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Abstract

The c-Jun NH terminal kinase (JNK) group of kinases include ten

members that are created by alternative splicing of transcripts derived from Jnk1

Jnk2 and Jnk3 genes. The JNK1 and JNK2 protein kinases are ubiquitously

expressed while JNK3 is expressed in a limited number of tissues. The JNK

signaling pathway is implicated in multiple physiological processes including cell

transformation. There is growing evidence that JNK signaling is involved in

oncogenesis. Nevertheless, the role that JNK plays in malignant transformation

is still unclear. The aim of this thesis is to examine the role of JNK in malignant

transformation. For this purpose , I used the Bcr/Abl oncogene as a transforming

agent. Bcr/Abl is a leukemogenic oncogene that is created by reciprocal

translocation between chromosome 9 and 22. The translocation breakpoint is

variable and several different Bcr/Abl isoforms have been identified such as

Bcr/Ab1P185 and Bcr/AbIP210 , whose expression is associated with different types of

leukemia. Bcr/Abl activates the JNK signaling pathway in hematopoietic cells

and increases AP- 1 transcription activity. Furthermore, dominant negative

approaches demonstrate that inhibition of c-Jun or JNK prevents Bcr/ Abl-

induced cell transformation in vitro. These data implicate the JNK signaling

pathway in Bcr/Abl transformation although the role that JNK might have in this

process is unclear. Thus, I examined the importance of JNK signaling in Bcr/Abl-
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induced lymphoid or myeloid transformation. For this purpose I compared

Bcr/AbI P185- and Bcr/AbIP210- induced transformation of wild-type and JNK1-

deficient cells using three approaches: in vitro, in vivo and ex vivo. The results

obtained with the in vitro approach suggest that both Bcr/Ab1P185 and Bcr/AbIP210

require JNK activity to induce lymphoid transformation. While JNK1-deficiency

inhibits Bcr/Ab1P210 oncogenic potential in lymphoid cells both in vitro and in vivo

pharmacological inhibition of JNK activity (JNK1 and/or JNK2) blocked Bcr/Ab1P185

induced malignant proliferation in vitro. The differential requirement for JNK

observed in the two Bcr/Abl isoforms can be ascribed to the presence in

Bcr/AbIP210
of the Dbl domain which can activate the JNK pathway in vitro. In the

case of Bcr/AbIP210
, JNK1 is critical for the survival of the ex vivo derived

transformed Iymphoblasts upon growth factor removal. This result correlates

with the fact that mice reconstituted with Bcr/AbIP210
transformed Jnk1-

j- 

bone

marrow showed normal malignant lymphoid expansion in the bone marrow yet

they had reduced numbers of lymphoblast in the bloodstream and lacked

peripheral organ infiltration. Thus JNK1 is essential for the survival of the

transformed lymphoblast outside the bone marrow microenvironment in

Bcr/AbIP210 induced lymphoid leukemia. Interestingly, while JNK1 is essential for

lymphoid transformation , it is dispensable for the proliferation of transformed

myeloblasts.
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Taken together these results indicate that the JNK signaling pathway

plays an essential role in the survival of Bcr/AbIP210 Iymphoblasts and that JNK-

deficiency decreases the leukomogenic potential of Bcr/AbIP210
in vivo. Thus, cell

survival mediated by JNK may contribute to the pathogenesis of proliferative

diseases.
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CHAPTER I

INTRODUCTION

The JNK/SAPK signal transduction pathway modulates the cell response

to external cues and has many biological actions including cell survival

apoptosis and tumorigenesis. The aim of this thesis is to investigate the role of

JNK in cell transformation.

1.1. JNK

The c-Jun N-terminal kinase (JNK), also known as stress-activated protein

kinase (SAPK), is a family of mitogen activated protein kinases (MAPKs). As the

name indicates, this group of MAPK is typically activated upon exposure of cells

to environmental stresses (UV , IR and genotoxic stress) and inflammatory

cytokines. This section gives an overview of the JNK/SAPK pathway and its role

in diverse cellular processes.

I. LA. The Signaling Pathway.

Like all MAPK pathways , JNK signaling includes a central "three-tiered"

signaling module (Fig. 1 A) in which the MAPKs are activated by phosphorylation

on specific threonine (Thr) and tyrosine (Tyr) residues within a conserved Thr-



Pro- Tyr motif located in the activation loop of their kinase domain. This

phosphorylation is carried out by a dual specificity (Ser/Thr and Tyr) kinase

known as MAPK kinase (MAPKK). These MAPKKs are, in turn, activated by

phosphorylation at serine (Ser)/threonine (Thr) residues located in their kinase

domain by upstream MAPKK kinases (MAPKKK). Some insight into the

biological role of the JNK pathway came with the characterization of the

components of this signaling module (reviewed in Davis, 2000; Kyriakis and

Avruch , 2001). At the MAPK level , the JNK protein kinases are encoded by three

genes: Jnk1 , Jnk2 and Jnk3 (Fig. 1 B). While Jnk1 and Jnk2 are ubiquitously

expressed, Jnk3 transcripts are found exclusively in heart, brain and testis. In

addition, each transcript can undergo two different types of alternative splicing

(Gupta et aI. , 1996). The first type of alternative splicing is common to all three

Jnk genes and involves the 3' coding region; this processing creates a 46 kD and

a 55 kD isoform. The second type of alternative splicing is observed only in Jnk1

and Jnk2 transcripts; this second alternative splicing occurs between two exons

within the kinase domain. The functional consequence of these splicing choices

is the generation of ten different isoforms of JNK. Although a difference in

substrate binding in vitro has been reported (Gupta et aI. , 1996), no dramatic

distinctions among JNK isoforms are observed in vivo. Despite the functional

complementation between the different Jnk genes, gene disruption studies

revealed that differential tissue distribution of the different isoforms might account



for tissue-specific defects. Thus, mice deficient in JNK1 or JNK2 have severe

defects in the differentiation of CD4 T helper cells into effector cells and this

defect may correlate with the pattern of JNK expression in murine T cells (Dong

et aI. , 2000; Dong et aI. , 1998; Yang et aI. , 1998).

The activity of all JNK isoforms is regulated by two competing

mechanisms: JNK can be inactivated by protein phosphatases (including

serine/threonine- , tyrosine- and dual specificity protein phosphatases) (Keyse,

2000) and activated by upstream MAPKK.

Inactive Active

I MAPKKK I 

MAPKKK I

Inactive. t Active

I MAPKK I
APK

Ser Thr
(E (f

1;;
Thr 

I MEKKs Mlks Tak1 
Tpl2 Ask1 I

MKK4 MKK7

Jnk1 Jnk2 Jnk3 I

Fi$J.1 The MAPK signal transduction pathway. (A) The three tiered signallng module.
(B)Components of the Jnk signaling pathways.

There are two characterized MAPKK that phosphorylate all JNK isoforms:

MKK4 and MKK7 (Fig. 1 B). While MKK4 is also involved in the activation of the

p38 pathway in response to certain stimuli , MKK7 is a JNK-specific activator.

Genetic studies on MAPKK null cells revealed that MKK4 and MKK7 display



different activation patterns depending on the extracellular stimuli (Tournier et aI.,

2001; Tournier et aI. , 1997; Tournier et aI. , 1999; Yang et aI. , 1997a). Despite

this partial overlap in the activation pattern there is evidence that both of these

MAPKKs cooperate in the phosphorylation of JNK. Thus, MKK4 and MKK7

preferentially target JNK at Tyr and Thr respectively (Lawler et aI. , 1998). This

observation suggests a synergistic activation of JNK by these two MAPKKs.

The stress activated MAPKKs are regulated by Ser/Thr phosphorylation

within a conserved region of the activation loop. This phosphorylation is carried

out by a heterogeneous family of MAPKKKs (Fig. 1 B) (Davis, 2000; Kyriakis and

Avruch , 2001). There are several broad familes of MAPKKKs responsible for the

activation of the JNK signaling pathway: the MEK kinases (MEKK1-4), the mixed

lineage kinases (MLK1- , DLK and LZK), TGF- -activated kinase- 1 (Tak1),

Tumor progression locus-2 (TpI2) and the apoptosis stimulating kinases (ASK1-

2). Many of these MAP KKK were identified as JNK activators using transfection

assays (Fanger et aI. , 1997) but their role as physiological JNK activators in vivo

and their selectivity for the JNK pathway are still unclear. Some insight into the

in vivo function of some MAPKKKs comes from gene disruption studies (Davis

2000; Fanger et aI., 1997; Weston and Davis, 2002). Nevertheless, the

interpretation of these studies is particularly complex due to the inherent

redundancy among the different MAPKKKs and due to their promiscuity of

function. An additional level of complexity is determined by the upstream



signaling that activates MAPKKKs. In fact , the MAP KKK receive cellular inputs

from a highly diverse group of upstream kinases such as Ste20 homologs (PAK,

GCK, GLK and HPK) (Fanger et aI. , 1997) and the Rho family of GTPases (Rac1

and Cdc42) (Coso et aI., 1995; Minden et aI., 1995). Thus, the important role of

MAPKKK is the integration of these multiple cellular inputs into different MAPK

signaling modules.

Given the large number of signaling components in the JNK pathway

(especially at the MAP KKK level) a key issue for a stressed cell is the

achievement of rapid signal specificity. A clever solution is the organization of

the signaling components in discrete clusters through their interactions with

scaffolding proteins. Among the four groups of scaffolding proteins that provide

selective coordination of the JNK signaling pathway (Weston and Davis , 2002),

the best characterized is Jip (JNK interacting protein). The Jip family is

composed of three members (Jip- 1 -3), which differentially bind to specific

components of the JNK signaling module. In transfection studies , Jips faciltate

JNK activation stimulated by Mlk. This indicates that one functional role of these

scaffolds is the rapid and specific activation of the JNK pathway (Whitmarsh and

Davis, 1998). In contrast, overexpression of Jip1 alone can inhibit JNK activation

by extracellular stimuli (Dickens et aI. , 1997). This inhibition is probably due to

the disruption of the normal stochiometry of Jip and its effectors. In this situation

no single scaffold is associated with all the necessary components of the

- "

:1.



signaling cascade and the overexpressed Jip becomes a JNK inhibitor.

Interestingly, both Jip1 and Jip2 are able to bind to kinesin light chain in addition

to their functions as scaffolds for JNK signaling modules (Verhey et aI. , 2001;

Whitmarsh et aI. , 2001). This interaction may contribute to the subcellular

localization of JNK signaling components. Thus, Jip proteins may increase the

efficacy of the cell response by increasing the local kinase concentrations at

specific subcellular locations.

Because the activation of the JNK signaling module is critical for multiple

cellular responses, including stress- induced apoptosis, cell survival and

oncogenic transformation, the identification of potential JNK targets is essential.

The current list of potential targets includes transcription factors, tumor

suppressors and apoptosis regulating factors. The first characterized JNK target

is the c-Jun transcription factor, which provided a link between JNK signaling and

gene transcription (Kyriakis et aI. , 1994; Minden et aI. , 1994). JNK induced

transcriptional regulation is particularly important for cell survival and oncogenic

transformation , both of which usually rely on active transcription. The family of

transcription factors regulated by JNK phosphorylation has grown substantially

over the years and includes members of the ATF , Jun , NFAT , Myc and Ets

families. These factors are differentially regulated by JNK phosphorylation. The

first regulatory mechanism is the transcriptional activation of these factors by

JNK mediated phosphorylation of specific Ser/Thr residues present in their
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activation domains (Whitmarsh and Davis, 1996). Besides this common

regulatory mechanism the phosphorylation by JNK can also affect protein

stability. JNK phosphorylation of c-Jun increases its half- life , perhaps by

inhibiting its ubiquitin-mediated degradation , and thus effects its accumulation in

the cell (Musti et aI., 1997). In addition , JNK phosphorylation can inhibit

transcriptional activity of NFAT4 by inducing its nuclear exclusion (Chow et aI.

1997). Hence, JNK can regulate gene expression through different mechanisms:

by phosphorylating transcription factors, by affecting their stability or by affecting

their cellular localization.

Additional JNK targets are regulatory proteins involved in the apoptotic

stress response. Among these targets is the p53 tumor suppressor whose

expression levels are controlled by JNK phosphorylation. This regulation is at

both the transcription level (Schreiber et aI., 1999) and at the protein stability

level (Fuchs et aI. , 1998) where JNK regulates p53 ubiquitin mediated

degradation. Other potential JNK targets are the anti-apoptotic proteins such as

Mcl-1 and Bc12. Despite the fact that both Mcl- 1 and Bcl2 are JNK substrates 

vitro (Maundrell et aI. , 1997; Yamamoto et aI. , 1999) the relevance of this

phosphorylation in vivo is stil controversial. In the case of Mcl- , JNK mediated

phosphorylation is thought to inactivate Mcl-1 anti-apoptotic function (Inoshita et

aI. , 2002). In contrast , the biological effect of JNK phosphorylation of Bcl2 is

unclear. Conflicting reports have shown that JNK mediated phosphorylation of

,1,'".



the same residues in Bcl2 can have opposing effects in modulating the apoptotic

response (Breitschopf et aI. , 2000; Ita et aI. , 1997). Thus, further studies are

needed to establish if Bcl2 is a physiological substrate of JNK.

Recently, novel JNK targets were identified among the BH3-only proteins

(Donovan et aI. , 2002; Lei and Davis, 2003). The pro-apoptotic activity of the

BH3-only proteins Bad , Bim and Bmf is a result of JNK phosphorylation. In the

case of Bim and Bmf, JNK phosphorylation releases the proteins from the dynein

and myosin motor complexes. Once free, the factors are able to associate with

other members of the Bcl2 family such as Bax and Bak to trigger the stress-

induced apoptotic response (Lei and Davis, 2003).

The identification of additional targets will be critical for our understanding

of how JNK activity affects specific biological responses. Furthermore , the recent

characterization of a JNK inhibitory molecule (SP600125) will provide a useful

tool for the biochemical dissection of this signaling pathway. SP600125 is a drug

that potently inhibits JNK activity reversibly, in cultured cells (Bennett et aI.

2001). Since JNK may playa key role in different diseases such as cancer and

inflammation , this new inhibitor may represent a potential therapeutic agent in the

treatment of these pathological conditions.

.;-"-



I.I.B. Life or Death. a Stressful Choice.

Since the JNK pathway is activated mainly by stress, it is reasonable to

think that this activation has a role in the decision a damaged cell makes

between the choices of life versus death. Indeed there is evidence that JNK can

mediate both apoptosis and survival , which is important not only in response to

stressful conditions but also during development and tissue differentiation.

(1) Apoptosis

The involvement of JNK in the regulation of the apoptotic response was

first observed in neuronal cells. Withdrawal of nerve growth factor (NGF) or

other nutrients from differentiated neurons induces apoptosis and this response

requires activation of JNK and p38 with concomitant suppression of the Erk

survival pathway (Xia et aI. , 1995). Accordingly, constitutive activation of the

JNK pathway (by overexpression of the upstream MAP KKK, MEKK1) induces

apoptosis in neurons even in the presence of NGF. Conversely, expression of

dominant negative mutants of c-Jun prevents MEKK1 induced apoptosis

suggesting that this apoptotic response relies on JNK induced transcription. 

possible transcriptional target for JNK induced neuronal cell death is the pro-

apoptotic protein Fas- ligand (Fas-L). Indeed Fas-L expression is upregulated in

neurons upon NGF withdrawal in a JNK dependent fashion (Faris et aI. , 1998;

Kasibhatla et aI. , 1998; Le-Niculescu et aI. , 1999). Thus, a possible model for

;.t



stress- induced apoptosis in neuronal cells consists of JNK mediated up-

regulation of Fas-L with the newly expressed Fas-L binding to Fas-receptor and

triggering the apoptotic response. The involvement of JNK in neuronal cell death

is confirmed in studies conducted in animals with targeted disruption of the Jnk3

gene. These mice are defective in kainate- induced neuronal apoptosis

suggesting a role of JNK in brain response to stress by excitotoxins (Yang et aI.

1997b).

JNK contribution to neuronal apoptosis is not limited to the stress

response. Analysis of mice with combined ablation of JNK1 and JNK2 revealed

a potential role of JNK regulation of apoptosis during brain development. The

disruption of both Jnk1 and Jnk2 causes embryonic lethality with prominent

hindbrain exencephaly (Kuan et aI., 1999; Sabapathy et aI. , 1999). Careful

analysis of these embryos reveals opposite apoptotic defects in different brain

regions. In the lateral edges of the converging hindbrain there is a substantial

reduction of apoptotic degeneration , which accounts for the defect in cephalic

neurulation. Thus, in the hindbrain JNK1 and JNK2 are essential for

developmental apoptosis. In contrast , the forebrain regions of Jnk1-/- Jnk2-

double knock out mice show a dramatic increase in TUNEL positive cells , which

are indicative of apoptosis. Thus, JNK1 and JNK2 suppress cell death in the

forebrain region of the brain. These contrasting observations highlight a critical

issue in the analysis of JNK mediated signaling: the activation of the JNK



pathway may cause opposite biological outcomes depending on cellular context

(see later).

Some insight into the mechanism underlining JNK induced apoptosis

comes from the biochemical analysis of Jnk1-/- Jnk2-

/- 

mouse embryonic

fibroblasts (MEF). These cells are defective in apoptosis induced by specific

types of stress such as UV and anisomycin (Tournier et aI. , 2000). Subsequent

analysis showed that UV irradiated JNK null MEFs fail to induce mitochondria

membrane depolarization and cytochrome c release. These results suggest a

role of JNK in the regulation of the mitochondrial response to stress.

Furthermore , JNK mediated cytochrome c release requires the pro-apoptotic

factors Bax and Bak (Lei et aI. , 2002). Recently, it is been proposed that JNK

induces activation of BaxBak through the BH3-only proteins (Donovan et aI.

2002; Lei and Davis, 2003). Despite the identification of these new potential JNK

targets the mechanism that accounts for Bax/Bak activation and of the

mitochondrial apoptotic pathway is still unclear.

(2) Survival signaling

Although many studies clearly establish the role of the JNK pathway in cell

death , there is growing evidence that JNK can contribute to cell survival. The

strongest evidence supporting a role for JNK in cell survival comes from the

analysis of Jnk1-/- Jnk2-

/- 

embryos. As mentioned in the previous section , these



embryos exhibit increased apoptosis in the forebrain suggesting that JNK

provides a necessary survival signal in this specific brain region. Additional

evidence in support of JNK survival signaling derives from the characterization of

the TNFa response in Jnk1-/- Jnk2-

/- 

MEFs. These JNK null cells are more

sensitive than their wild-type counterparts to TNFa induced apoptosis (Lamb et

aI. , 2003). JNK survival signaling in response to TNFa treatment is dependent

on gene expression and it is mediated by the transcription factor JunD. 

potential target for JunD-dependent transcription in JNK survival signaling is the

inhibitor of caspases c- IAP2. Since TNFa- induced c- IAP2 expression is also

dependent on NF-KB activation the authors propose a model where the survival

signal in TNFa treated cells is triggered by the coordinated actions of JNK/JunD

and NF-KB. Thus , the presence of activated NF-KB translates TNFa- induced

JNK activation into a survival signal.

The importance of cellular context in JNK mediated survival signaling is

evident also in several antisense studies (Bast et aI. , 1999; Potapova et aI.

2000a; Potapova et aI. , 2000b). Here down-regulation of JNK2 expression

results in growth arrest and apoptosis only in tumor cell lines with mutated p53.

Thus in the absence of a functional p53 these tumor cells rely on JNK signaling

to promote survival.



A striking question that arises from all these studies is how JNK activation

can mediate opposite biological events such as apoptosis and cell survival.

There are several mechanisms that can explain this apparent paradox, none of

which are mutually exclusive:

First, the biological outcome of JNK activation may be dependent on

cellular context. In this case, the integration of multiple activated/suppressed

signaling pathways determines the choice between life and death. Two

examples of this mechanism are: the combined effects of the activation of JNK

and suppression of Erk pathway in NGF withdrawal induced apoptosis (Xia et aI.

1995) and the integration of JNK and NF-KB pathways in TNFa- induced survival

signaling (Lamb et aI. , 2003). In addition to this pathway integration , the cell

status may be important in the interpretation of a specific signal. For example, a

change in the p53 status of a cell may alter the outcome of the same JNK

mediated signal (Potapova et aI. , 2000b).

A second interesting mechanism is based on the correlation with the time

course of JNK activation for a specific biological response. In particular

sustained activation , but not transient activation , of JNK is associated with

apoptosis (Chen et aI. , 1996). Consistent with this model is the observation

TNFa induces only transient activation of JNK and this correlates with JNK

induced survival signaling.



A third possible mechanism is that different responses are mediated by

different JNK isoforms. Thus, heterogeneous tissue distribution of these

isoforms may account for the cell specific response to the same stimulus. In fact,

despite all JNK isoforms are largely interchangeable , the disruption of individual

Jnk genes gives rise to distinctive phenotypes (Conze et aI. , 2002; Dong et aI.

1998; Yang et aI. , 1998). These observations support the hypothesis that JNK

isoforms are heterogeneously expressed (either temporally or spatially) in

different tissues and that this distribution can determine the biological response

of the cells to a particular stimulus.

I.I.C. JNK and Cell Transformation

The process that leads to oncogenic transformation of normal cells

involves the alteration of important biological responses such as apoptosis and

cell survival. In fact the inhibition of apoptosis and the deregulation of growth

control are common mechanisms that allow oncogenes to transform cells (see

section LlI.D). Since JNK can regulate both apoptosis and cell survival it is not

surprising that multiple studies have implicated JNK signaling pathway and its

effectors in tumorigenesis. The first evidence of a role for JNK in cell

transformation came from studies conducted in c-jun deficient MEFs. The

transcription factor c-Jun is the best characterized effector of the JNK pathway.

Jun deficient MEFs exhibit several phenotypes and are strikingly resistant to



transformation by the Ras oncogene (Johnson et aI. , 1996). Similar results were

obtained using "knock- " mice expressing mutated c-Jun in which the JNK

phosphorylation sites (Ser63/73) are replaced by alanine residues (cJunAA).

cJunAA MEFs derived from these mice can be transformed by activated Ras 

vitro but are less tumorigenic in xenograft assays than wild type MEFs (Behrens

et aI. , 2000). This observation suggests that active phosphorylation of c-Jun by

JNK is required for efficient Ras transformation. Recently this hypothesis was

challenged by the observation that JNK-deficiency increases Ras oncogenic

potential. Thus, Ras transformed JNK null MEFs efficiently induced sub-

cutaneous and lung tumors when injected into nude mice (Kennedy et aI. , 2003).

In addition , JNK- deficiency increased the number and size of lung tumors in vivo

suggesting that JNK suppresses Ras oncogenic potential. The discrepancy

between the different Ras studies could be due to different cell context that might

influence the outcome of JNK signaling (see previous section).

Additional evidence suggests a role for the JNK pathway in Bcr/Abl

induced cell transformation. The Bcr/Abl oncogene constitutively activates JNK

and this activation has been proposed to be required for pre-B cell

transformation. In support of this hypothesis is the observation that expression of

dominant negative mutants of c-Jun efficiently blocks Bcr/Abl transformation 

vitro (Raitano et aI. , 1995). In accordance with this result, inhibition of JNK

signaling by overexpression of Jip1 abolishes Bcr/Abl induced pre-B cell



outgrowth in vitro (Dickens et aI. , 1997). Both of these studies provide indirect

evidence that JNK signaling pathway may contribute to malignant transformation

by Bcr/Abl therefore this oncogene is a suitable candidate to study the role of

JNK in cell transformation.



11. Bcr/Abl

LlI.A. The oncogene

The Bcr/Abl fusion protein is one of the first oncogenes found to be

associated with a specific malignant disease in humans (Nowell and Hungerford,

1960). This oncogene is generated in hematopoietic stem cells by reciprocal

translocation between chromosome 9 and chromosome 22 (t (9; 22)(q34; q11)

(Rowley, 1973). This reciprocal translocation gives rise to an abnormal

shortened chromosome 22 known as the Philadelphia chromosome (Ph). The

Philadelphia translocation is present in 90% of patients affected by Chronic

Myelogenous Leukemia (CML)(Pasternak et aI., 1998). The incidence of CML is

approximately 5 cases per 100,000 individuals per year worldwide and it is

slightly higher in males than in females. CML is a biphasic disease and it is

usually diagnosed in the initial "chronic" phase during which granulocytes

increase in number 10- to 100- fold in the blood (reviewed in Sawyers , 1999).

Despite this leukocytosis, normal hematopoiesis still coexists with the leukemic

clone. The chronic phase lasts typically 2-6 years and suddenly transforms into

a more aggressive phase usually described as "acute" or "blast crisis . At this

stage , immature cells appear and normal hematopoiesis is overcome by the

malignant clone. Blast crisis patients exhibit additional chromosomal

abnormalities such as trisomies 8 and 19 and isochromosome 17. These

rearrangements have prognostic relevance in the identification of the shift to the



more aggressive phase. The median survival of patients in this stage is only

about 1 .5 years.

Two genes are engaged in the creation of the Bcr/Abl fusion protein: ABL

on chromosome 22 and BCR on chromosome 9. Insights on the transformation

events leading to the development of CML come from the characterization of

these genes.

The BCR (breakpoint Qluster region) gene encodes for a 160kD

cytoplasmic protein that is ubiquitously expressed. The physiological role of the

Bcr protein is not yet clear. Bcrknock-out mice do not have any obvious external

phenotype and show normal hematopoiesis and viability. However , when

challenged with endotoxin (Voncken et aI. , 1995) these mice develop severe

septic shock attributed to an increased neutrophilic oxidative burst. The absence

of a clear hematopoietic phenotype suggests an inherited redundancy in the cell-

signaling pathway.

The translocation partner for Bcr in the Philadelphia chromosome is the

ABL gene. This gene encodes a non-receptor tyrosine kinase , which shares

considerable homology with the Abl (Abelson murine leukemia virus)

oncogene. As is the case with the Bcr gene, the function of ABL kinase is poorly

understood. Some insight comes from knock-out studies where the Abl gene

was either truncated or completely ablated (Schwartzberg et aI. , 1991;

Tybulewicz et aI. , 1991). In both cases the Abl-

/- 

mice showed reduced survival
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and only some exhibited a 10- 30-fold reduction in the number of B- and T - cells.

It is unclear whether the observed lymphopenia is a direct effect of the disruption

of the Abl gene or a secondary effect due to an increase in corticosteroids levels.

