adults and larvae, leaving only embryos on the plates. These 

plates were put back at 15°C for three hours, after which freshly hatched L1s 

were pooled onto new plates. Animals were either heat shocked immediately as 

L1s, as L2s (~24 hours post-hatch), or as L3s (~42 hours post-hatch). Heat 

shock treatment consisted of 30 minutes at 37°C, 60 minutes recovery at 15°C, 

30 minutes at 37°C, followed by 15°C until analysis as adults. All experiments 

were repeated twice. Animals were examined as 1-day-old adults. 

 

lon-1 RNAi knockdown 

RNAi by feeding was based on previous methods (Kamath et al 2000, Timmons 

& Fire 1998). NGM plates were prepared with Ampicillin (Amp, 50 µg/ml) and 

IPTG (6 mM) and then kept unseeded at 4°C for a one week prior to starting 

experiment. RNAi bacteria from -80°C was streaked onto LB Amp (50 µg/ml) 



223 

 

Tetracyclin (12.5 µg/ml) plates and grown overnight at 37°C. Single colonies from 

these plates were grown overnight in LB Amp (50 µg/ml) liquid culture, and 

pelleted the next day to concentrate the bacteria. This concentrated bacteria was 

seeded onto NGM Amp/IPTG plates (room temperature), and these were then 

allowed to dry and induce overnight.  

Chronic RNAi condition. L4 sax-7(nj48); oyIs14 worms were put onto RNAi plates 

(lon-1, L4440 empty vector control (Timmons & Fire 1998), and pos-1 RNAi-

positive control (pos-1 RNAi control leads to embryonic lethality and serves as a 

control for effectiveness of RNAi technique (Tabara et al 1999)) and kept on 

these plates overnight. The next day, these worms were repeatedly transferred to 

fresh RNAi plates, and allowed to lay embryos for three hour windows before 

being transferred to a fresh plate. This was repeated to create multiple plates. 

Worms were maintained on freshly seeded RNAi plates, no more than three days 

old, until being analyzed as adults.  

RNAi from L1. Freshly hatched sax-7(nj48); oyIs14 L1s were maintained on 

freshly seeded RNAi plates, no more than three days old (as above) until being 

analyzed as adults.  

RNAi from L2. sax-7(nj48); oyIs14 L2s were maintained on freshly seeded RNAi 

plates, no more than three days old (as above) until being analyzed as adults.  
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TABLES 
 
Table 4.1 List of mutant alleles used 

Gene Allele Nature of allele Reference 

sax-7 nj48 582 bp deletion, 12457-13038 on 

cosmid C18F3. 

(Sasakura et al 2005) 

sax-7 qv24 Splice donor mutation. Partial loss of 

function.  

This study 

lon-1 

 

e185 C185Y. Partial loss of function.  (Maduzia et al 2002, 

Morita et al 2002) 

lon-1 

 

qv10 G to A at position 33,209 on cosmid 

F48E8, introducing an early STOP. 

Partial loss of function.  

This study 

lon-2 

 

e678 ~9 kb deletion.  (Gumienny et al 2007) 

lon-3 e2175 Deletion of -2001 bp to +388 bp in 

relation to the initiator ATG codon and 

insertion of part of the transposon Tc5 

(1 bp to 2779 bp). DNA 

rearrangement in the lon-3 locus by 

Southern blot.  

(Nystrom et al 2002, 

Suzuki et al 2002) 

lon-8 hu187 360 bp deletion of the first exon and 

surrounding sequence corresponding 

to on 71710…72069 YAC Y59A8B. 

Short transcript still detected by 

Northern blot. 

(Soete et al 2007) 

dbl-1 nk3 5595 bp deletion, including almost all 

exons. Null. 

(Morita et al 1999) 

crm-1 tm2218 192 bp deletion and 1 bp insertion, 

with deletion corresponding to 

38330…38521 on cosmid B0024. 

Makes two truncated mRNA species. 

Loss of function allele.  

(Mitani lab at NBRP C. 

elegans; (Fung et al 2007)) 

sma-10 ok2224 906 bp deletion corresponding to 

20922…21827 on cosmid T21D12.  

(Consortium 2012) 

drag-1 tm3773 892 bp deletion corresponding to 

41703…42594 on YAC Y71G12B. 

(Mitani lab at NBRP C. 

elegans) 

sma-6 wk7 Y72 changed to an early STOP.  (Krishna et al 1999) 

sma-2 e502 G372D. (Savage et al 1996) 

sma-3 e491 G350R. (Savage et al 1996) 

sma-4 e729 Molecularly uncharacterized.  (Brenner 1974, Savage et 

al 1996) 

unc-129 tm5461 660 bp deletion corresponding to 

8166…8825 on cosmid C53D6.  

(Mitani lab at NBRP C. 

elegans) 
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tig-2 ok3416 ~800 bp deletion.  (Consortium 2012) 

adt-2 wk156 G364S. Partial loss of function.  (Fernando et al 2011) 

dig-1 ky188 Molecularly uncharacterized.  (Benard et al 2006, Zallen 

et al 1999) 

vap-1 ok392 576 bp deletion corresponding to 

3013…3588 on cosmid F11C7. 

(Consortium 2012) 

scl-1 ok1185 ~1600 bp deletion.  (Consortium 2012) 

scl-9 ok1138 910 bp deletion corresponding to 

18889…19798 on cosmid F49E11. 

(Consortium 2012) 
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Table 4.2 List of strains used.  

Strain  Genotype Transgene Reference 

N2   (Brenner 1974) 

VQ51 oyIs14 V Psra-6::gfp (Sarafi-Reinach et al 
2001) 

 hdIs29 V Psra-6::DsRed2; Podr-
2::gfp 

(Schmitz et al 2008) 

VH648 hdIs26 III Psra-6::DsRed2; Podr-
2::gfp 

(Hutter 2003) 

Strains for EMS suppressor screen 

VQ90 sax-7(qv24) IV; zig-5(ok1065) 
zig-8(ok561) III; glp-4(bn2ts) I; 
oyIs14 V 

 This study 

VQ47 sax-7(qv24) IV; zig-5(ok1065) 
zig-8(ok561) III; hdIs29 V 

 This study 

lon-1 and sax-7 mutants as single and double mutants   

VQ357 lon-1(e185) III; oyIs14 V  This study 

VQ484 lon-1(qv10) III; oyIs14 V  This study 

OH7984 sax-7(nj48) IV; oyIs14 V  (Benard et al 2012) 

VQ307 sax-7(qv24) IV; oyIs14 V  This study 

VQ397 sax-7(nj48) IV; hdIs29 V  This study 

VQ348 lon-1(e185) III; sax-7(nj48) IV; 
oyIs14 V 

 This study 

VQ905 lon-1(e185) III; sax-7(qv24) IV; 
oyIs14 V 

 This study 

VQ909 lon-1(qv10) III; sax-7(nj48) IV; 
oyIs14 V 

 This study 

VQ906 lon-1(qv10) III; sax-7(qv24) IV; 
oyIs14 V 

 This study 

Other lon mutants alone and with sax-7(nj48)  

VQ179 lon-2(e678) X; oyIs14 V  This study 

VQ619 lon-3(e2175) oyIs14 V  This study 

VQ620 lon-8(hu187) oyIs14 V  This study 

VQ358 lon-2(e678) X; sax-7(nj48) IV; 
oyIs14 V 

 This study 

VQ849 sax-7(nj48) IV; lon-3(e2175) 
oyIs14 V 

 This study 

VQ677 sax-7(nj48) IV; lon-8(hu187) 
oyIs14 V 

 This study 

PVD labeled strains 

VQ787 wdIs52  This study 

VQ788 lon-1(e185) III; wdIs52   This study 

VQ789 sax-7(nj48) IV; wdIs52   

VQ790 lon-1(e185) III; sax-7(nj48) IV;  This study 
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wdIs52 

