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Abstract 

This dissertation addresses the role for Janus Kinase 3 (Jak3) in CD4+ T cell homeostasis 

and function. Jak3 is a protein tyrosine kinase whose activity is essential for signals 

mediated by the yc dependent cytokines IL-2, -4, -7,-9,-15, and -21. Previous data have 

demonstrated that peripheral CD4+ T cells from Jak3-deficient mice have a memory 

phenotype and are functionally impaired in both proliferative and IL-2 responses in vitro. 

Interestingly, Jak3/yc activity has been previously shown to play a role in the prevention of T 

cell anergy. 

These studies were initiated to more precisely define the role for Jak31yc cytohnes in the 

prevention of T cell anergy and the maintenance of functional CD4+ T cell responses. We 

began to address this question by assessing global gene expression changes between wild 

type and Jak3-I- CD4+ T cells. These data indicate that Jak3-I- CD4+ T cells have an 

increase in gene expression levels of inhibitory surface receptors as well as 

immunosuppressive cytokines. 

Further analyses confirmed that Jak3-deficient T cells express high levels of PD-1, secrete a 

Trl-type cytokine profile following direct ex vivo activation, and suppress the proliferation 

of wild type T cells in vitro. These characteristics indicate that CD4+ Jak3-/- T cells share 

properties with regulatory T cell subsets that have an important role in peripheral tolerance 

and the prevention of autoimmunity. 



We next addressed whether these regulatory characteristics were T cell intrinsic or rather the 

result of expanding in a Jak3-deficient microenvironment characterized by a number of 

immune abnormalities and a disrupted splenic architecture. Jak3-I- CD4+ T cells proliferate 

in vivo in a lymphopenic environment and selectively acquire regulatory T cell characteristics 

in the absence of any additional activation signals. While the precise mechanism by which 

Jak3-deficient T cells acquire these characteristics remains unclear, our data indicate that one 

important component is a T cell-intrinsic requirement for Jak3 signaling. 

These findings indicate several interesting aspects of T cell biology. First, these studies, 

demonstrate that the homeostatic proliferation of CD4+ T cells is not dependent on signaling 

via yc-dependent cytokine receptors. And, second, that the weak activation signals normally 

associated with homeostatic expansion are sufficient to drive Jak3-1- T cells into a non- 

conventional differentiation program. Previous data indicate that, for wild type T cells, 

signaling through both the TCR as well as yc-dependent cytokine receptors promote the 

homeostatic proliferation of T cells in lymphopenic hosts. Since Jak3-I- T cells are unable to 

receive these cytokine signals, their proliferation is likely to be wholly dependent on TCR 

signaling. As a consequence of this TCR signaling, Jak3-I- T cells proliferate, but in 

addition, are induced to up regulate PD-1 and to selectively activate the IL-10 locus while 

shutting off the production of IL-2. Since this fate does not occur for wild type T cells in a 

comparable environment, it is likely that the unique differentiation pathway taken by Jak3-1- 



T cells reflects the effects of TCR signaling in the absence of yc-dependent cytokine 

signaling. 

Interestingly, wild type T cells undergoing homeostatic expansion in lymphopenic hosts 

show many common patterns of gene expression to freshly-purified unmanipulated Jak3-I- T 

cells. For instance, microarray analysis of gene expression in wild type CD4+ T cells after 

lyrnphopenia induced homeostatic expansion show a similar pattern of upregulation in 

surface markers (PD-1 and LAG-3), and cytokine signaling molecules (IL-10 and IFN-y 

cytokine, receptors, and inducible gene targets) to that of Jak3-I- CD4+ T cells immediately 

ex vivo. These data suggest that the process of homeostatic proliferation normally induces 

immune attenuation and peripheral tolerance mechanisms, but that full differentiation into a 

regulatory T cell phenotype is prevented by yc-dependent cytokine signals. 

Taken together these data suggest that Jak3 plays an important role in tempering typical 

immune attenuation mechanisms employed to maintain T cell homeostasis and peripheral 

tolerance. 
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CHAPTER I. 

INTRODUCTION 



T Lymphocytes and the Immune System 

The goal of the immune system is to vigorously and appropriately react against 

foreign pathogens while remaining completely inert to self. Therefore, the immune system 

must be equipped with a highly sophisticated surveillance mechanism to detect diverse 

antigens and to protect the host organism from invading pathogens and altered cells (e.g., 

virus-infected and tumor cells) as well as equally elaborate mechanisms to appropriately 

attenuate immune responses and ignore self antigens. 

While the immune system is composed of many different cell types armed with a 

myriad of effector functions, T lymphocytes are one of the most crucial elements of the 

adaptive immune system and critically influence the outcome of a response against any given 

pathogen. 

Given their importance for the proper function of the immune system, lymphocytes 

need to be tightly regulated throughout their lifetime. Any breach in the regulation of 

lymphocyte development or h c t i o n  can have catastrophic consequences. This can be 

illustrated by the occurrence of autoimmune disease and allergy which typically result from 

inappropriate lymphocyte responses against self-tissues or innocuous substances. To 

minimize the occurrence of immune dysregulation, there are a number of safeguards in place 

such that every stage of lymphocyte development and function requires transition through 

tightly controlled checkpoints. These checkpoints take place at various stages throughout the 

life of a T cell, such as during development and activation, and are regulated by a variety of 

cell surface receptors, intracellular signaling molecules and soluble mediators. 



Adaptive Immune Responses and Positive Costimulation 

Adaptive immune responses depend on the recognition of antigen by specific 

receptors that are expressed on the surface of T and B lymphocytes '. The TCR specifically 

recognizes antigens that have been processed into peptides and are presented in the context of 

the major histocompatibility complex (MHC) on the surface of antigen presenting cells 

(APC) 293. CD8+ T cells are restricted to the recognition of peptides presented by MHC class 

I while CD4+ T cells are restricted to MHC class I1 4-6. The interaction between a TCR and 

peptide-MHC alone however is not sufficient for complete activation of nayve T cells, and in 

the absence of necessary secondary signals may result in apoptosis or unresponsiveness. The 

knowledge that nayve CD4+ and CD8+ T cell stimulation is dependent on signals from two 

discrete receptor ligand interactions has long been appreciated and is referred to as the two 

signal model of T cell activation . The first signal, as mentioned above, is mediated via the 

TCR upon recognition of a cognate peptide-MHC. The engagement of a family of 

structurally related costimulatory receptors with their ligands provides signal two 7. The 

B7:CD28 pathway mediates the most potent positive costimulatory signal leading to T cell 

activation, cytokine secretion, and T cell expansion *. CD28 is constitutively expressed on T 

cells and interacts with B7.1 and B7.2 ligands expressed on activated or mature APCs '. 