Further analysis of Abl null mice has also revealed a defect in osteoblast

maturation (Li et aI. , 2000). The osteopororotic phenotype displays a reduction in

the rate of bone deposition and is present in approximately 50% of the Abl-

homozygote mice (Li et aI., 2000). The incomplete penetrance of all Abl-

phenotypes could be ascribed to the presence of a compensatory kinase with

redundant function. One potential candidate that could compensate Abl function

in vivo is the Abl-related gene (Arg) kinase (Kruh et aI. , 1986). Both Arg and Abl

kinases exhibit extensive conservation in sequence and architecture. Despite

this high degree of identity, gene disruption studies suggest that these tyrosine

kinases have different functions in vivo. In fact, Arg deficient mice are born

normal and do not exhibit the defects observed in Abl null mice (Koleske et aI.

1998) suggesting that Arg cannot compensate for Abl deficiency. In addition , the

combined disruption of Abl and Arg genes causes embryonic death associated

with defects in neural tube closure (Koleske et aI., 1998) indicating that Arg

function is necessary to sustain the development of Abl- deficient mice.

In vitro studies that describe the Abl kinase as a cell cycle regulator are

controversial. Some studies have shown that a fraction of the Abl nuclear pool is

associated with the retinoblastoma protein (Rb) in cells in G1 (Wang, 1993;



Welch and Wang, 1993). This binding inhibits the Abl kinase activity during this

phase. Upon phosphorylation of the Rb protein by cyclinD-cdk4/6 the Abl kinase

is released and consequently activated in S phase. This activation is thought to

contribute to the stimulation of the S-phase genes through phosphorylation of the

terminal domain of RNA polymerase II. Thus, this study envisions the Abl

kinase as a growth-promoting factor. An opposite role for the Abl kinase is

described in transfection studies (Van Etten , 1999) where Abl induces G1 growth

arrest and subsequent apoptosis. This function of the Abl kinase is dependant

on its SH2 domain and its association with p53 and Rb.

The Abl kinase is also involved in the DNA damage response (Van Etten

1999; Wang, 2000). Ionizing radiation and genotoxic agents such as mitomycin

C activate the kinase activity of nuclear c-Abl. This activation can occur either by

direct phosphorylation of Abl by the ataxia telangectasia-mutated (A TM) kinase

(Baskaran et aI. , 1997; Shafman et aI. , 1997) or indirectly by free radical

induced dissociation of the Abl kinase from its inhibitor Pag/MSP23 (Wen and

Van Etten , 1997). Upon activation c-Abl phosphorylates multiple substrates

including DNA-PK (Kharbanda et aI. , 1997), Rad 51 (Yuan et aI. , 1998), SHPTP1

(Kharbanda et aI. , 1996). Although these interactions suggest a role of the Abl

kinase in the regulation of the DNA double-strand break repair, such a role is not

evident in Abl-

/- 

fibroblasts. These cells do not display defects in the DNA repair

pathways or in the regulation of the G1-S checkpoint and are slightly more



radioresistant than their Abl+/+ counterparts (Yuan et aI. , 1997). It is possible

that failure to detect these defects is due to the intrinsic redundancy of the

pathway. Recent studies on Abl deficient mice (Gong et aI. , 1999) and chick

cells (Takao et aI. , 2000) support an alternative role for c-Abl kinase in the DNA

damage response. Both studies provide evidence for a role of c-Abl tyrosine

kinase in the activation of apoptosis by DNA damage. One mechanism

underlying c-Abl induced cell death is through the regulation of p73 expression

(Gong et aI. , 1999). p73 belongs to the family of p53 transcription factors and is

thought to have a role in the regulation of apoptosis (Levrero et aI. , 1999).

Indeed , ectopic expression of p73 (like p53) can induce apoptosis (Levrero et aI.

1999) indicating that p73 protein level is critical for the induction of apoptosis.

Interestingly, the accumulation of p73 following exposure to genotoxic stress is c-

Abl dependant (Gong et aI. , 1999). This accumulation is due to an increase in

the half- life of the p73 protein (Gong et aI. , 1999) and is perhaps mediated by

direct phosphorylation of p73 by the c-Abl kinase (Agami et aI. , 1999).

The Philadelphia translocation between BCR and ABL gives rise to two

hybrid genes: Bcr/Abl on chromosome 22 and Abl/Bcr on chromosome 9q+.

Only the Bcr/Abl fusion protein is shown to be necessary and sufficient for

malignant transformation in vitro as well as in vivo (Daley and Baltimore, 1988;

Daley et aI. , 1990; Heisterkamp et aI. , 1990; Kellher et aI. , 1990) while the

possible role of the Abl/Bcr remains elusive.
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includes the two alternative first exons of the ABL gene. Thus, the fusion protein

may contain exons Ib and la, exon la alone or neither one. Interestingly, the

Bcr/Abl transcript never includes ABL exon I despite the genomic arrangement of

the fusion gene. All described Bcr/Abl mRNAs consist of BCR sequences fused

to ABL exon a2 (Melo, 1996). While the ABL contribution to the fusion oncogene

is usually invariable , the translocation of different portions of the BCR gene

determines the formation of Bcr/Abl isoforms. There are three characterized

breakpoint regions in the BCR gene: the major (M-bcr), the minor (m-bcr) and the

micro (Wbcr) breakpoint cluster (Fig. 2). Each one of these breakpoint clusters

and its related Bcr/Abl isoform is associated with a specific type of leukemia.

Breakage within the bcrgenerates an 8. kb transcript that encodes for a 210

kD (Bcr/AbIP210) fusion protein which is found in 95% of patients with Chronic



Myelogenous Leukemia (CML) and approximately one third of patients with

Acute Lymphoid Leukemia (ALL). The majority of ALL patients and rare cases of

CML patients express a smaller 185kD Bcr/Abl isoform (Bcr/AbIP185) as a result of

breakage in the bcr region. In 1990, Saglio et al. described a 230kD Bcr/Abl

isoform (Bcr/AbIP230) found in patients with Chronic Neutrophilic Leukemia (CNL)

(Saglio et aI. , 1990). The breakpoint responsible for the creation of the largest

Bcr/Abl isoform is the wbcr located at the 3 end of the BCR gene.

In addition to these well-characterized isoforms other "unusual" transcripts

are observed in which the chromosomal breakpoint occurs either in introns

outside the known bcr breakpoint clusters or within BCR exons or downstream

the ABL exon a2. Interestingly, many of these atypical Bcr/Abl fusion genes can

be detected by RT -PCR in leukocytes of 69% of normal individuals (Bose et aI.

1998) indicating that the translocation is not , in itself , sufficient for malignant

transformation.

LlI.B. Structure of the Bcr/Abl fusion protein

Both the Bcr and the Abl proteins have multiple functional domains that

contribute to different transforming events induced by Bcr/Abl. These aspects

include the resistance to apoptosis , growth factor independence and alterations

of cell-cell and cell-matrix interactions. In addition , since Bcr/Abl isoforms differ

only in the Bcr portion of the fusion oncogene , the structural characterization of
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the different Bcr domains may be helpful in our understanding of the oncogenic

potential of these isoforms.

(1) BCR

The BCR gene encodes for 160 kD cytoplasmic protein that contains

several distinct domains (Fig. 3). The N-terminal region is particularly important

since it is the only Bcr peptide that is retained in all three Bcr/Abl isoforms

(Bcr/AbIP185 , Bcr/AbIP210 and Bcr/AbIP230). This 426aa region includes: a coiled coil

Bcr
domain (or

:..

p230

p210

oligomerization domain),

p185 a serine-threonine kinase

domain containing an

NH - 
. SerinefTreonine

Kinase GEF Homology GAP-Rae COOH
important Tyrosine

residue (Tyr177) and a

Fig.3 Domain structure of Bcr. Arrows indicate the Bcr portions
comprised in the different Bcr/Abl isoforms.
(Modified from Barnes and Melo (2002)).

Src homology 2 (SH2)-

binding region.

The coiled coil region (Fig. 3) consists of a heptad repeat typical of coiled coil

amphiphatic alpha elices, which suggests a role in the oligomerization of the Bcr

protein. Further studies established that both the Bcr protein and the Bcr/Abl

fusions form oligomers in vivo (McWhirter et aI. , 1993). In the case of Bcr, the



crystal structure revealed the formation of a homotetramer (Zhao et aI. , 2002).

Based on these findings the authors propose a model for the activation of the Abl

kinase in Bcr/Abl based on the tetramerization of the fusion protein. The N-

terminal coiled coil domain is both essential and suffcient to activate the

oncogenic potential of Abl by inducing CML- like disease in mice (Zhang et aI.

2001 a). Deletion of the coiled coil region (i1CC) impairs the ability of Bcr/Abl to

induce myeloid leukemia in vivo. Interestingly, the concomitant deletion of the

Abl SH3 (i1SH3) domain rescues the ability to induce transformation in

transplanted mice. This result suggests that the coiled coil region alleviates the

inhibitory effect of the Abl SH3 domain.

The serine -threonine kinase (Fig. 3) domain has been shown to

autophosphorylate itself as well as Bap-1 (Bcr associated protein 1) a member of

the 14- 3 family of proteins (Reuther et aI. , 1994). Since 14- 3 proteins are

important in the regulation of the cell cycle in yeast the authors speculate that the

association and consequent phosphorylation of Bap-1 in Bcr/Abl cells may be

relevant as a mitogenic signal provided by this oncogene in transformed cells

(Reuther et aI. , 1994).

In addition , the serine/threonine kinase domain contains a very important

tyrosine residue (Tyr 177) (Fig. 3). This residue is key to the activation of the

Ras signaling pathway by Bcr/Abl. Upon phosphorylation , this residue binds to

Grb2 adapter molecule through its SH2 domain. The SH3 domain of Grb2 binds



to proline-rich motifs on the guanine nucleotide releasing factor son-of-sevenless

(Sos), which activates Ras by stimulating GTP binding. Activation of Ras leads

to the activation of the mitogen-activated protein kinase (MAPK) and other

signaling pathways (see later). Mutation of this single residue in Bcr/Abl impairs

its ability to induce a myeloprolierative disease in mice although it still retains the

ability to induce lymphoid leukemia (Million and Van Etten , 2000). The residual

oncogenic activity observed is perhaps due to the ability of the Tyr177F mutant to

still activate the Ras pathway through the activation of either Shc (Gaga et aI.

1995) or CrkL (Nosaka et aI. , 1999b; Senechal et aI. , 1996). Recently, a novel

regulatory mechanism for Bcr/Abl was demonstrated which involved the

phosphorylation of Grb2 on Tyr209 (Li et aI. , 2001a). This modification directly

inhibits the binding of Sos by the Grb2 C-terminal SH3 domain. Expression of

mutated Grb2 (Y209F) enhances the transformation ability of Bcr/Abl in vitro

suggesting that the phosphorylation of Grb2 at this site exerts a negative

regulatory role in Bcr/Abl - induced transformation.

Finally, the SH2-binding region (Fig. 3) within the N-terminal region of Bcr

consists of two areas that are particularly rich in serine and threonine residues.

Interestingly, the phosphorylated Ser/Thr residues become unusual binding

partners with SH2 domains of other proteins , one of which is the Abl portion of

Bcr/Abl. An intriguing hypothesis is that intra- or inter- molecular binding

between these two regions might lead to the deregulation of Bcr/Abl tyrosine



kinase activity. Supporting this model are deletion studies showing that the

Ser/Thr regions in the SH2-binding domain of Bcr are essential for Bcr/Abl

induced transformation of rat fibroblasts (Pendergast et aI. , 1991).

The central region (Fig.3) of the Bcr protein is present in the two largest

Bcr/Abl isoforms. This area shares considerable homology with the guanine-

nucleotide exchange factor (GEF) for human CDC42: the Dbl proto-oncogene.

These factors activate guanine nucleotide binding proteins by stimulating the

exchange of guanosine triphosphate (GTP) for guanosine diphosphate (GDP).

Domain swap analysis showed that the Dbl domain is important in inducing

growth-factor independence in vitro (Kin et aI. , 2001) but the exact role of this

domain is yet to be discovered.

(2) ABL

Unlike the case for Bcr, the Abl portion is constant in all Bcr/Abl isoforms

(Fig. 4). The translocation breakpoint excludes the N-terminal cap that is

encoded by two alternative exons (Ia and Ib). Beyond the breakpoint, the N-

terminal region included in the oncogene unfolds different Src homology

domains: SH1 containing the Abl tyrosine kinase, SH2 and SH3 which are non-

catalytic and function as binding sites for many other signaling proteins (see

later). Bcr/Abl is a constitutively active tyrosine kinase and its activity is

necessary yet not sufficient for its transforming ability. In c-Abl , negative



regulation of the tyrosine kinase is achieved through its SH3 domain (Fig. 4).

There are two possible regulatory mechanisms involving the SH3 domain that

lead to the inhibition of c-Abl kinase activity. The first mechanism is based on the

interaction of c-Abl SH3 domain with a cellular inhibitor. Several candidate

inhibitors (such as Abi- , Abi-2 and Pag/MSP23) that bind to c-Abl SH3 domain

have been identified (Van Etten , 1999) but their physiological role as regulators

of c-Abl kinase activity is still unclear. The second mechanism envisions the

formation of an intramolecular interaction involving the SH3 domain and the

linker region between the SH2 and the catalytic domain (Pluk et aI. , 2002).

Interestingly, the N-terminal cap of c-Abl encoded by two alternative exons (Ia or

Ib) is thought to be critical for this intramolecular regulation (Pluk et aI. , 2002).

Thus, the deletion of this N-terminal cap in the Bcr/Abl translocation could

contribute to the deregulation of its tyrosine kinase activity.

In addition , deletion of the SH3 domain or its substitution with gag viral

sequence (as in the case of v-Abl) activates c-Abl transforming ability in vivo

(Van Etten , 1999). In contrast , Bcr/Abl 8SH3 mutants either have a milder form

of the disease (Skorski et aI. , 1998) or develop a CML- like leukemia with a slight

delay (Gross et aI. , 1999b). These results suggest that the presence of SH3

domain enhances (rather than inhibits) the oncogenic potential of Bcr/Abl. 

possible role for the Abl SH3 domain in the Bcr/Abl fusion is to regulate the

adhesion and motility of the leukemic cells. Cells transformed with Bcr/AbI8SH3



have a reduced ability to adhere to stromal layers and to invade bone marrow

and spleen (Skorski et aI. , 1998). The impaired adhesion and invasion is

ascribed to defective cell-cell and cell-matrix interactions rather than to reduced

survival of the

Abl transformed cells.
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important regulatory

Fig.4 Domain structure of Abl. Arrow indicate the Abl portion
comprised in all Bcr/Abl isoforms.
(Modified from Barnes and Melo (2002)).

region: the SH2

domain (Fig. 4). The

role of this domain in Bcr/Abl induced cell transformation is rather controversial.

Initial studies using a SH2 deletion mutant showed a reduction in the extent of

myeloid infiltration in the peripheral organs of transplanted mice (Skorski et aI.

1997). At a molecular level , the Bcr/AbI8SH2 mutant seemed to be impaired in

the activation of the Pl3-Kinase and of the downstream serine/threonine kinase

Akt. In accordance, coexpression of an Akt constitutively active mutant restores

the ability of the SH2 deletion mutant to induce leukemia in vivo. Subsequent

studies (Roumiantsev et aI. , 2001; Zhang et aI. , 2001 b) confirmed the defect of

the Bcr/Abl SH2 mutant to induce CML- like disease but observed normal

induction of the PI-3K /Akt pathway with this mutant. The authors ascribe the



decrease efficiency of induction of CML disease to a dramatic reduction in the

intrinsic tyrosine kinase activity of Bcr/Abl proteins. This controversy highlighted

one of the fundamental challenges in Bcr/Abl research: the requirement for

specific domains for Bcr/Abl- induced transformation is typically cell type- or

context- dependent. Up to now it is not clear which experimental model system

should be used in order to evaluate Bcr/Abl domain function and have

observations relevant to the development of CML in humans.

The C-terminal region of Abl is characterized by three nuclear localization

signals (NLS) as well as one nuclear-export signal (NES) (Fig. 4). In the case of

Abl , the balance of the opposing effects of these two regions creates a cellular

gradient of the Abl kinase with a higher concentration in the nucleus. This

gradient can be disrupted by the use of nuclear-export inhibitory drugs such as

leptomycin B (Vigneri and Wang, 2001). Despite the presence of the same NLS

and NES regions in all Bcr/Abl fusions, the cellular distribution of the oncoprotein

is strictly cytoplasmic. Nevertheless, inhibition of Bcr/Abl tyrosine kinase activity

in the presence of leptomycin B induces Bcr/Abl nuclear import. Once trapped in

the nucleus the release of kinase inhibition induces an immediate apoptotic

response (Vigneri and Wang, 2001). This may explain the tight cytoplasmic

localization of the oncogene. For this purpose , the C- terminus Actin-binding

domain (Fig. 4) provides an important cytoplasmic anchoring domain. This

domain can bind to both monomeric and filamentous actin and it is thought that



the Abl kinase can influence and be influenced by local changes of the

cytoskeleton structure. The relationship between abl kinase activity and

cytoskeleton is underlined by the observation that the Abl cytoplasmic pool

relocates into focal adhesion once cells become exposed to fibronectin (Van

Etten , 1999). The disruption of this integrin signaling is one of the many affected

pathways in the Bcr/Abl fusion oncogene.

LlI.C. Activated signaling pathway by Bcr/Abl

The functional consequence of the fusion of the Bcr sequence to Abl is the

conversion to a constitutive active tyrosine kinase and its localization to the

cytoplasm. Here, the new deregulated kinase is exposed to a variety of new

potential substrates and activates different signaling pathways which contribute

to the cell transformation (Fig. 5). This section provides an overview of the

signaling pathways activated in Bcr/Abl transformed cells.

Despite the identification of these newly activated signaling pathways it is

difficult to link any specific signaling event to a specific biological effect due to the

redundancy of many of the activated pathways. Nevertheless, the understanding

of the molecular processes that stem from the deregulation of Bcr/Abl is

important for future development of a therapeutic strategy.
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Ras signaling is one of the first deregulated pathways found in Bcr/Abl

transformed cells. The key to the identification of Ras activation was the finding

of the Grb2/Sos association at Tyr177 on Bcr/Abl (Fig 5)(Pendergast et aI.

1993). The formation of this complex stimulates the conversion of the inactive

GDP-bound form of Ras to the active GTP-bound state. Later studies

established that Bcr/Abl-nduced activation of Ras also could be achieved



through two other adapter molecules: SHC and CrkL (Gaga et aI. , 1995; Nosaka

et aI., 1999b; Senechal et aI. , 1996). Both these adapters are known Bcr/Abl

substrates and associate with the SH2 (Shc) and SH3 (CrkL) domains

respectively. Interestingly, the CRKL adapter protein is one of the most

prominent tyrosine phosphorylated Bcr/Abl substrates found in CML patients

(Oda et aI. , 1994; ten Hoeve et aI. , 1994). This observation suggests that CrkL

plays a critical role in Bcr/Abl induced transformation (de Jong et aI., 1995;

Heaney et aI. , 1997; Hemmeryckx et aI. , 2001; Kardinal et aI. , 2000; Kolibaba et

aI. , 1999; Oda et aI. , 1994; Senechal et aI. , 1996; Tari et aI. , 1997; ten Hoeve et

aI. , 1994). In fact, inhibition of complexes mediated by CrkL SH3 domain can

block proliferation of CML cell lines (Kardinal et aI. , 2000). In contrast, transgenic

expression of CrkL accelerates the onset of Bcr/Ab1P185 induced disease

(Hemmeryckx et aI. , 2001). Despite the critical role of CrkL in Bcr/Abl signaling,

CrkL is not required for Bcr/Ab1P185 induced leukomogenesis (Hemmeryckx et aI.

2002). Since Bcr/Abl activates Ras through multiple pathways , it is possible that

these redundant pathways can compensate for CrkL deficiency.

Two different MAPK are activated through Ras in Bcr/Abl transformed

cells: the extracellular signal-related kinase (Erk) and the Jun NH terminal

kinase (JNK). Activation of Erk is mediated by Raf activation of the

serine/threonine kinases Mek1/Mek2 (Fig. 5) while in the case of JNK the signal

is transduced by the germinal center kinase -related (GCKR) (Shiet aI. , 2000;



Shi et aI. , 1999). The functional importance of Ras in Bcr/Abl induced cell

transformation was demonstrated by dominant negative studies (Sawyers et aI.

1995). Coexpression of Bcr/Abl with either GAP or dominant negative Ras

hinders its oncogenic potential while coexpression of c- Ras accelerates its

transforming ability (Sawyers et aI. , 1995). Ras has a central role in mediating a

growth-stimulatory signal in different human leukemias. Deregulation of the Ras

pathway through specific activating mutations is observed with high frequency in

patients with acute myeloid leukemia (AML) or Ph-negative CML (which thereby

lack the Bcr/Ablfusion protein) while Ras mutations are noticeably absent in Ph+

CML patients (Cogswell et aI. , 1989; Watzinger et aI. , 1994). This apparent

paradox could be explained by the fact that in Bcr/Abl expressing leukemias the

Ras pathway is constitutively activated, consequently further activating mutations

may not be required.

(2) JNK

Bcr/Abl transformed hematopoietic cells show increased JNK activity and

substantial activation of jun-responsive promoters (Raitano et aI. , 1995).

Interestingly, among the MAPK pathways Bcr/Abl preferentially activates JNK

and this activation is Ras-dependent. In fact, use of dominant negative Ras

mutants block Bcr/Abl induced JNK activation (Shi et aI. , 1999). The link

connecting Bcr/Abl , Ras and JNK is thought to be the Germinal Center Kinase
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Related (GCKR) (Fig. 5). GCKR kinase associates and is activated by Bcr/Abl in

a Ras-dependent manner. Inhibition of the GCRK activity by either a dominant

negative mutant or by antisense blocks Bcr/Abl induced activation of JNK (Shi et

aI. , 1999). These results identify GRCK kinase as the transducer of Bcr/Abl

signaling to JNK. The main downstream effector of JNK is the c-Jun transcription

factor. JNK phosphorylation of c-Jun at Ser63 and Ser73 leads to the increase of

jun-responsive gene transcription including the c-jun gene itself. c-Jun-mediated

transcription is essential for Bcr/Abl cell transformation. Expression of dominant

negative mutants of c-Jun can inhibit Bcr/Abl oncogenic potential in vitro (Raitano

et aI. , 1995). Interestingly, substantial JNK activity and subsequent Ap-

dependent gene transcription is observed in blast cells derived from patients with

acute myeloid leukemia (Burgess et aI. , 1998). In addition , there is an intriguing

correlation between constitutive JNK activity and patients that show either

relapse or secondary leukemia whereas young patients with de novo acute

leukemia lack JNK activity and fail to express c-Jun protein (Burgess et aI. , 1998;

Cripe et aI. , 2002). Very high levels of JNK activity are especially found in acute

myeloid leukemia patients that are refractory to chemotherapy. This observation

supports the hypothesis that JNK might induce resistance to chemical agents by

c-jun-dependent transcriptional upregulation of multidrug resistance genes such

as MDR1 (Cripe et aI. , 2002). These findings are fundamental for the



development of therapeutic strategies in AML patients that fail conventional

treatment.

(3) Jak/Stat

Many studies have reported the phosphorylation of the signal transducer

and activator of transcription (STAT) family in CML cell lines. The STAT

transcription factors are important mediators of cytokine and growth factor

signaling. Activation of these transcription factors is achieved through tyrosine

phosphorylation and is usually mediated by the Janus kinases (JAKs). STATs

are activated in Bcr/Abl expressing cell lines. In these lines there is substantial

phosphorylation of ST A T5A and ST A T5B and modest activation of ST A T1 ,

STAT3 and STAT6 (liaria and Van Etten , 1996; Nieborowska-Skorska et aI.

1999; Shuai et aI. , 1996). Interestingly, the phosphorylation of STAT6 is

detected in cell lines transformed with either v-Abl or Bcr/Ab1P185 and not with

Bcr/AbIP210 (liaria and Van Etten , 1996). Since both v-Abl and Bcr/Ab1P185 induce

primarily lymphoid leukemias , ST A T6 phosphorylation might be a hallmark for

lymphoid transformation.

Although JAK2 is activated in Bcr/Abl expressing cell lines, the activation

of STAT5 is JAK- independent (Carlesso et aI. , 1996; Chai et aI. , 1997; lIaria and

Van Etten , 1996; Xie et aI. , 2001). Several studies identified the involvement of

Hck as the tyrosine kinase that couples Bcr/Abl to STAT5 activation in myeloid



cells (Fig. 5) (Klejman et aI., 2002; Lionberger et aI. , 2000). Hck is recruited to

the SH2 and SH3 domains of Bcr/Abl , becomes activated and directly

phosphorylate ST A T5 on Tyr699 (Klejman et aI. , 2002). Inhibition of ST A T5

activation by expression of a truncation mutant lacking the transcriptional

activation domain (L\STAT5) reduces cell viability in Bcr/Abl+ cell lines (Gesbert

and Griffin , 2000). The reduced viability is due to increased apoptosis rather

than cell cycle blockage. On the other hand , expression of a constitutively active

STAT5 mutant (STAT51 *6) results in growth factor- independent proliferation and

enhanced viability. STAT5- induced cell survival is mediated by transcriptional

upregulation of anti-apoptotic BcIX . Again , dominant negative L\STAT5 mutant

reduces BclX levels in Bcr/Abl+ cell lines (Horita et aI. , 2000) while STAT51 *

upregulates them.

The importance of STAT5-mediated cell survival in Bcr/Abl transformation

depicted by these in vitro studies has been challenged by recent work carried out

in STAT5A1B-deficient mice (Sexl et aI. , 2000). Results from this study show that

Bcr/Abl can induce myeloproliferative disease in STAT5A1B- deficient mice. This

indicates that STAT5A1B signaling is not essential or necessary for Bcr/Abl-

induced transformation. In addition , the authors found no expression of STAT5-

dependent genes in cell lines derived from tumors from ST A T5A1B-deficient mice

indicating that no redundant pathway is compensating for the absence of STAT5

signaling.



(4) PI3 Kinase

PI3 Kinases (PI3K) are pleiotropic regulators of many biological function

including apoptosis, proliferation and integrin activation. Bcr/Abl constitutively

activates PI-3 Kinase through multiple pathways. The first identified pathway

involved the formation of a multimeric complex with the regulatory subunit of the

PI3K (p85), p120Cbl , Crk and CrkL (Fig. 5) (Sattler et aI. , 1996). The association

of the regulatory p85 subunit with the activated tyrosine kinase activates the

p110 catalytic subunit of the Pl3-kinase and its downstream effectors. Recently,

a second model was described in which Bcr/Abl induced PI3K activation through

the recruitment of the scaffolding adaptor Gab2 (Sattler et aI. , 2002). The

recruitment is mediated by the formation of a Grb2/Gab2 complex that associates

with Bcr/Abl at Tyr177. Since Tyr177 is known to be important in the activation of

Ras signaling pathway (see previous section), the authors speculate that Gab2

could be responsible for the regulation of the Ras/Erk pathway.