TGF-β pathway mutants alone and with sax-7(nj48) 

VQ796 dbl-1(nk3) V; hdIs26 III  This study 

VQ821 crm-1(tm2218) oyIs14 V  This study 

VQ836  sma-10(ok2224) IV; oyIs14 V  This study 

VQ822 drag-1(tm3773) I; oyIs14 V  This study 

VQ811 sma-6(wk7) II; oyIs14 V  This study 

VQ833 sma-2(e502) III; oyIs14 V  This study 

VQ834 sma-3(e491) III; oyIs14 V  This study 

VQ835 sma-4(e729) III; oyIs14 V  This study 

VQ775 unc-129(tm5461) IV; oyIs14 V  This study 

VQ777 tig-2(ok3416) oyIs14 V  This study 

VQ812 adt-2(wk156) X; oyIs14 V  This study 

VQ802 dbl-1(nk3) V; sax-7(nj48) IV; 
hdIs26 III 

 This study 

VQ857 sax-7(nj48) IV; crm-1(tm2218) 
oyIs14 V 

 This study 

VQ902 sma-10(ok2224) sax-7(nj48) IV; 
oyIs14 V 

 This study 

VQ850 drag-1(tm3773) I; sax-7(nj48) 
IV; oyIs14 V 

 This study 

VQ877 sma-6(wk7) II; sax-7(nj48) IV; 
oyIs14 V 

 This study 

VQ842 sma-2(e502) III; sax-7(nj48) IV; 
oyIs14 V 

 This study 

VQ869  sma-3(e491) III; sax-7(nj48) IV; 
oyIs14 V 

 This study 

VQ870 sma-4(e729) III; sax-7(nj48) IV; 
oyIs14 V 

 This study 

VQ794 unc-129(tm5461) sax-7(nj48) IV; 
oyIs14 V 

 This study 

VQ803 sax-7(nj48) IV; tig-2(ok3416) 
oyIs14 V 

 This study 

VQ843 adt-2(wk156) X; sax-7(nj48) IV; 
oyIs14 V 

 This study 

SCP domain mutant strains 

VQ863 vap-1(ok392) X; oyIs14  This study 

VQ882 vap-1(ok392) X; sax-7(nj48) IV; 
oyIs14 V 

 This study 

VQ871 scl-1(ok1185) IV; oyIs14 V  This study 

VQ884 scl-1(ok1185) sax-7(nj48) IV; 
oyIs14 V 

 This study 

VQ872 scl-9(ok1138) IV; oyIs14 V  This study 

VQ901 scl-9(ok1138) sax-7(nj48) IV; 
oyIs14 V 

 This study 
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ctIs40 (dbl-1(+++)) strains 

VQ618 ctIs40 X; hdIs29 V  This study 

VQ617 ctIs40 X; sax-7(nj48) IV; hdIs29 
V 

 This study 

dig-1 mutant strains 

OH3534 dig-1(ky188) III; oyIs14 V  This study 

OH3455 dig-1(ky188) lon-1(e185) III; 
oyIs14 V 

 This study 

Balancer strains for injection 

VQ683 lon-1(qv10)/dpy-17(e164) unc-
32(e189) III; oyIs14 V 

 This study 

VQ687 lon-1(e185)/dpy-17(e164) unc-
32(e189) III; sax-7(nj48) IV; 
oyIs14 V 

 This study 

Transgenic Lines    

VQ924 sax-7(qv24); oyIs14; 
qvEx235 

pRP100 (Punc-14::sax-7S(+)), 
Pttx-3::mCherry, Punc-122::rfp, 
pBSK+. Line #1   

This study 

VQ925 sax-7(qv24); oyIs14; 
qvEx236 

pRP100 (Punc-14::sax-7S(+)), 
Pttx-3::mCherry, Punc-122::rfp, 
pBSK+.  Line #2   

This study 

VQ922 sax-7(nj48); oyIs14; qvEx234 pCB191 (Phsp-16.2::sax-7(+)), 
Pttx-3::mCherry, Punc-122::rfp, 
pBSK+.  Line #1  

This study 

VQ926 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx237 

pCB317 (Plon-1::lon-1(+) 
genomic), Pttx-3::mCherry, 
Punc-122::rfp, pBSK+.  Line 1 

This study 

VQ927 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx238 

pCB317 (Plon-1::lon-1(+) 
genomic), Pttx-3::mCherry, 
Punc-122::rfp, pBSK+.  Line 2 

This study 

VQ920 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx233 

pCB317 (Plon-1::lon-1(+) 
genomic), Pttx-3::mCherry, 
Punc-122::rfp, pBSK+.  Line 3 

This study 

VQ928 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx239 

pCB315 (Plon-1::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 1 

This study 

VQ701 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx160 

pCB315 (Plon-1::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 2 

This study 

VQ929 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx240 

pCB315 (Plon-1::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 3 

This study 

VQ848 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx219 

pCB316 (Plon-1::lon-1b(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 1 

This study 

VQ932 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx243 

pCB316 (Plon-1::lon-1b(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 2 

This study 
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VQ933 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx244 

pCB316 (Plon-1::lon-1b(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 3 

This study 

VQ697 lon-1(qv10); oyIs14; qvEx156 pCB317 (Plon-1::lon-1(+) 
genomic), Pttx-3::mCherry, 
Punc-122::rfp, pBSK+.  Line 1 

This study 

VQ930 lon-1(qv10); oyIs14; qvEx241 pCB317 (Plon-1::lon-1(+) 
genomic), Pttx-3::mCherry, 
Punc-122::rfp, pBSK+.  Line 2 

This study 

VQ931 lon-1(qv10); oyIs14; qvEx242 pCB317 (Plon-1::lon-1(+) 
genomic), Pttx-3::mCherry, 
Punc-122::rfp, pBSK+.  Line 3 

This study 

VQ934 lon-1(qv10); oyIs14; qvEx245 pCB315 (Plon-1::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 1 

This study 

VQ935 lon-1(qv10); oyIs14; qvEx246 pCB315 (Plon-1::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 2 

This study 

VQ936 lon-1(qv10); oyIs14; qvEx247 pCB315 (Plon-1::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 3 

This study 

VQ937 lon-1(qv10); oyIs14; qvEx248 pCB316 (Plon-1::lon-1b(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 1 

This study 

VQ938 lon-1(qv10); oyIs14; qvEx249 pCB316 (Plon-1::lon-1b(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 2 

This study 

VQ939 lon-1(qv10); oyIs14; qvEx250 pCB316 (Plon-1::lon-1b(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 3 

This study 

VQ940 sax-7(nj48); oyIs14; qvEx251 pCB317 (Plon-1::lon-1(+) 
genomic), Pttx-3::mCherry, 
Punc-122::rfp, pBSK+.  Line 1 

This study 

VQ941 sax-7(nj48); oyIs14; qvEx252 pCB317 (Plon-1::lon-1(+) 
genomic), Pttx-3::mCherry, 
Punc-122::rfp, pBSK+.  Line 2 

This study 

VQ942 sax-7(nj48); oyIs14; qvEx253 pCB317 (Plon-1::lon-1(+) 
genomic), Pttx-3::mCherry, 
Punc-122::rfp, pBSK+.  Line 3 

This study 

VQ943 sax-7(nj48); oyIs14; qvEx254 pCB363 (Posm-6::sax-7S(+)), 
Pttx-3::mCherry, Punc-122::rfp, 
pBSK+.  Line 1 