CD28 mediated promotion of a T cell response is thought to rely primarily on IL-2 secretion 

and subsequent signaling via the IL-2 receptor (IL-2R) resulting in the down regulation of 

p27kipl cdk inhibitor by activation of PI3JPKB and ultimately the induction of cell cycle 



progression at two distinct points, early G1 phase and at the Gl/S transition 'Oyl ' .  However, 

further data suggested that there is also an IL-2 independent component to CD28 

costimulation. This was shown by in vitro stimulation of T cells with a-CD3 + a-CD28 in 

the presence or absence of IL-2 neutralizing antibodies lo. The results from these 

experiments indicate that the role of CD28 costimulation in regulating T cell cycle entry and 

progression through the GI phase is actually mediated by an IL-2-independent mechanism 

which results in the activation of cyclin D2-associated cdk4/cdk6 and cyclin E-associated 

cdk2. Subsequent progression into the S phase was found to be mediated via both IL-2- 

dependent and IL-2-independent mechanisms since in the absence of IL-2 (+IL-2 

neutralizing antibodies) the majority of the T cells were arrested at the Gl/S transition (IL-2 

dependence), but, a significant fraction of them (40%) progress to S phase (IL-2 

independence). 

Although CD28 is necessary for optimal activation of naTve T cells, the same does not 

appear true of memory and effector T cell responses. This is based on observations that 

antigen specific memory T cells stimulated in the presence of B7.1ll37.2-deficient APCs can 

proliferate in the absence of B7 at high antigen concentration, while naive cells are 

significantly impaired. The absence of B7 did not impair cytokine production in memory 

cells, while naive cells exhibited defective IL-2 production. These results support the notion 

that the effector function of memory cells is not dependent on costimulation through 

CD28:B7 12. 



The fact that memory T cells appear less dependent on CD28 for costimulation 

suggested the existence of a more complex network of regulatory pathways that would 

potentially involve additional receptor-ligand pairs. This idea was first supported by the 

identification of the inducible costimulator (ICOS) and its ligand B7-homolog (B7-H) which 

was found to stimulate both CD4 and CD8 T cell responses 13,14, and, has been further 

established by the continually growing number of costimulatory molecules which can either 

positively or negatively regulate T cells responses (Table 1). 

Another perplexity of CD28 function is that while stimulation through the T-cell 

receptor and CD28 induces efficient T cell activation, it also leads to the expression of 

surface receptors, such as CTLA-4, that act to negatively regulate T cell function. Such self 

maintained attenuation mechanisms are crucial to the maintenance of controlled immune 

responses and prevention lyrnphoproliferative and autoimmune diseases. 

Adaptive Immune Responses and Negative Costimulation 

The B7:cytotoxic T-lymphocyte antigen-4 (CTLA-4) and the more recently identified 

programmed death ligandlprogranvned death-1 (PD-L:PD-1) interactions both define 

pathways which appear to function as negative regulators of lymphocyte activation. 

CTLA-4 (CD152), in contrast to the positive effects of CD28:B7 interactions, has 

inhibitory effects on T cells and is important for the attenuation of T cell responses 15?16.  



Table I. The B7-CD28 superfamily 



Table 1. The B7-CD28 Superfamily. 

The B7-CD28 superfamily provides critical secondary signals that serve to regulate the 
activation, inhibition and fine tuning of T-cell responses. The growing number of receptor- 
ligand pairs of the B7:CD28 family, as well as their tightly controlled tissue-specific and 
temporal expression, establishes a complex network of regulatory pathways that 
synergistically achieves proper T cell function and homeostasis. 



CTLA-4 shares -30% homology with CD28, and binds the same ligands, B7.1 and B7.2, on 

APCs. CTLA-4 is expressed uniquely on activated T cells, and its upregulation is dependent 

on CD28 costimulation. Importantly, CTLA-4 antagonizes the modulatory events mediated 

by CD28 signals, including T-cell proliferation and IL-2 production. The strongest evidence 

for the regulatory role of CTLA-4 comes from the phenotype of CTLA-4-deficient mice. 

These mice die at 2 to 4 weeks of age from a lymphoproliferative disease that is 

characterized by massive T cell activation and expansion which has pathogenic effects on 

multiple organs l7>ls.  Furthermore, lymphoproliferative disease manifestation requires CD28 

engagement as demonstrated by the fact that blockade of CD28:B7 with the fusion protein 

CTLA-4-Ig 19120 or breeding mice deficient in both CTLA-4 and B7 ligands prevents disease 

While CTLA-4 appears to be a primary player in the negative regulation of T cell 

responses, the newly identified B7:CD28 superfamily molecules PD-L:PD-1 also possesses 

the ability to negatively regulate lymphocytes. The precise role for PD-L:PD-1 pathway in T 

cell function, the signaling pathways involved, and how PD-L:PD-1 differs from the 

B7:CTLA-4 pathway are just beginning to be elucidated (Table 2, adapted from 22). 

PD-1 was first characterized in a T cell hybridoma undergoing apoptosis, and 

accordingly was named PD-1 (programed death 1) 23". However, fhther studies indicated 

that expression is associated with cellular activation, not death, since transfection of PD-1 

24-26 into cells or crosslinking with PD-1 specific antibodies does not result in apoptosis . In 



Table 2. Comparison of CTLA-4 and PD-l(adapted from 23) 

Characteristic CTLA-4 - PD-1 
Lieands B7-1, B7-2 PD-L 1 ,PD-L2 

T cells Activation induced Activation induced expression 

UpTregulated upon activation 
Myeloid cells No Up-regulated upon activation 

and monocytes, 
monocytes PD-L2 on DCs. PD-L1 and -L2 expressed on 

epithelial cells in thymus, spleen and LN. 

Regulation B7-1 late activation B-oth induced by activation and IFN-)I treatment 
induced of monocytes and DCs. 
B7-2 constitutive, 
induced by LPS, Ig, 
CD40, cytokine 
Function 

Proliferation and Impairs Impairs 
IL-2 
Effector cytokine Impairs Impairs 
Cell cycle Block in GI-S Block in G1 -S 
Tolerance CD4+ peripheral Putative role in BIT cell peripheral tolerance 

tolerance 
Knock-out Onset of phenotype by Late onset phenotype (weeks - months). 
phenotype 2-3 weeks 

Early lethality due to Late lethality in 50% of mice associated with 
multi-organ T cell glomerulonephritis, arthritis, cardiomyopathy 
infiltrates 
and tissue destruction. 
Defects in T cell Defects in T, B and myeloid cell proliferation. 
proliferation, Th 
cytokine production, 
T cell cycle progression 



Table 2. The newly identified B7:CD28 superfamily receptor-ligand pair PD-1:PD-L1 
negatively regulates lymphocytes. While CTLA-4 appears to be a primary player in the 
negative regulation of T cell responses, the newly identified B7:CD28 superfamily receptor- 
ligand pair PD-1:PD-L1 also possesses the ability to negatively regulate lymphocytes. The 
precise role for PD-L:PD-1 pathway in T cell function, the signaling pathways involved, and 
how PD-L:PD-1 differs from the B7:CTLA-4 pathway are just beginning to be elucidated. 
The analysis of receptor and ligand expression patterns, as well as the phenotype of CTLA-4 
or PD-1 -deficient mice, would strongly suggest that these pathways serve mutually exclusive 
roles in the modulation of the immune system. One possibility is that the B7:CTLA-4 
pathway functions primarily to attenuate, limit, and/or extinguish naive T-cell activation in 
secondary lymphoid organs. The PD-L1:PD-1 pathway, on the other hand, may primarily 
attenuate, limit, and/or extinguish secondary immune responses or T-, B-, and myeloid cell 
activation and effector function at sites of inflammation in the periphery. 



contrast to CD28 and CTLA-4 which are predominately expressed in T cells, PD-1 is 

23 25 expressed by activated CD4+ and CD8+ T cells, B cells and myeloid cells . 