The downstream effector that transduces Pl3K-signal in Bcr/Abl

transformed cells is the serine/threonine kinase Akt (Fig.5). Pl3K-mediated

activation of Akt is essential for Bcr/Abl-nduced leukomogenesis: a dominant

negative Akt mutant or the PI3K inhibitory drug wortmannin both inhibit Bcr/Abl-

dependent transformation in vitro and in vivo (Skorski et aI. , 1997). In CML cells

activated Akt has multiple downstream signaling targets, which contribute to

different aspects of cell transformation. Among these targets there is a key cell
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cycle regulator p27KiP1 . p27KiP1 is an inhibitor of the cell cycle kinase cdk2.

Binding of p27KiP1 to the cdk2/cyclinE complex prevents the phosphorylation of

effectors (such as Rb) essential for entry in S phase. In Bcr/Abl expressing cell

lines, Akt-mediated phosphorylation of p27KiP1 induces its downregulation

perhaps through proteasome-mediated degradation (Gesbert et aI. , 2000). The

resulting low levels of p27KiP1 lead to an accelerated entry to the S phase

suggesting that the PI-3K/Akt pathway mediates one of Bcr/Abl mitogenic

signals.

Another key substrate of the PI-3K/Akt pathway is the pro-apoptotic

protein Bad. Bad induces apoptosis by sequestering Bcl2 and BclX anti-

apoptotic factors. Bad phosphorylation by Akt induces its association with

cytoplasmic 14- 3 proteins, which prevents the formation of the inactivating

complex with Bcl2 and BcIX . Bad phosphorylation by PI-3K/Akt is an important

survival signal in Bcr/Abl transformed cells (Neshat et aI. , 2000). Interestingly,

other pro-apototic factors such as Bim are downregulated by PI-3K/Akt pathway

in CML cell lines. In this case, the regulation is thought to be mediated by Akt-

mediated repression of FKHR-L 1 transcriptional activity (Komatsu et aI. , 2002).

Taken together these studies provide evidence that the PI-3K/Akt pathway

mediates many aspects of Bcr/Abl induced cell transformation including inhibition

of apoptosis and mitogenic stimulation of the transformed cells.



1. I. D. Mechanisms of transformation

Several lines of evidence indicate that tumorigenesis is a multistep

process. A normal cell undergoes essential alterations of important cellular

functions that collectively lead to malignant transformation. Like many other

oncogenes, Bcr/Abl accelerates the rate of accumulation of these physiological

alterations by deregulating multiple cellular processes through the activation of

multiple signaling pathways. Each signaling pathway activated by Bcr/Abl

contributes to one or more of these cellular alterations. These important cellular

alterations include: growth factor independence, inhibition of apoptosis, mitogenic

stimulus, altered adhesion and tissue invasion , limitless replicative potential and

genome instability.

(1) Growth factor independence

Proliferation and differentiation of hematopoietic cells is tightly regulated

by several growth factors (GF) and cytokines such as interleukin 3, oncostatin M

and GM-CSF. These factors activate specific signaling pathways through their

association with cell surface receptors. While normal cells depend on the

activation of these pathways for their survival , Bcr/Abl transformed cells can

survive in the absence of these factors. 
In transformed cells different strategies

can be used to achieve growth factor independence including the autocrine



production of the growth factors and the aberrant activation of cytokine signal

transduction pathways.

Many cancer cells acquire the ability to produce the growth factors to

which they are responsive. This self-supporting production creates a positive

feedback signaling loop often described as autocrine stimulation. Bcr/Abl

expressing myeloid cell lines synthesize granulocyte-macrophage colony-

stimulating factor (GM-CSF) and/or interleukin 3 (IL-3). The conditioned media

from these cell lines can sustain growth of non-transformed parental cell lines

(Anderson and Mladenovic, 1996). The presence of an autocrine loop in Bcr/Abl

transformed cells is also found in vivo. Leukemic cells derived from Bcr/Abl

transplanted mice produce excess IL-3 and GM-CSF , this autocrine loop

contributes to CML progression in these animals (Zhang and Ren , 1998).

Although autocrine loops clearly contribute to Bcr/Abl transformation they are not

required for the establishment of GF independence. In fact, the two pathways

leading to GF independence or to the establishment of autocrine loops can be

uncoupled in cells transformed by a Bcr/Abl mutant lacking the SH2 domain

(Bcr/AbI8SH2). Thus, expression of Bcr/AbI8SH2 mutant in a factor-dependent

myeloid cell line induces growth factor independent proliferation but prevents the

production of IL-3 and GM-CSF and conditioned media from Bcr/AbI8SH2 lines

fail to sustain growth of the parental cell line (Anderson and Mladenovic, 1996).

In agreement with these observations, the use of neutralizing antibodies against



IL-3 or GM-CSF in Bcr/Abl transformed cells does not affect GF independence.

Taken together these results suggest that GF independence and establishment

of an autocrine loop are two uncoupled pathways and both of these alterations

contribute to Bcr/Abl cell transformation.

Another strategy to develop autonomous growth is to deregulate cytokine

signaling pathways in order to bypass the requirement of ligand-receptor

interaction. In leukemic cells the most affected cytokine signaling pathway is

JAK/STAT. As described in the previous section , Bcr/Abl constitutively activates

STAT5 and this activation is JAK independent. Interestingly, STAT5 activation in

CML lines is not a consequence of IL-3 or GM-CSF autocrine loop but is directly

correlated to Bcr/Abl tyrosine kinase activity (Chai et aI. , 1997). A possible

mechanism by which ST A T5 mediates malignant proliferation is through the

transcriptional regulation of different genes such as oncostatin M and pim-

Oncostatin M (OSM) is a cytokine that is critical for the development of

multipotential hematopoietic progenitors (Grenier et aI. , 1999). Mice

reconstituted with bone marrow expressing OSM develop myeloproliferative

disease indicating that ST A T5 mediated expression of this cytokine might

contribute to malignant myeloid expansion (Schwaller et aI. , 2000). Pim- 1 is a

serine/threonine kinase that is upregulated in Bcr/Abl expressing cell lines

(Amson et aI. , 1989; Nosaka et aI. , 1999a) and whose expression is STAT5

dependent (Nieborowska-Skorska et aI. , 2002). In addition, exogenous



expression of Pim-1 in hematopoietic cell lines allows GF autonomous

proliferation (Nosaka and Kitamura , 2002). Recently, a Bcr/Abl mutant (Bcr/Abl

L\SH2SH3) that does not activate STAT5 was shown to be defective in Pim-

upregulation. This Bcr/Abl mutant has impaired leukemogenic capacity, which

cannot be restored by overexpression Pim-1 alone but required coexpression of

multiple STAT5 anti-apoptotic targets (Nieborowska-Skorska et aI. , 2002). In

addition , expression of a dominant negative mutant of Pim- 1 does not affect

Bcr/Abl induced growth factor independent proliferation (Nosaka and Kitamura,

2002). Taken together these results suggest that Pim-1 might playa critical role

but it is dispensable for Bcr/Abl induced transformation.

(2) Inhibition of apoptosis

The ability of the Bcr/Abl oncogene to inhibit apoptosis is thought to be

important for survival of CML differentiated granulocytes and for the induction of

clonal expansion in the initial phase of the disease (Bedi et aI. , 1994). Although

the role of Bcr/Abl as an inhibitor of apoptosis has been studied intensively, the

mechanisms by which this inhibition is accomplished are still controversial. The

majority of the proposed mechanisms involve the regulation of Bcl-2 family

members and pathways that lie upstream of procaspase-3 activation (Dubrez et

aI. , 1998). There are three main protagonists in Bcr/Abl anti-apoptotic events

that have been reported: Bad , Bcl-2 and BcIX



Bcl- is the founder of a large family of apoptotic regulators. Both Bcl2

and BcIX carry out their anti-apoptotic function by acting at the level of the

mitochondrial membrane. The expression of the anti-apoptotic factor Bcl-2 is up-

regulated in Bcr/Abl expressing cells (Cirinna et aI. , 2000; Sanchez-Garcia and

Martin-Zanca, 1997). This induction is mediated by the combined action of the

PI3K/Akt (Skorski et aI. , 1997) and the Ras pathways (Sanchez-Garcia and

Martin-Zanca, 1997). Suppression of either Bcl-2 expression or Ras activation

abolishes Bcr/Abl anti-apoptotic properties and blocks tumorigenicity in vivo

(Cortez et aI., 1996; Sanchez-Garcia and Martin-Zanca, 1997). On the other

hand, Bcl-2 overexpression restores the transforming potential of a mutated

Bcr/Abl defective in transformation (Cirinna et aI. , 2000). The mechanism by

which Bcr/Abl induced overexpression of Bcl-2 prevents apoptosis is still poorly

understood. One hypothesis is based on the observation that Bcl-2 might

associate with the serine/threonine kinase Raf- 1 localizing it to the mitochondrial

membrane (Wang et aI., 1994). Here, Raf- 1 is able to negatively regulate the

pro-apoptotic factor Bad by phosphorylation of an important serine residue (see

later) .

Bad is a pro-apoptotic member of the Bcl-2 family which lacks the

mitochondrial insertion signal and therefore is mainly localized in the cytoplasm

(reviewed in (Gross et aI. , 1999a). In normal cells, Bad is found in a

phosphorylated inactive form usually associated with cytoplasmic 14-



proteins. In response to an apoptotic stimulus, Bad becomes unphosphorylated,

it dissociates from 14- 3 and translocates to the mitochondria. Here, active Bad

interacts with membrane bound anti-apoptotic factors Bcl-2 and Bcl . This

association interferes with the anti-apoptotic properties of these two proteins and

triggers cell death. Different studies suggest that Bcr/Abl exerts its anti-apoptotic

activity in part by modulating different steps of Bad- induced death pathway. One

level of regulation is achieved by activating the kinases responsible for Bad

phosphorylation. Constitutively phosphorylated Bad is unable to translocate to

the mitochondria and thus induce apoptosis under stress conditions. Akt and

Raf-1 are likely candidates to accomplish Bad inactivation and indeed both of

these kinases are constitutively activated in Bcr/Abl transformed cells (Neshat et

aI. , 2000; Skorski et aI. , 1997). A second strategy to block Bad- nduced

apoptosis is to inhibit the phosphatase activity of PP- 1 a thus blocking Bad

dephosphorylation (Salomoni et aI. , 2000). An interesting observation is that

Bcr/Abl transformed cells are more resistant to death induced by a mutated form

of Bad in which the regulatory serines are replaced by alanines (Salomoni et aI.

2000). This particular mutant is resistant to phosphorylation-dependent

inactivation. A proposed mechanism envisions Bcr/Abl quenching Bad apoptotic

activity through the overexpression of the anti-apoptotic factors Bcl-2 and Bcl

(Salomoni et aI. , 2000).



As research in the Bcr/Abl field advances additional mechanisms for the

anti-apoptotic activity of this oncogene have been identified. Recently Gelfanov

and coworkers showed a cooperative response between the Ras and the PI-

3K/Akt pathway in Bcr/Abl cells leading to the activation of p65NF-KB and the

transcriptional upregulation of c- IAP2 (Gelfanov et aI. , 2001). This clearly

indicates that other mechanisms are likely to participate in this important aspect

of Bcr/Abl oncogenic activity.

(3) Mitogenic stimulus

The ability to activate mitogenic signaling pathways is one of the important

steps that allow transformed cells to expand rapidly. During the chronic phase

CML cells are still able to differentiate normally but they exhibit increased

prolierative capacity since they undergo extra cycles of cell division as compared

to normal myeloid cells. This cycling ability confers a growth advantage to the

transformed cells allowing the initial expansion of the malignant clone (Clarkson

and Strife , 1993). The subsequent accumulation of secondary mutations

contributes to the increased proliferation rate of CML cells observed in blast

phase. Thus, Bcr/Abl might increase the cellular proliferation in two ways: by

accumulating mutations in important components of the cell cycle machinery; or

direct activation of mitogenic signaling pathways that drive cell cycle progression.

While mutations of cell cycle regulators are frequently found in blast crisis CML
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patients , in chronic phase CML these mutations are uncommon. Thus, in this

phase, the ability of Bcr/Abl to activate mitogenic signaling pathways

particularly important. This mitogenic ability is evident in experiments where

inducible expression of Bcr/Abl stimulated cell cycle re-entry of starved normal

myeloid cells (Cortez et aI., 1997). In these cells the G1-S transition stimulated

by Bcr/Abl is associated with the activation of specific components of the cell

cycle machinery including Cdk2 (Cortez et aI. , 1997) and cyclin D2 (Cortez et aI.

1997; Jena et aI. , 2002). In accordance with these observations , deficiency in

cyclin D2 inhibits Bcr/Abl-nduced cell proliferation in vitro and transformed cells

are arrested predominantly in G1 phase (Jena et aI. , 2002). Interestingly, the

block in Bcr/Abl- induced cell cycle proliferation is observed in bone marrow

derived from either hemizygous cyclin 02+/- or homozygous cyclin 02- This

result might suggest that a threshold amount of cyclin D2 is required in order to

induce G1-S progression in CML cells.

Bcr/Abl induces G1-S transition also through the downregulation of cdk

inhibitors such as p27KiP1
. Regulation of p27KiP1 is achieved through the activation

of the PI3K/Akt pathway (see previous section) and is mediated by proteasome-

dependant degradation (Gesbert et aI. , 2000).

Besides increasing malignant proliferation , Bcr/Abl induced deregulation of

the cell cycle machinery also serves a different function in transformed cells.



Recent reports have shown that Bcr/Abl induces a prolonged G2/M arrest

following irradiation (Nishii et aI., 1996). This delay allows transformed cells to

recover from genotoxic stress and prevents mitotic catastrophe. Thus Bcr/Abl

induced growth arrest observed under these conditions may serve an unusual

anti-apoptotic function.

(4) Altered Cellular Adhesion

In CML, Bcr/Abl+ progenitor cells have selective growth advantage over

normal progenitors cells. This advantage determines the abnormal clonal

expansion that is observed in the initial chronic phase of the disease.

Interestingly, at this initial stage CML progenitors lack responsiveness to signals

from the bone marrow microenvironment. This effect is correlated to the failure

of CML progenitors to adhere to bone marrow stromal layer and to the

extracellular matrix (reviewed by Salesse and Verfaillie, 2002). In normal

progenitors, adherence to the stromal layer is believed to be essential for the

regulation of hematopoiesis since it brings the anchored progenitors to close

proximity of cytokine producing cells. The pluripotent progenitors will determine

their fate depending on the type of extracellular signals they receive from the

neighboring cells. In CML cells , failure to adhere would allow the cells to escape

the differentiation program and to migrate from the marrow into capillaries at an

immature stage of development. Direct contact of the progenitor cells with the

c. 
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stromal layer is not required for proliferation, which is stimulated by soluble

factors. However , a substantial increase in myeloid proliferation is observed in

the absence of stromal contact indicating that the stroma mediates an inhibitory

signal (Salesse and Verfaillie , 2002). The adhesion studies that followed these

initial observations are contradictory. The major shortcoming is due to the

variability in adhesion capacity of primary CML cells versus cultured cell lines

and to culture conditions. So while primary CML cells show decreased

adherence , Bcr/Abl expressing myeloid cell lines are tightly anchored to stromal

layers.

In primary CML progenitors (which resemble more closely the adherence

characteristics observed in CML) the decreased adherence is correlated with a

defect in integrin-mediated signaling. Integrins are transmembrane proteins that

form heterodimers consisting of a and 13 subunits. The intracellular domain of the

13 subunit is linked to the cytoskeleton. Upon binding to its ligand the integrins

initiate a signaling cascade that ultimately affects the cytoskeleton structure. In

CML cells, incubation with a 131 integrin-activating antibody restores stromal and

fibronectin adhesion and inhibits cell proliferation (Salesse and Verfaillie, 2002).

These results suggest that reduced binding of the integrin extracellular domain

results in defective intracellular signaling and loss of cell adhesion. Interestingly,

IFN-a induces a significant dose-dependent increase in the adhesion of CML

progenitors to the stroma. This effect is inhibited by the addition of blocking
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antibodies against different integrins (Salesse and Verfaillie , 2002). The

normalization of progenitor-stroma interaction is probably the reason why IFN-a

is successfully used as alternative treatment of CML patients that cannot

undergo allogenic bone marrow transplantation.

The molecular mechanism that links Bcr/Abl to the deregulation of integrin

signaling is still unclear. Among the proteins that tyrosine phosphorylated in

Bcr/Abl expressing cells there are important focal adhesion components such as

CrkL (ten Hoeve et aI. , 1994), Fak (Gotoh et aI. , 1995; Salgia et aI. , 1995a),

p130Cas (Salgia et aI. , 1996), Cbl (Andoniou et aI., 1994) and Paxillin (Salgia et

aI. , 1995b). Inhibition of Bcr/Abl tyrosine kinase activity with PTK inhibitors

(Tyrphostin AG957) reduces the level of tyrosine phosphorylation of these focal

adhesion molecules and increases stromal adhesion (Bhatia et aI. , 1998). These

results suggest that constitutive phosphorylation of focal adhesion components

may impair their ability to mediate integrin signaling leading to decreased

adhesion in CML progenitors.

(5) Limitless replicative potential

One hallmark of oncogenic transformation is the ability of tumor cells to

replicate indefinitely, a process known as immortalization. In contrast , normal

human cells have the capacity for a definitive number of cell duplications (usually

60-70 doublings). The "counting device" that controls the number of completed



doublings is the telomeric ends of chromosomes. Telomeres are composed of

several thousands of repeated 6bp sequence, portions of these stretches are

systematically lost at each replicative event due to the inability of conventional

DNA polymerases to complete synthesis of chromosomal ends (reviewed in

Maser and DePinho, 2002). The progressive erosion of telomeres ends with the

induction of cellular checkpoints that block cell division. This first level of

regulation , known as senescence , prevents the exposure of the unprotected

chromosome ends that could cause karyotipic rearrangements. This first

regulatory mechanism can be breached by the inactivation of cell cycle

regulators such as p53 and Rb. As proliferation continues further telomere

erosion contributes to genomic instability and peaks with massive cell death

known as "crisis . The subset of cells that survive this second proliferation block

usually display massive genetic instability and most probably have acquired the

combination of genetic alterations required for malignant transformation. The

limitless replicative potential is achieved usually by activating telomere

maintenance mechanisms. Among these mechanisms is the activation of a

telomerase reverse transcriptase that de novo synthesizes the 6bp repeats at the

ends of chromosomes. Interestingly, transformed cells exhibit short telomeric

ends compared to the adjacent "normal cells" since they undergo more cell

division that allow the accumulation of the array of oncogenic alteration prior

telomerase activation (Hanahan and Weinberg, 2000; Maser and DePinho,
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2002). In this model , the advent of oncogenic transformation occurs before the

establishment of telomeric maintenance. In accordance to this model is the

finding that telomerase is not required for tumorigenesis and telomerase knock

out mice are more prone to develop tumors. In this new view of the oncogenic

process the telomere dysfunction and subsequent crisis represents a

mechanisms by which a cell accumulates the transforming alterations.

In CML cells, telomere length drastically shortens with progression

between chronic and blast phase. In this latter phase, the acquisition of

cytogenetic aberration is also associated with an increase of telomerase activity

(Brummendorf et aI. , 2000). Different studies have suggested a correlation

between telomere length in blast phase and the onset of blast crisis whereas

shorter chronic phase telomeres are associated with shorter latency to blast

phase and a high frequency of chromosomal rearrangements (Boultwood et aI.

2000; Brummendorf et aI. , 2000). Therefore , telomeric measurement in chronic

phase patients could be an invaluable diagnostic tool for the selection of patients

at high risk of disease transformation.

(6) Genomic instability

The progression of CML to blast phase is usually accompanied by the

appearance of chromosomal defects including duplication of the Ph

chromosome. These macroscopic rearrangements suggest that Bcr/Abl can
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induce genomic instability. The ability to increase the mutation rate is a powerful

mechanism that allows oncogenes to accelerate the process of tumor

progression. One way Bcr/Abl achieves genomic instability is by disabling key

components responsible for the surveillance of genomic integrity. A typical

targeted member of this "surveillance team " is the tumor suppressor protein p53

This protein is a DNA damage sensor that elicits either a cell cycle arrest to allow

DNA repair or apoptosis if damage is excessive. The p53 DNA damage

signaling pathway is lost in most CML cells that reach blast crisis (Chopra et aI.

1999). Besides disabling DNA damage sensors (as in the case of p53), Bcr/Abl

prevents the elimination of cells with excess DNA damage and/or with irreparable

lesions by inhibiting apoptotic pathways (see previous section). The ability to

elude elimination is also useful for transformed cells to survive genotoxic damage

induced by treatment and allows CML cells to tolerate higher levels of DNA

damage compared to normal cells (Skorski , 2002). Interestingly, the level of

DNA damage in CML cells is higher than in normal cells despite the fact that

CML cells can repair most of DNA lesions faster. This facilitated repair is a direct

effect of Bcr/Abl catalytic activity and it may be mediated by the upregulation of

Rad51. Rad51 is functionally similar to the E.coli RecA protein , it is a key player

in the homologous recombination DNA repair responsible for the elimination of

double strand breaks (DSB). Bcr/Abl regulates Rad51 at multiple levels: at the

mRNA level by inducing STAT5-mediated transcription and at a post-translational



level by activating Rad51 ability to associate with DSB through direct

phosphorylation of specific tyrosine residues and by inhibiting caspase 3-

mediated Rad51 degradation (Skorski , 2002). Although Bcr/Abl enhances the

cell' s repair ability, the efficiency of the repair mechanisms may be diminished.

For example, in Bcr/Abl expressing cell lines there is enhanced expression of

DNA polymerase B, which has intrinsic low fidelity. In addition Bcr/AbIP210

thought to hinder the repair capability of the xeroderma pigmentosum group B

protein (XPB) (Takeda et aI., 1999). This effect in combination with the inhibition

of apoptosis and mitogenic stimulation allows the accumulation of mutations that

could result in blastic transformation.

LlI.E. Therapeutic strategies for treatment of Bcr/Abl positive leukemias

Currently allogenic bone marrow transplantation is the only successful

way to eradicate CML. Unfortunately, only 20-25% of CML patients are eligible

for this procedure due to age restraints or lack of a suitable donor. Even in

transplant cases the risk of morbidity and mortality is very high. Other

therapeutic strategies were developed based on the observation that the driving

force of CML is Bcr/Abl tyrosine kinase activity. This activity is not only required

for the initial development of the disease but also for the maintenance of

leukemia. This can be observed in a transgenic mice model where the

expression of Bcr/Abl is regulated by a tetracycline inducible promoter. In these



mice, the increase in Bcr/Abl expression determines the onset of leukemia. After

the disease is established a subsequent inhibition of Bcr/Abl expression induces

remission in all mice indicating that expression of Bcr/Abl is required for the

maintenance of the disease (Huettner et aI. , 2000). Different therapies

developed to lower Bcr/ Abl expression at a translational level by either antisense

oligonucleotide (Gewirtz et aI. , 1998) or ribozyme (James and Gibson, 1998)

strategies; unfortunately these approaches failed to fulfill their initial promise.

However, direct inhibition of Bcr/Abl tyrosine kinase activity turned out to be a

successful strategy. The development of a specific signal transduction inhibitor

(STI571) drastically changed the prognosis of many CML patients (Druker et aI.

1996). Selective inhibition by STI-571 is achieved by binding to the inactive

conformation of the tyrosine kinase. This reversible inhibitor competes for the

Bcr/Abl ATP binding site and blocks the phosphorylation of downstream effectors

(Schindler et aI. , 2000). The drug is specific at micromolar concentrations

although it does affect other tyrosine kinase such as c-Abl and c-Kit. The

therapeutic power of STI-571 is evident in clinical trials where it induced

hematological remission in nearly all chronic phase patients treated with

appropriate doses (Sawyers, 2002). Unfortunately the drug is not as powerful in

blast crisis cases; after an initial hematological response the majority of patients

relapse with a drug resistant form of the disease. Molecular characterization of

CML cells from these patients revealed different drug-resistance mechanisms.



The majority of these mechanisms are Bcr/Abl dependent and include gene

ampliication of the oncogene and specific mutations of Bcr/Abl kinase domain

that hinder STI-571 binding (Nimmanapalli et aI. , 2002; Sawyers , 2002). These

observations suggest that blast phase.

CML cells are genetically unstable and normally accumulate mutations

during disease progression. In this context, STI-571 selects for the drug resistant

alleles that cause the observed relapse. In order to circumvent the occurrence of

resistance novel therapies combine STI-571 with traditional chemotherapy.

Although there are some encouraging results (Nimmanapalli et aI. , 2002;

Thiesing et aI. , 2000) the search for the optimal drug combination is still in

progress. The elucidation of critical steps in the intracellular signaling pathways

will be pivotal in the identification of additional molecular targets for effective

therapeutic compound.



CHAPTER II

MATERIALS AND METHODS

(1) Plasmids

A bicistronic MSV retroviral vector, and vectors expressing v-Abl

Bcr/Ab1P185 or Bcr/AbIP210 or JBD have been described (Dickens et aI. , 1997;

Muller et aI., 1991). An MSCV- IRES-GFP retroviral vector (Zindy et aI. , 1998)

was used for in vivo bone marrow reconstitution assays. Bcr/Abl isoforms (EcoRI

fragment from the corresponding MSV vectors) were cloned in the corresponding

Eco RI restriction site of the MSCV- IRES-GFP vector. The plasmid

expressing retroviral packaging proteins was provided by Charles Sawyers.

The Dbl domain of Bcr/AbIP210 (aa 413-789) was amplified by polymerase

chain reaction (PCR) using the following primers 5' GCGAGTGAATTCGACTTGG-

AAAAGGGCTTGGAG-3' and 5' GCTGTGCTCGAGCTGGAGTTTCACACACGAGTTG-

. The amplicon was digested with EcoRI and Xhol and ligated into the

corresponding restriction sites of pCMV-Tag2B (Stratagene) in frame with the

Flag epitope tag. Bcl2 promoter reporter plasmid (LB334; (Wilson et aI. , 1996)

was provided by Linda Boxer and was used in cotransfection assays with the

Renila reniformis luciferase plasmid pRLnull (promega).