This study 

VQ944 sax-7(nj48); oyIs14; qvEx255 pCB363 (Posm-6::sax-7S(+)), 
Pttx-3::mCherry, Punc-122::rfp, 
pBSK+.  Line 2 

This study 

VQ945 sax-7(nj48); oyIs14; qvEx256 pCB363 (Posm-6::sax-7S(+)), 
Pttx-3::mCherry, Punc-122::rfp, 
pBSK+.  Line 3 

This study 

VQ946 sax-7(nj48); oyIs14; qvEx257 pCB329 (Psra-6::sax-7S(+)), 
Pttx-3::mCherry, Punc-122::rfp, 
pBSK+.  Line 1 

This study 

VQ947 sax-7(nj48); oyIs14; qvEx258 pCB329 (Psra-6::sax-7S(+)), This study 
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Pttx-3::mCherry, Punc-122::rfp, 
pBSK+.  Line 2 

VQ948 sax-7(nj48); oyIs14; qvEx259 pCB329 (Psra-6::sax-7S(+)), 
Pttx-3::mCherry, Punc-122::rfp, 
pBSK+.  Line 3 

This study 

VQ961 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx272 

pCB318 (Punc-14::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 1 

This study 

VQ700 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx159 

pCB318 (Punc-14::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 2 

This study 

VQ962 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx273 

pCB318 (Punc-14::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 3 

This study 

VQ919 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx232 

pCB322 (Pelt-3::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 1 

This study 

VQ963 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx274 

pCB322 (Pelt-3::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 2 

This study 

VQ964 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx275 

pCB322 (Pelt-3::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 3 

This study 

VQ917 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx230 

pCB320 (Pelt-2::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 1 

This study 

VQ965 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx276 

pCB320 (Pelt-2::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 2 

This study 

VQ966 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx277 

pCB320 (Pelt-2::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 3 

This study 

VQ918 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx231 

pCB352 (Pmyo-3::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 1 

This study 

VQ967 lon-1(e185); sax-7(nj48); 
oyIs14; qvEx278 

pCB352 (Pmyo-3::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 2 

This study 

VQ949 lon-1(qv10); oyIs14; qvEx260 pCB318 (Punc-14::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 1 

This study 

VQ950 lon-1(qv10); oyIs14; qvEx261 pCB318 (Punc-14::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 2 

This study 

VQ951 lon-1(qv10); oyIs14; qvEx262 pCB318 (Punc-14::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 3 

This study 

VQ952 lon-1(qv10); oyIs14; qvEx263 pCB322 (Pelt-3::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 1 

This study 

VQ953 lon-1(qv10); oyIs14; qvEx264 pCB322 (Pelt-3::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-

This study 
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122::rfp, pBSK+.  Line 2 

VQ954 lon-1(qv10); oyIs14; qvEx265 pCB322 (Pelt-3::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 3 

This study 

VQ955 lon-1(qv10); oyIs14; qvEx266 pCB320 (Pelt-2::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 1 

This study 

VQ956 lon-1(qv10); oyIs14; qvEx267 pCB320 (Pelt-2::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 2 

This study 

VQ957 lon-1(qv10); oyIs14; qvEx268 pCB320 (Pelt-2::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 3 

This study 

VQ958 lon-1(qv10); oyIs14; qvEx269 pCB352 (Pmyo-3::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 1 

This study 

VQ959 lon-1(qv10); oyIs14; qvEx270 pCB352 (Pmyo-3::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 1 

This study 

VQ960 lon-1(qv10); oyIs14; qvEx271 pCB352 (Pmyo-3::lon-1a(+) 
cDNA), Pttx-3::mCherry, Punc-
122::rfp, pBSK+.  Line 1 

This study 
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Table 4.3 Primers used for strain building  
Gene Primer Sequence PCR product 

(bp) 

sax-7(nj48)    

Mutant specific oCB1022 tggtggtagcgatggtgtag 257 
 oCB208 gagttattggggtattttagcg  

Wild-type specific oCB212 gaaatacacacaaatacgagtgc 592 
 oCB723 tagttgattaaaatgtttcaagattg  

sax-7(qv24)  dCAPS primers   
Mutant specific oCB916 cgaacattcaatgttgtagtggcgg 264 
 oCB917 ccatttaaaaaattatattcgaccccaatatttcc  
Wild-type specific oCB915 ggatattgatcgaacattcaatgttgtagtccagg 264 

 oCB917 ccatttaaaaaattatattcgaccccaatatttcc  
PCR products digested to determine genotype. Mutant specific product digested with EciI only cuts qv24 
sequence, wild-type specific product digested with BsaJI only cuts wild type sequence. 

dbl-1(nk3)    

Mutant specific oCB1336 ttctgcatcgtatcagttcc 633 
 oCB1338 aaggatcagtgcatacagac  

Wild-type specific oCB1336 ttctgcatcgtatcagttcc 307 
 oCB1337 tttgacgatagacgaagagc  

crm-1(tm2218)    
Mutant specific oCB1368 atgcttgtggcactgatgg 562 
 oCB1370 agagacaaccacttgaaacc  
Wild-type specific oCB1368 atgcttgtggcactgatgg 577 

 oCB1369 tgcacttggatcggcatacc  

sma-10(ok2224)    

Mutant specific oCB1393 tattgctaaatgttcctacc 533 
 oCB1395 aatcagagaacgtcgtctgg  

Wild-type specific oCB1393 tattgctaaatgttcctacc 651 
 oCB1394 tcaaaataatggtgcgtcagc  

drag-1(tm3773)    

Mutant specific oCB1390 tatgagacggcactggaagg 346 
 oCB1392 ttctcacgagaacagtaacc  

Wild-type specific oCB1390 tatgagacggcactggaagg 1028 
 oCB1391 tgaaatagcatctggaacag  

unc-129(tm5461)    

Mutant specific oCB1333 agaaatgtaatgccactcacc 538 
 oCB1335 agatggtaatctggtacgtgc  

Wild-type specific oCB1333 agaaatgtaatgccactcacc 517 
 oCB1334 taatgatgttcgagttgtgc  

Mutant specific oCB1341 agtgtttccagacaggccac 600 
 oCB1342 gagttgtggaggcggatcta  

Wild-type specific oCB1341 agtgtttccagacaggccac 588 
 oCB1345 agtgtgaccatctatcgacc  

adt-2(wk156)    
 oCB1388 ttaccagacaaccggtaggg 553 
 oCB1389 tgatgacatgatatgcttgg  
PCR product sent to sequence with oCB1388 to determine genotype. 

vap-1(ok392)    

Mutant specific oCB1413
  

agtaggtggtgcattcagc 498 

 oCB1414 aaaacgttgtggtagaatggc  
Wild-type specific oCB1413 agtaggtggtgcattcagc 609 

 oCB1415 ttagaaccgtaggacttacg  
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scl-1(ok1185) 

Mutant specific oCB1421 atacctgtatactttttctcgg 616 
 oCB1422 agttccttttgccacgtagg  

Wild-type specific oCB1421 atacctgtatactttttctcgg ~500 
 oCB1423 accaattgctaggaggcagag  

scl-9(ok1138)    

Mutant specific oCB1424 tgacaagtataccgaagagc 434 
 oCB1425 agtcccatccattggtttcg  

Wild-type specific oCB1424 tgacaagtataccgaagagc 396 
 oCB1426 aaagtctgcctgacttgtcg  
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Chapter V 

GENERAL DISCUSSION 
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Part I: Heparan sulfate synthesis is required for guidance during 

development 

Heparan sulfate proteoglycans (HSPGs) have critical and diverse functions in 

development, owing in part to their interactions with receptors and ligands of 

numerous signaling pathways. While HSPGs were previously thought of as 

extracellular space-filling molecules, it has become clear that they play dedicated 

and specific roles in the modulation of signaling pathways to ensure proper 

development. One level of added complexity in the study of HSPGs is that 

functions attributed to specific HSPGs can be mediated by the core protein, the 

heparan sulfate (HS) chains, or a combination of both. Research focused on HS 

biosynthesis will likely improve our understanding of the regulation of HS chains 

on core proteins and how specifically the HS chains function to affect biological 

processes.  