PD-1-1- mice have been generated and provide convincing evidence for the 

inhibitory role of PD-I 27-29. Mice deficient in PD-1 are characterized by splenomegaly due 

to increases in myeloid and B-cell numbers 27. B cell responses to a-IgM crosslinking are 

increased, but T-cell responses to a-CD3 appear normal. PD-1-1- mice develop 

autoimmune manifestations that differ based on the genetic background of the mouse. The 

PD-1-1- C57BLl6 strain develops progressive arthritis and lupus-like glomerulonephritis 

associated with high IgG3 deposition 28. PD-1-1- mice generated on a Balblc background B 

develop dilated cardiomyopathy with a 50% mortality rate 29. Importantly, introduction of the 

RAG-2 mutation in PD-1-1- Balblc mice prevents disease development, implicating T 

andlor B cells in the process. 

PD-L1 and PD-L2 have been identified as two novel B7 homologues that interact 

with PD-1 30"3. PD-1 specifically associates with PD-L1 and PD-L2, and not with other 

B7:CD28 superfamily members. In contrast to B7-1 and B7-2, which are restricted to 

hematopoietic cells, the expression pattern PD-L1 and PD-L2 is diverse and has been 

detected in both lymphoid and non-lymphoid compartments 30,34,35 . PD-L1 and PD-L2 are 

upregulated upon activation or FN-y treatment of human monocytes and dendritic cells 30-33. 

PD-L1 expression is induced on T cells stimulated via the TCR or by mitogen, and is 

constitutive on myocardial and microvascular endothelial cells 32. Additional studies have 

shown that PD-Ll expression on an endothelial cell line is strongly upregulated by IFN-a, P 



or y 35. PD-Ll upregulation on endothelial cells is abolished in IFN-y-deficient mice, 

although constitutive expression is not affected. 

Although T cells do not appear defective in PD-1 deficient mice, evidence that PD- 

1:PD-L1 plays a negative regulatory role in T cell function stems from many other lines of 

investigation. First, T cell proliferation and cytokine production by both resting and 

previously activated CD4+ and CD8+ T cells are inhibited by PD-L1-Ig or PD-L2-Ig fusion 

proteins coupled to a-CD3 coated beads 30y3'136. Importantly, the inhibitory effect was not 

observed when PD-1-1- T cells were stimulated with a-CD3 mAb + PD-L1-Ig. This result 

indicates that the inhibitory signal was transduced by PD-1. Second, nayve CD8+ 2C-TCR 

transgenic T cells stimulated with cells expressing MHC class I and PD-L1, had significantly 

inhibited proliferative response and inhibition was PD-L1 dependent 36. Exogenous IL-2, but 

not a CD28 costimulatory signal, could overcome PD-1 :PD-L1 mediated inhibition. . PD-1 

mediated inhibition of CD4+ T cells has also been shown 36. However, CD4+ T cell 

inhibition could be overcome by a strong CD28 signal, possibly due to higher IL-2 

production by CD4+ T cells 30,31,36 . In addition to CD28 costimulation, the effect of ICOS 

costimulation and cytokine receptor signaling on PD-1 inhibition have been determined 37. 

In these studies, T cells were stimulated with a-CD3 or a-CD3PD-L1 .Fc coated beads in the 

presence or absence of ICOS or various cytokines (IL-4, IL-7, IL-15, and IL-21) and 

proliferation was measured. Interestingly, only IL-2, IL-7, and IL-15 could restore T cell 

proliferation in a-CD3IPD-L1.Fc stimulated cells. ICOS, IL-4 or IL-21 could not reverse 

PD-1 mediated inhibition 37. These results show the capacity of the PD-L:PD-1 pathway to 



antagonize a strong costimulatory signal when antigenic stimulation is weak or limiting and 

indicate a key role for the PD-L:PD-1 pathway in downregulating T-cell responses 

particularly in the absence of appropriate cytokine signaling. 

The negative effect the PD-L:PD-1 pathway has on lymphocyte function suggests a 

potential role in peripheral tolerance. Polymorphisms in PD-1 have recently been associated 

with susceptibility to systemic lupus erythematosus and type I diabetes which further 

implicates PD-L:PD-1 in peripheral tolerance 3840. Consistent with this, experiments have 

shown that PD-1 mediated inhibitory signals can regulate both the induction and progression 

of experimental autoimmune encephalomyelitis 41 and autoimmune diabetes in non-obese 

diabetic (NOD) mice 38. High PD-1 ligand expression has been detected on various tumors 

42 and is thought to correlate with an increased ability to escape immune surveillance . 

Consistent with this notion, therapeutic blockade of PD-L1 leads to tumor regression but this 

42-46 can be PD- 1 -dependent or independent depending on tumor type . 

Taken together, these data suggest a central role for PD-1 in peripheral tolerance as 

well as a possible role in tumor escape mechanisms. 

In T cells, PD-L:PD-1 interactions lead to cell cycle arrest in Go-GI and a reduction 

in IL-2 synthesis, but not cell death 31736. The precise signaling requirements for PD-1 

mediated inhibition are only just beginning to be elucidated and have been more clearly 

addressed in B cells. The cytoplasmic domain of PD-1 contains two tyrosines, one of which 

forms part of an Immunoreceptor Tyrosine-based Inhibition Motif (ITIM; V/IxYxxL/V) and 

the other forms an Irnrnunoreceptor Tyrosine-based Switch Motif (ITSM; TxYxxVII) 23,24,47 



Mutation of the ITSM tyrosine but not the ITIM tyrosine abolishes PD-1-mediated inhibitory 

activity In B cells, ligation of both PD-1 and the BCR recruits src homology 2-domain- 

containing tyrosine phosphatase 2 (SHP-2) to the phosphotyrosine within the ITSM (Figure 

1, adapted fiom 22). The activation of SHP-2 results in inhibition of effector signaling 

molecules including IgP, Syk, phospholipase C-y2 (PLCyZ), and ERKlI2 48. This 

observation has lead to the model that ligation of the TCR and PD-1 also leads to tyrosine 

phosphorylation and activation of SHP-2, resulting in dephosphorylation of signaling 

intermediates and ultimately reduced cytokine synthesis and proliferation. 

Despite all of this data, the precise role of the PD-1:PD-L pathway in the immune 

system and how this interplays with the CTLA-4 pathway and other regulatory signals 

remains unclear. However, the analysis of receptor and ligand expression patterns, as well as 

the phenotype of CTLA-4 or PD-1-deficient mice, would strongly suggest that these 

pathways serve mutually exclusive roles in the modulation of the immune system. One 

possibility is that the B7:CTLA-4 pathway functions primarily to attenuate, limit, and/or 

extinguish naive T-cell activation in secondary lymphoid organs. The PD-L1 :PD-1 pathway, 

on the other hand, may primarily attenuate, limit, and/or extinguish secondary immune 

responses or T-, B-, and myeloid cell activation and effector function at sites of 

inflammation in the periphery 13 .  