(2) Mice

C57BL6 mice expressing Bcl-2 under the I- enhancer IgH promoter

(Strasser et aI. , 1991) and wild-type C57BL6 mice were obtained from The

Jackson Laboratories. Jnk1 /- mice were described previously (Dong et aI.

1998). The animals were housed in a facility accredited by the American

Association for Laboratory Animal Care.

(3) Cell lines: Culture , Transfection protocols and Viral Production.

293T and NIH3T3 cells were cultured in Dulbecco modified Eagle medium

(DMEM) supplemented with 10% Fetal Bovine Serum (FBS)(Omega scientific,

Hyclone) 2mM L-Glutamine (Life Technologies), 100 U/ml penicilin and 1001-g/ml

Streptomycin (Life Technologies). For the analysis of the Dbl domain described

in section III.II.C subconfluent 293T cells were transfected with 11-g of either

Flag-Dbl plasmid or pcDNA3 as a empty vector control using Superfect (Gibco)

following the manufacturer s protocol. The endogenous JNK activity of the

transfected cells was analyzed 48 hours post transfection. 293T cells were also

used to produce viral supernatants. For this purpose subconfluent plates (80%)

were cotransfected using Superfect with equal amounts of the retroviral plasmid

of choice and the Weco plasmid. Cells were incubated in growth media for 24

hours post transfection and then shifted to Virus Collecting medium (VCM)

01 "
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(Iscove s Modified medium with 10% FBS, 2mM L-Glutamine (Life Technologies),

100 U/ml penicillin and 1 OOllg/ml Streptomycin (Life Technologies)). Culture

supernatants containing virus were collected starting 40 hours up to 72 hours

post transfection. After each collection the cultures were replenished with fresh

VCM medium. All collected aliquots of viral supernatant were pooled , cleared by

centrifugation and filtered through a 0.451l filter. The filtered aliquots were stored

at - C. Viral titers for the MSV retroviruses were measured by infecting

murine cells (NIH3T3) with serial dilutions of viral supernatants. The infections

were carried our by incubating exponentially growing cells overnight at 37 C 5%

with retroviral supernatants in the presence of 8llg/ml hexadimethrine

bromide (Polybrene) (Sigma). 48 hours post infections cells were transferred to

150mm dishes and cultured in selection media (growth media containing

2001lg/ml of Geneticin (G418 , Gibco). Media was routinely replaced every 48

hours. Two weeks post infection plates were analyzed for the presence of G418-

resistant colonies in the different viral dilutions. Viral titers for the MSCV

retroviruses were estimated by infecting equal numbers of Baf3 cells with serial

dilutions of viral supernatant. Infected cells were analyzed by flow cytometry 48

hours post infection for the presence of GFP+ cells. The percentage of GFP+

cells in a specific dilution would give an estimate of the viral titer. All infected

cells were analyzed by immunoblot for Bcr/Abl expression.



Baf3 were cultured in growth media (RPMI medium supplemented with

5ng/ml recombinant mouse Interleukine-3 (IL-3) (R&D System), 10% Fetal

Bovine Serum (FBS)(Omega scientific , Hyclone) 2mM L-Glutamine (Life

Technologies), 100 U/ml penicillin and 1 OO g/ml Streptomycin (Life

Technologies)). Baf3 stable cell lines expressing Bcr/AbIP185 , Bcr/AbIP210 or empty

vector control were generated by retroviral infection using MSV retroviral

constructs. Equal number (10 cells) of exponentially growing cells were

incubated overnight at 37 C 5% CO with retroviral supernatants in the presence

of 0.5ng/mIIL-3 and 8 g/ml Polybrene (Sigma). After 16 hours cells were

washed and resuspended in fresh growing media at a concentration of 2x10

cells/ml. 48 hours post infection cells were transferred to selection media

(growth media containing 400 g/ml Geneticin (Gibco)), uninfected cells were also

plated as negative controls. After two week of selection samples from each

culture were analyzed by western blot for Bcr/Abl expression. Stable cell lines

were routinely cultured in selection media. For the SP600125 experiments

described in Results (section III.I.B) 2x10 cells (Baf3/p185 or Baf3Nector

control) were cultured in 10ml of growth media with or without 0.5ng/ml IL-3 in

the presence of either 20 M SP600125 (Biomol) or dimethyl sulfoxide (DMSO)

(Sigma). The DMSO concentrations in all samples was 0.2%. Cells were treated

for either 16 hours (for BrdU and trypan blue viability assays) or 24 hours (for

Annexin V labeling) and cell viability was evaluated by counting trypan blue



negative cells in each culture. Equal number of cells were analyzed by flow

cytometry. For the transient transfection experiments described in section IILlI.B

equal numbers of exponentially growing Baf3 cells (Baf3/p210 and Baf3Nector)

(5x10 cells/sample) were washed twice in serum-free media (RPMI with no

supplements) and resuspended at a concentration of 10 cells/ml. Cells were

aliquoted (0.5 ml) in electroporation chambers and incubated for 1 Om in at room

temperature with a DNA mixture containing 4 g of Bcl2 promoter reporter

plasmid , 0. g of pRLnull and 8 g JBD (when indicated) plus varying amounts of

pBluescript II KS+ (Stratagene) as a carrier in order to reach total DNA content of

30 g. Cells were electroporated (250V, 1180 , low Q) using an Invitrogen

Cellporator and immediately placed on ice for 10 min. Following this incubation

cells were allowed to recover in growth media for 48 hours before analyzing

luciferase activity.

S17 cells (Collins and Dorshkind, 1987) were routinely cultured in aMEM

supplemented with 20% FBS (Omega scientific , Hyclone) 2mM L-Glutamine (Life

Technologies), 100 UI/ml penicillin and 100 g/ml Streptomycin (Life

Technologies). For the production of stromal layers, S17 cells were allowed to

reach confluency and then they were placed in Lymphoid media (RPMI5% FBS

5x1 0. M 2-mercaptoethanol (f3ME) 2mM L-Glutamine (Life Technologies), 100

U/ml penicilin and 1 OO g/ml Streptomycin (Life Technologies)) for two days to



prepare conditioned media to sustain the growth of primary lymphoblast (see

primary cultures section).

(4) Primary cells: cultures , Bone marrow assay

For bone marrow assays described in section III. , I followed the

protocol for high density bone marrow long term culture described in (Whitlock et

aI. , 1984). Bone marrow cells were isolated by flushing tibias and femurs of 4

week-old male mice. Cells were resuspended in Lymphoid media and cell

density was determined by counting cells in 0.2% methylene blue and 3% acetic

acid which preferentially lyses erythrocytes. Equal numbers of cells

(1.5x10 cells) were infected with the desired virus in the presence of 8 g/ml

Polybrene for 3 hours at 37 C 5%C0 . After infection cells were washed with

Lymphoid media and plated in three 60mm dishes (5x10 cells/dish). Culture

plates were set on a tray wrapped with aluminum foil and placed in 37 C 5%C0

incubator. Cells were routinely fed every three-four days by either adding a 2 ml

of fresh lymphoid media (on day 3-4 post infection) or by removing 75% of

medium without removing non-adherent cells and adding 4 ml of fresh media (on

day 7 post infection). The routine feeding schedule was repeated every week for

the entire duration of the assay. Starting 12 days post infection aliquots were

taken from each culture every two days and cell density was measured by

counting trypan-negative cells with a hemocytometer.



(5) Leukemogenic transformation assays and "ex vivo" cultures

We used two different methods of in vivo reconstitution that would give

rise to either Bcr/Abl induced lymphoid or myeloid disease in recipient mice. For

the " lymphoid" reconstitution protocol , bone marrow cells were isolated from

tibias and femurs of donor male mice (4 week-old) and transduced with MSCV

retroviruses (Bcr/AbI P185 , Bcr/AbIP210 and empty vector control) following the same

infection protocol as for the bone marrow assay described above. Three hours

post infection , the transduced bone marrow was washed once in lymphoid media

and resuspended in sterile Phosphate buffered saline (PBS) at a concentration of

2x10 cells/ml. Transduced bone marrow cells (10 ) were injected into the tail

vein of lethally irradiated (2x525 Rads each dose administered 4 hours apart)

C57BL6 recipient mice (8 week-old females). Secondary transplantation assays

were performed using non- lethally irradiated (1 x 450 Rads) mice (8 week old

C57BL6 females). All recipient mice were monitored daily for signs of morbidity

and weight loss. Premoribund mice were euthanized by cervical dislocation.

For the "myeloid" reconstitution protocol donor mice (4 week-old males)

were treated with a single dose of 10mg/ml 5-Fluorouracil (5-FU) (0.008ml/gr of

body weight) 3 days prior harvest of the bone marrow. The bone marrow was

transduced with MSCV retroviruses (Bcr/AbIP185 , Bcr/AbIP210 and empty vector

control) and C57BL6 mice were reconstituted using the same protocol as



described for the "lymphoid" reconstitution assay. All recipient mice were

monitored daily for signs of morbidity and were euthanized 15 days post

reconstitution.

White blood counts were performed on all recipient mice twice a week

using the Unopette microcollection system (Becton Dickinson). After

euthanization the organs from the recipient mice were harvested , weighed, fixed

in 4% paraformaldehyde, processed for paraffin-embedded sectioning, and

stained with hematoxylin and eosin. Femurs were treated with Decalcifier-

(Surgipath Medical Ind. ) overnight prior to fixation. Whole bone marrow was

harvested from tibias and femurs and treated with red blood cell lysis solution

ACK (0. 15M NH , 1mM KHC0 and 0. 1mM disodium EDTA (ph7.3)) (Zhang

and Ren , 1998). Cells were counted and aliquots were cytocentrifuged onto

slides and stained with Diff Quik (Dade Behring AG) following manufacturer

recommendations. Bone marrow was also analyzed by flow cytometry for the

expression of surface markers (see later).

Cells isolated from the bone marrow of the recipient premoribund mice

were cultured in vitro following the bone marrow long term culture protocol

described for the bone marrow assay (Whitlock et aI. , 1984). After one week

non-adherent cells were harvested and plated onto confluent S17 stromal layers.

The cells obtained were routinely passaged on stromal layers. To examine the

dependence of the cells on the stromal layer, the cells were washed with media



and plated in the presence and absence of the stromal layer (1 06 cells/1Oml).

BrdU labeling and Annexin V assays were performed 3 days post plating.

(6) Immunoblot Analysis

Cells were lysed in Triton Lysis Buffer (TLB) containing 20mM Tris

(pH7.4), 137mM NaCI , 2mM sodium pyrophosphate, 1% Triton X- 100, 10%

glycerol , 2mM EDTA, 25mM f)-glycerophosphate, 1 mM sodium orthovanadate

1 mM phenylmethylsulfonyl fluoride , 0.5mM dithiothreitol and 5""g/ml of aprotinin

and leupeptin. Lysates were incubated for 10 min on ice and then they were

cleared by centrifugation (13,000rpm for 15 min at 4 C). The protein content 

the Iysates was quantified by Bradford Assay (Biorad) and equal amount of total

protein was resolved on SDS-PAGE. Proteins were transferred

electrophoretically onto polyvinylidene difluoride membrane (Immobilon). The

membrane was blocked following the antibody manufacturer s protocols.

Immunoblots were probed with antibodies to Abl (Gaga et aI. , 1995), JNK

(Pharmingen), Flag epitope (Kodak and Sigma), Akt (Cell Signaling), phospho-

Ser473 Akt (Cell Signaling), Bcl-2 (Pharmingen) and phosphotyrosine (Py-99;

Santa Cruz). Immune complexes were detected by enhanced

chemiluminescence (NEN).



(7) Protein Kinase Assays

Two different procedures were used to measure JNK kinase activity: GST-

pull down and immunocomplex kinase assay. The GST pull-down assay was

performed to analyze JNK activity in primary cells. These cells were lysed in TLB

and then quantitated by Bradford. Lysates (50j.g) were incubated with GST-cJun

(aa 1-223) bound to Glutathione-Sepharose 4B beads (Amersham Pharmacia)

for 2 hours at 4 C. Beads were washed twice with TLB and twice with Kinase

Buffer (25mM Hepes (pH 7.4), 25mM f3-glycerophosphate , 25mM MgCI2 , 0. 1 mM

sodium orthovanadate, 0.5mM dithiothreitol). The kinase reaction was carried

out at 30 C for 15 min in a final volume of 25j.1 kinase buffer containing 50j.M

ATP (370 kBq/nmol) and 20j.M ATP. Laemmli buffer was added to stop the

kinase reaction. Immunocomplex kinase assay were used to evaluate JNK

kinase activity in transfection assays (Fig. 12). In this assay, equal amounts of

TLB Iysates were immunoprecipitated by incubation for 3 hrs at 4 C with 1 j.g of

JNK antibody pre-bound to Protein-G Sepharose beads (Amersham

Pharmacia). Immunocomplexes were washed twice with TLB and twice with

Kinase Buffer. The kinase reaction was carried out at 30 C for 15 min in a final

volume of 25j.1 kinase buffer containing 50j.M A TP (370 kBq/nmol) and

20j.M ATP and 2j.g of GST-Jun (aa1-223). All kinase reactions were resolved

on SDS-PAGE 12% gel and the phosphorylation of GST-cJun was quantitated

using a Phosphoimager (Molecular Dynamics).



(8) Luciferase reporter gene assays

Bcl2 promoter activity described in section II.B was analyzed using a dual-

luciferase reporter assay (Promega) following manufacturer s protocol.

Transfected cells were lysed in passive lysis buffer (PLB; provided by the

manufacturer). Ceillysates were subjected to three freeze/thaw cycles and then

spun for 10min 15,000xg 4 C. Aliquots of the ceillysates were added to

luciferase substrate (LARII) luminescence were immediately quantitated using a

luminometer (Monolight 2010; Analytical Luminescence Lab.). The firefly driven

reaction was quenched and the substrate for the Renilla luciferase was added by

supplementing the reaction with Stop&Glo reagent (promega). Renila induced

luminescence was quantitated and these values were used to normalize the

transfection efficiency between samples.

(9) Immunofluorescence analysis

Whole bone marrow was harvested from tibias and femurs and spleen

were dissected from the euthanized mice. Dissociated cells from the spleen and

bone marrow cells were treated with red blood cell lysis solution ACK. For

immunophenotyping by flow cytometry, equal numbers (10 /sample) of trypan

negative cells were blocked with anti-mouse CD16/CD32 (Fcyili/l receptor;

Pharmingen). Cells were stained with allophycocyanine (APC) conjugated anti-

CD45R/B220 and phycoerythrin (PE)-conjugated anti- Thy1. , CD43 , CD11 b



(Mac- 1a chain), Ly-6G (Gr-1), CD19, Ly-6AE (Sca-1), IgG, IgM , Ly-51 (6C3/BP-

1) or Ter119 (Pharmingen). Cell cycle analysis was performed using cells pulse-

labeled (15 min for primary cells and 1 hour for Baf3 cell lines) with 10!-M BrdU

fixed in 70% ethanol , and stained with DAPI (Molecular Probes) and an antibody

to BrdU (FITC- or PE-conjugated) (Pharmingen) following manufacturer

protocol. Cell death was examined by co-staining with either a combination of

Annexin V FITC-conjugated and Propidium iodide (PI) (Pharmingen) or AnnexinV

PE-conjugated (Pharmingen) and 7-aminoactinomycin D (7-AAD; Sigma).

Staining was performed following manufacturers ' recommendations. Flow

cytometry was performed using a MaFia FACS machine (Cytomation) and a

FACScan (Becton Dickinson). The extent of apoptosis was calculated as a ratio

between AnnexinV+ (apoptotic) cells and Annexin V- (live) cells in the 7AAD-

population (apoptotic index). In the experiments described in Fig. 11 the

apoptotic index was normalized to the basal death observed in untreated

samples in the absence of IL-3. TUNEL assays (Roche) were performed

according to the manufacturer s protocol and were examined by conventional

Immunofluorescence microscopy.

(10) Ribonuclease protection assays

Total RNA was extracted from ex-vivo cultures exponentially growing on

S17 stromal layers utilizing the RNeasy Mini kit (Qiagen) and following the



manufacturer s protocol. Cells were lysed in a guanidinium isothyocyanate

buffer. Lysates are passed through a silica based column that traps total RNA.

Following serial washes with ethanol based solutions the total RNA was eluted

with 301-1 of diethylpyrocarbonate-treated (DE PC) water. The RNA was

quantified and the purity determined by measuring the absorbance at 260 and

280nm using an Ultraspec (Pharmacia). Samples were aliquoted and stored at

C until use. Multi-probe ribonuclease protection assays were performed with

the Riboquant RPA kit by Becton Dickinson-Pharmingen and following the

manufacturer s protocol. Multi-probe templates were radiolabeled with 101-1 of a-

Uridine triphosphate (10I-Ci/l-l; NEN) by T7 RNA polymerase for 1 hour at

C. The reaction was treated with DNAse and extracted with phenol:

chloroform (1:1 vol/vol). The resulting aqueous phase was chloroform extracted

and total RNA was precipitated by adding ammonium acetate (final concentration

of 0.57M) and 100% cold Ethanol. Precipitation were incubated for 30 min at -

C. Samples were spun 15,000xg for 15 min at 4 C and pellets were washed

once with ice cold 90% Ethanol. Dried pellets were resuspended in 8ml of

hybridization buffer (supplied by the manufacturer). Heat denaturated samples

were hybridized overnight to the labeled probe (21-1 of 4x1 OScpm/l-l) by slow

temperature shift (from 90 C to 56 C). The hybridized RNA was digested with

RNAse (250U/ml), phenol: chlorophorm extracted and precipitated as before.

Dried pellets were resuspended in 5ml of loading buffer (supplied by the

;; .



manufacturer). 1.5x1 OS cpms of the unhybridized template set(s) and the total

volumes of the hybridized samples were resolved on a 6% denaturating

polyacrylamide gel. Gels were exposed to a Phosphoimager (Molecular

Dynamics) for quantification and to fim for autoradiography.

(11) Statistical Analysis

Calculation of mean and standard deviation (SD) and standard error of the

mean (SEM) was performed using Microsoft Excel 98. The statistical analysis of

organ weights and survival curve data was performed using Survival Tools for

StatView5 (Abacus Concepts, CA) using the Mantel-Cox (log-rank) test and

Kaplan- Meier survival analysis. The statistical analysis of the in vivo data was

carried out by Joanne Wu and Qui Liu.



CHAPTER III

RESUL TS

111.1. In vitro Approach

Initially I investigated the role of JNK in cell transformation using an in vitro

approach. For this purpose I used Bcr/Abl as a transforming agent since

previous studies indirectly linked the JNK pathway to Bcr/Abl- induced cell

transformation. I examined the effect of JNK gene disruption in Bcr/Abl

transformation using in vitro bone marrow assays (McLaughlin et aI. , 1987) to

study the effect of Bcr/Abl on lymphoid malignant proliferation. Preliminary

experiments described in section II I. LA show that JNK1 is the predominant

isoform in Bcr/Abl transformed lymphoblast. This finding allowed me to use

Jnk1-

/- 

mice for my in vitro assays and thus circumvent the unavailability of

Jnk1-/- Jnk2-

/- 

mice which die at an early embryonic stage. Interestingly, the

results obtained from the in vitro bone marrow assays suggest that while JNK1

plays a critical role in Bcr/AbIP210 lymphoid expansion it is dispensable for

Bcr/Ab1P185 induced transformation (section III.I.B). One possible explanation for

this result is that JNK2 compensates for the absence of JNK1 in Bcr/Ab1P185

transformed lymphoblast. To test this hypothesis I used a pharmacological



approach to deplete JNK activity in pro-B cells transformed by Bcr/AbIP185 . The

results of these experiments are described in section III.I.C.

In addition , the results of the bone marrow assays provide evidence of a

functional difference between Bcr/Ab1P185 and Bcr/AbIP210. These two isoforms

have defined structural differences which include a GEF domain with high

homology to the Dbl proto-oncogene present in the Bcr/AbIP210 and not in the

Bcr/Ab1 P185 isoform. Thus, I investigated whether this domain had a role in the

activation of the JNK pathway by testing the induction of JNK activity by transient

expression of the isolated Dbl domain (section III.I.D).

III. LA. JNK1 is the predominant isoform in transformed pre-B cells

To investigate the role of JNK in leukemogenesis, I examined the effect of

Jnk1- JNK gene disruption in experiments

using the oncogene Bcr/AbIP210. Lethally

.. 

cJun
irradiated mice were reconstituted with

.p54 JNK

.p46 JNK wild-type (WT) and Jnk1-

/- 

bone marrow

.. Tubulin cells transduced with a retrovirus that

Fig. 6 Measurement of IN K activity in cell lines
derived from reconstituted mice. These cells
were cultured in vitro and exposed in the pres-
ence or absence of 60Jlm2 of UV light and JNK
kinase activity was measured by in vitro kinase
assay (KA) using c-Jun as a substrate. Cell
extracts were examined by immunoblot (IB) anal-
ysis using anlibodiestoJNK and Tubulin. JNK1
and JNK2 are expressed as groups of isofororms
of approximately 46-kD and 54-kD. The major
JNK1 and JNK2 isoforms are 46-kD.

expresses Bcr/AbIP210. The cells from the

reconstituted bone marrow were isolated

and levels of JNK activity were

measured. High levels of JNK protein



kinase activity was observed in extracts prepared from wild-type cells after

exposure to UV light (Fig. 6). In contrast, a severe reduction in JNK activity was

detected in Jnk1-

/- 

cells. This observation correlates with the results of

immunoblot analysis that indicated high levels of JNK1 and low levels of JNK2 in

wild-type cells (Fig. 6). The residual JNK2 levels found in Jnk1-

/- 

cells did not

seem to contribute substantially to the JNK kinase activity after UV exposure

(Fig. 6). These data demonstrate that JNK1 is the major JNK in these cells.

Since Jnk1- Jnk2-

/- 

mice are not viable (Kuan et aI. , 1999; Sabapathy et aI.

1999), I focused our analysis of Bcr/AbIP210
on Jnk1-

/- 

mice.

III. LB. In vitro transformation by Bcr/AbIP210
is impaired in Jnk1-

/- 

bone

marrow cells

To examine the potential role of JNK in transformation , I investigated the

effect of the Bcr/Abl oncogene using bone marrow assays in vitro to measure the

outgrowth of transformed pre-B cells (McLaughlin et aI. , 1987). Comparison of

bone marrow from wild-type and Jnk1-

/- 

mice demonstrated no differences in the

relative abundance of cell lineages monitored by flow cytometry (Fig. 7A). The

bone marrow was transduced with retroviruses that express Bcr/AbIP210

Bcr/AbI P185. Control experiments were performed using a retrovirus without

Bcr/Abl (Vector). Both Bcr/Abl isoforms caused outgrowth of transformed pre-

cells in cultures of wild-type (WT) bone marrow (Fig. 7B). Bcr/Ab1P185 caused
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rapid outgrowth of pre- B cells in Jnk1-

/- 

cultures. In contrast, the outgrowth of

pre- B cells in Jnk1-

/- 

cultures transduced with Bcr/AbIP210 was severely reduced

(Fig. 7B). This reduced outgrowth caused by Bcr/AbIP210
in Jnk1-

/- 

was not due to

differences in Bcr/Abl expression (Fig. 7C), nor to a cell cycle defect (Fig. 70).

Furthermore , transformation by Bcr/Abl did not increase JNK2 expression in

Jnk1-

/- 

cells (Fig. 7E). The absence of a detected cell cycle defect suggested

that the failure of the Jnk1-

/- 

Bcr/AbIP210 cells to accumulate might be caused by

increased cell death (Section IILlII.A). Together these data indicate that JNK1

plays a critical role in Bcr/AbIP210 transformed cells. The proliferation defect in

Jnk1-

/- 

Bcr/AbI P210
cells may be caused by an inability of the Jnk1-

/- 

stroma to

support the growth of the transformed cells. To test this hypothesis, Bcr/AbIP210

transformed cells were harvested from the in vitro bone marrow cultures

-- -- 

Jnk1-
. WT

Jnk1-
100

p185
'g 75
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p210

'i 075

c::

Days post plating Abl
Fig. 8 The lack of proliferation in Jnk1.

;" 

Bcr/Ab1p21O is not due to a defect in stromal support (A) or in intrinsic
transduction efficiency (B).
(A) Equal numbers of BcrJAbl transformed cells were plated onto stromal layers formed by S17 cell line..
Proliferation at different times was measured by counting trypan blue negative cells. Similar data were obtained
in three independent experiments.
(B) Primary mouse bone marrow cells derived from WT and Jnk1-f. mice were infected with a retroviral vector
that expresses v-Abl. Non.adherent cells were collected and the mean number of trypan-blue negative cells
was measured on day 15 after infection.



and equal numbers were plated on wild-type and Jnk1-

/- 

stromal layers or on

stromal layers formed by the S17 cell line. Rapid proliferation of wild-type cells

and Bcr/Ab1P185 transformed Jnk1- lymphoblasts was observed on each of these

stromal layers. In contrast , the Bcr/AblP210
transformed Jnk1-

j- 

cells failed to

proliferate (Fig. 8A). These data indicated that the effect of JNK-deficiency on

the proliferation of Bcr/AbIP210 transformed cells was an autonomous defect in the

transformed cells and was not related to the genotype of the stromal cells.

One possible explanation of the observed transformation defect is that the

number of targeted cells transduced by the Bcr/Abl retrovirus was reduced in the

Jnk1-

/- 

bone marrow. However, the absence of cell lineage and cell number

defects (Fig. 7A) in Jnk1-

/- 

bone marrow is inconsistent with this hypothesis.

Indeed, the observation that Bcr/Ab1P185 (Fig. 7B) and v-Abl (Fig. 8B) caused

similar transformation of bone marrow isolated from wild-type and Jnk1-

/- 

mice

demonstrated that differences in transduced target cell number does not account

for the Jnk1-

/- 

specific defect in transformation caused by Bcr/AbIP210

III.I.C. Both JNK1 and JNK2 activities are required for Bcr/Ab1P185 induced

growth factor- independent growth of Baf3 cells.