 

Although C. elegans is a strong model for the investigation of biological questions 

concerning HS biosynthesis, previously available mutants for the enzymes that 

synthesize HS chains in C. elegans were lethal (Franks et al 2006, Kitagawa et al 

2007, Morio et al 2003). We have now isolated and identified viable mutations in 

the two subunits of the HS co-polymerase, rib-1 and rib-2, that function together 

to synthesize HS chains onto core proteins to generate HSPGs. These mutants 

have allowed us to study the impact of impaired HS biosynthesis using C. 

elegans in a manner that was previously unavailable. My thesis work has 
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characterized the axon and cell guidance defects exhibited by our rib-1 and rib-2 

mutants as a result of compromised HS biosynthesis. We have confirmed that 

HS biosynthesis is impaired in our rib-1 and rib-2 mutants, both in general and 

onto specific core proteins. We analyzed the expression pattern and localization 

of RIB-1 and found that it is expressed dynamically during development with 

continued expression through adulthood. Our work demonstrates that modified 

HS chains function with both the SLT-1/Slit and UNC-6/netrin signaling pathways 

in axon guidance. In addition, we have found that the coordinated expression of 

HS from multiple tissue types is required to properly guide axons. This work 

provides an avenue for the future use of the powerful model organism C. elegans 

to study HS biology and how it relates to many biological processes.   

 

Insights from the RIB-1 expression pattern and the requirement for coordinated 

expression of HSPGs in development    

HS chains are synthesized and modified in the Golgi to generate HSPGs which 

are subsequently transported to the membrane or secreted. Our analysis of the 

expression and localization of RIB-1, one of the enzymes that functions to 

polymerize HS chains, sheds light on the specific sites where HS biosynthesis 

takes place in C. elegans. In particular, we saw expression in a number of 

tissues including the pharynx, neurons, muscles of the digestive and reproductive 

system, and some hypodermal cells. This overlaps with known expression 

patterns of specific HSPG core proteins. For example, membrane bound SDN-
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1/syndecan is expressed in neurons, hypodermis, and pharynx (Rhiner et al 

2005), and GPI-linked LON-2/glypican shows expression in the intestine and 

hypodermis (Gumienny et al 2007). UNC-52/perlecan, a secreted HSPG, is 

expressed in body wall muscles, digestive system muscles, and pharynx (Mullen 

et al 1999, Rogalski et al 1993); Mullen et al., 1999). Overlap between 

expression of HS biosynthetic machinery, such as RIB-1, and the localization of 

specific HSPGs, suggests that HSPGs may remain near cells where HS 

synthesis occurs. This may have functional relevance, as glypicans in fibroblast 

cells were shown to be internalized through endocytosis, returned to the Golgi, 

and then transported back to the membrane with HS chains altered both in length 

and modification pattern (Edgren et al 1997, Fransson et al 1995). Whether an 

internal recycling of HSPGs back to the HS biosynthetic machinery in the Golgi 

occurs in C. elegans, or whether it has functional relevance to guidance, remains 

to be determined.      

 

We demonstrated that HS synthesis is functionally required in multiple tissues, 

specifically the muscles, hypodermis, and neurons, for PVQ axon guidance. This 

suggests that a coordinated multi-tissue interaction between HSPGs drives PVQ 

axon guidance, and that likely the rescue is a result of restored HS synthesis 

onto core proteins that function in those tissues. Consistent with the idea that 

multiple HSPGs function together to guide the PVQ axons, double mutants 

lacking  lon-2/glypican and sdn-1/syndecan exhibit a higher penetrance of PVQ 
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axon guidance defects than either single mutant alone (Diaz-Balzac et al 2014). 

It is likely that not only HS, but modified HS chains on specific core proteins are 

required to guide the PVQ axons, as loss of HS-modifying enzymes in different 

combinations leads to enhanced PVQ axon guidance defects compared to the 

single mutants alone (Bülow & Hobert 2004). This is not an isolated example, as 

we also found that rib-1 is required either in the neuron itself, or in the underlying 

hypodermis for proper AVM axon guidance. We expect that analysis of our rib-1 

and rib-2 mutants will provide insight into more examples where the coordinated 

interactions between HSPGs are required for cell and axon guidance during 

development.  

 

Continued post-embryonic requirement for HS and relevance to synapses 

Through our analysis of the expression and localization of rib-1, we found that 

rib-1 continues to be expressed in adult worms, and in some tissues expression 

levels visibly increased with age. This is consistent with C. elegans expression 

profiling datasets which show continued expression of both rib-1 and rib-2 from 

the beginning of embryogenesis through adulthood (Celniker et al 2009). This 

hints that HS synthesis may not only be critical for early development, but also 

may have continued functions in adulthood as well. Indeed, there is evidence for 

a critical function of HS synthesis in the post-natal mouse brain. Conditional loss 

of EXT1 in postnatal excitatory neurons led to autism-like behavioral deficits as 

well as defects in excitatory synaptic transmission resulting from reduced surface 
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expression of glutamatergic receptors (Irie et al 2012). An association with 

autism has also been seen in humans with mutations in EXT1 (Li et al 2002). 

 

Work from the conditional EXT1 knockout mouse suggests that HS plays 

important roles at the post-natal synapse (Irie et al 2012). Consistent with this, 

HSPGs have been shown to have synaptic functions, for example agrin and 

perlecan are involved in the clustering of acetylcholine receptors and 

acetylcholinesterase at the NMJ, respectively (Arikawa-Hirasawa et al 2002, 

Glass et al 1996, Godfrey et al 1984, Nitkin et al 1987, Peng et al 1999). 

Syndecan promotes mature dendritic spine formation in hippocampal neurons, 

while also being important for synaptic growth at Drosophila NMJs (Ethell & 

Yamaguchi 1999, Johnson et al 2006), and glypicans have implicated roles in 

synaptogenesis such as the formation of the active zone and the regulation of 

glutamatergic receptor clustering (Allen et al 2012, Johnson et al 2006). In some 

cases the HS chains on the core proteins were shown to be required for these 

functions (Allen et al 2012, Johnson et al 2006). 

 

Despite the involvement of multiple HSPGs in different aspects of synapse 

biology, our understanding of the role that the HS chains play in synaptogenesis 

remains limited. While it is clear from the EXT1 conditional knockout mouse 

study that HS chains are important for receptor clustering and synaptic 

transmission (Irie et al 2012), there is still much more for us to learn about the 
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role of HS chains in the regulation of synapses. Our newly isolated, viable rib-1 

and rib-2 mutants, as well as the knowledge that RIB-1 expression persists post-

embryonically, provide an opportunity to study the impact of HS biosynthesis on 

synapses in C. elegans. This type of work could help to clarify the importance of 

the HSPG core protein versus the HS chains in these processes, and expand our 

knowledge on the role of HS in synaptogenesis and how that relates to the 

function of the nervous system.  