CD4+ T Cell Differentiation 



Figure 1. Proposed PD- 1 Signaling (adapted from 22) 
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Figure 1. Proposed model of PD-1 signaling. 

The precise signaling requirements for PD-1 mediated inhibition are only just beginning to 
be elucidated and have been more clearly addressed in B cells. The cytoplasmic domain of 
PD-1 contains both an ITIM and an ITSM. Mutation of the ITSM tyrosine but not the ITIM 
tyrosine abolishes PD-1-mediated inhibitory activity In B cells, ligation of both PD-1 and 
the BCR recruits src homology 2-domain-containing tyrosine phosphatase 2 (SHP-2) to the 
phosphotyrosine within the ITSM. The activation of SHP-2 results in inhibition of effector 
signaling molecules including I@, Syk, phospholipase C-y2 (PLCy2), and ERK112. This 
observation has lead to the model that ligation of the TCR and PD-1 also leads to tyrosine 
phosphorylation and activation of SHP-2 andlor SHP-1, resulting in dephosphorylation of 
signaling intermediates and ultimately reduced cytokine synthesis and proliferation. 



After successful T cell activation, T cells rapidly undergo clonal expansion and 

differentiation into effector cells. Programmed differentiation controlled by the induction of 

unique sets of genes leads to highly polarized immune responses that are tailored to the 

specific invading pathogen. NaYve CD4+ T helper (Th) cells can differentiate into at least 

two major functional classes of effector T cells-Thl and Th2 49. Thl effector cells are 

responsible for cell mediated immunity and primarily secrete EN-y and IL-2 as well as TNF- 

a. Th2 cells are critical for extracellular mediated immunity and are characterized by the 

secretion of high levels of IL-4, as well as IL-5, -6, -9, -10, and -13. While many factors can 

influence the differentiation fate of a T cell including antigen dose, avidity of interaction, and 

costimulation, it is the cytokine milieu present at the time of activation that is thought to be 

most critical. Specifically, the cytokines IL-12 and IL-4 are key determinants in the Th 

differentiation pathway. Signaling through the IL-12 family, in concert with antigen 

stimulation, leads to the induction of a T box transcription factor, T-bet, that is essential for 

Thl development and effector function 50-53. Similarly, IL-4 instructs a T cell to differentiate 

54-56 along a Th2 pathway by the induction of a zinc finger transcription factor, GATA-3 . 

T Regulatory Cells and Mechanisms of Peripheral Tolerance 

While the vast majority of naYve CD4+ T cells will develop into Thl or Th2 effector 

T cells upon activation, it is becoming increasingly more evident that there are distinct 

57-64 alternative T cell differentiation pathways possible . One such CD4+ subset, are a 



57-64 population of effector T cells with regulatory function . Recently, these alternate T cell 

subsets have been the focus of intense study due to the fact that they appear to be essential 

for immune homeostasis and peripheral tolerance. T regulatory cells (TrITreg) can originate 

in the thymus or develop from activated peripheral T cells. "Natural" (Tr-n) Tr cells are 

CD4+ cells that constitutively express CD25, originate in the thymus and have a poorly 

understood, contact-dependent, cytokine-independent mechanism of action 61,65,66 . Tr-n cells, 

in addition to CD25, are defined by markers such as CTLA-4 67'68, GITR 69-71 and FOXP3 

66,72,73 . FOXP3, in a fashion similar to that of T-bet and GATA-3, is critical for the 

development and function of Tr-n cells 66,72,73 . Several characteristics of Tr-n cells have 

emerged from in vitvo studies (reviewed in 61) resulting in the idea that Tr cells are anergic in 

terms of proliferation and IL-2 production and suppress other cells by direct cell contact, 

74-76 which requires neither the IL-10 or TGF-P they characteristically produce . Interestingly, 

however, polyclonal CD25+CD4+ T cells proliferate, expand and acquire amplified 

regulatory capacity in vivo when they are transferred into RAG-/-or IL-2 receptor P-deficient 

77-80 mice, indicating that their anergic state can be reversed under certain in vivo conditions . 

At least two other CD4+ Tr subsets exist and are generated in the periphery as 

opposed to the thymus. These subsets are generally referred to as "acquired" T regulatory 

cells (Tr-a). Tr-a cells are also considered anergic and may function via both cytokine and 

cell contact dependent mechanisms in vivo. One of these, T regulatory type-1 (Trl) cells, 

produce predominantly IL-10 and to varying degrees IFN-y and TGF-J3 62,81,82 . Additionally, 

Trl cells do not express Foxp3 and are instead induced by stimulation in the presence of 
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1 
1 
1 immunosuppressive factors such as IL-10,Vitamin D3 plus dexamethasone andlor by a 
!! 

tolerogenic subset of DC 63,64,82-85 . Another Tr-a subset was identified following the 

it 
B induction of oral tolerance and produces predominantly TGF-P. These cells were named T 
9 
3 
23 
7 helper-3 (Th3), or more appropriately T regulatory type -2 (Tr2) cells 86-88 . 
- 

i - Interestingly, the PD-L:PD- 1 negative regulatory pathway has been implicated in the 
8 

generation of Tr2 cells 89. This was shown by testing graft rejection after C57BLJ10 hearts 

1 were transplanted into the CBA mice CBA (H-2k) mice pretreated with alloantigen plus 
I 

intratracheal delivery of C57BLl10 (H-2b) splenocytes in the absence or presence of 

blocking antibodies specific for PD-1, PD-L1, or PD-L2. Pretreatment with antigen plus 

intratracheal delivery of C57BLl10 splenocytes prolonged graft survival significantly and 

was due to the generation of TGF-P producing Tr2 cells. In contrast, anti-PD-1 or anti-PD-L1 

rnAb, but not a-PD-L2, abrogated the prolongation of graft survival 89. Therefore, in the 

context of this study, PD-1-PD-L1 is essential for induction of regulatory cells by 

intratracheal delivery of alloantigen. It remains to be determined what the role of PD-1:PD- 

L1 is in T regulatory cell induction and function. It is an intriguing possibility that negative 

signals mediated by this pathway are important for the generation of T cells with regulatory 

characteristics. 

Whether T cells develop helper or regulatory function following antigen stimulation 

is multi-factorial and depends upon the affinity of the antigen for the T cell receptor (TCR), 

the costimulating properties of the antigen-presenting cells, and the cytokines in the 

microenvironment. Intermediate or high-affinity binding favors Th or Tr-n differentiation, 



while altered peptide ligands with decreased binding affinity may favor the development of 

Tr-2 cells 90,91 . Additionally, antigen-presenting cells (APC), dendritic cells (DC) in 

particular, have a major role in T cell differentiation and this is dictated heavily by the 

cytokines they produce 92. For example, specialized subsets of dendritic cells with unique 

cytokine and costimulatory properties, DC1 and DC2, are thought to control the generation 

of Thl and Th2 cells, respectively 93194. Moreover, evidence suggests that either immature 

94-98 DC or IL-10 secreting dendritic cell subsets (DCr) direct naive T cells to a Trl subtype . 