The results in the previous section showed that Bcr/Ab1P185 was able to

induce transformation in the absence of JNK1 in bone marrow assays. This

observation led to the hypothesis that in the absence of JNK1 this oncogene



might rely on the presence of JNK2 to induce transformation in vitro. To verify

this hypothesis I tested the ability of Bcr/Ab1P185 to induce transformation in the

SP600125

C 40

cJun

IB:aJNK
p54 JNK
p46 JNK

- - ++- + - +

Vector

p185

- - + +- + - +

SP600125

Fig. 9 Inhibition of JNK activity by SP600125 blocks IL 3 independent proliferation in Bcr/Ablp185
transformed Baf3 cells. (A) The JNK inhibitor SP600125 was tested in Baf3 cells exposed to 60 J/m UV light
Celilysates were harvested after 45 min of incubation. JNK activity was measured by in vitro kinase assay
and Iysates were analyzed by immunoblot using JNK antibodies. (B) Equal numbers (2x105) of Bat3 cells sta-
bly expressing Bcr/Ablp185(p185) or vector control (Vector) were plated in the presence or absence at IL-3
and treated with either 20!kM SP600 125 or DMSO. Trypan blue negative cells were counted 16 hours alter
plating (mean:lSD, n::3).

absence of both JNK1 and JNK2 kinase activities. In order to circumvent the

unavailability of Jnk1- Jnk2-

/- 

double knock out mice , which die in utero I took

advantage of the JNK inhibitory drug SP600125. This drug was shown to

specifically inhibit all JNK isoforms in the micromolar range (Fig. 9A Bennett et

aI. , 2001). As a model system I used the pro-B cell line, Baf3. This cell line is

normally IL-3 dependent but upon Bcr/Abl expression it becomes IL-

independent. This acquired growth factor independence is a hallmark of Bcr/Abl

induced transformation. Baf3 lines stably expressing either empty vector

(Vector) or Bcr/Ab1P185 (p185) were made by retroviral transduction and cells were
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Fig. 10 Baf3 cell lines expressing Bcr/Ablp185 (p185) or vector control (Vector) were treated with 20l!M
SP600125 (Drug) in the presence or absence of IL-3 for 16 hours. Cells were then pulse labeled (one hour) with
BrdU and stained with propidium iodide (PI) and FITC-conjugated antibody to BrdU. The distribution of cells in
different phases of the cell cycle was analyzed by flow cytometry (top panel) and percentage of cells (mean:t

, n=3) in G1, Sand G2 phases was measured (bottom panel).

routinely cultured in the presence of IL-3. Upon removal of IL-3 cell proliferation

was inhibited in the Baf3Nector line while Baf3/p185 growth was unaffected and

these cells underwent a single doubling during the 16 hours experimental time



course (Fig. 9 and 10). The combination of IL-3 removal and treatment with

20l-M SP600125 drastically inhibited cell proliferation in Baf3/p185 and further

exacerbate the reduction in cell number in Baf3/Vector cell line (Fig. 9B). This

reduction in cell proliferation induced by SP600125 in the absence of IL-3 was

due predominantly to a substantial increase in apoptosis as shown by the relative
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Fig. 11 Cell death was analyzed by Annexin V assay of Baf3 stable ceillinss (Vector and p185). Cells were
stained with Annexin V-FITC and propidium iodide (PI) after 24 hour treatment with 20J.M SP600125 (Drug)
in the presence or absence of IL-3 and analyzed by flow cytometry (upper panels). The normalized ratio
between the number of annexin-positive (apoptotic) cells and annexin-negative (live) cells in the PI negative
population (apoptotic index) is presented (mean:!SD, n=3;lower panel).



amount of Annexin V+ cells in the drug treated samples compared to the

untreated controls (Fig. 11). This increase in cell death induced by treatment

with SP600125 in the absence of IL-3 also correlated with the expansion of the

subG1 population observed in our cell cycle experiments (Fig 10 upper panels).

These experiments provided evidence that the drug treatment in the absence of

IL-3 did not affect the overall cell cycle distribution in either Baf3/Vector or

Baf3/p185 cell lines (Fig. 10). The observed SP600125- induced apoptosis was

rescued by the addition of IL-3 in both cell lines (Fig. 11). Taken together these

data suggest that JNK is required for Bcr/Ab1 P185 induced growth-factor

independent cell proliferation.

Although IL-3 completely rescued SP600125- induced apoptosis, it was

interesting that both cell lines , Vector and p185 , still showed reduced proliferation

after drug treatment compared to DMSO-treated counterparts (Fig. 9B). Careful

analysis of Baf3Nector and Baf3/p185 cells revealed that SP600125 induced a

G2 cell cycle arrest in the presence of IL-3 (Fig. 10). This observation suggested

that SP600125 has dual effect in Baf3 cell lines: in the presence of IL-3 it arrests

the cell cycle in G2 while in the absence of IL-3 it causes cell death. The

possible causal relation between these two events needs further investigation.



III.I.D. The Dbl domain of Bcr/AbIP210 is sufficient to activate JNK

The transformation defect described in section III.I.A is the first reported

functional difference between the two isoforms Bcr/AbIP210 and Bcr/AbIP185. This
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Flg. 12 Expression of IBcrAblp210 Obi
domain in 293T cells induces JNK activa-
tion.
JNK activity of cells expressing the Obi
domain of Bcr/Ablp210 (Flag-Obi) was
measured by in vitro kinase assay (KA)
(mean:tSD, n:3). Cells exposed in the
absence or presence of 60 J/m UV light
were used as positive controls. Cell
Iysates were examined by immunoblot
analysis using antibodies to the Flag
epitope and JNK.

prompted the analysis of the two isoforms in

search of structural differences that would

correlate with the observed phenotype. As

previously mentioned in the Introduction

(section LlI.B), Bcr/Ab1P185 and Bcr/AbIP210 differ

exclusively in the Bcr portion of the fusion

oncogene. In particular, only Bcr/AbIP210

contains a region of the Bcr gene that includes

a GEF domain with high homology to the Dbl

proto-oncogene (Dbl domain). This "Dbl

domain" includes two adjacent regions: a Dbl

homology domain (DH) followed by a Pleckstrin

homology domain (PH). The isolated Dbl

domain of Bcr/Ab1P210 has been shown to

activate CDC42, a member of the Rho family of small GTPases (Korus et aI.

2002). Since CDC42 can activate JNK (Coso et aI. , 1995; Minden et aI. , 1995) I

sought to verify whether the Dbl domain derived from Bcr/AbIP210 could trigger the

JNK signaling pathway. Overexpression of the Dbl domain in 293T cells induced



a 6.7 fold increase in JNK activity compared to vector alone (Fig. 12). This result

suggests that Bcr/AbIP210 and not Bcr/Ab1P185 could activate JNK through its Dbl

domain.

111.1. E. Concl usions

In this section I analyzed the requirement for JNK activity for Bcr/Abl

induced transformation in vitro. The conclusions drawn from the data presented

in this section can be summarized as follows:

Both Bcr/AbIP210 and Bcr/Ab1P185 require JNK activity to induce lymphoid

transformation. While JNK1 alone plays a critical role in Bcr/AbIP210

induced pro- B cell growth in vitro (Fig. 7), JNK activity is required to elicit

Bcr/Ab1 P185 stimulated GF- independent proliferation of Baf3 cells (Fig. 9

and Fig. 10). These results suggest that JNK might have a role in eliciting

GF- independent proliferation in primary pro-B cells transformed by

Bcr/Ab1 P185

The depletion of JNK activity does not affect the cell cycle in either

Bcr/AbI P210 or Bcr/Ab1P185 transformed Iymphoblasts (Fig. 7D and Fig. 10),

but it clearly induces apoptosis in Bcr/Ab1P185 cell lines upon IL-3 removal

(Fig. 11). Collectively, these data suggest a potential role of JNK in

mediating a survival signal in Bcr/Abl transformed cells.



. The two Bcr/Abl isoforms have different dependency on JNK activity for

transformation. This could be due to the presence in the Bcr/AbIP210 of the

Dbl domain. I show that this domain can trigger JNK activation in vitro

(Fig. 10). Thus , the presence of the Dbl domain may link the JNK

pathway to the pathogenesis caused by the Bcr/AbIP210 oncogene. In

contrast , Bcr/Ab1 P185 might compensate the lack of the Dbl-activated

pathway through the engagement of alternative pathways. Thus complete

depletion of JNK activity impairs Bcr/Ab1P185 ability to transform cells.



111. 11. In vivo Approach

The in vitro experiments described in the previous section indicated a

potential role for JNK in sustaining survival of Bcr/Abl transformed cells. I

next sought to examine the physiological relevance of the in vitro results

using two mouse models of Bcr/Abl induced disease that would give rise to

either lymphoid or myeloid leukemia. These experiments could not be

performed in a JNK null background since Jnk1-/- Jnk2-

/- 

mice are not viable

and in vivo treatment with the JNK inhibitory drug (SP600125) might induce

secondary toxic effects. Nevertheless, based on the observation that JNK1 is

the predominant isoform in Bcr/Abl transformed lymphoblast (section II I. LA)

and it is critical for Bcr/AbIP210
induced transformation in vitro (section III.I.B) I

used Jnk1-

/- 

cells to examine the role of JNK in Bcr/Abl induced leukemia. In

section II LI LA , I present the results obtained using an in vivo model for

Bcr/Abl induced lymphoid leukemia. These experiments indicated that JNK1

has a role in Bcr/AbIP210 and not Bcr/Ab1P185 induced lymphoid leukemia. In

particular, Bcr/AbIP210 transformed Iymphoblasts were unable to infiltrate

peripheral organs in the absence of JNK1. Additional analysis suggested that

JNK1 might have a role in providing a survival signal in Bcr/AbIP210

transformed Iymphoblasts (section IILlI.B). This signal seemed to be

mediated in part by the upregulation of Bcl2 expression. Based on these

observations I tried to rescue the lymphoid transformation defect caused by



JNK1 deficiency using transgenic mice that overexpress Bcl2 in the B cell

compartment. The results of these experiments are described in section

II LI LB. Finally, since Bcr/AbIP210 is mainly associated with human myeloid

leukemia, I examined the role of JNK1 in Bcr/AbIP210 induced myeloid

leukemia using a mouse model for Bcr/Abl- induced myeloproliferative disease

(section III.II.C).

IILlI.A. Analysis of the effect of JNK1 disruption on Bcr/Abl induced

Iymphoid leukemia

To test the role of JNK1 in transformation of pre- B cells by Bcr/Abl in vivo

I used a method that has been previously described to cause pre-B cell

transformation in mice (Daley et aI. , 1990; Van Etten , 2001 a; Van Etten , 2001 b).

I reconstituted lethally irradiated mice with bone marrow derived from wild-type

and Jnk1-

/- 

donors transduced with retroviral vectors. The effect of Bcr/AbIP210

and Bcr/Ab1P185 expression was examined. Control studies were performed with

the empty vector which expresses GFP from an internal ribosome entry site. The

development of leukemia occurred with an initial expansion of a homogeneous

population of immature blasts evident in the femur sections of mice transplanted

with Bcr/Abl transduced bone marrow , but not vector transduced bone marrow

(Fig. 13A). At the terminal stage of leukemia the bone marrow of these animals

showed increased stromal cells and vascularity with extensive fibrosis (Fig. 13B)



resembling the spent phase typical of myeloproliferative diseases. Mice

transplanted with bone marrow transduced with empty vector (GFP retrovirus)

did not develop leukemia during the period of experimental analysis (100 days)

and normal reconstitution of the bone marrow was observed (Fig. 13A, B). No

marked differences in the histology of femur (Fig. 13B) or the number of proviral

integrations in bone marrow genomic DNA was detected between mice

transplanted with wild-type and Jnk1-

/- 

bone marrow cells by Bcr/Abl in vivo.

Immunophenotyping of bone marrow from mice transplanted with

Bcr/AbIP210
transduced Jnk1-

/- 

marrow revealed the presence of two distinct

populations that express GFP (Fig. 13C). The population with higher GFP

intensity expressed exclusively B-cell markers (B220 and CD19) while the lower

intensity GFP cells expressed myeloid and lymphoid markers (Gr- , CD11 b/Mac-

1, CD19 and B220)(Fig. 13C). Both populations were negative for the erythroid

lineage marker Ter119 and for the T cell surface antigen Thy1. , and the B cell

antigens Sca- , IgA IgG and IgM. This analysis indicated that Bcr/Abl caused

leukemia with both lymphoid and myeloid components. Similar results were

obtained from the analysis of wild-type and Jnk1-

/- 

bone marrow in experiments

using Bcr/AbIP210 and Bcr/Ab1P185 (Fig. 13C and data not shown). I confirmed that

the disease observed was leukemia by secondary transplantation assays.

Together, these data demonstrate that Bcr/AbIP210 and Bcr/Ab1P185 caused a



similar bone marrow disease (mixed lymphoid and myeloid leukemia) in mice

transplanted with wild-type and Jnk1-

/- 

bone marrow (Fig. 13). This conclusion

(\ 80

Fig. 13 JNK 1 is not required for bone marrow disease in 
Bcr/Abl-induced lymphoid leukemia. 
(A) Lethally irradiated mice were reconstituted with
Jnk1-

/- 

bone marrow cells transduced with vector (GFP)
or Bcr/Ablp185 (Bcr/Abl) MSCV retroviruses. Femur sec-
tions (3 weeks post reconstitution) were stained with
hematoxylin and eosin (H&E).
(B) Mice were reconstituted with WT or Jnk1-/-bone 
marrow cells transduced with MSCV retroviruses. Femur .a
sections from animals at the terminal stage of disease 

(Bcr/Ablp185 and Bcr/Ablp210) and from matched con- 
trois (GFP) were staIned with H&E. 
(C) Bone marrow from pre-moribund mice reconstituted 
with Jnk 1-/- bone marrow cells transduced with control '* 20

(GFP) or Bcr/Ablp185 were examined by flow cytometry
(forward scatter (FSC) and GFPfluorescenceintensity) 0 ,
and by analysis of Wright-Giemsa stained cytospin
slides (upper panels). Two populations of GFP-positive
cells with high (blue) and low (red) levels of GFP were detected. These popoulation were examined by flow
cytometry for the surface markers B220 , Mac-1, Gr- 1 and CD19 (lower panels). Cell populations positive for
these cell surface markers(*)were Identified by comparison with unstained cells (dotted lines).
Cells expressing low levels of GFP(red) were positive for B220, Mac- 1 , Gr- 1 and tD19. Similar data were
obtained in experiments with Bcr/Ablp185 and Bcr/Ablp210 and also experiments using WT and Jnkt-/- cells.
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markedly contrasts with the results of in vitro assay that demonstrate an essential

requirement of JNK1 for pre-B cell transformation (Fig.7).

Bcr/Abl- induced leukemia is an invasive disease. Malignant cell

expansion in the bone marrow precedes increased white blood cell number and

the subsequent infiltration of peripheral organs, including the spleen and liver. A

consequence of this malignant infiltration is organomegaly. Thus, mice

reconstituted with wild-type marrow transduced with Bcr/AbIP210 or Bcr/Ab1P185

Jnk1-

/- 

marrow transduced with Bcr/Ab1 P185 showed a marked enlargement of the

spleen (n=28) compared to GFP vector controls (n=22) (Fig. 14A). In contrast,

the spleen mass of animals with Jnk1-

/- 

marrow transduced with Bcr/AbIP210 was

similar to GFP vector control animals (Fig. 14A). These data indicate that JNK1-

deficiency caused a selective defect in splenomegaly caused by Bcr/AbIP210

The absence of splenomegaly suggests that there might be a defect in the

malignant infiltration of peripheral organs of animals transplanted with Jnk1-

bone marrow transduced with Bcr/AbIP210. To test this hypothesis , I performed

histological examination of the spleen and liver. Malignant infiltration in the white

and red pulp of the spleen was classified as follows: Infiltrated , with substantial

infiltration of both the white and red pulp; Partial , with infiltration of either the

white or red pulp; and Minimal , with small foci or no malignant cells. Malignant

infiltration in the liver was classified as follows: Infiltrated, which showed
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Flg. 14 JNK1-deficiency causes reduced infiltration of
peripheral organs by Bcr/Ablp210 transformed lym-
phoblast. (A) Lethally irradiated mice were reconstitut-
ed with WT or Jnk1-1- bone marrow transduced with
vector (GFP) or Bcr/Abl MSCV retroviruses. The
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mice (p185 and p210) and healthy control mice
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and p210; n=22 for GFP) is presented. Statistically
significant differences (p 0001 ; Kruskal-WaHace
test) between WT and Jnkl-I- are ilustrated (*). (B)
Representative spleen (left panels) and liver (right
paneis) sections stained with H&E from Bcr/Abl mice
(pi8S and p210) and vector control mice (GFP) are
ilustrated.
Malignant infiltration in the spleen red pulp(R)and
white pulp(W) was classified as Infiltrated , Partial or
Minimal. Malignant infiltration in the liver was classi-
fied as Infiltrated, Minimal or Normal. The data is
based on the pathology detected in each group of ani-
mals (21-27 animal per group for the spleen and 24-
28 animals per gJOup for the Iiver)(lower panels).
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Fig. 15 JNK1-deficiency increases Bcr/Abr lymphoid disease latency.
(A) Lethally irradiated mice were reconstituted with WT or Jnk1-1- bone
marrow cells transduce with vector (GFP) or Bcr/Abl MSCV retrovirus.
Peripheral white blood cell (WBC) numbers in Bcr/Abl (p1SS and p210)
and vector control (GFP) reconstituted mice were measured. The data
represent the mean count determined in each group (ten mice per group
at day 0). Similar results were obtained!n two independent experiments.
(B) Survival of lethally irradiated mice receiving transduced bone marrow
cells (Kap1an-Meier). The survival data are cumulative from three inde-
pendent experiments. There were 28 animals in each Bcr/Abl experimen-
tal group and 22 animals in each control group (WT GFP and Jnk1-
GFP). The prolonged survival of mice reconstituted with Bcr/Abl (p2.
and p1SS) transduced Jnk1-1- bone marrow is statistically significant com-
pared to the survival of mice with WT bone marrow transduced with
Bcr/Abl (tog-rank test p..0002).

perivascular and

sinusoidal infiltration;

Minimal , with small

perivascular foci; and

Normal , with no

malignant cells

detected. The

histological analysis

confirmed that there

was reduced infiltration

of the spleen and liver

(Fig. 14B) of mice

transplanted with

Jnk1-

/- 

marrow

transduced with

Bcr/AbI P210. However

JNK1-deficiency did not

alter the extent of

malignant infiltration caused by Bcr/AbIP185 . These data indicated that JNK1-

deficiency alters the leukemic disease load caused by Bcr/AbIP210 , but not that

caused by Bcr/AbIP185. This altered form of leukemia was characterized by the



proliferation of malignant cells in the bone marrow, but failure of these malignant

cells to efficiently infiltrate peripheral organs.

To examine the cause of the reduced infiltration of peripheral organs by

malignant Jnk1-

/- 

Bcr/AbI P210 cells. I investigated the presence of these cells in

the blood. The number of white blood cells (WBC) in the peripheral blood of

lethally irradiated mice reconstituted with bone marrow transduced with the

empty vector increased gradually with time and was not affected by JNK-

deficiency (Fig. 15A). In contrast, Bcr/Ab1P185 and Bcr/AbIP210 caused a rapid

increase in the number of WBC within 2-3 weeks after reconstitution (Fig. 15A).

A rapid decline in WBC number was observed during the terminal phase of the

disease (Fig. 15A). This decrease correlates with bone marrow failure (Fig.

13B). JNK-deficiency delayed the increase in WBC number caused by

Bcr/Ab1 P185 and by Bcr/AbIP210 (Fig. 15A). These data are consistent with the

hypothesis that JNK1 -deficiency selectively affects Bcr/AbIP210 malignant cells in

the peripheral organs of mice.

Although JNK-deficiency caused changes in the observed leukemia , all

animals reconstituted with Bcr/Abl transduced bone marrow developed leukemia

and died (Fig. 15B). JNK-deficiency caused a statistically significant delay in

disease mortality (log-rank test pc:0.0002). This delay correlates with the delayed

kinetics of WBC accumulation in the peripheral blood (Fig. 15A). The major

cause of death was most likely due to bone marrow failure (Fig. 13B and 15A).



IILlI.B. JNK1 provides a survival signaling in Bcr/AbIP210 lymphoblast

JNK-deficiency was found to cause no apparent defects in the cell cycle of

Bcr/AbI P210
transformed cells in vitro (Fig. 7D). Nevertheless, these cells failed to

accumulate (Fig. 78). This in vitro defect correlates with the observation that

Jnk1-

/- 

Bcr/AbIP210
cells did not accumulate in peripheral organs in vivo (Fig. 14).

One mechanism that could account for the failure to proliferate is increased

apoptosis. Thus , JNK1 may provide a necessary survival signal.

The activation of anti-apoptotic pathways, including the Akt pathway and

the expression of Bcl2-related proteins, is closely linked to the oncogenic

potential of Bcr/Abl. I found similar protein levels of the pro-survival kinase Akt in

wild-type and Jnk1-

/- 

cells but detected a modest reduction in Akt activation in

Jnk1-

/- 

bone marrow transduced with Bcr/AbIP210. No difference in Akt activation

was observed in Bcr/Ab1P185 transduced cells (Fig. 16A). The anti-apoptotic Bcl2

family member Bcl- is implicated in several hematopoietic malignancies and it

is known that Bcr/Abl increases Bcl- expression , in part by the Stat5 pathway

(see Introduction section LlI.C). However , immunoblot analysis failed to show

any differences in the expression of Bcl- protein or mRNA (Fig. 16C). In

contrast , JNK-deficiency caused marked decrease in Bcl2 (Fig. 16B) and BclW

expression (Fig. 16C). No change in the expression of Bax , Bak or Bad was

detected (Fig. 16C). Decreased expression of Bcl2 and BclW together with a

modest reduction in Akt activity, may therefore contribute to the decreased



!B: AKT(P)

p185 p210

tg 8cl2 tg 8cl2
1- WT I- WT 1- WT 

JNKC JNK
JNK

IB:AK
Bc12- Bcl2

AKT

Bak Bad 12. BclX

luciferase

BclW
8WT

Jnk1-

0..

Control
Bcr/Abl

JBD

Fig.16 JNK1 deficiency causes decreased expression of Bc12.
(A) Bone marrow from WT and Jnk1.

;' 

and (B) WT and Bcl2transgenic mice was transduced in vitro with Bcr/Abl
retroviruses (p210 and P185). Transformed Iymhoblast were examined by immunoblot (18) analysis with antibodies to
(A) AKT, phospho-Ser473 AKT (AKTCP)). (8) JNK and 8012. (C) Ribonuclease protection assays were carried out to
measure the gene expression of the Bcl2-related family members and glyceraldehyde 3-phosphate dehydrogenase
(GADPH). The mRNA expression profile compared with the GADPH is presented as the mean;tSD (n;3). (D) Bcl2 pro-
moter activity was examined in firefly luclferase reporter assays in Baf3 cells. Transfection effciency was monitored
using a reniformis luciferase reporter plasmid. The ce1ls were cotrasfected with an expression vector encoding the
JNK inhibitor JBD and the Bcl2promoter firefly luciferase reporter plasmid. The data presented represent the mean:tSD
(n=3).

survival of Bcr/AbIP210
transformed Jnk1-

/- 

lymphoblast.

To examine the mechanism of reduced Bcl2 expression caused by JNK-

deficiency, I investigated Bcl2 promoter activity with a luciferase reporter gene

assay. Expression of Bcr/AbIP210
caused increased Bcl2 promoter activity (Fig.



16D) this increase was greatly attenuated by expression of JBD , a dominant

inhibitor of JNK. These results indicate that Bcr/AbIP210 causes a JNK-dependant

increase in Bcl2 promoter activity. The JNK protein may also increase Bcl2

expression by inhibiting the ubiquitin-mediated degradation of Bcl2 (Breitschopf

et aI. , 2000).

The observed decrease in Bcl2 expression caused by JNK-deficiency in

Bcr/Abl P210 transformed cells (Fig. 16B) may be functionally significant. To test

this hypothesis, I examined the effect of transgenic expression of Bcl2 in mice.

Immunoblot analysis demonstrated that the transgene restores the expression of

Bcl2 protein in Jnk1-

/- 

Bcr/AbI P210 cells (Fig. 16B; compare lanes 7 and 8).

Control studies indicated that the expression of JNK2 was unaffected by the Bcl2

transgene , JNK-deficiency, and whether Bcr/AbIP210 or Bcr/Ab1P185 was expressed

(Fig. 16B). Together , these data indicate that JNK1-deficiency causes

decreased Bcl2expression in Bcr/Ab1P21 0 transformed cells and that this decrease

can be compensated by transgenic expression of Bcl2 in vivo.

Bone marrow transplantation assays were performed to examine the

effect of the transgenic expression of Bcl2 on Bcr/Abl induced disease. Lethally

irradiated mice were transplanted with bone marrow isolated from non-transgenic

and Bcl2 transgenic mice. Mice transplanted with bone marrow transduced with

a GFP retrovirus (Vector) did not develop leukemia and histological examination

demonstrated no pathology. These data demonstrated that the level of



transgenic Bcl2 expression was not suffcient to cause proliferative disease

during the period of experimental analysis (100 days). In contrast , all animals

transplanted with bone marrow transduced with retroviruses expressing Bcr/Abl

(p210 or p185) developed disease. No statistically significant difference in

splenomegaly was observed between mice transplanted with WT or Jnk1-

/- 

bone

marrow from Bcl2transgenic animals (Fig. 17A). Histological examination

demonstrated a similar amount of malignant infiltration by WT Bcl2 and Jnk1-

Bcl2 cells caused by Bcr/AbIP210 or Bcr/Ab1 P185 in the liver (Fig. 17B) and spleen.

The extent of infiltration by the transformed Bcl2 transgenic cells was greater

than non -transgenic cells (compare Fig. 14B and 17B). However no significant

difference between WT and Jnk1-

/- 

groups of Bcl2 transgenic cells was detected.

Thus, JNK- deficiency caused no change in liver infiltration by Bcl2 transgenic

Bcr/AbIP210 cells (Fig. 17B). This observation is in marked contrast to the severe

defect in malignant infiltration caused by JNK-deficiency in non-transgenic cells

caused by Bcr/AbIP210 (Figure 14B). Together , these data demonstrated that the

Bcl2 transgene rescues the defect in the infiltration of peripheral organs caused

by JNK-deficiency.