 

Parallels between rib-1/rib-2 mutants and hereditary multiple exostoses  

We characterized various guidance events in our rib-1 and rib-2 mutants to 

determine the impact of impaired HS biosynthesis, and found guidance defects in 

cells and axons that migrate both embryonically and post-hatch. During this 

analysis we also observed in multiple cases a tendency for overgrowth of 

material. For example, when analyzing AVM ventral axon guidance in our rib-1 

and rib-2 mutants we observed AVM neurons with bipolar axon projections 

emanating from the cell body. We also saw instances in our rib-1 and rib-2 

mutants where the HSN axon sent out two projections from the cell body, each 

projecting in opposite directions. This was not limited to the nervous system; 

when we analyzed the canals of the excretory cell which consists of four canals 

(two anterior and two posterior), we found examples of rib-1 and rib-2 mutant 

animals with five canals. These phenotypes suggested that somehow the loss of 

normal HS biosynthesis created an environment which favored extra growth. 
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RIB-1 and RIB-2 are homologous to the mammalian EXT1 and EXT2/EXTL3, 

respectively (Clines et al 1997, Kitagawa et al 2001). These phenotypes of 

overgrowth observed in the rib-1 and rib-2 mutants draw intriguing parallels with 

the disorder hereditary multiple exostoses (HME), which is an autosomal 

dominant disorder linked to mutations in human EXT1 and EXT2 (Cook et al 

1993, Francannet et al 2001, Le Merrer et al 1994, Wu et al 1994, Wuyts & Van 

Hul 2000). HME is characterized by cartilaginous bone tumors known as 

osteochondromas which form at the growth plates of long bones and are often, 

but not always, benign (Schmale et al 1994, Solomon 1964). It remains unknown 

how loss of function of EXT1 or EXT2, or the consequent reduction in HS 

synthesis, can lead to HME. Our isolated hypomorphic rib-1 and rib-2 mutants 

provide us with the opportunity to use C. elegans as a model to decipher how 

loss of HS biosynthesis can lead to overgrowth of specific tissues.  

 

 

Part II: Glypican is a modulator of netrin-mediated guidance  

While many of the signaling molecules, receptors, and downstream cascades 

involved in wiring a complex nervous system have been identified, simply 

knowing the key players is not enough. The number of guidance decisions 

required to pattern a functional nervous system far outnumber the combinations 

of implicated signaling pathways involved in this process. Therefore, 

mechanisms must exist to precisely modulate in space and time how developing 
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axons respond to these cues. While some signaling pathways have been shown 

to be modulated in this manner, how the netrin signaling pathway is regulated 

extracellularly was unknown.  

 

The C. elegans nervous system provided us with single cell resolution with which 

to study netrin-mediated axon guidance, and we used this system to provide 

insight into how the netrin signaling pathway is regulated by extracellular 

molecules. My thesis work identified that LON-2/glypican, a HSPG, modulates 

the netrin pathway that guides migrating axons and cells. This work sheds light 

on how UNC-6/netrin signals are modulated extracellularly to properly wire the 

nervous system. We provide evidence that LON-2/glypican functions both in the 

attractive and repulsive UNC-6/netrin-mediated guidance pathways. Our work 

demonstrates that the N-terminal globular region of LON-2/glypican, which lacks 

HS chains, is sufficient for its function in netrin-mediated guidance. We 

determined that LON-2/glypican functions non-autonomously in the hypodermis 

to exert its effects on migrating cells and axons. We broadened our genetic 

results by demonstrating that LON-2/glypican associates with UNC-40/DCC 

receptor-expressing cells. This work has identified a novel interaction between a 

HSPG core protein, LON-2/glypican, and the UNC-40/DCC netrin receptor, to 

modulate netrin-mediated guidance.  
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Domains required for the interaction between LON-2/glypican and UNC-40/DCC 

in UNC-6/netrin-mediated guidance  

Our cellular assays investigated the interactions between LON-2/glypican, UNC-

6/netrin, and the UNC-40/DCC receptor, and indicated that LON-2/glypican 

molecules were preferentially transferred from the LON-2/glypican-expressing 

cells to the UNC-40/DCC receptor-expressing cells. We found that the interaction 

between LON-2/glypican and the UNC-40/DCC-expressing cells required the 

extracellular portion of UNC-40/DCC, yet was independent of the fourth and fifth 

FnIII domains, which are required for UNC-6/netrin binding (Geisbrecht et al 

2003, Kruger et al 2004). Therefore, an extracellular UNC-40/DCC domain or 

sequence motif, aside from the fourth and fifth FnIII domains, likely mediates this 

interaction with LON-2/glypican.  

 

UNC-40/DCC is an immunoglobulin superfamily transmembrane receptor (Chan 

et al 1996) that consists of four Ig-like domains, six fibronectin type III domains 

(FnIII), a transmembrane domain, and a cytoplasmic tail which contains 

conserved sequence motifs P1, P2, and P3 (Keino-Masu et al 1996). It will be 

important to test which parts of the UNC-40/DCC receptor mediate this 

interaction with LON-2/glypican, by deleting parts of the UNC-40/DCC receptor 

and testing in our cellular assays to determine the critical sequences required for 

an interaction with LON-2/glypican. It would also be informative to test the 

interactions between LON-2/glypican and UNC-40/DCC in a pull-down assay, to 
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provide more direct evidence of a possible physical interaction, either directly or 

within a complex, between LON-2/glypican and the UNC-40/DCC receptor.  

 

LON-2/glypican is a GPI-anchored HSPG that has an N-terminal globular head 

structured by cysteine disulfide bonds, and a C-terminal neck region where three 

HS chain attachment sites reside (Gumienny et al 2007, Taneja-Bageshwar & 

Gumienny 2012). We found that the N-terminal globular head of LON-2/glypican, 

independent of HS chains, was sufficient for function in netrin-mediated 

guidance.  Future experiments addressing the sequences within this region of 

LON-2/glypican required for its function will complement the UNC-40/DCC 

domain analysis. Together these experiments have the potential to provide 

mechanistic insight into how LON-2/glypican and UNC-40/DCC function together 

either directly or within a complex to modulate netrin signaling.  

 

Possibility that LON-2/glypican interacts with UNC-6/netrin  

While we found that UNC-6/netrin and LON-2/glypican could both interact with 

UNC-40/DCC-expressing cells at the same time, we were unable to detect an 

interaction between UNC-6/netrin and LON-2/glypican in our cellular assays.  We 

speculated this may be due to both molecules being secreted into the medium, 

and based on our results, we cannot rule out a possible interaction between the 

UNC-6/netrin and LON-2/glypican molecules. In the future it will be important to 

use an alternative assay, such as a pull-down, to possibly detect an interaction 
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between UNC-6/netrin and LON-2/glypican that was previously undetectable with 

our cellular assays, especially considering netrin has been shown to bind heparin 

in vitro (Kappler et al 2000, Kennedy et al 1994, Shipp & Hsieh-Wilson 2007). 

Determining whether LON-2/glypican molecules interact with UNC-40/DCC 

alone, or with both UNC-40/DCC and UNC-6/netrin, will provide mechanistic 

insight into how LON-2/glypican might function to regulate netrin signaling. For 

example, if LON-2/glypican interacts with both UNC-6/netrin and UNC-40/DCC, it 

could play a role in facilitating receptor-ligand interactions. Alternatively, if LON-

2/glypican specifically interacts with UNC-40/DCC but not UNC-6/netrin, it may 

point to a modulation of netrin-mediated guidance through effects on the receptor 

alone.   