Since the production of IL-10 by the Trl cells could then program the generation of new 

tolerogenic DC (DCr) from progenitors, a self-maintaining negative regulatory loop may 

ensue which would require positive signals to reverse 98999. 

Sufficient evidence exists for T cell mediated regulation of peripheral tolerance and 

immune pathologies loo. Insight into the mechanisms governing the suppression of immune 

reactivity may be gained by the study of regulatory T cells which appear dedicated to 

maintaining peripheral tolerance to self-antigens and preventing harmful 

immunopathological conditions. However, it is still not well understood how many different 

types of regulatory T cells might exist, how they develop and function in vivo, and whether 

their primary role is in peripheral tolerance. 

The maintenance of peripheral tolerance is essential for the homeostasis of the 

immune system. Thus, the immune system has evolved numerous mechanisms to achieve 

peripheral tolerance. These include the negative regulation of T cell signaling through 

molecules such as CTLA-4 and PD-1 and the development of regulatory T cells, as well as 



apoptosis and anergy. All of these mechanisms can act to modulate or down regulate 

immune responses at various times, locations and circumstances. Although tolerance can be 

defined and achieved in a number of different ways, the classical definition is that tolerance 

is an actively maintained state of unresponsiveness to a specific antigen in an animal 

previously exposed to the same antigen 101-103 . The in vitro definition, for which the term 

anergy is used, is defined as the inability of T cells to produce IL-2 and proliferate upon 

restimulation with antigen 101-104 . Anergy can be induced in nayve helper T cells when TCR 

engagement occurs in the absence of CD28 costimulation/IL-2 and is preventable by 

TCRlCD28 costimulation '03 as would be predicted from the 2-signal model of T cell 

activation. The 2 signal requirement then is also applicable in vivo. But it is important to 

point out, that the true mechanism and correlation of in vitro anergy to in vivo immune 

tolerance is not yet well understood. Clonal deletion, T cell apoptosis, and induction of 

irnmunoregulatory T cell subsets are some of the in vivo mechanisms that might substitute for 

ane=gy 

Whether T cells are induced to become anergic, develop T helper or regulatory 

function, or undergo apoptosis following antigen stimulation is multifactorial and depends 

upon the affinity of the antigen for the TCR, the co-stimulating properties of the APC, and 

the cytokine milieu present within the micro-environment. One of the most important 

signaling pathways downstream of cytokine receptors in T lymphocytes is the Janus Kinase 

(Jak)-Signal Transducer and Activator of Transcription (STAT) pathway. It is therefore not 



surprising that the JAK-STAT pathway has previously been implicated in influencing the fate 

of a T cell upon stimulation 10,105-111 

The goal of this thesis work is to more clearly elucidate the role for one of the 

members of the Jak family, Jak3, in CD4+ T cell homeostasis and function. 

Cytokines---the universal T cell language 

JAKS AND STA Ts 

The Janus family of non-receptor tyrosine kinases is composed of four members, 

Jakl, Jak2, Jak3 and Tyk2, that constitutively associate with cell surface cytokine and growth 

factor receptors 112-1 14 . The signaling events mediated through Jaks are initiated through a 

related set of receptors "5. The receptors can be composed of one to three chains (a, P, y,) 

that can interact with one or more Jaks (Table 3, adapted from 'I6). 

Structurally Jaks are composed of seven regions of homology termed JH1 through 

JH7 'I2 (Figure 2A). There are two kinase-like domains, JH1 and JH2. Mutational studies 

have indicated that fbnctional catalytic activity lies primarily within the JHl domain. The 

function of the pseudokinase JH2 domain is unclear as some studies have shown it is 

necessary for protein activity and others indicate that it is an inhibitory 

domain 117-119 . Further studies have suggested that the JH2 domain serves as a potential 

docking site for the STAT transcription factors 'I8. The exact function of the other five 



Table 3. Cvtokine specific JAK and STAT activation ( adapted f70rnI'~) 

a- Bind to related but yc independent receptors. 

(Stat3, Stat4, Stat5) 
IFN-y 
IL- 10 
IL-19 
IL-20 
IL-22 

CNTF 
NNT- IIBSF-3 
G-CSF 
CT- 1 
Leptin 
IL- 12 

yC family 
IL-2 
IL-7 
(TSLP)a 
IL-9 
IL-15 
IL-21 
IL-4 

Receptor tyrosine kinases 
EGF 
PDGF 
CSF-1 

Gprotein coupled receptors 
AT1 

(Jakl, Jak2) 
(Jak 1, Jak2) 
(Tyk2, Jakl) 

Jali! 

Statl, Stat3, Stat5 
Statl, Stat3 
Statl, Stat3, Stat5 

Statl, Stat2 



Table 3. The Janus family of non-receptor tyrosine kinases is composed of four 
members, Jakl, Jak2, Jak3 and Tyk2. 

The Janus family of non-receptor tyrosine kinases is composed of four members, Jakl, Jak2, 
Jak3 and Tyk2 that constitutively associate with cell surface cytokine and growth factor 
receptors. The signaling events mediated through Jaks are initiated through a related set of 
receptors. The receptors can be composed of one to three chains (a, P, y,) that can interact 
with one or more Jaks resulting in the ability of this family of proteins to mediate a myriad of 
pleiotropic cellular functions. 



Figure. 2 Structure of Jak and STAT proteins 

A) Structure of Jaks 

Pseudokinase Kinase 
domain domain 

Structure of STATs 

Oligomerization DNA binding SH2 



Figure 2. Structure of Jaks and STATs. 

A) Jaks are composed of seven regions of homology termed JH1 through JH7. There are 
two kinase-like domains, JH1 and JH2. Mutational studies have indicated that functional 
catalytic activity lies primarily within the JH1 domain. The function of the pseudokinase 
JH2 domain is unclear as some studies have shown it is necessary for protein activity and 
others indicate that it is an inhibitory domain. Further studies have suggested that the JH2 
domain serves as a potential docking site for the STAT transcription factors. The exact 
function of the other five blocks of homology (JH3 through JH7) remains unclear, however, 
the N-terminal region has been shown to bind cytokine receptors. 
B) The STAT family of transcription factors is composed of seven members, STAT1, 
STAT2, STAT3, STAT4, STAT5a and STATSb, and STAT6. All the STAT proteins share 
common fbnctional domains, including a Src-homology 2 (SH2) domain, oligomerization 
domain and DNA binding domain. The Src-homology 2 (SH2) domain recognizes 
phosphorylated tyrosine residues within the cytoplasmic tails of receptor subunits. Upon 
STAT recruitment to a phosphorylatedlactivated receptor the tyrosine residue (Y) in the SH2 
domain is itself phosphorylated. The activation of STAT proteins then results in 
homodimerization of STAT proteins which is mediated by the oligodimerization domain. 
After homodimerization, STAT proteins are translocated to the nucleus where they mediated 
target gene transcription via the DNA binding domain. The highly homologous family of 
STAT transcription factors controls the expression of many genes and cellular functions. 
The pleiotropic nature of the STAT family of proteins is achieved by differences in the SH2 
domain docking site recognition and DNA binding domains which allow for selective 
binding to receptors and DNA targets respectively 



blocks of homology (JH3 through JH7) remains unclear, however, the N-terminal region has 

been shown to bind cytokine receptors 120-1 23 

The essential role for Jaks in cytokine receptor signaling was first illustrated by 

experiments which showed crosslinking IL-2,-4, or -7 resulted in Jak3 phosphorylation and 

that cell lines deficient in Jaks fail to respond to interferons (IFNs) 124,125 . The role for Jaks 

in cytokine signaling was further confinned by cytokine receptor mutations that abolished 