I next examined the white blood cell (WBC) number in the peripheral blood

of mice transplanted with Bcl2 transgenic bone marrow. Compared with non-

transgenic WBC (Fig. 15A), the number of Bcl2 transgenic WBC in the

transplanted mice was larger (Fig. 17C). This is consistent with the anti-
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apoptotic function of Bc12. Time course analysis demonstrated that the delayed

Bcr/Abl stimulated increase in peripheral WBC number caused by JNK-deficiency

(Fig. 15A) was not detected in mice transplanted with Bcl2 transgenic bone

marrow (Fig. 17D). This observation indicated that Bcl2 complements the effect



of JNK-deficiency on Bcr/Abl disease. Indeed, the effect of JNK-deficiency on

delayed disease mortality (Fig. 15B) was not observed in mice transplanted with

Bcl2 transgenic bone marrow transduced with Bcr/Abl (Fig. 17D). These data

provide further confirmation that the restoration of Bc/2 expression in JNK-

deficient cells rescues the Jnk1-

/- 

defect in Bcr/Ablleukemogenesis.

111. I. C. J N K1 is required for Bcr/ Abl P210 Iymphoid leukemia but is

dispensable for the development of myeloid disease.

In humans, the presence Bcr/AbIP210 is principally correlated with the onset

of CML , a myeloproliferative disease. Since the results described in the previous

section were obtained in a "mixed type" leukemia (lymphoid and myeloid), I

sought to investigate the role of JNK1 in Bcr/Abl transformation using an

experimental procedure that would induce the development of a

myeloproliferative disease in the transplanted mice (Ren , 2002; Van Etten

2002). Mice reconstituted with bone marrow transduced with Bcr/AbIP210 using

this new procedure developed leukemia within 15 days. Immunophenotyping of

whole bone marrow from the transplanted animals showed the expansion of a

single population of GFP+ cells that were positive for the myeloid markers CD43

Mac- 1 and Gr- 1 and negative for B220 , CD19 and Thy1.2 (Fig. 18A). These

results confirmed the onset of a myeloproliferative disease. All recipients
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transplanted with bone marrow transduced with Bcr/AbIP210 showed a marked

enlargement of the spleen and liver (n=1 0) compared to GFP vector controls

(n=10) (Fig. 18B). No significant difference in splenomegaly (Fig. 18B) or

hepatomegaly (Fig. 18C) was observed between WT and Jnk1-

/- 

transplanted

animals. Histological examination demonstrated a similar amount of malignant

infiltration by WT and Jnk1-

/- 

cells caused by Bcr/ AblP210 in the liver (Fig. 18D)

and lungs, while GFP vector controls showed no infiltration in these tissues. In

contrast, infiltrated cells were found in the spleen of all recipients reconstituted

with bone marrow transduced with GFP vector control. Due to this background

infilration it was impossible to reliably evaluate the extent of Bcr/AbIP210 induced

malignant infiltration in this organ. However no significant difference in liver and

lung infiltration was detected between the WT and Jnk1-

/- 

groups. Taken

together these results indicate that JNK1 is not required for Bcr/AbIP210 induced

myeloproliferative disease.

IILlI.D. Conclusions

In this section I examined the requirement of JNK1 in Bcr/Abl induced

leukemia. For this purpose, I used two different experimental procedures to

induce either lymphoid or myeloid disease in mice. The results obtained in the

experiments using the mouse model for Bcr/Abl- induced lymphoid leukemia

support the following conclusions:
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JNK1 plays a critical role in Bcr/AbIP210 induced lymphoid leukemia. Mice

reconstituted with Bcr/AbIP210
transformed Jnk1-

/- 

bone marrow cells are

defective in peripheral organ infiltration.

This defect in malignant infiltration might cause the delay in disease

mortality observed in recipients transplanted with Bcr/AbIP210 transduced

Jnk1-

/- 

cells.

Despite the defect in malignant infiltration Jnk1-

/- 

lymphoblast transformed

with Bcr/AbIP210 showed normal proliferation in the bone marrow indicating

that while JNK1 is not required for Bcr/AbIP210 initial transformation event

per se it is critical for the maintenance of the malignant Iymphoblasts.

. The defect in malignant infiltration in the peripheral organs is evident in

transplanted animals receiving Bcr/AbIP210 but not in Bcr/Ab1P185 transduced

Jnk1-

/- 

bone marrow cells. This observation supports the hypothesis

obtained in our in vitro studies that JNK1 plays a critical role in the

transforming ability of Bcr/AbIP210

Biochemical analysis of Bcr/AbIP210 Jnk1- lymphoblasts showed reduced

expression of several anti-apoptotic factors including Bc12. Indeed , JNK

can mediate Bcr/AbIP210 induced Bcl2 transcriptional upregulation (Fig.

16D). Accordingly, transgenic expression of Bcl2 in the lymphoid

compartment rescues the defect in the malignant infiltration of peripheral

organs and also abolishes the delay in disease mortality (Fig. 17).



101

. The fact that Bcl2 efficiently rescues JNK1 defect in Bcr/AbIP210 induced

leukemogenesis suggests that JNK1 is providing a critical survival signal

in Bcr/AbIP210 transformed Iymphoblasts.

The results obtained using the mouse model for Bcr/Abl-nduced myeloid

leukemia suggest that:

JNK1 is dispensable for the development of Bcr/AbIP210 induced

myeloproliferative disease. All recipient mice reconstituted with

bone marrow transduced with Bcr/Abl p210 retrovirus develop

comparable organomegaly (Fig. 18) within the same time frame.

JNK1 is not essential for organ invasion by Bcr/AbIP210 transformed

myeloid cells (Fig. 18). Indeed , all mice reconstituted with bone

marrow transduced with Bcr/AbIP210 show similar extent of malignant

infiltration in the liver (Fig. 18) and lungs.

Taken together these observations suggest that JNK1 has an

essential role in Bcr/Abl induced lymphoid disease while it is

dispensable for development of "myeloid" leukemia.
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111. 111. Ex vivo Approach

The observations obtained with the "lymphoid leukemia" model described

in the previous section indicated that Bcr/AbIP210
transformed Jnk1-

Iymphoblasts were able to proliferate and expand in the bone marrow but are

absent in the blood and failed to invade peripheral organs. The inability of

Bcr/AbIP210 transformed Iymphoblasts to leave the bone marrow

microenvironment was rescued by the ectopic expression of the anti-apoptotic

Bcl2 protein. Taken together these observations suggested that JNK1 is

providing an essential survival signal that enables the Bcr/AblP210 transformed

lymphoid cells to proliferate outside the bone marrow microenvironment. One

critical step that allows transformed lymphoblast to survive in the bloodstream

and to invade peripheral organs is the ability to proliferate in the absence of

growth factors normally provided by the bone marrow. This prompted me to

examine the growth factor dependency of Bcr/Abl transformed lymphoblast

derived from the transplanted mice described in section IILlI.A and B. The

derived "ex vivo" cell lines were cultured in the presence or absence of S17

stromal layers which mimics the bone marrow microenvironment. Under these

conditions I examined Bcr/Abl induced growth factor independent proliferation.

The results of these experiments are illustrated in this section.
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IILlII.A. JNK1 is required for Bcr/AbIP210
induced stromal layer 

independence

Wild-type and Jnk1-

/- 

cells expressing Bcr/Ab1 P185 or Bcr/AbIP210 were

obtained from mice transplanted with non-transgenic and Bcl2-transgenic bone

marrow. Flow cytometry analysis demonstrated that the cells obtained were B-

lymphoblast expressing cell surface B220 , CD19, BP-1 and negative for Gr-

Mac-1/CD11b, Sca- , Ter119, Thy1.2 (Fig. 19A). No significant difference

between wild-type and Jnk1-

/- 

was detected by flow cytometry. Immunoblot

analysis demonstrated that these cells expressed similar levels of total Bcr/Abl

tyrosine phosphorylated Bcr/Abl and JNK2 (Fig. 20D). As expected, JNK1 was

detected in all WT cells, but not in Jnk1-

/- 

cells.

We investigated the proliferation of these cells in the presence and

absence of stroma. DNA synthesis was examined by measurement of the

incorporation of BrdU. There was no marked difference detected between cell

lines with different Jnk1 genotype grown in the presence or absence of stroma

(Fig. 19B). Similar results were obtained for Bcl2 transgenic cells (Fig. 19C).

The incorporation of BrdU was also similar in experiments using cells

transformed with Bcr/AbIP210 and Bcr/Ab1P185 (Fig. 19B and C). These

observations indicated that JNK1- deficiency and transgenic Bcl2 expression did

not alter DNA synthesis by these cells.
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Cell death was examined by flow cytometry using Annexin V and 7-

Aminoactinomycin D (7-AAD) staining. Studies of wild-type Bcr/AbIP210 cells

demonstrated a small increase in cell death in the absence of stroma (Fig. 20A)

but a dramatic increase in the apoptosis of Jnk1-

j- 

Bcr/AbI P210 cells (Annexin V+

AAD-) in the absence of stroma. The markedly increased apoptosis of Jnk1-

Bcr/AbI P210 cells was also detected by TUNEL assays (Fig. 20C). In contrast

JNK-deficiency did not cause increased apoptosis of Bcr/Ab1P185 transformed cells

in the absence of stroma (Fig. 20A). Similarly, no increase in the number of

apoptotic cells (Annexin V+ , 7 AAD-) was detected when Bcl2 transgenic cells

were cultured in the absence at stroma (Fig.20B). Furthermore , the apoptotic

defect caused by JNK1 deficiency in transformed Iymphoblasts was not detected

in studies of B Iymphoblasts derived from normal bone marrow cultured in vitro.

Thus the role of JNK1 in mediating survival seems selectively relevant to

transformed cells.
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j- 
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using antibodies to Abl, phosphotyrosine (PY99) and JNK.
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III.III.B. Conclusions

The ex vivo data presented in this section demonstrate that:

Disruption of the Jnk1 gene did not affect DNA synthesis in Bcr/AbIP210

transformed Iymphoblasts.

. JNK-deficiency caused markedly increased apoptosis when Bcr/AbIP210

transformed Iymphoblasts were cultured in the absence of stroma.

. The transgenic expression of Bcl2 rescued the increased apoptosis

caused by JNK-deficiency in Bcr/AbIP210 lymphoblast. Thus, the ability of

Bcr/AbIP210 transformed cells to become stromal independent requires

JNK1. This role of JNK1 can be replaced by Bcl2 in vivo (Fig. 17) and 

vitro (Fig. 20).

. Together, these data indicate that JNK1 can promote growth factor

independent survival of transformed B Iymphoblasts. Thus JNK1

contributes to the leukemogenic potential of Bcr/AbIP210 by promoting

survival of Bcr/AbIP210 transformed lymphoblast in the blood and in the

peripheral organs
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CHAPTER IV

DISCUSSION AND FUTURE DIRECTIONS

IV.I. JNK and transformation by Bcr/Abl

In humans, the expression of Bcr/Abl is associated with malignancies that

affect either lymphoid (ALL) or myeloid cells (CML) (see Introduction). For this

reason , in our quest to investigate the potential role of JNK in Bcr/Abl induced

transformation I took advantage of different mouse models that would give rise to

either lymphoid or myeloid leukemia. Interestingly, our data suggest that while

JNK activity is required for the Bcr/Abl induced lymphoid transformation (Fig. 

and 14) it is dispensable for the development of myeloid disease (Fig. 18). This

differential requirement for JNK in transformation involving lymphoid or myeloid

cells could be ascribed to several reasons.

First the relative abundance of the JNK isoforms in either the myeloid or

lymphoid compartment might affect the importance of this signaling pathway in

the overall transformation process triggered by Bcr/Abl. Indeed the Bcr/Abl

oncogene activates redundant pathways leading to overlapping biological

outcomes that collectively induce transformation. The preferential use of a

specific pathway to induce a transforming event (such as growth-factor
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independent proliferation) might be influenced by the presence or absence of the

components of the JNK signaling pathway. Thus cell context may playa role in

the choice of signaling pathways that Bcr/Abl employs to transform cells.

Another reason is that the biological outcome mediated by JNK activation is not

required for the transformation process of myeloid cells. Thus , JNK mediates a

cell specific signal that is needed in lymphoid but not myeloid transformation.

This hypothesis entails that myeloid and lymphoid cells require different

transforming programs mediated by the same oncogene. Further studies are

needed to elucidate the mechanisms underlying this discrepancy in JNK

requirement between Bcr/Abl induced myeloid and lymphoid disease.

Two separate mechanisms are employed by Bcr/Abl to transform cells.

First, Bcr/Abl is an activator of several signal transduction pathways that mediate

mitogenesis (Cortez et aI. , 1997). Second, Bcr/Abl is a potent inhibitor of cell

death (McGahan et aI., 1994). The proliferation and survival functions of Bcr/Abl

can be uncoupled. Expression of Bcr/AblP210with a deletion in the Bcr region

(8176-427) in myeloid cells causes resistance to apoptosis in the absence of

increased proliferation (Cortez et aI. , 1995). These cells fail to form tumors in

nude mice. In contrast, wild-type Bcr/Ab1P210 causes increased proliferation and

does cause tumors in nude mice (Cortez et aI. , 1997). Thus, both proliferation

and inhibition of apoptosis are essential for transformation.
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The anti-apoptotic signaling pathways that are activated by Bcr/Abl include

Akt (Neshat et aI. , 2000; Skorski et aI. , 1997), Stat5 (Gesbert and Griffin, 2000;

Horita et aI. , 2000; Shuai et aI. , 1996) and JNK (this study). The relative roles of

these anti-apoptotic pathways are unclear. Gene disruption studies indicate that

Stat5 is not required for transformation by Bcr/Abl (Sexl et aI. , 2000) but is

required for transformation by other leukemogenic oncogenes, including TEL-

JAK2 (Schwaller et aI. , 2000). The effect of Aktgene disruption on Bcr/ Abl

disease has not been reported, but dominant-negative approaches indicate an

important anti-apoptotic role of the Akt pathway (Skorski et aI. , 1997). Here I

demonstrate that JNK contributes to the survival of Bcr/Abl transformed cells (Fig.

11 and 20). However , JNK does not appear to contribute to mitogenesis

because JNK-deficiency caused no defects in DNA synthesis (Fig. 7D and

19B C) and because JNK-deficiency caused no marked defect in blast expansion

in femur sections of mice transplanted with Bcr/Abl-transduced bone marrow

(Fig. 13).

Three lines of evidence indicate that JNK plays an important role in

Bcr/Abl cell survival. First, JNK-deficiency causes a severely reduced number of

Bcr/Ab1P210 cells in the peripheral organs of leukemic animals in vivo (Fig. 14).

Second, depletion of JNK activity causes apoptosis of Bcr/Abl cells cultured in

the absence of growth factors in vitro (Fig. 11 and 20). Third , expression of the

anti-apoptotic protein Bcl2 can rescue the defects caused by JNK- deficiency 



111

vivo and in vitro (Fig. 17 and 20B). The survival defect of cells depleted of JNK

activity appears to be caused by the failure of these cells to proliferate

independently of stroma and stroma-derived cytokines. The growth factor-

dependence observed in vitro (Fig. 20) may account for the inability of Bcr/AbIP210

transformed Jnk1-

/- 

cells to accumulate in the blood and peripheral organs 

vivo, although these cells were able to proliferate in the stromal environment of

the bone marrow. Alternatively, the defect in malignant infiltration could be

attributed to the inability of the Jnk1-

/- 

cells to efficiently migrate and metastasize

peripheral organs.

IV. II. Survival signaling mediated by JNK

The mechanism that accounts for the requirement of JNK1 for stroma-

independent growth of Bcr/Ab1P210 cells is unclear. Here I provide evidence that

JNK1 can regulate Bcl2 expression in Bcr/AblP210 transformed cells and that a

Bcl2 transgene rescues the survival defect of Jnk1 /- Bcr/AbIP210 cells (Fig. 16

and 20). The effect of JNK1 on Bcl2 expression may be mediated , in part, by an

ATF2 responsive element in the promoter (Wilson et aI. , 1996). Indeed

Bcr/Ab1P210 causes increased Bcl2 promoter activity in reporter gene assays (Fig.

16D) and also increases the expression of Bcl2 mRNA and protein (Fig. 16C and
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(Sanchez-Garcia and Martin-Zanca, 1997). Loss of Bcl2 in Bcr/AbIP210

transformed cells contributes to increased apoptosis (Sanchez-Garcia and Grutz

1995). Interestingly, the survival function of Akt is also mediated, in part, by

increased Bcl2 expression in Bcr/AblP210 transformed cells (Pugazhenthi et aI.

2000; Skorski et aI. , 1997). Thus , the JNK1 and Akt pathways may co-operate to

induce expression of Bcl2 and the survival of Bcr/Ab1P21 0 transformed cells.

In previous studies, Bcl- has been implicated as an important mediator

of anti-apoptotic signaling in leukemic cells (Packham et aI. , 1998) and in some

cultured cell lines (e.g. HL60) the expression of Bcl- rather than Bcl2 appears

to be dominant (Amarante-Mendes et aI. , 1998). It is most likely that anti-

apoptotic signaling is mediated , in part, by the combined actions of both Bcl2 and

Bcl- . In primary mouse bone marrow cells, JNK1 is required for the normal

expression of Bc12; no effect of JNK1-deficiency on Bcl- expression was

detected (Fig. 16C).

The acquisition of stromal- independent growth by Bcr/Ab1P210 cells may

require the accumulation of secondary mutations. Increased expression of

cytokines may also contribute to stromal independent growth; recent studies

indicate that while IL-3 and GM-CSF are not required (Li et aI. , 2001 b),

oncostatin-M may contribute to myelo- and Iympho-proliferative disease

(Schwaller et aI. , 2000). Studies of Bcr/AbIP210 in p53-deficient mice demonstrate

that the loss of p53 decreases apoptosis , increases the malignant infiltration of
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peripheral organs , increases stromal- independent proliferation , and decreases

the latency of disease mortality (Honda et aI. , 2000; Skorski et aI. , 1996). A

change in p53 status also correlates with the transition from the chronic to the

acute phase of disease in humans. Thus, it is possible that JNK1 influences the

accumulation of secondary mutations by Bcr/Ab1P210 cells. This represents an

additional mechanism by which JNK1 may contribute to the leukemogenic

potential of Bcr/Abl.

IV. III. Apoptosis and survival signaling

Why does JNK activation mediate survival rather than apoptosis in Bcr/Abl

transformed cells? The decision to survive might result from a high level of

survival signaling mediated by other pathways (e.g. ERK or Akt) that are known

to suppress JNK-mediated apoptosis (Davis, 2000). This appears to be unlikely

because , if true, JNK1-deficiency would not lead to increased apoptosis. There

are two alternative possible mechanisms that could account for the actions of

JNK. First, the decision to survive may be the result of altered gene expression

in the tumor cells and therefore the presence of novel targets of the JNK

signaling pathway. This hypothesis implies that the tumor cells re-program the

respon e to JNK activation. Second, it is possible that it is the duration and

amplitude of JNK activation that is critical for the decision to survive or die (Chen

et aI. , 1996). Although transient expression of Bcr/Ablleads to rapid activation of
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JNK, chronic expression of Bcr/Abl causes a high basal level of JNK activity. It is

therefore possible that the survival function of JNK is mediated by the sustained

basal activity. This hypothesis implies that the loss of high basal JNK activity

would lead to apoptosis. Similarly, increased levels of JNK activation would

cause apoptosis (Lei et aI. , 2002). These two alternative hypotheses (re-

programming and extent/duration of JNK signaling) are not mutually exclusive.

IV.lV. Different JNK requirement between Bcr/AblP210 and

Bcrl AblP185

Several studies have implicated JNK in transformation caused by the

leukemogenic oncogene Bcr/Abl (Burgess et aI. , 1998; Dickens et aI. , 1997;

Raitano et aI. , 1995; Shi et aI. , 2000; Shi et aI. , 1999). The role of JNK in survival

signaling was not anticipated in these studies. In addition , these studies did not

anticipate that Bcr/Ab1P210 and Bcr/Ab1P185 might have different JNK requirements.

Here I demonstrate that while depletion of JNK activity affects growth-factor

independent proliferation in both Bcr/Ab1P185 and Bcr/AbIP210 transformed cells, the

latter cells rely primarily on JNK1 activity. Thus, disruption of Jnk1 gene causes

a selective defect in transformation by Bcr/AbIP210 while it has no effect on

Bcr/Ab1P185 induced leukemia. It is possible that the selective effect of JNK1-

deficiency on Bcr/AbIP210 (which is associated with human chronic myelogenous

leukemia) results from the finding that it is a less potent oncogene than
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Bcr/Ab1P185 (which is associated with human acute lymphoid leukemia)

(McLaughlin et aI. , 1987). Alternatively, the selective defect in Bcr/AbIP210

transformation caused by JNK1-deficiency may reflect a qualitative difference in

function between these Bcr/Abl isoforms (ilaria and Van Etten, 1996; Li et aI.

1999; Quackenbush et aI. , 2000). Bcr/AbIP210 differs from Bcr/Ab1P185 because of

the presence of Cdc24/Dbl and plekstrin homology domains (collectively referred

to as Dbl domain) in the Bcr region of the Bcr/AbIP210 fusion protein. These

domains are found in tandem in many exchange factors for small GTP binding

proteins of the Rho family. Two members of the Rho family, Rac1 and Cdc42

are known to regulate JNK (Coso et aI. , 1995; Minden et aI. , 1995). Indeed, 

show that transient expression of Bcr/AbIP210 Dbl domain can induce JNK

activation (Fig. 12). This observation provides a potential Ras-independent

pathway for JNK activation in Bcr/AbIP210 transformed cells. These Bcr/AbIP210

cells may rely on this privileged pathway for JNK activation in order to achieve

the deregulation of specific cellular processes that contribute to malignant

transformation. Decreased levels of JNK activity might hinder the biological

outcome of this specific pathway leading to a defect in oncogenic transformation.

In contrast , Bcr/Ab1P185 might compensate for the lack of the Dbl-activated

pathway through the engagement of alternative pathways. Nevertheless, in

Bcr/Ab1P185 transformed cells JNK is still activated through the Ras pathway. Thus
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complete depletion of JNK activity impairs the ability of Bcr/Ab1P185 to transform

cells.

FUTURE DIRECTIONS

The findings described in this thesis suggest JNK provides a survival

signal in Bcr/AbIP210 transformed lymphoblast. This signal may be mediated

by transcriptional regulation of key effectors (such as Bcl2 or BcIW) that are

critical for maintenance of the malignant cells. The identification of critical

effectors and the subsequent understanding of how specific gene expression

programs translate into malignant transformation could lead to the

manipulation of JNK signaling for therapeutic benefit. One possible approach

to identify these effectors is the utilization of microarray technology. This

technique allows the analysis of gene transcription in a specific tissue or cell

population. The analysis is achieved by hybridizing total mRNA to an array of

oligonucleotide probes. These probes represent most of the identified ORFs

sequenced in the mouse genome project. Data arrays obtained with different

samples can than be compared using Affymetrix specialized software. The

combination of microarray techniques with genetically modified cells can

provide a powerful tool for a comprehensive analysis of the global changes
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mediated by JNK during transformation by Bcr/Abl. In particular, gene

expression between wild-type and JNK-deficient cells could be compared by

taking advantage of the "ex vivo" lymphoid cell lines that were isolated from

the reconstituted animals. In addition , this analysis could be performed using

different growing conditions to identify potential effectors that mediate JNK-

induced growth factor independent proliferation in Bcr/AbIP210 lymphoblast.

Another novel observation reported in this thesis is the differential

requirement for JNK in myeloid versus lymphoid transformation and between

the two isoforms of the Bcr/Abl oncogene (Bcr/AbIP185 and Bcr/AbIP210). While

JNK1 alone is critical for Bcr/AbIP210 lymphoid but not myeloid transformation

inhibition of both JNK1 and JNK2 activities is required to prevent Bcr/Ab1P185

malignant prolieration. Thus, in order to verify if JNK has a role in myeloid

and Bcr/Ab1P185 induced leukomogenesis it would be essential to use either

Jnk1 Jnk2 deficient mice or a pharmacological inhibitor of these kinases.

Unfortunately, the inactivation of Jnk1Jnk2 genes results in early embryonic

lethaliy and pharmacological inhibitors available for JNK kinases would

probably have high toxicity in vivo. Thus, a "conditional" gene targeting

strategy could be used to circumvent these issues. Conditional gene

targeting refers to a gene modification in the mouse that is restricted to either

certain cell types (tissue specific) or to a specific stage within development

(temporally specific) or both. Compared to "conventional" gene targeting, the
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conditional strategy will test the function of a widely expressed gene in a

particular tissue without being influenced by gene loss in adjacent tissues, as

the rest of the embryo is genetically wild-type. There are two systems to

achieve conditional gene inactivation in mice: the cre- loxP system (Lakso et

aI. , 1992; Orban et aI. , 1992; Sauer, 1998) and the Flp recombinase from

Saccharomyces cerevisiae (Dymecki , 1996). Both of these systems are

based on the use of site-specific recombinases, which allow targeted excision

of specific genes flanked by recognition sites (such as loxP sites). Thus, the

gene of choice can be universally targeted with the loxP sites throughout the

animal and tissue specific excision can be achieved by crossing these

animals with transgenic mice, which ectopically express the heterologous

recombinase in specific tissues. By using this approach it would be possible

to obtain viable mice which are Jnk null in the lymphoid or myeloid

compartment. These mice can be used as donors in reconstitution assays

designed to investigate the role of JNK both in Bcr/Ab1P185 induced

transformation and in Bcr/Abl induced myeloproliferative disease.



;r,

119

REFERENCES

Agami , R. , Blandino, G. , Oren , M. , and Shaul , Y. (1999). Interaction of c-

Abl and p73alpha and their collaboration to induce apoptosis. Nature 399, 809-

813.

Amarante-Mendes, G. P. , McGahan , A J. , Nishioka, W. K. , Afar, D. E

Witte, O. N. , and Green , D. R. (1998). Bcl- independent Bcr-Abl-mediated

resistance to apoptosis: protection is correlated with up regulation of Bcl-xL.

Oncogene 16, 1383-1390.

Amson , R. , Sigaux , F. , Przedborski , S. , Flandrin , G. , Givol , D. , and

Telerman , A. (1989). The human protooncogene product p33pim is expressed

during fetal hematopoiesis and in diverse leukemias. Proc Natl Acad Sci USA

8857-8861.

Anderson , S. M. , and Mladenovic, J. (1996). The BCR-ABL oncogene

requires both kinase activity and src-homology 2 domain to induce cytokine

secretion. Blood 87, 238-244.

Andoniou, C. E , Thien , C. B. , and Langdon, W. Y. (1994). Tumour

induction by activated abl involves tyrosine phosphorylation of the product of the

cbl oncogene. Embo J 13 4515-4523.