 

Potential for regulation of UNC-40/DCC receptor by LON-2/glypican  

We demonstrated that LON-2/glypican molecules are shed from the cell surface 

to then interact with UNC-40/DCC expressing cells. To elucidate the mechanism 

by which LON-2/glypican modulates UNC-6/netrin signaling, it is critical to 

determine the effect of this interaction between LON-2/glypican and UNC-

40/DCC expressing cells. It has been shown in C. elegans that the UNC-40/DCC 

receptors ventrally cluster during ventral axon outgrowth of the HSN neurons, 

and that this is controlled by UNC-6/netrin (Adler et al 2006). We wondered if 

LON-2/glypican, like UNC-6/netrin, could play a role in clustering or organizing 

UNC-40/DCC receptors ventrally to mediate axon outgrowth. Our analysis of 
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UNC-40/DCC clustering in AVM was hindered by UNC-40::GFP being 

undetectable until after AVM axon outgrowth had occurred (data not shown). We 

were able to detect the ventral accumulation of UNC-40::GFP in the HSN soma 

at the time of axon outgrowth, and while we did see a disruption of this in unc-6 

mutants (Adler et al 2006), we did not detect a difference in this between wild 

type and lon-2/glypican mutants (data not shown).  

 

While we did not detect any gross differences in UNC-40::GFP localization in the 

HSNs, this does not completely rule out a role for LON-2/glypican in directional 

UNC-40/DCC receptor clustering. For example, there could be subtle defects in 

timing of ventral clustering which our analysis did not pick up, that could have an 

impact on a temporally-controlled axon guidance event. In addition, our 

quantification was done in a binary fashion where either UNC-40::GFP was, or 

was not, ventrally localized at a specific time point. Future analysis of the levels 

of ventrally localized UNC-40::GFP between wild type and lon-2/glypican mutants 

may provide insight into the regulation of the UNC-40/DCC receptor localization 

and whether LON-2/glypican plays a role.  

 

Alternatively, perhaps this negative result points to an interaction between LON-

2/glypican and UNC-40/DCC that does not strictly affect localization of the UNC-

40/DCC receptor. DCC dimerizes when bound to netrin (Stein et al 2001) and 

crystal structures of DCC bound to netrin-1 have revealed that in these dimerized 
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DCC molecules, netrin-1 bridges the two DCC molecules through interactions 

with the fourth fibronectin type III domain of one DCC molecule and the fifth 

fibronectin type III domain of the other (Finci et al 2015, Xu et al 2014). An 

interaction between HS and the dimerization of receptors has been shown for 

another signaling pathway critical for development, the fibroblast growth factor 

(FGF) pathway. Crystal structure analysis revealed that two fibroblast growth 

factor receptors (FGFRs) dimerize with two FGF molecules (Plotnikov et al 1999) 

and that HS is critically involved in forming, and likely stabilizing this dimerized 

structure (Pellegrini et al 2000, Schlessinger et al 2000). Perhaps LON-

2/glypican could play a role in some aspect of the dimerization of UNC-40/DCC 

receptors, and impact UNC-6/netrin signaling through this type of mechanism.  

    

Insight into this possibility comes from the crystal structure of Netrin-1 either 

bound to two DCC receptors to mediate attraction, or to one DCC and one 

UNC5A receptor to mediate repulsion (Finci et al 2015). This work uncovered 

that Netrin-1 has one binding site that is DCC specific, and another generic 

binding site which can bind either DCC or the repulsive netrin receptor, UNC5A 

(Finci et al 2015). However, it is unknown how the netrin-1 molecule switches 

between the DCC dimer alone, to the dimer of DCC with UNC5A. Finci et al., 

2015 speculates that HSPGs could be the missing link in determining which 

receptor Netrin-1 will interact with. They propose that Netrin-1, bound to one 
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HSPG, could preferentially interact with DCC whereas when bound to a different 

HSPG could instead favor an interaction with UNC5A (Finci et al 2015).  

 

In C. elegans UNC-40/DCC mediates attractive guidance towards UNC-6/netrin, 

while UNC-40/DCC with UNC-5/UNC5, or UNC-5/UNC5 alone mediates 

repulsive guidance away from UNC-6/netrin (Chan et al 1996, Hedgecock et al 

1990, Leung-Hagesteijn et al 1992). We have shown that LON-2/glypican 

functions with UNC-6/netrin signaling to mediate both attractive and repulsive 

guidance processes, and that LON-2/glypican molecules interact with cells 

expressing the UNC-40/DCC receptor which is involved in both processes. 

Perhaps LON-2/glypican could function as the molecular switch which assists 

UNC-6/netrin molecules in determining which netrin receptor to associate with to 

carry out a given guidance process. It will be important to test with our cellular 

assays whether LON-2/glypican can interact with cells expressing the UNC-

5/UNC5 receptor, as this would provide insight into whether the function of LON-

2/glypican in netrin-mediated attractive and repulsive guidance is due to 

interactions with the UNC-40/DCC receptor alone, or whether it functions with 

both UNC-40/DCC and UNC-5/UNC5 in these processes.  

 

It is possible that other HSPGs may function in netrin-mediated repulsive 

guidance, though specifically through interactions with the UNC-5/UNC5 receptor 

alone. For example, sdn-1/syndecan mutants exhibit defects in motorneuron 
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axon guidance (Gysi et al 2013, Rhiner et al 2005), a process driven by unc-

6/netrin-mediated repulsive signaling (Hedgecock et al 1990, Hedgecock et al 

1987). We demonstrate that for ventral axon guidance of AVM, sdn-1/syndecan 

functions with the repulsive slt-1/slit signaling pathway, and independently of unc-

40/DCC. Furthermore, through our cellular assays we determined that SDN-

1/syndecan molecules do not get transferred to UNC-40/DCC expressing cells. It 

would therefore be interesting to investigate using our cellular assays whether 

SDN-1/syndecan molecules interact with UNC-5/UNC5 receptor expressing cells, 

as perhaps SDN-1/syndecan functions in repulsive netrin-mediated guidance 

with the UNC-5/UNC5 receptor.  

   

Mode of action of LON-2/glypican on UNC-6/netrin signaling  

While our work provides novel insight into how netrin-mediated signals are 

modulated extracellularly, we still aim to determine the specific impact LON-

2/glypican has on UNC-6/netrin signaling. Our results suggest that LON-

2/glypican functions to enhance UNC-6/netrin signals. For example, we showed 

that loss of lon-2/glypican reduced the penetrance of netrin-dependent 

dorsalization of PVM upon expression of Pmec-7::unc-5. This suggested that 

unc-6/netrin signaling was somehow compromised in the lon-2/glypican mutant 

background. In addition, we have evidence from our cellular assays that the 

presence of LON-2/glypican enhances UNC-6/netrin downstream signaling. 

Previous literature has shown that cells expressing DCC exhibited an increase in 
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membrane extensions due to an overactivation of DCC downstream signaling 

pathways (Shekarabi & Kennedy 2002). We also demonstrated in our cellular 

assays that the expression of UNC-40/DCC in cells led to an increase in 

membrane extensions, which was enhanced by the presence of LON-2/glypican. 

It will be important to directly test whether LON-2/glypican functions to enhance 

UNC-6/netrin signals, and there are hints from the literature that a HSPG, like 

LON-2/glypican, could function to amplify netrin signals.   