Jak binding and the transfection of dominant negative forms of Jak into cell lines 126-129 

STAT proteins are downstream from Jaks in cytokine mediated signaling and one of 

the primary functions of Jaks is the activation of STATs. The STAT family of transcription 

factors is composed of seven members, STAT1, STAT2, STAT3, STAT4, STAT5a and 

STATSb, and STAT6 130. All the STAT proteins share common functional domains, 

including a Src-homology 2 (SH2) domain that recognizes phosphorylated tyrosine residues 

within the cytoplasmic tails of receptor subunits (Figure 2B). The highly homologous family 

of STAT transcription factors controls the expression of many genes and cellular functions. 

The pleiotropic nature of the STAT family of proteins is achieved by differences in the SH2 

domain docking site recognition and DNA binding domains which allow for selective 

binding to receptors and DNA targets respectively 114,115,131,132 

Receptor occupation by cytokine leads to dimerization of the receptor subunits and 

the activation of Jaks via auto- and trans-phosphorylation events 113,130,133 (Figure 3). Once 

activated, Jaks phosphorylate the cytokine receptor chains which generates a docking site for 

the SH2 domain of STATs 134,135 . Upon STAT association with the receptor, Jaks 



Fiaure. Jak-STAT signaling pathway 
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Figure 3. The JAK-STAT Signaling Pathway. 

(1)Receptor occupation by cytokine leads to dimerization of the receptor subunits and the 
activation of Jaks via auto- and trans-phosphorylation events (2). Once activated, Jaks 
phosphorylate the cytokine receptor chains which generate a docking site for the SH2 domain 
of STATs (3). Upon STAT association with the receptor, Jaks phosphorylate and activate 
STAT (3) leading to STAT homodimerization (4) and translocation into the nucleus where 
target gene activation will occur (5). 



phosphorylate and activate STAT leading to STAT homodimerization and translocation into 

the nucleus where target gene activation will occur 136,137 . While the cytokine driven 

L dimerization and activation of STATs are well accepted, there are alternate possibilities. 

E 
T Homodimerization of STATs is critical for their function but other forms may exist and 

participate in transcriptional activation. First, the N-terminal domain of the STAT protein 

has been shown to function in oligomerization of STAT dimers leading to tetramer formation 

and even higher ordered oligomerization Interestingly, STAT N-terminus dimerization 

that is independent of cytokine receptor-mediated signals and phosphorylation has recently 

been shown to occur in vivo 13'. The role these dimers play in STAT activity is uncertain but 

might include the promotion of interactions with cytokine receptors, STAT homodimer 

formation andlor phosphorylation. 

Jak proteins have additionally been implicated in the activation of the extracellular 

signal-regulated kinase subfamily of the mitogen-activated protein kinases (ERWMAPK) 

pathway as well as PI-3 kinase activity following cytokine binding 140,141 142,143 144 . Thus, Jak 

mediated signals appear to function as important upstream modulators of both the STAT and 

the ERK/MAPK signaling pathways as well as PI-3 kinase activity. 

Similar to the down regulation of TCR driven signals by CTLA-4 and PD-1, cytokine 

mediated signals are also tightly controlled and attenuated in order to maintain proper 

balance and function of the immune system. Negative regulation of Jak-STAT mediated 

cytokine signals is accomplished by several mechanisms including endosomal degradation of 



Jaklreceptor complexes through receptor-mediated endocytosis, and the regulation by the 

SOCS family of cytokine suppressors and tyrosine phosphatases 131,145-149 

Janus Kinase 3 

Jak3 is unique among the members of the Janus kinases family because it is 

preferentially expressed in hematopoietic cells, where it constitutively binds to the cytokine 

receptor y, chain 1261127y1503151. The family of cytokines that are Jak31yc dependent include IL- 

2, -4, -7, -9, -15, and -21. Signals mediated by these cytolunes have a myriad of effects on 

lymphocytes (Figure 4) and are critical for T cell development and homeostasis and at all 

phases of effector function (Figure 5, reviewed in and adapted from 152). 

Initially, the notion that Jak3 mediates signals through yc receptors was based on the 

observation that Jak3 deficient mice had a phenotype that was identical to that of mice 

lacking the y, chain 153,154 . The essential role for both Jak3 and yc was illustrated by the fact 

that defects in either of these molecules leads to severe combined immunodeficiency (SCID) 

in both humans and mice 153-158. Additionally, by characterizing the phenotype of mice 

deficient in single y,-cytokine or yc-cytokine receptor subunits, it has been possible to more 

clearly address the role for specific yc cytokines and signaling mediators during lymphocyte 

development, homeostasis, and function (Table 4). 

Jak3 deficient mice exhibit many immune abnormalities which lament the importance 

of this signaling pathway in the proper function of the immune system. First, mature B cells 



Jak3 dependent cytokine signaling 



Figure 4. yc mediated cytokine signaling is critical for the development and function of 
the immune system. 

The family of cytokines that are Jak31yc dependent include IL-2, -4, -7, -9, -15, and -21. 
Signals mediated by these cytokines have a myriad of effects on the immune system 
including the survival of lymphoid precursor subsets; B cell development, survival and 
immunoglobulin class switching; T cell development, survival, differentiation, and 
homeostasis; and NK cell development. 





Figure 5. yc factors influence the survival and proliferation of naive, effector, and 
memory T cells. 

(1)IL-7 is the most critical cytokine signal for T cell development and naYve T cell survival. 
Although both IL-4 and IL-7 have been implicated in supporting naive T-cell survival in 
vitro, IL-7 along with TCR-MHC interactions appear to have the dominant role in vivo. (2) 
To achieve T cell receptor specific stimulation interaction with foreign Ag-MHC plus co- 
stimulatory signals mediated ultimately by IL-2 are necessary. (3)Activated or effector T 
cells do not require yc cytokines for survival and proliferation but both are enhanced by IL-2, 
IL-4, IL-7 or IL-15. (4) The survival of memory T cells does not require interactions with 
MHC but at least for CD8+ T cells is dependent on IL-15. The requirement for memory 
CD4+ T cells is unclear, but appears yc independent. (5)With respect to the homeostatic 
expansion of naTve and memory CD8+ T cells, there is evidence that IL-4, IL-7 and IL-15 
can all support this process in vitro, although again only IL-7 is actually required in vivo. (6)  
For the homeostatic expansion of CD4+ T cells, TCR and IL-7 signals are important but it 
appears that TCR alone can be sufficient to support the homeostatic expansion of memory 
CD4+ T cells. Although IL-9 is a T cell growth factor, it is evidently dispensable for normal 
T-cell hnction and homeostasis, and the role of IL-21 in T cell biology is still unclear. 