Baskaran , R. , Wood, L. D., Whitaker, L. L. , Canman , C. E , Morgan , S. E

, Y. , Barlow , C. , Baltimore , D. , Wynshaw-Boris, A , Kastan , M. B. , and Wang,



120

J. Y. (1997). Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase

in response to ionizing radiation. Nature 387, 516-519.

Bedi, A. , Zehnbauer , B. A. , Barber, J. P. , Sharkis, S. J. , and Jones , R J.

(1994). Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood

, 2038-2044.

Behrens, A. , Jochum , W. , Sibilia , M. , and Wagner, E. F. (2000).

Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal

phosphorylation. Oncogene 19, 2657-2663.

Bennett , B. L. , Sasaki , D. T. , Murray, B. W. , O' Leary, E. C. , Sakata, S. T.

Xu, W. , Leisten , J. C. , Motiwala, A , Pierce, S. , Satoh , Y. et al. (2001).

SP600125 , an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl

Acad Sci USA 98, 13681-13686.

Bhatia, R , Munthe , H. A , and Verfaillie , C. M. (1998). Tyrphostin AG957

a tyrosine kinase inhibitor with anti-BCR/ABL tyrosine kinase activity restores

beta1 integrin-mediated adhesion and inhibitory signaling in chronic

myelogenous leukemia hematopoietic progenitors. Leukemia 12, 1708-1717.

Bose, S. , Deininger , M. , Gora-Tybor , J. , Goldman , J. M. , and Melo , J. V.

(1998). The presence of typical and atypical BCR-ABL fusion genes in

leukocytes of normal individuals: biologic significance and implications for the

assessment of minimal residual disease. Blood 92, 3362-3367.



121

Bast , F. , McKay, R. , Bast , M. , Potapova, 0. , Dean , N. M. , and Mercola, D.

(1999). The Jun kinase 2 isoform is preferentially required for epidermal growth

factor- induced transformation of human A549 lung carcinoma cells. Mol Cell Bioi

19, 1938-1949.

Boultwood , J. , Peniket, A. , Watkins, F. , Shepherd, P. , McGale, P.

Richards , S. , Fidler , C. , Littewood, T. J. , and Wainscoat , J. S. (2000). Telomere

length shortening in chronic myelogenous leukemia is associated with reduced

time to accelerated phase. Blood 96, 358-361.

Breitschopf , K. , Haendeler, J., Malchow, P. , Zeiher, A M., and Dimmeler

S. (2000). Posttranslational modification of Bcl-2 facilitates its proteasome-

dependent degradation: molecular characterization of the involved signaling

pathway. Mol Cell Bioi 20, 1886- 1896.

Brummendorf, T. H. , Holyoake , T. L. , Rufer , N. , Barnett, M. J. , Schulzer

, Eaves, C. J. , Eaves, A C. , and Lansdorp, P. M. (2000). Prognostic

implications of differences in telomere length between normal and malignant cells

from patients with chronic myeloid leukemia measured by flow cytometry. Blood

, 1883- 1890.

Burgess, G. S. , Williamson , E. A , Cripe, L. D. , Litz-Jackson , S., Bhatt , J.

, Stanley, K. , Stewart, M. J. , Kraft, A. S. , Nakshatri , H. , and Boswell , H. S.

(1998). Regulation of the c-jun gene in p210 BCR-ABL transformed cells

corresponds with activity of JNK , the c-jun N-terminal kinase. Blood 92, 2450-

2460.



122

Carlesso, N. , Frank , D. A. , and Griffin , J. D. (1996). Tyrosyl

phosphorylation and DNA binding activity of signal transducers and activators of

transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J

Exp Med 183, 811-820.

Chai , S. K. , Nichols, G. L. , and Rothman , P. (1997). Constitutive activation

of JAKs and STATs in BCR-Abl-expressing cell lines and peripheral blood cells

derived from leukemic patients. J Immunol 159, 4720-4728.

Chen , Y. R , Wang, X. , Templeton , D. , Davis, R J. , and Tan , T. H. (1996).

The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C

and gamma radiation. Duration of JNK activation may determine cell death and

proliferation. J Bioi Chem 271 , 31929-31936.

Chopra, R , Pu , Q. Q. , and Elefanty, A. G. (1999). Biology of BCR-ABL.

Blood Rev 13, 211-229.

Chow , C. W. , Rincon , M. , Cavanagh , J. , Dickens, M. , and Davis, R J.

(1997). Nuclear accumulation of NFAT4 opposed by the JNK signal transduction

pathway. Science 278, 1638-1641.

Cirinna , M. , Trotta, R , Salomoni , P. , Kossev , P. , Wasik , M. , Perrotti , D.

and Calabretta, B. (2000). Bcl-2 expression restores the leukemogenic potential

of a BCR/ABL mutant defective in transformation. Blood 96, 3915-3921.



123

Clarkson , B. , and Strife, A (1993). Linkage of proliferative and

maturational abnormalities in chronic myelogenous leukemia and relevance to

treatment. Leukemia 7, 1683- 1721.

Cogswell , P. C. , Morgan, R. , Dunn , M., Neubauer, A , Nelson, P. , Poland-

Johnston , N. K. , Sandberg, A A , and Liu, E. (1989). Mutations of the ras

protooncogenes in chronic myelogenous leukemia: a high frequency of ras

mutations in bcr/abl rearrangement-negative chronic myelogenous leukemia.

Blood 74, 2629-2633.

Collins, L. S. , and Dorshkind , K. (1987). A stromal cell line from myeloid

long-term bone marrow cultures can support myelopoiesis and B lymphopoiesis.

J Immunol 138, 1082- 1087.

Conze, D. , Krahl, T. , Kennedy, N. , Weiss, L. , Lumsden , J. , Hess, P.

Flavell, R. A , Le Gros , G. , Davis, R. J. , and Rincon , M. (2002). c-Jun NH(2)-

terminal kinase (JNK)1 and JNK2 have distinct roles in CD8(+) T cell activation. J

Exp Med 195 811-823.

Cortez , D. , Kadlec , L. , and Pendergast, A M. (1995). Structural and

signaling requirements for BCR-ABL-mediated transformation and inhibition of

apoptosis. Mol Cell Bioi 15, 5531-5541.

Cortez , D. , Reuther, G. , and Pendergast, A M. (1997). The Bcr-Abl

tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-

phase transition in hematopoietic cells. Oncogene 15, 2333-2342.



124

Cortez , D., Stoica, G. , Pierce , J. H. , and Pendergast, A M. (1996). The

BCR-ABL tyrosine kinase inhibits apoptosis by activating a Ras-dependent

signaling pathway. Oncogene 13, 2589-2594.

Coso , O. A , Chiariello , M. , Yu , J. C. , Teramoto, H. , Crespo, P. , Xu , N.

Miki , T. , and Gutkind, J. S. (1995). The small GTP-binding proteins Rac1 and

Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81, 1137-

1146.

Cripe , L. D. , Gelfanov , V. M. , Smith, E. A , Spigel , D. R. , Phillips, C. A

Gabig, T. G., Jung, S. H. , Fyffe, J. , Hartman , A D. , Kneebone, P. et al. (2002).

Role for c-jun N-terminal kinase in treatment-refractory acute myeloid leukemia

(AML): signaling to multidrug-efflux and hyperproliferation. Leukemia 16, 799-

812.

Daley, G. Q. , and Baltimore, D. (1988). Transformation of an interleukin 3-

dependent hematopoietic cell line by the chronic myelogenous leukemia-specific

P210bcr/abl protein. Proc Natl Acad Sci USA 85, 9312-9316.

Daley, G. Q. , Van Etten , R. A , and Baltimore , D. (1990). Induction of

chronic myelogenous leukemia in mice by the P210bcr/abl gene of the

Philadelphia chromosome. Science 247, 824-830.

Davis, R. J. (2000). Signal transduction by the JNK group of MAP kinases.

Cell 103, 239-252.



125

de Jong, R , Haataja, L. , Voncken , J. W. , Heisterkamp, N. , and Groffen , J.

(1995). Tyrosine phosphorylation of murine Crkl. Oncogene 11 , 1469-1474.

Dickens, M. , Rogers , J. S. , Cavanagh , J. , Raitano , A. , Xia, Z. , Halpern , J.

, Greenberg, M. E. , Sawyers , C. L. , and Davis, R J. (1997). A cytoplasmic

inhibitor of the JNK signal transduction pathway. Science 277 693-696.

Dong, C. , Yang, D. D. , Tournier , C. , Whitmarsh , A. J. , Xu , J. , Davis, R J.

and Flavell , R A. (2000). JNK is required for effector T-cell function but not for T-

cell activation. Nature 405, 91-94.

Dong, C. , Yang, D. D. , Wysk , M. , Whitmarsh , A. J. , Davis, R J. , and

Flavell, R A. (1998). Defective T cell differentiation in the absence of Jnk1.

Science 282, 2092-2095.

Donovan , N. , Becker, E B. , Konishi , Y. , and Bonni , A. (2002). JNK

phosphorylation and activation of BAD couples the stress-activated signaling

pathway to the cell death machinery. J Bioi Chem 277 40944-40949.

Druker, B. J. , Tamura , S. , Buchdunger, E , Ohno, S. , Segal , G. M.

Fanning, S. , Zimmermann , J. , and Lydon , N. B. (1996). Effects of a selective

inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat

Med 2, 561-566.

Dubrez , L. , Eymin , B. , Sordet , 0. , Drain , N. , Turhan , A. G. , and Salary, E

(1998). BCR-ABL delays apoptosis upstream of procaspase-3 activation. Blood

, 2415-2422.



126

Dymecki , S. M. (1996). Flp recombinase promotes site-specific DNA

recombination in embryonic stem cells and transgenic mice. Proc Natl Acad Sci

USA 93 6191-6196.

Fanger, G. R , Gerwins, P. , Widmann , C. , Jarpe , M. B., and Johnson , G.

L. (1997). MEKKs, GCKs , MLKs, PAKs , TAKs, and tpls: upstream regulators of

the c-Jun amino-terminal kinases? Curr Opin Genet Dev 7, 67-74.

Faris , M. , Kokot , N. , Latinis, K. , Kasibhatla, S. , Green , D. R. , Koretzky, G.

, and Nel , A. (1998). The c-Jun N-terminal kinase cascade plays a role in

stress- induced apoptosis in Jurkat cells by up-regulating Fas ligand expression. J

ImmunoI160, 134- 144.

Fuchs, S. Y. , Adler , V. , Buschmann , T. , Yin, Z. , Wu , X. , Jones, S. N. , and

Ronai , Z. (1998). JNK targets p53 ubiquitination and degradation in nonstressed

cells. Genes Dev 12 2658-2663.

Gelfanov , V. M. , Burgess, G. S. , Litz-Jackson , S. , King, A. J. , Marshall , M.

, Nakshatri , H. , and Boswell , H. S. (2001). Transformation of interleukin-

dependent cells without participation of Stat5/bcl-xL: cooperation of akt with

raf/erk leads to p65 nuclear factor kappaB-mediated antiapoptosis involving c-

IAP2. Blood 98, 2508-2517.

Gesbert , F. , and Griffin , J. D. (2000). Bcr/Abl activates transcription of the

Bcl-X gene through ST A T5. Blood 96, 2269-2276.



127

Gesbert , F. , Sellers, W. R , Signoretti, S. , Loda , M. , and Griffin , J. D.

(2000). BCR/ABL regulates expression of the cyclin-dependent kinase inhibitor

p27Kip1 through the phosphatidylinositol 3-Kinase/AKT pathway. J Bioi Chem

275, 39223-39230.

Gewirtz , A M., Sokol, D. L. , and Ratajczak, M. Z. (1998). Nucleic acid

therapeutics: state of the art and future prospects. Blood 92, 712-736.

Gaga, A , McLaughlin , J. , Afar , D. E. , Saffran , D. C. , and Witte , O. N.

(1995). Alternative signals to RAS for hematopoietic transformation by the BCR-

ABL oncogene. Cell 82, 981-988.

Gong, J. G. , Costanzo, A , Yang, H. Q. , Melina, G. , Kaelin , W. G. , Jr.

Levrero, M. , and Wang, J. Y. (1999). The tyrosine kinase c-Abl regulates p73 in

apoptotic response to cisplatin- induced DNA damage. Nature 399 806-809.

Gotoh , A , Miyazawa, K. , Ohyashiki , K. , Tauchi , T. , Boswell , H. S.

Broxmeyer, H. E. , and Toyama, K. (1995). Tyrosine phosphorylation and

activation of focal adhesion kinase (p125FAK) by BCR-ABL oncoprotein. Exp

Hematol 23, 1153- 1159.

Grenier , A. , Dehoux , M. , Boutten , A. , Arce-Vicioso , M. , Durand , G.

Gougerot-Pocidalo, M. A , and Chollet-Martin , S. (1999). Oncostatin M

production and regulation by human polymorphonuclear neutrophils. Blood 93

1413- 1421.



128

Gross, A , McDonnell , J. M. , and Korsmeyer, S. J. (1999a). BCL-2 family

members and the mitochondria in apoptosis. Genes Dev 13, 1899- 1911.

Gross, A W. , Zhang, X. , and Ren , R. (1999b). Bcr-Abl with an SH3

deletion retains the ability To induce a myeloproliferative disease in mice , yet c-

Abl activated by an SH3 deletion induces only lymphoid malignancy. Mol Cell

Bioi 19, 6918-6928.

Gupta, S. , Barrett, T. , Whitmarsh , A J. , Cavanagh , J. , Sluss, H. K.

Derijard, B. , and Davis, R J. (1996). Selective interaction of JNK protein kinase

isoforms with transcription factors. Embo J 15, 2760-2770.

Hanahan , D. , and Weinberg, R A (2000). The hallmarks of cancer. Cell

100, 57-70.

Heaney, C. , Kolibaba, K. , Bhat, A , Oda, T. , Ohno, S. , Fanning, S. , and

Druker, B. J. (1997). Direct binding of CRKL to BCR-ABL is not required for BCR-

ABL transformation. Blood 89, 297-306.

Heisterkamp, N. , Jenster , G. , ten Hoeve, J. , Zovich , D. , Pattengale, P. K.

and Groffen , J. (1990). Acute leukaemia in bcr/abl transgenic mice. Nature 344

251-253.

Hemmeryckx , B. , Reichert, A, Watanabe, M. , Kaartinen , V. , de Jong, R

Pattengale, P. K. , Groffen , J. , and Heisterkamp, N. (2002). BCR/ABL P190

transgenic mice develop leukemia in the absence of Crkl. Oncogene 21 3225-

3231.



129

Hemmeryckx , B. , van Wijk , A , Reichert , A , Kaartinen , V. , de Jong, R

Pattengale, P. K. , Gonzalez-Gomez, I., Groffen , J. , and Heisterkamp, N. (2001).

Crkl enhances leukemogenesis in BCR/ABL P190 transgenic mice. Cancer Res

1398-1405.

Honda , H. , Ushijima, T. , Wakazono, K. , Oda, H. , Tanaka, Y. , Aizawa, S.

Ishikawa, T. , Yazaki , Y. , and Hirai , H. (2000). Acquired loss of p53 induces

blastic transformation in p210(bcr/abl)-expressing hematopoietic cells: a

transgenic study for blast crisis of human CML. Blood 95, 1144-1150.

Horita, M. , Andreu, E. J. , Benito , A, Arbona, C. , Sanz , C. , Benet, I.

Prosper, F. , and Fernandez-Luna, J. L. (2000). Blockade of the Bcr-Abl kinase

activity induces apoptosis of chronic myelogenous leukemia cells by suppressing

signal transducer and activator of transcription 5-dependent expression of Bcl-xL.

J Exp Med 191 977-984.

Huettner, C. S. , Zhang, P. , Van Etten , R A , and Tenen , D. G. (2000).

Reversibility of acute B-ceilleukaemia induced by BCR-ABL 1. Nat Genet 24 57-

60.

lIaria, R L. , Jr. , and Van Etten, R A (1996). P210 and P190(BCR/ABL)

induce the tyrosine phosphorylation and DNA binding activity of multiple specific

STAT family members. J Bioi Chem 271 , 31704-31710.

Inoshita, S. , Takeda, K. , Hatai, T. , Terada, Y. , Sana, M. , Hata , J.

Umezawa, A , and Ichijo, H. (2002). Phosphorylation and inactivation of myeloid

cell leukemia 1 by JNK in response to oxidative stress. J Bioi Chem 277, 43730-

43734.



130

Ita, T. , Deng, X. , Carr , B. , and May, W. S. (1997). Bcl-2 phosphorylation

required for anti-apoptosis function. J Bioi Chem 272 11671- 11673.

James, H. A, and Gibson , I. (1998). The therapeutic potential of

ribozymes. Blood 91 , 371-382.

Jena , N. , Deng, M. , Sicinska, E , Sicinski , P. , and Daley, G. a. (2002).

Critical role for cyclin D2 in BCR/ABL- induced proliferation of hematopoietic cells.

Cancer Res 62, 535-541 .

Johnson , R, Spiegelman , B. , Hanahan , D. , and Wisdom , R (1996).

Cellular transformation and malignancy induced by ras require c-jun. Mol Cell

Bioi 16, 4504-4511 .

Kardinal , C. , Konkol , B., Schulz , A. , Posern , G. , Un , H. , Adermann , K.

Eulitz , M. , Estrov , Z. , Talpaz , M. , Arlinghaus, R. B. , and Feller, S. M. (2000). Cell-

penetrating SH3 domain blocker peptides inhibit proliferation of primary blast

cells from CML patients. Faseb J 14 1529-1538.

Kasibhatla, S. , Brunner , T. , Genestier , L. , Echeverri , F. , Mahboubi , A and

Green , D. R (1998). DNA damaging agents induce expression of Fas ligand and

subsequent apoptosis in T lymphocytes via the activation of NF-kappa Band AP-

1. Mol Cell 1 543-551.

Kelliher, M. A , McLaughlin , J. , Witte , O. N. , and Rosenberg, N. (1990).

Induction of a chronic myelogenous leukemia- like syndrome in mice with v-abl

and BCR/ABL. Proc Natl Acad Sci USA 87, 6649-6653.



131

"i-

Kennedy, N. J. , Sluss, H. K. , Jones, S. N. , Bar-Sagi , D. , Flavell , R. A. , and

Davis, R. J. (2003). Suppression of Ras-stimulated transformation by the JNK

signal transduction pathway. Genes Dev 17, 10629- 10620.

Keyse, S. M. (2000). Protein phosphatases and the regulation of mitogen-

activated protein kinase signalling. Curr Opin Cell Bioi 12, 186-192.

Kharbanda , S. , Bharti , A , Pei , D. , Wang, J. , Pandey, P. , Ren , R.

Weichselbaum , R. , Walsh , C. T. , and Kufe, D. (1996). The stress response to

ionizing radiation involoves c-Abl-dependent phosphorylation of SHPTP1. Proc

Natl Acad Sci USA 93, 6898-6901.

Kharbanda, S. , Pandey, P. , Jin , S. , Inoue, S. , Bharti , A , Yuan , Z. M.

Weichselbaum , R. , Weaver , D. , and Kufe , D. (1997). Functional interaction

between DNA-PK and c-Abl in response to DNA damage. Nature 386, 732-735.

Kin , Y. , Li , G. , Shibuya, M. , and Maru , Y. (2001). The Dbl homology

domain of BCR is not a simple spacer in P21 OBCR-ABL of the Philadelphia

chromosome. J Bioi Chem 276, 39462-39468.

Klejman , A , Schreiner, S. J. , Nieborowska-Skorska, M. , Siupianek, A

Wilson , M. , Smithgall , T. E , and Skorski , T. (2002). The Src family kinase Hck

couples BCR/ABL to STAT5 activation in myeloid leukemia cells. Embo J 21

5766-5774.



132

Koleske, A J., Gifford, A. M. , Scott , M. L. , Nee, M. , Bronson , R. T.

Miczek, K. A , and Baltimore , D. (1998). Essential roles for the Abl and Arg

tyrosine kinases in neurulation. Neuron 21 , 1259-1272.

Kolibaba, K. S., Bhat, A , Heaney, C. , Oda, T. , and Druker , B. J. (1999).

CRKL binding to BCR-ABL and BCR-ABL transformation. Leuk Lymphoma 33

119-126.

Komatsu , N. , Watanabe, T. , Uchida, M. , Mori, M. , Kirito , K. , Kikuchi , S.

Liu , Q. , Tauchi , T. , Miyazawa, K. , Endo, H. et al. (2002). A member of Forkhead

transcription factor FKHRL 1 is a downstream effector of STl571- induced cell

cycle arrest in BCR-ABL expressing cells. J Bioi Chem.

Korus, M. , Mahon , G. M. , Cheng, L., and Whitehead, I. P. (2002). p38

MAPK-mediated activation of NF-kappaB by the RhoGEF domain of Bcr.

Oncogene 21 , 4601-4612.

Kruh , G. D., King, C. R , Kraus , M. H. , Popescu, N. C. , Amsbaugh , S. C.

McBride , W. , and Aaronson , S. A (1986). A novel human gene closely related

to the abl proto-oncogene. Science 234, 1545- 1548.

Kuan , C. Y. , Yang, D. D. , Samanta Roy, D. R , Davis, R J. , Rakic, P. , and

Flavell , R A (1999). The Jnk1 and Jnk2 protein kinases are required for regional

specific apoptosis during early brain development. Neuron 22 667-676.



133

Kyriakis, J. M. , and Avruch , J. (2001). Mammalian mitogen-activated

protein kinase signal transduction pathways activated by stress and

inflammation. Physiol Rev 81, 807-869.

Kyriakis, J. M., Banerjee, P. , Nikolakaki , E. , Dai , T. , Rubie , E. A , Ahmad,

M. F. , Avruch, J. , and Woodgett , J. R. (1994). The stress-activated protein kinase

subfamily of c-Jun kinases. Nature 369, 156-160.

Lakso, M. , Sauer , B. , Mosinger , B. , Jr. , Lee , E. J. , Manning, R. W. , Yu, S.

, Mulder, K. L. , and Westphal , H. (1992). Targeted oncogene activation by site-

specific recombination in transgenic mice. Proc Natl Acad Sci USA 89 6232-

6236.

Lamb, J. A , Ventura , J. , Hess, P. , Flavell , R. A. , and Davis, R. J. (2003).

JunD mediates survival signaling by the JNK signal transduction pathway.

submitted.

Lawler , S. , Fleming, Y. , Goedert , M. , and Cohen , P. (1998). Synergistic

activation of SAPK1/JNK1 by two MAP kinase kinases in vitro. Curr Bioi 8, 1387-

1390.

Le-Niculescu, H. , Bonfoco , E. , Kasuya, Y. , Claret , F. X. , Green , D. R. , and

Karin , M. (1999). Withdrawal of survival factors results in activation of the JNK

pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell

Bioi 19 751-763.



134

Lei , K. , and Davis, R. J. (2003). JNK phosphorylation of Bim-related

members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad

Sci USA

Lei , K. , Nimnual , A , Zong, W. X. , Kennedy, N. J. , Flavell, R. A

Thompson , C. B. , Bar-Sagi , D. , and Davis , R. J. (2002). The Bax subfamily of

Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun

NH(2)-terminal kinase. Mol Cell Bioi 22, 4929-4942.

Levrero , M., De Laurenzi , V. , Costanzo , A , Gong, J. , Melina , G. , and

Wang, J. Y. (1999). Structure, function and regulation of p63 and p73. Cell Death

Differ 6, 1146-1153.

, B. , Boast , S. , de los Santos, K. , Schieren, I., Quiroz , M. , Teitelbaum , S.

, Tondravi , M. M. , and Goff, S. P. (2000). Mice deficient in Abl are osteoporotic

and have defects in osteoblast maturation. Nat Genet 24 304-308.

, S. , Couvillon , A D. , Brasher , B. B., and Van Etten , R. A (2001 a).

Tyrosine phosphorylation of Grb2 by Bcr/Abl and epidermal growth factor

receptor: a novel regulatory mechanism for tyrosine kinase signaling. Embo J 20,

6793-6804.

, S. , Gillessen , S., Tomasson , M. H. , Dranoff , G. , Gilliland, D. G. , and

Van Etten , R. A (2001 b). Interleukin 3 and granulocyte-macrophage colony-

stimulating factor are not required for induction of chronic myeloid leukemia- like

myeloproliferative disease in mice by BCR/ABL. Blood 97, 1442-1450.



135

, S. , lIaria , R. L., Jr. , Million , R P. , Daley, G. Q. , and Van Etten , R A

(1999). The P190, P210, and P230 forms of the BCR/ABL oncogene induce a

similar chronic myeloid leukemia- like syndrome in mice but have different

lymphoid leukemogenic activity. J Exp Med 189, 1399-1412.

Lionberger , J. M. , Wilson , M. B. , and Smithgall , T. E. (2000).

Transformation of myeloid leukemia cells to cytokine independence by Bcr-Abl is

suppressed by kinase-defective Hck. J Bioi Chem 275, 18581- 18585.

Maser, R S. , and DePinho, R A (2002). Connecting chromosomes,

crisis , and cancer. Science 297, 565-569.

Maundrell, K. , Antonsson, B. , Magnenat, E. , Camps, M. , Muda , M.

Chabert, C. , Gillieron , C. , Boschert, U., Vial-Knecht, E. , Martinou , J. C. , and

Arkinstall , S. (1997). Bcl-2 undergoes phosphorylation by c-Jun N-terminal

kinase/stress-activated protein kinases in the presence of the constitutively active

GTP-binding protein Rac1. J Bioi Chem 272, 25238-25242.

McGahan , A , Bissonnette, R , Schmitt, M. , Cotter, K. M. , Green, D. R

and Cotter, T. G. (1994). BCR-ABL maintains resistance of chronic myelogenous

leukemia cells to apoptotic cell death. Blood 83 1179- 1187.

McLaughlin , J. , Chianese , E. , and Witte , O. N. (1987). In vitro

transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene

product of the Philadelphia chromosome. Proc Natl Acad Sci USA 84, 6558-

6562.



'*'

136

McWhirter , J. R , Galasso, D. L. , and Wang, J. Y. (1993). A coiled-coil

oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl

oncoproteins. Mol Cell Bioi 13, 7587-7595.

Melo , J. V. (1996). The diversity of BCR-ABL fusion proteins and their

relationship to leukemia phenotype. Blood 88, 2375-2384.

Millon , R P. , and Van Etten , R A (2000). The Grb2 binding site is

required for the induction of chronic myeloid leukemia- like disease in mice by the

Bcr/Abl tyrosine kinase. Blood 96, 664-670.

Minden, A. , Lin , A. , Claret , F. X. , Aba, A. , and Karin, M. (1995). Selective

activation of the JNK signaling cascade and c-Jun transcriptional activity by the

small GTPases Rac and Cdc42Hs. Cell 81 1147- 1157.