 

When netrin was first purified, a second component termed “NSA” was present 

that potentiated the axon outgrowth activity of netrin. Its identity has remained a 

mystery, though its biochemical properties were consistent with the possibility of 

it being a HSPG (Kennedy et al 1994). Perhaps the function of LON-2/glypican, 

similar to what was seen with NSA, is to boost netrin signals. This could be 

useful in situations where increased netrin sensitivity is required for proper 

guidance, such as in situations where concentrations of netrin are low. We could 

test this using spinal cord explant assays which examine axon outgrowth in 

response to netrin. If LON-2/glypican does function to boost netrin signals, like 

NSA, we would expect to see an enhancement in netrin-mediated axon 

outgrowth in the presence of LON-2/glypican with netrin, as compared to netrin 

alone. This would provide direct evidence as to the role LON-2/glypican plays in 

modulating UNC-6/netrin signaling to mediate axon guidance, and perhaps may 

serve to identify that LON-2/glypican is the thus far unidentified NSA molecule. 
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Part III: LON-1 functions with SAX-7/L1CAM to maintain nervous system 

architecture 

After the complex process of nervous system development, the challenge of how 

to preserve its structure and function begins. Although research using C. elegans 

has identified a handful of molecules with dedicated roles in the maintenance of 

neuronal architecture, our knowledge of the mechanisms by which these 

molecules function to preserve established nervous system structures remains 

limited. One molecule that functions to maintain nervous system architecture is 

SAX-7/L1CAM. In order to determine the molecular mechanisms by which SAX-7 

functions to maintain the nervous system, and identify conserved neuronal 

protection molecules, we carried out a forward genetic screen for suppressors of 

the sax-7 mutant defects in the maintenance of head ganglia organization.  

 

Through this screen, we identified lon-1 as a novel suppressor of the sax-7 

defects in the maintenance of head ganglia organization. Although the known 

function of lon-1 resides in its function in body length regulation through the TGF-

β signaling pathway, we determined that the lon-1-mediated suppression of sax-7 

defects is independent of body length and the TGF-β signaling pathway. We 

determined that lon-1 is a context-dependent suppressor of sax-7 as loss of lon-1 

is unable to suppress all sax-7 defects. Expression of lon-1 in the nervous 

system or hypodermis is sufficient for its function in the maintenance of neuronal 

architecture, and this overlaps with the requirement of sax-7 in multiple adjacent 
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neurons for proper maintenance. We found that post-embryonic expression of 

sax-7 or loss of lon-1 was sufficient to maintain nervous system architecture in 

sax-7 mutants, highlighting a post-embryonic role for both sax-7 and lon-1 in 

nervous system maintenance. My thesis work has identified lon-1 as a novel 

maintenance factor that functions with sax-7 to post-embryonically maintain the 

architecture of the nervous system.  

 

Manifestation of head ganglia disorganization  

While we know that the relative positioning between the ASH/ASI soma and the 

nerve ring fails to be maintained in sax-7 mutants, yet is able to be maintained in 

lon-1; sax-7 double mutants, whether this is a result of an effect on the nerve ring 

positioning, soma positioning, or both, remains to be determined. Two mutants 

that show this phenotype, dig-1 and sax-7, were both initially identified as having 

a posterior displacement of nerve ring axons despite their initial wild-type position 

(Zallen et al 1999). A thorough analysis of this phenotype from the first larval 

stage through adulthood in wild type, lon-1, sax-7, and lon-1; sax-7 mutant 

animals will provide insight into how the positioning and organization of these 

structures changes over time in these genotypes. This will also provide 

information as to how loss of lon-1 might be able to suppress these defects in 

sax-7 mutants.  
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Molecular interactions that maintain nervous system architecture  

The function of SAX-7/L1CAM in the maintenance of neuronal architecture is 

closely tied to its adhesive properties. The two SAX-7 isoforms, SAX-7L and 

SAX-7S, differ not only in their extracellular domain structure (Chen et al 2001) 

but also in their adhesive and functional properties (Pocock et al 2008, Sasakura 

et al 2005). SAX-7S is the more adhesive isoform as it can induce cellular 

aggregation when expressed in cultured cells, and its expression can also force 

attachment between two neighboring neurons, which are properties not seen with 

SAX-7L (Sasakura et al 2005). Homophilic interactions between SAX-7S 

molecules are important for cell-cell adhesion. For instance, sax-7 mutants 

exhibit a disruption of cell contact between the AIY and AVK neurons which can 

only be restored through expression of SAX-7S in both neurons (and not through 

expression of SAX-7L) (Pocock et al 2008). Our work demonstrates that 

expression of sax-7S(+) in multiple adjacent neurons is required to maintain head 

ganglia organization, highlighting the importance of SAX-7-mediated cell-cell 

adhesion in the maintenance of nervous system architecture.    

 

In addition, intracellular interactions with the actin cytoskeleton are also important 

for cell-cell adhesion, and the maintenance of neuronal architecture. Prior work 

has shown that intracellularly, SAX-7 interacts with UNC-44/ankyrin through its 

C-terminal ankyrin binding motif, with STN-2/γ-syntrophin through its PDZ 

binding domain, and that DYS-1/dystrophin interacts with STN-2/γ-syntrophin. 
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These intracellular interactions link SAX-7 to the actin cytoskeleton to maintain 

the positioning of motorneurons (Zhou & Chen 2011, Zhou et al 2008). 

Vertebrate L1 family members also mediate cell-cell adhesion through ankyrin-

mediated interactions with the actin cytoskeleton. For example, deletion of the 

ankyrin binding motif or the entire intracellular domain of L1 family member 

neurofascin reduced its cell-cell adhesion activity in aggregation assays (Tuvia et 

al 1997). Likewise, a version of SAX-7S with either the entire intracellular domain 

or the ankyrin binding motif deleted is no longer able to restore cell contact 

between the AIY and AVK neurons in sax-7 mutants, indicating that loss of 

ankyrin binding renders the SAX-7 molecule less adhesive (Pocock et al 2008).  

 

Our results demonstrate that in a sax-7 mutant the loss of lon-1, even post-

embryonically, is sufficient to restore the maintenance of relative positioning 

between the ASH/ASI soma and the nerve ring. Even in the absence of these 

critical SAX-7 extracellular and intracellular interactions, the organization of the 

head ganglia can be properly maintained upon loss of lon-1, which raises an 

important question. Which molecules are maintaining this structure in the lon-1; 

sax-7 double mutant, which are not sufficient for maintenance in the sax-7 

mutant alone? Some potential candidates include molecules that SAX-7 is known 

to interact with intracellularly, such as UNC-44/ankyrin, STN-2/γ-syntrophin, and 

DYS-1/dystrophin (Zhou & Chen 2011, Zhou et al 2008). Other candidates 

include extracellular molecules that L1CAM heterophilically interacts with, such 
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as contactin (De Angelis et al 1999), which is homologous to RIG-6 in C. elegans 

(Katidou et al 2013). It is possible that upon loss of sax-7 and lon-1, these 

molecules that might normally interact with SAX-7 to maintain nervous system 

architecture, instead interact with additional molecules to carry out this function. 

Perhaps loss of one of these molecules in the lon-1; sax-7 double mutant would 

abolish the lon-1-mediated suppression of sax-7 maintenance defects, thus 

providing insight into the molecular interactions maintaining head ganglia 

organization in the lon-1; sax-7 double mutant.  

 

Possibility that LON-1 and SAX-7 molecules interact  

Our results indicate that the sax-7 mutant defects in the maintenance of head 

ganglia organization are suppressed by loss of lon-1, which points to a novel 

interaction between lon-1 and sax-7 in neuronal maintenance. We speculated 

that perhaps the genetic interaction we uncovered between lon-1 and sax-7 

could indicate a close association between the LON-1 and SAX-7 molecules. 

Expression of LON-1 and SAX-7 is required in nearby and overlapping tissues for 

each of their functions in the maintenance of neuronal architecture, and 

therefore, it is feasible that these molecules exist in close proximity and could 

possibly physically interact.  