Table 4. yc cytokines, their receptors and function 
Ctyokine Receptors Producer Actions Effect of cytokine or receptor 

Cells knockout 
IL-2 CD25(a) T cells T cell growth factor, IG2: deregulated T cell proliferation 

CD 122(p) proliferation IL-2a: incomplete T development 

CD 132(yc) 
IL-2P: increased T cell autoimmunity 
IL-2yc: SCID 

Dl24 T cells, mast B cell activation, IgE IL-4: decreased IgE synthesis 
D 132(yc) cells switch, suppresses Thl 

cells 
IL-7 CD 127 Non T cells Growth of pre B and pre T IL-7 early thymic and lymphocyte 

cells expansion imparied 
T cells Mast cell enhancement, ND 

stimulates Th2 cells 
IL- 15 IL- 15R Non T cells Stimulates growth of 

CD 122 (IL- intestinal epithelium, T 
Rp) cells and NK cells 
CD 1 32(yc) 

IL-21 



Table 4. yc mediated cytokine signaling is critical for the development and function of 
the immune system---lessons learned from mice deficient in yc cytokines or receptors. 
The phenotype of mice deficient in single y,-cytokine or y,-cytokine receptor subunits has 
lead to a more clear understanding of the role(s) for specific yc cytokines and signaling 
mediators during lymphocyte development, homeostasis, and function and underscores the 
importance of the yc family of cytokines in immune system development and function. 



i in Jak3-deficient mice are absent due to developmental arrest at the pro-B cell stage 153,154 

1 This defect has also been observed in mice that lack the y, and IL-7-mediated signals, 

indicating an essential role for IL-7 in murine B cell development 1597'60. This is consistent 
4 
7 

4 3 
=! with data that IL-7 regulates events that are thought to be important in B cell development 
- - 

I - 7 

such as transcription and rearrangement of the IgH gene locus, and expression of anti- 

apoptotic factors, such as Bcl-2 161,162 

NK cell development is also impaired and these cells are absent in the 

peripheral lymphoid organs of Jak3-I- mice. NK cell development appears to be dependent 

I 
5 
2 

on IL-15 since mice deficient in IL-15, but not IL-7 or IL-2 also have a block in NK cell 
1 
: development. Additionally, when the effect of either IL-2, -7 or -15 on NK cell :I 
L" 
)I 
q 

differentiation was assessed, only IL-15 could induce NK cell differentiation from bone 
I 

163,164 
j marrow progenitor cells , correlating with the requirement for IL-15 in NK 

1 development. 

I In addition to defects in B and NK cells, Jak3 deficient mice have abnormalities in T 

cell development, homeostasis, and function. The thymus of a Jak3-I- mice is drastically 

reduced in cellularity to approximately one tenth the size of wild type. A reduction is 

thymic cellularity is also seen in yc deficient mice and can be at least partially explained in 

both cases by the fact that there are fewer numbers of thymocyte progenitors. In addition to 

fewer progenitor numbers, there may be defects in both survival and progression through the 

stages of T cell development in Jak3 deficient mice. This is suggested by data from IL-7 -/- 

and yc -1- mice. In the absence of IL-7, transition from the pro-T cell stage to the pre-T cell 



stage is blocked 160,165. The block may at least in part be due to insufficient survival signals 

in the absence of yc signaling. Evidence for this is illustrated by the fact that in yc-I- mice, 

upregulation of Bcl-2 expression typically required to transition from DN ~ ~ 4 4 + ~ ~ 2 5 -  to 

DN ~ ~ 4 4 + ~ ~ 2 5 +  and from DP TCR'" to DP TCR'"' is reduced '61,'66. Furthermore, higher 

apoptotic indexes have been shown in DN and C D ~ + / C D ~ '  SP thyrnocytes in y,-I- mice, 

correlating with reduced levels of Bcl-2 expression 167. In total, this data suggests that y,- 

mediated signals, especially IL-7, play a vital role in T cell development which may depend 

on induction of Bcl-2 to provide anti-apoptotic signals during development 16'. 

Mice deficient in y,, Jak3, IL-7R, and IL-15 completely lack y6 T cells 169,170 

Interestingly, y chain rearrangement in thymocytes could not be detected in the thymus of 

these mouse models. This suggests that yc function, in addition to mediating survival 

signals, is required for the rearrangement of the TCRy locus '697'70. Thus, the importance of 

yc signals in the development and function of T cells expands beyond mediating survival 

signals and is additionally required for the rearrangement and expression of the TCRy chain. 

Whether yc mediated signals are required for y6 T cell survival and the specific yc cytokine 

necessary for the survival of y6 T cells is unclear. In support of a role for yc in survival, y6 T 

cell numbers are still reduced in yc-deficient mice crossed to a transgenic mouse with a 

functionally rearranged TCRy gene '69. In contrast to this, other research has shown that 

high copy transgenic expression of the TCRy chain in IL-7R-I- mice results in the presence of 

normal numbers of y6 T cells. These results are consistent with the idea that the yclIL-7R 



signals are essential for the rearrangement of the TCRy chain but not for the survival of y6 T 

cells 171. 

Despite a reduction in number of thymic progenitors, and absence of y6 T cells, the 

stages of ap T cell development in y,-, Jak3-, and IL-7-deficient mice progress normally 

suggesting that Jak3-mediated signals are important but not essential for murine ap T cell 

development 107,153,172 

In the peripheral lymphoid organs of Jak3-I- mice there are wild type numbers of 

ap T cells 153-155 . Interestingly, however, these cells are predominantly CD4+ T cells with a 

virtual absence of CD8+ T cells. Moreover, the CD4+ T cells have a phenotype consistent 

with previously activated or memory T cells in that they are large and express surface 

markers associated with prior activation in particular CD44 (CD44-high, CD25-low, and 

CD69-low) The absence of nayve peripheral T cells in Jak3-I- mice is consistent with the 

notion that Jak3 mediated signals through IL-7 are essential for survival of both nayve CD4+ 

and CD8+ T cells 173,174 

In Jak3 neonatal mice (d.10), there are reduced numbers of peripheral CD4+ T cell 

but these cells accumulate over time (d. 25) lS3. This suggests that Jak3-1- CD4+ T cells 

undergo expansion in the periphery, leading to an increase in overall CD4+ T cell numbers 

and the acquisition of a memory phenotype. The skewed CD3 spectratype observed in Jak3- 

I- T cells suggests that activation and expansion of Jak3-I- T cells bearing heterogeneous 

TCRs is oligoclonal and thus dependent on receptor specific stimulation 175. However, there 

are alternative hypotheses that are not necessarily mutually exclusive. Accumulation of 



CD4+ CD44hi T cells in Jak3 deficient mice may be due to lyrnphopenia induced 

homeostatic expansion. A lymphopenic condition leading to an increased degree of 

homeostatic expansion may occur in Jak3-/- mice due to a reduction in the number of thymic 

emigrants as well as an increase in nai've peripheral T cell death in the absence of yc signals. 