Minden , A. , Lin , A , Smeal , T. , Derijard, B. , Cobb, M. , Davis, R , and Karin

M. (1994). c-Jun N-terminal phosphorylation correlates with activation of the JNK

subgroup but not the ERK subgroup of mitogen-activated protein kinases. Mol

Cell Bioi 14 6683-6688.

Muller, A J. , Young, J. C. , Pendergast , AM. , Pondel , M. , Landau , N. R

Littman , D. R , and Witte, O. N. (1991). BCR first exon sequences specifically

activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-

positive human leukemias. Mol Cell Bioi 11 , 1785-1792.



137

Musti , AM. , Treier , M. , and Bohmann , D. (1997). Reduced ubiquitin-

dependent degradation of c-Jun after phosphorylation by MAP kinases. Science

275, 400-402.

Neshat, M. S., Raitano, A B., Wang, H. G. , Reed, J. C., and Sawyers, C.

L. (2000). The survival function of the Bcr-Abl oncogene is mediated by Bad-

dependent and - independent pathways: roles for phosphatidylinositol 3-kinase

and Raf. Mol Cell Bioi 1179- 1186.

Nieborowska-Skorska , M. , Haser , G. , Kossev , P. , Wasik , M. A , and

Skorski , T. (2002). Complementary functions of the antiapoptotic protein A1 and

serine/threonine kinase pim-1 in the BCR/ABL-mediated leukemogenesis. Blood

99, 4531-4539.

Nieborowska-Skorska, M. , Wasik, M. A , Siupianek, A , Salomoni , P.

Kitamura, T. , Calabretta, B. , and Skorski, T. (1999). Signal transducer and

activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact

Src homology (SH)3 and SH2 domains of BCR/ABL and is required for

leukemogenesis. J Exp Med 189, 1229- 1242.

Nimmanapalli , R, O' Bryan , E. , Huang, M. , Bali , P. , Burnette, P. K.,

Loughran , T. , Tepperberg, J., Jove, R. , and Bhalla, K. (2002). Molecular

characterization and sensitivity of STI-571 (imatinib mesylate , Gleevec)-resistant,

Bcr-Abl-positive, human acute leukemia cells to SRC kinase inhibitor PD180970

and 17-allylamino- 17-demethoxygeldanamycin. Cancer Res 62, 5761-5769.

Nishii , K. , Kabarowski , J. H. , Gibbons, D. L. , Griffiths , S. D. , Titley, I.

Wiedemann , L. M. , and Greaves, M. F. (1996). ts BCR-ABL kinase activation



138

confers increased resistance to genotoxic damage via cell cycle block. Oncogene

13, 2225-2234.

Nosaka, T. , Kawashima, T. , Misawa, K., Ikuta, K. , Mui , A L. , and

Kitamura, T. (1999a). ST A T5 as a molecular regulator of proliferation,

differentiation and apoptosis in hematopoietic cells. Embo J 18, 4754-4765.

Nosaka , T. , and Kitamura, T. (2002). Pim-1 expression is sufficient to

induce cytokine independence in murine hematopoietic cells , but is dispensable

for BCR-ABL-mediated transformation. Exp Hematol 30, 697-702.

Nosaka , Y., Arai , A , Miyasaka , N. , and Miura, O. (1999b). CrkL mediates

Ras-dependent activation of the Raf/ERK pathway through the guanine

nucleotide exchange factor C3G in hematopoietic cells stimulated with

erythropoietin or interleukin-3. J Bioi Chem 274 30154-30162.

Nowell , P. C. , and Hungerford , D. A (1960). A minute chromosome in

human chronic granulocytic leukemia. Science 132 1497.

Oda , T. , Heaney, C. , Hagopian , J. R , Okuda, K. , Griffin , J. D. , and Druker,

B. J. (1994). Crkl is the major tyrosine-phosphorylated protein in neutrophils from

patients with chronic myelogenous leukemia. J Bioi Chem 269, 22925-22928.

Orban , P. C. , Chui , D. , and Marth , J. D. (1992). Tissue- and site-specific

DNA recombination in transgenic mice. Proc Natl Acad Sci USA 89, 6861-6865.



139

Packham , G. , White, E L. , Eischen , C. M., Yang, H. , Parganas, E , Ihle , J.

, Grillot, D. A , Zambett, G. P. , Nunez , G. , and Cleveland, J. L. (1998).

Selective regulation of Bcl-XL by a Jak kinase-dependent pathway is bypassed in

murine hematopoietic malignancies. Genes Dev 12 2475-2487.

Pasternak , G. , Hochhaus , A , Schultheis, B. , and Hehlmann , R. (1998).

Chronic myelogenous leukemia: molecular and cellular aspects. J Cancer Res

Clin Oncol 124, 643-660.

Pendergast, A M. , Muller , A J. , Havlik , M. H. , Maru , Y. , and Witte, O. N.

(1991). BCR sequences essential for transformation by the BCR-ABL oncogene

bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent

manner. Cell 66, 161- 171.

Pendergast, AM. , Quilliam , L. A , Cripe, L. D. , Bassing, C. H. , Dai , Z. , Li

, Batzer, A , Rabun , K. M. , Der, C. J. , Schlessinger , J. , and et al. (1993). BCR-

ABL- induced oncogenesis is mediated by direct interaction with the SH2 domain

of the GRB-2 adaptor protein. Cell 75, 175- 185.

Pluk , H. , Dorey, K. , and Superti-Furga, G. (2002). Autoinhibition of c-Abl.

Cell 108, 247-259.

Potapova, 0. , Gorospe , M. , Bast , F. , Dean , N. M. , Gaarde, W. A

Mercola, D. , and Holbrook, N. J. (2000a). c-Jun N-terminal kinase is essential for

growth of human T98G glioblastoma cells. J Bioi Chem 275, 24767-24775.



140

Potapova, 0. , Gorospe, M. , Dougherty, R H. , Dean , N. M. , Gaarde, W. A

and Holbrook, N. J. (2000b). Inhibition of c-Jun N-terminal kinase 2 expression

suppresses growth and induces apoptosis of human tumor cells in a p53-

dependent manner. Mol Cell Bioi , 1713- 1722.

Pugazhenthi , S. , Nesterova, A , Sable , C. , Heidenreich, K. A , Boxer, L.

, Heasley, L. E. , and Reusch , J. E. (2000). Akt/protein kinase B up-regulates

Bcl-2 expression through cAMP-response element-binding protein. J Bioi Chem

275, 10761- 10766.

Quackenbush , R C. , Reuther , G. W. , Miller, J. P. , Courtney, K. D. , Pear

W. S. , and Pendergast, A. M. (2000). Analysis of the biologic properties of p230

Bcr-Abl reveals unique and overlapping properties with the oncogenic p185 and

p210 Bcr-Abl tyrosine kinases. Blood 95, 2913-2921.

Raitano , A B. , Halpern , J. R , Hambuch , T. M. , and Sawyers, C. L. (1995).

The Bcr-Ablleukemia oncogene activates Jun kinase and requires Jun for

transformation. Proc Natl Acad Sci USA 92, 11746-11750.

Ren , R (2002). The molecular mechanism of chronic myelogenous

leukemia and its therapeutic implications: studies in a murine model. Oncogene

, 8629-8642.

Reuther , G. W. , Fu , H. , Cripe , L. D. , Collier, R J. , and Pendergast , A M.

(1994), Association of the protein kinases c-Bcr and Bcr-Abl with proteins of the

14- 3 family. Science 266, 129-133.



141

Roumiantsev , S. , de Aos, I. E. , Varticovski , L. , lIaria, R L. , and Van Etten

R A (2001). The src homology 2 domain of Bcr/Abl is required for efficient

induction of chronic myeloid leukemia- like disease in mice but not for lymphoid

leukemogenesis or activation of phosphatidylinositol 3-kinase. Blood 97, 4- 13.

Rowley, J. D. (1973). Letter: A new consistent chromosomal abnormality

in chronic myelogenous leukaemia identified by quinacrine fluorescence and

Giemsa staining. Nature 243, 290-293.

Sabapathy, K. , Jochum , W., Hochedlinger , K. , Chang, L. , Karin , M. , and

Wagner, E. F. (1999). Defective neural tube morphogenesis and altered

apoptosis in the absence of both JNK1 and JNK2. Mech Dev 89, 115-124.

Saglio, G. , Guerrasio, A , Rosso, C. , Zaccaria, A, Tassinari , A. , Serra, A

Rege-Cambrin , G. , Mazza, U. , and Gavosto, F. (1990). New type of Bcr/Abl

junction in Philadelphia chromosome-positive chronic myelogenous leukemia.

Blood 76, 1819-1824.

Salesse, S. , and Verfaillie , C. M. (2002). Mechanisms underlying

abnormal trafficking and expansion of malignant progenitors in CML: BCR/ABL-

induced defects in integrin function in CML. Oncogene 21 8605-8611.

Salgia, R , Brunkhorst, B. , Pisick , E. , Li, J. L. , La , S. H. , Chen , L. B., and

Griffin , J. D. (1995a). Increased tyrosine phosphorylation of focal adhesion

proteins in myeloid cell lines expressing p210BCR/ABL. Oncogene 11 , 1149-

1155.



142

Salgia, R , Li, J. L. , La, S. H. , Brunkhorst, B. , Kansas, G. S. , SObhany, E

, Sun , Y. , Pisick, E, Hallek, M. , Ernst , T., and et al. (1995b). Molecular cloning

of human paxillin , a focal adhesion protein phosphorylated by P210BCR/ABL. J

Bioi Chem 270, 5039-5047.

Salgia, R , Pi sick, E, Sattler , M. , Li , J. L. , Uemura, N., Wong, W. K.

Burky, S. A , Hirai , H. , Chen , L. B. , and Griffin , J. D. (1996). p130CAS forms a

signaling complex with the adapter protein CRKL in hematopoietic cells

transformed by the BCR/ABL oncogene. J Bioi Chem 271 25198-25203.

Salomoni , P. , Condorelli , F. , Sweeney, S. M. , and Calabretta, B. (2000).

Versatility of BCR/ABL-expressing leukemic cells in circumventing proapoptotic

BAD effects. Blood 96, 676-684.

Sanchez-Garcia , I. , and Grutz , G. (1995). Tumorigenic activity of the BCR-

ABL oncogenes is mediated by BCL2. Proc Natl Acad Sci USA 92, 5287-5291.

Sanchez-Garcia, I. , and Martin-Zanca, D. (1997). Regulation of Bcl-2 gene

expression by BCR-ABL is mediated by Ras. J Mol Bioi 267, 225-228.

Sattler , M. , Mohi , M. G. , Pride, Y. B. , Quinnan , L. R , Malouf , N. A , Podar

, Gesbert, F. , Iwasaki , H. , Li , S. , Van Etten , R A. et al. (2002). Critical role for

Gab2 in transformation by BCR/ABL. Cancer Cell 1 479-492.

Sattler , M. , Salgia, R , Okuda , K. , Uemura, N. , Durstin , M. A , Pisick, E

, G. , Li , J. L. , Prasad , K. V. , and Griffin , J. D. (1996). The proto-oncogene

product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL



143

p190BCR/ABL and p21 OBCR/ABL to the phosphatidylinositol-3' kinase pathway.

Oncogene 12, 839-846.

Sauer, B. (1998). Inducible gene targeting in mice using the Cre/lox

system. Methods 14, 381-392.

Sawyers, C. L. (1999). Chronic myeloid leukemia. N Engl J Med 
340,

1330- 1340.

Sawyers, C. L. (2002). Rational therapeutic intervention in cancer: kinases

as drug targets. Curr Opin Genet Dev 12, 111-115.

Sawyers, C. L. , McLaughlin , J. , and Witte , O. N. (1995). Genetic

requirement for Ras in the transformation of fibroblasts and hematopoietic cells

by the Bcr-Abl oncogene. J Exp Med 181, 307-313.

Schindler, T. , Bornmann, W. , Pellicena, P. , Miller , W. T. , Clarkson , B. , and

Kuriyan , J. (2000). Structural mechanism for STI-571 inhibition of abelson

tyrosine kinase. Science 289, 1938- 1942.

Schreiber, M., Kolbus, A. , Piu , F. , Szabowski, A , Mohle-Steinlein , U.

Tian , J. , Karin , M. , Angel , P. , and Wagner, E F. (1999). Control of cell cycle

progression by c-Jun is p53 dependent. Genes Dev 13, 607-619.

Schwaller , J. , Parganas, E , Wang, D., Cain, D. , Aster , J. C. , Williams, I.

R, Lee , C. K. , Gerthner, R , Kitamura, T. , Frantsve, J. et al. (2000). Stat5 is



144

essential for the myelo- and Iymphoproliferative disease induced by TEUJAK2.

Mol Cell 6, 693-704.

Schwartzberg, P. L. , Stall , A. M. , Hardin, J. D. , Bowdish, K. S. , Humaran

, Boast, S. , Harbison, M. L., Robertson , E. J. , and Goff, S. P. (1991). Mice

homozygous for the ablm1 mutation show poor viability and depletion of selected

Band T cell populations. Cell 65, 1165- 1175.

Senechal , K., Halpern, J. , and Sawyers, C. L. (1996). The CRKL adaptor

protein transforms fibroblasts and functions in transformation by the BCR-ABL

oncogene. J Bioi Chem 271 , 23255-23261.

Sexl, V. , Piekorz , R , Moriggl , R , Rohrer , J. , Brown , M. P., Bunting, K. D.

Rothammer, K. , Roussel , M. F. , and Ihle, J. N. (2000). Stat5a1 contribute to

interleukin 7- induced B-cell precursor expansion , but abl- and bcr/abl- induced

transformation are independent of stat5. Blood 96, 2277-2283.

Shafman , T. , Khanna , K. K. , Kedar , P. , Spring, K. , Kozlov , S. , Yen , T.

Hobson , K. , Gatei , M. , Zhang, N., Watters, D. et al. (1997). Interaction between

ATM protein and c-Abl in response to DNA damage. Nature 387 520-523.

Shi, C. S. , Tuscano, J. , and Kehrl , J. H. (2000). Adaptor proteins CRK and

CRKL associate with the serine/threonine protein kinase GCKR promoting GCKR

and SAPK activation. Blood 95, 776-782.



145

Shi , C. S. , Tuscano, J. M. , Witte , O. N. , and Kehrl , J. H. (1999). GCKR

links the Bcr-Abl oncogene and Ras to the stress-activated protein kinase

pathway. Blood 93, 1338-1345.

Shuai , K. , Halpern , J. , ten Hoeve, J. , Rao, X. , and Sawyers, C. L. (1996).

Constitutive activation of ST A T5 by the BCR-ABL oncogene in chronic

myelogenous leukemia. Oncogene 13, 247-254.

Skorski , T. (2002). BCR/ABL regulates response to DNA damage: the role

in resistance to genotoxic treatment and in genomic instability. Oncogene 21

8591-8604.

Skorski , T. , Bellacosa , A. , Nieborowska-Skorska, M. , Majewski , M.

Martinez , R, Choi , J. K. , Trotta, R , Wlodarski , P. , Perrotti, D. , Chan , T. 0. et al.

(1997). Transformation of hematopoietic cells by BCR/ABL requires activation of

a PI-3k/Akt-dependent pathway. Embo J 16, 6151-6161.

Skorski , T. , Nieborowska-Skorska, M. , Wlodarski , P. , Perrott, D.

Martinez , R, Wasik, M. A. , and Calabretta, B. (1996). Blastic transformation of

p53-deficient bone marrow cells by p21 Obcr/abl tyrosine kinase. Proc Natl Acad

Sci USA 93 13137- 13142.

Skorski , T. , Nieborowska-Skorska , M. , Wlodarski , P. , Wasik , M. , Trotta,

, Kanakaraj, P. , Salomoni , P. , Antonyak, M. , Martinez , R , Majewski , M. et al.

(1998). The SH3 domain contributes to BCR/ABL-dependent leukemogenesis in

vivo: role in adhesion , invasion , and homing. Blood 91 , 406-418.



146

Strasser, A , Whittingham , S., Vaux , D. L. , Bath , M. L. , Adams, J. M.

Cory, S. , and Harris, A W. (1991). Enforced BCL2 expression in B-Iymphoid

cells prolongs antibody responses and elicits autoimmune disease. Proc Natl

Acad Sci USA 88, 8661-8665.

Takao , N. , Mori , R , Kato , H. , Shinohara, A , and Yamamoto, K. (2000). c-

Abl tyrosine kinase is not essential for ataxia telangiectasia mutated functions in

chromosomal maintenance. J Bioi Chem 275, 725-728.

Takeda, N. , Shibuya, M. , and Maru, Y. (1999). The BCR-ABL oncoprotein

potentially interacts with the xeroderma pigmentosum group B protein. Proc Natl

Acad Sci USA 96, 203-207.

Tari , AM., Arlinghaus , R, and Lopez-Berestein , G. (1997). Inhibition of

Grb2 and Crkl proteins results in growth inhibition of Philadelphia chromosome

positive leukemic cells. Biochem Biophys Res Commun 235, 383-388.

ten Hoeve, J. , Kaartinen , V. , Fioretos, T. , Haataja, L. , Voncken , J. W.

Heisterkamp, N. , and Groffen , J. (1994). Cellular interactions of CRKL , and SH2-

SH3 adaptor protein. Cancer Res 54 2563-2567.

Thiesing, J. T. , Ohno-Jones, S. , Kolibaba, K. S. , and Druker , B. J. (2000).

Efficacy of ST1571, an abl tyrosine kinase inhibitor, in conjunction with other

antileukemic agents against bcr-abl-positive cells. Blood 96, 3195-3199.

Tournier , C. , Dong, C. , Turner , T. K. , Jones, S. N. , Flavell , R. A, and

Davis, R J. (2001). MKK7 is an essential component of the JNK signal



147

transduction pathway activated by proinflammatory cytokines. Genes Dev 15,

1419-1426.

Tournier , C. , Hess, P., Yang, D. D. , Xu, J., Turner, T. K., Nimnual , A , Bar-

Sagi , D. , Jones , S. N. , Flavell , R. A, and Davis, R. J. (2000). Requirement of

JNK for stress- induced activation of the cytochrome c-mediated death pathway.

Science 288, 870-874.

Tournier , C. , Whitmarsh , A. J. , Cavanagh , J. , Barrett , T. , and Davis, R. J.

(1997). Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun

NH2-terminal kinase. Proc Natl Acad Sci USA 94 7337-7342.

Tournier, C. , Whitmarsh , A J. , Cavanagh , J. , Barrett, T. , and Davis, R. J.

(1999). The MKK7 gene encodes a group of c-Jun NH2-terminal kinase kinases.

Mol Cell Bioi 19, 1569- 1581.

Tybulewicz , V. L. , Crawford, C. E , Jackson , P. K., Bronson , R. T. , and

Mullgan , R. C. (1991). Neonatal lethality and lymphopenia in mice with a

homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153-1163.

Van Etten , R. A (1999). Cycling, stressed-out and nervous: cellular

functions of c-Abl. Trends Cell Bioi 9, 179- 186.

Van Etten , R. A (2001 a). Models of chronic myeloid leukemia. Curr Oncol

Rep 3, 228-237.



148

Van Etten, R. A. (2001 b). Retroviral transduction models of Ph+ leukemia:

advantages and limitations for modeling human hematological malignancies in

mice. Blood Cells Mol Dis 27, 201-205.

Van Etten , R. A. (2002). Studying the pathogenesis of BCR-ABL+

leukemia in mice. Oncogene 21 8643-8651.

Verhey, K. J. , Meyer , D. , Deehan , R. , Blenis, J. , Schnapp, B. J., Rapoport,

T. A., and Margolis, B. (2001). Cargo of kinesin identified as JIP scaffolding

proteins and associated signaling molecules. J Cell Bioi 152, 959-970.

Vigneri, P. , and Wang, J. Y. (2001). Induction of apoptosis in chronic

myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine

kinase. Nat Med 7, 228-234.

Voncken , J. W. , van Schaick , H., Kaartinen , V. , Deemer , K. , Coates, T.

Landing, B. , Pattengale , P. , Dorseuil , 0., Bokoch , G. M. , Groffen , J. , and et al.

(1995). Increased neutrophil respiratory burst in bcr-null mutants. Cell 80, 719-

728.

Wang, H. G. , Miyashita, T. , Takayama, S. , Sato, T. , Torigoe, T.

Krajewski , S. , Tanaka, S. , Hovey, L. , 3rd , Troppmair , J. , Rapp, U. R. , and et al.

(1994). Apoptosis regulation by interaction of Bcl-2 protein and Raf-1 kinase.

Oncogene 9, 2751-2756.

Wang, J. Y. (1993). Abl tyrosine kinase in signal/transduction and cell-

cycle regulation. Curr Opin Genet Dev 3, 35-43.



149

Wang, J. Y. (2000). Regulation of cell death by the Abl tyrosine kinase.

Oncogene 19, 5643-5650.

Watzinger , F. , Gaiger , A. , Karlic , H. , Becher , R. , Pilwein , K. , and Lion , T.

(1994). Absence of N-ras mutations in myeloid and lymphoid blast crisis of

chronic myeloid leukemia. Cancer Res 54, 3934-3938.

Welch , P. J. , and Wang, J. Y. (1993). A C-terminal protein-binding domain

in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell

cycle. Cell 75, 779-790.

Wen , S. T. , and Van Etten , R A (1997). The PAG gene product, a stress-

induced protein with antioxidant properties, is an Abl SH3-binding protein and a

physiological inhibitor of c-Abl tyrosine kinase activity. Genes Dev 11 , 2456-

2467.

Weston , C. R , and Davis, R J. (2002). The JNK signal transduction

pathway. Curr Opin Genet Dev 12, 14-21.

Whitlock, C. A , Robertson , D. , and Witte, O. N. (1984). Murine B cell

lymphopoiesis in long term culture. J Immunol Methods 67, 353-369.

Whitmarsh , A J. , and Davis, R J. (1996). Transcription factor AP-

regulation by mitogen-activated protein kinase signal transduction pathways. J

Mol Med 74 589-607.



150

Whitmarsh , A J. , and Davis, R. J. (1998). Structural organization of MAP-

kinase signaling modules by scaffold proteins in yeast and mammals. Trends

Biochem Sci 23, 481-485.

Whitmarsh , A J. , Kuan , C. Y. , Kennedy, N. J. , Kelkar , N. , Haydar , T. F.

Mordes , J. P. , Appel , M. , Rossini , A A , Jones, S. N. , Flavell , R. A et al. (2001).

Requirement of the JIP1 scaffold protein for stress- induced JNK activation.

Genes Dev 15 2421-2432.

Wilson , B. E , Machan , E., and Boxer, L. M. (1996). Induction of bcl-

expression by phosphorylated CREB proteins during B-cell activation and rescue

from apoptosis. Mol Cell Bioi 16, 5546-5556.

Xia , Z. , Dickens , M. , Raingeaud, J. , Davis, R. J. , and Greenberg, M. E

(1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis.

Science 270, 1326-1331.

Xie , S. , Wang, Y. , Liu, J. , Sun, T. , Wilson , M. B. , Smithgall , T. E , and

Arlinghaus, R. B. (2001). Involvement of Jak2 tyrosine phosphorylation in Bcr-Abl

transformation. Oncogene 20, 6188-6195.

Yamamoto , K. , Ichijo, H. , and Korsmeyer, S. J. (1999). BCL-2 is

phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase

pathway normally activated at G(2)/M. Mol Cell Bioi 19, 8469-8478.

Yang, D. , Tournier , C. , Wysk, M. , Lu, H. T., Xu, J. , Davis, R. J. , and

Flavell , R. A. (1997a). Targeted disruption of the MKK4 gene causes embryonic



151

death , inhibition of c-Jun NH2-terminal kinase activation , and defects in AP-

transcriptional activity. Proc Natl Acad Sci USA 94, 3004-3009.

Yang, D. D. , Conze, D. , Whitmarsh , A. J. , Barrett, T. , Davis, R J. , Rincon

, and Flavell, R A (1998). Differentiation of CD4+ T cells to Th1 cells requires

MAP kinase JNK2. Immunity 9, 575-585.

Yang, D. D. , Kuan , C. Y., Whitmarsh , A. J. , Rincon , M. , Zheng, T. S.

Davis, R. J., Rakic, P. , and Flavell , R A (1997b). Absence of excitotoxicity-

induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature

389, 865-870.

Yuan, Z. M. , Huang, Y., Ishiko , T. , Kharbanda , S. , Weichselbaum, R , and

Kufe , D. (1997). Regulation of DNA damage-induced apoptosis by the c-Abl

tyrosine kinase. Proc Natl Acad Sci USA 94 1437- 1440.

Yuan , Z. M. , Huang, Y. , Ishiko, T. , Nakada, S. , Utsugisawa , T.

Kharbanda , S. , Wang, R , Sung, P. , Shinohara, A, Weichselbaum , R , and Kufe

D. (1998). Regulation of Rad51 function by c-Abl in response to DNA damage. J

Bioi Chem 273, 3799-3802.

Zhang, X. , and Ren , R (1998). Bcr-Abl efficiently induces a

myeloproliferative disease and production of excess interleukin-3 and

granulocyte-macrophage colony-stimulating factor in mice: a novel model for

chronic myelogenous leukemia. Blood 92, 3829-3840.



152

Zhang, X. , Subrahmanyam , R , Wong, R , Gross, A. W., and Ren , R

(2001 a). The NH(2)-terminal coiled-coil domain and tyrosine 177 play important

roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Mol Cell Bioi

21, 840-853.

Zhang, X. , Wong, R , Hao, S. X. , Pear , W. S., and Ren , R (2001 b). The

SH2 domain of bcr-Abl is not required to induce a murine myeloproliferative

disease; however , SH2 signaling influences disease latency and phenotype.

Blood 97, 277-287.

Zhao, X. , Ghaffari , S. , Lodish , H. , Malashkevich , V. N., and Kim , P. S.

(2002). Structure of the Bcr-Abl oncoprotein oligomerization domain. Nat Struct

Bioi 9, 117-120.

Zindy, F. , Eischen , C. M. , Randle, D. H. , Kamijo, T., Cleveland , J. L.

Sherr , C. J. , and Roussel , M. F. (1998). Myc signaling via the ARF tumor

suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev

2424-2433.


	Title Page
	Approvals
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Abbreviations
	Chapter I: Introduction
	Chapter II: Materials and Methods
	Chapter III: Results
	Chapter IV: Discussion and Future Directions
	References