 

To test whether LON-1 and SAX-7 physically interact, we could carry out yeast 

two-hybrid assays, a technique which has successfully detected physical 
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intracellular interactions between SAX-7 and other proteins in the past (Zhou & 

Chen 2011, Zhou et al 2008). If we did detect a physical interaction between 

LON-1 and SAX-7, we could also test different parts of the SAX-7 protein to 

determine which domains are required for the interaction. Although this method 

has worked to detect intracellular interactions, we may need to use an alternative 

assay to test for extracellular interactions. It is also possible that LON-1 and 

SAX-7 physically function together, but in an indirect manner within a complex 

through interactions with other molecules. For this type of interaction, we could 

use a pull-down assay which would allow for the detection of an interaction that 

may occur within a complex.   

 

One related question that would provide insight into how the SAX-7 and LON-1 

molecules might function together is testing whether LON-1 indeed functions as a 

secreted protein, as has been previously predicted (Maduzia et al 2002). Based 

on its classification as a CAP superfamily member, and its N-terminal signal 

peptide sequence (Maduzia et al 2002), it is possible that LON-1 functions as a 

secreted molecule. We could test this by engineering a LON-1 molecule with a 

transmembrane domain and assaying whether this molecule is functional. 

Whether LON-1 functions as a secreted protein or as a membrane-associated 

protein could affect the ways it might potentially interact with SAX-7, or other 

molecules, to maintain neuronal architecture.  
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Possible mechanisms of lon-1-mediated suppression of sax-7 defects 

Head neurons ASH and ASI do not exist in isolation and instead are located 

within a densely packed multi-tissue environment. The ASH and ASI soma are 

part of the lateral ganglion and are in contact with multiple other head neurons 

within this same region (White et al 1986). More than half of C. elegans neurons, 

including ASH and ASI, send projections into the nerve ring, which is a synapse-

rich bundle of axons that encircles the isthmus of the pharynx and is ensheathed 

by glial cells (Ware et al 1975, White et al 1986). Head neurons, including ASH 

and ASI, are sandwiched between the pharynx on one side, and the hypodermis 

and muscles on the other (White et al 1986). In addition, these structures are all 

ensheathed with a specialized type of extracellular matrix called the basement 

membrane (Albertson & Thomson 1976, White et al 1976).  

 

sax-7 mutants were initially identified by their failure to maintain the positioning of 

the nerve ring, which became posteriorly displaced compared to wild type, while 

the position of the soma remained unchanged (Zallen et al 1999). While it 

deserves more careful analysis in the future, we have preliminarily observed that 

in the lon-1; sax-7 double mutants, the ASH and ASI soma of adults are often 

more posteriorly positioned than we see in wild type or sax-7 mutants alone. This 

favors the possibility that in the lon-1; sax-7 double mutants a posterior 

displacement of the ASH/ASI soma may restore the relative positioning between 

the ASH/ASI soma and the nerve ring. However, this raises the question of how 
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structures such as the nerve ring or the ASH/ASI soma are able to become 

disorganized and displaced despite their densely packed environment filled with 

potential physical barriers to mobility.   

 

One attractive possibility is that the basement membrane, surrounding the 

neuronal ganglion, nerve ring, pharynx, hypodermis, and muscles (Albertson & 

Thomson 1976, White et al 1976), could somehow be affected in the lon-1; sax-7 

double mutants to allow for the ASH/ASI soma to be displaced posteriorly. There 

is a precedent from research in C. elegans that molecules required to maintain 

the architecture of the nervous system could function to maintain basement 

membrane integrity. For instance, the large secreted maintenance factor DIG-1, 

is required for proper basement membrane maintenance as well as the 

maintenance of nervous system architecture (Benard et al 2006). Additionally, 

the F-spondin extracellular matrix protein, SPON-1, functions in part to maintain 

the precise positioning of axons within fascicles (Woo et al 2008). Furthermore, 

LON-1 is classified as a CAP superfamily protein (Cantacessi et al 2009, 

Maduzia et al 2002), a family which in vertebrates has implicated functions in 

processes such as the regulation of the extracellular matrix and how it relates to 

branching morphogenesis (Gibbs et al 2008).   

 

We can gain insight into the possible role the extracellular matrix plays in the 

positioning of neuronal soma and axons and how this relates to the lon-1-
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mediated suppression of sax-7 defects through comparisons with the mechanism 

of cell motility. Motile cells require an optimum density of extracellular matrix and 

show a tendency to move from areas of low extracellular matrix concentration 

towards areas with a higher concentration. Though it is important to note that if 

the density is too low, cells will lack the adhesion necessary for movement, and 

conversely if the density is too high, cells may be stuck and unable to move 

((Palecek et al 1997); reviewed in (Rozario & DeSimone 2010)). For example, T 

cells were found to be motile in regions with low densities of fibronectin and 

collagen, yet were less able to migrate in areas of higher density (Salmon et al 

2012). In addition to changes to the extracellular matrix itself, cells can also 

reduce their degree of adhesion to the extracellular matrix to allow for increased 

mobility (Alford et al 1998). In the context of the maintenance of head ganglia 

organization, for a cell to be displaced from its normal position it seems feasible 

that either the basement membrane itself or the interaction of the cell with the 

basement membrane may be altered.  

 

To investigate whether the lon-1-mediated suppression of sax-7 defects in head 

ganglia organization is a result of a change to the basement membrane, we 

could analyze fluorescently tagged or immunostained molecules associated with 

the basement membrane, including LAM-1/laminin (Kao et al 2006), NID-

1/nidogen (Kang & Kramer 2000), SPON-1/F-spondin (Woo et al 2008), CLE-

1/collagen type XVIII (Ackley et al 2001, Ackley et al 2003), HSPGs such as 
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SDN-1/syndecan (Rhiner et al 2005) and LON-2/glypican (Gumienny et al 2007), 

as well as others, and assess whether their expression or localization is altered 

in our lon-1; sax-7 double mutants compared to wild type or the single mutants 

alone. If it is too technically challenging to visualize changes in basement 

membrane composition or expression within the head ganglia environment of C. 

elegans, perhaps we could investigate the role of lon-1 and sax-7 in basement 

membrane regulation in the context of C. elegans anchor cell invasion, which is 

an established model of basement membrane regulation in C. elegans 

(Hagedorn et al 2014, Hagedorn et al 2009, Hagedorn et al 2013, Sherwood et al 

2005, Sherwood & Sternberg 2003, Ziel et al 2009). A potential mechanism of 

lon-1-mediated suppression of sax-7 that involves basement membrane 

regulation could have broader implications beyond the maintenance of nervous 

system architecture including the biology diseases such as fibrosis or cancer 

(Frantz et al 2010).  

 

Concluding remarks  

Nervous system development is a beautifully orchestrated and complex process, 

requiring precise regulation for proper execution. Once assembled, the structures 

of the nervous system must persist as they endure a lifetime of challenges. My 

thesis work provides contributions to both our understanding of nervous system 

development and also its subsequent long-term maintenance. In this work, we 

have shed light on the molecular mechanisms required for proper wiring of the 
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nervous system as well as its long-term maintenance. We specifically focused on 

the role of HS in cell and axon guidance, both the importance of HS chain 

synthesis as well as the role of specific HSPGs in guidance processes. We 

identified and characterized viable loss-of-function alleles in the HS co-

polymerase enzymes and found that the coordinated expression of HS is 

required to properly guide axons. We identified that the HSPG LON-2/glypican 

functions to modulate netrin-mediated axon guidance and may do this through 

interactions with the UNC-40/DCC netrin receptor. After the proper establishment 

of the nervous system, molecules such as SAX-7/L1CAM function to actively 

preserve its integrity. Through a forward genetic screen we identified LON-1 as a 

novel maintenance factor that functions with SAX-7 to post-embryonically 

preserve the architecture of the nervous system. My thesis sheds light on the 

molecular interactions important for both the initial establishment and the long-

term maintenance of the nervous system, and provides avenues for future 

investigation into these areas of research.  
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