Furthermore, IL-2 signals have been implicated in the development of CD4+CD25+ 

regulatory T cells which are critical in peripheral tolerance and homeostasis 176,177 . A 

reduced population of CD4+CD25+ T cells could then account for increased or uncontrolled 

expansion of T cells in Jak3 deficient mice. 

The absence of naTve CD4+ and CD8+ T cells and marked reduction in mature CD8+ 

T cells in Jak3-I- is not unexpected since yc cytokines have been shown to be essential in the 

survival of these T cell subsets. Numerous studies have demonstrated that signals mediated 

by IL-7 but not others, are essential for the survival of naTve C D ~ +  and C D ~ '  T cells 173,174 

Additionally, IL-7 is required for the homeostatic proliferation of naTve CD8+ and may 

augment these events in CD4+ T cells 173,174,178-180 . Both IL-15 and IL-7 are thought 

necessary for the survival and homeostatic proliferation of C D ~ '  memory T cells 178,181-183 

Consistent with the phenotype in Jak3 deficient mice, both the survival and homeostatic 

proliferation of memory C D ~ +  T cells have been shown to be independent of y, cytokines 

174,178 . However, both survival and homeostatic proliferation of CD4+ T cells can be 

enhanced in the presence of IL-7 and possibly other yc mediated signals 109,184 

Although there are abundant numbers of CD4+ T cells in Jak3 deficient mice, these 

cells are functionally defective. In addition to the fact that Jak3-I- CD4+ T cells are 



predominately memory or CD44-high T cells, these cells fail to proliferate or secrete IL-2 in 

response to either mitogenic or TCR stimulation and thus appear to be anergic in vitro. 

Despite this, previous data indicated that Jak3-I- T cells were not entirely unresponsive in 

that upon in vitro stimulation these cells could induce transcripts for other cytokines, 

185 including IL- 1 0 and IFN-)I . 

The overall objective of this thesis work was to gain hrther insight into the role Jak3 

plays in the homeostasis and function of CD4+ T cells. Specifically, the present studies were 

initiated to begin to address the molecular mechanisms which lead to atypical CD4+ T cell 

function (i.e. loss of proliferation and IL-2 production) following expansion in vivo in the 

absence of Jak3. Studying these events will not only provide a more clear understanding of 

the role Jak3 plays in the immune system, but importantly, will shed light on potential 

mechanisms of immune tolerance or attenuation when there is incomplete or inappropriate T 

cell stimulus. Thus, an additional goal of these studies was to determine what functional 

capacities, if any, in vivo expanded Jak3 deficient T cells either maintain or develop. To this 

end, the specific aims addressed in the thesis work are as follows: 

1. Chapter Three: "The upregulation of inhibitory receptors on Jak3-I- CD4+ T cells 

along with a concomitant down-regulation of transcription factors and TCR linked cell cycle 

factors." In chapter three, potential molecular mechanisms involved in Jak3-I- mediated 

atypical T cell function were assessed by determining global differences in gene expression 

between functional wild type CD4+ CD44-high T cells and non-hnctional Jak3-I- CD4+ 



CD44-high T cells. Global gene expression was determined by gene array analysis. 

Differential gene expression between these responsive and non-responsive cell types 

suggested that Jak3 deficient CD4+ CD44-high T cells have an increase in RNA expression 

for receptors known to be inhibitory to T cells including PD-1, LAG-3 and TJ6. In addition, 

the expression of two transcription factors which are important for proper T cell function, 

SATBl and LKLF, were decreased. We also observed a decrease in the expression of two 

kinases, Pim-1 and Cis, which have been implicated in TCR mediated cell cycle induction. 

Despite this however, there was not a global defect in the expression of cell cycle proteins 

and to the contrary we observed an upregulation in the expression of basal cell cycle factors. 

2. Chapter Four: "The role of the PD-1:PD-L1 co-inhibitory pathway and other 

B7:CD28 superfamily molecules in the unresponsiveness of Jak3-I- CD4+ CD44-high T 

cells." Given the upregulation of PD-1 mRNA expression in Jak3-I- CD4+ CD44-hgh T 

cells, we began to investigate the potential contribution of this pathway in down modulating 

the function of Jak3-I- T cells. Our results suggest that both the PD-1 receptor and its ligand, 

PD-L1, are highly up-regulated at the protein level in the Jak3-I- splenic microenvironment. 

Up-regulated PD-1 receptor expression is limited to the CD4+ splenocytes whereas PD-L1 

expression is present within the CD4 negative subset of splenocytes. Importantly, the PD- 

Ll+ Jak3-I- splenocytes can mediate inhibition of in vitro stimulated Jak3+/- CD4+ T cells 

suggesting the PD-L1 on these cells is functional and that this fraction of cells can interact 

with T cells. Analysis of the expression of other B7:CD28 members, such as CTLA-4, 



before and after in vivo T cell stimulation revealed that there was a general defect in the 

expression of other costimulatory molecules in Jak3-I- T cells. The absence of CTLA-4 in 

Jak3-I- T cells hrther supports the notion that the PD-1:PD-L1 pathway is a primary negative 

pathway which is acting to suppress the function of Jak3 deficient T cells. 

3. Chapter Five: "Jak3-I- CD4+ CD44-high T cells have characteristics of Trl 

regulatory T cells." An additional interesting trend observed by microarray analysis was the 

expression of a unique cytokine profile in Jak3-I- CD4+ CD44-high T cells. Based on RNA 

expression, Jak3-I- CD4+ CD44-high T cells more highly induced an immunosuppressive 

panel of cytokines than Jak3+/- CD4+ CD44 high T cells. This cytokine profile which 

included IL-10, IFN-y, and TGF-P is shared by subsets of T cells known to have T cell 

regulatory function indicating the possibility that Jak3-I- CD4+ T cells had differentiated into 

regulatory-like T cells. To more thoroughly investigate this possibility we measured both 

cytokine production and the ability of Jak3 -1- T cells to inhibit the proliferation of Jak3+/- 

CD4+ T cells. Our results suggest that Jak3-I- CD4+ T cells have regulatory qualities which 

based on current literature is likely to be most consistent with a Trl subset of regulatory T 

cells. 

4. Chapter Six: "The phenotypic defects of Jak3-I- CD4+ T cells are cell 

autonomous." In addition to abnormal T cell function, Jak3 deficient mice are characterized 

by an absence of B cells, NK cells, y6 T cells and also lack CD8aa dendritic cells. These 



gross abnormalities in Jak3-I- mice ultimately lead to a disruption in splenic architecture and 

the potential loss of interactions necessary for proper T cell function. Therefore, the absence 

of or defect in immune accessory cells could be responsible for the Jak3-I- T cell phenotype. 

To test this hypothesis we isolated CD4 SP thymocytes from Jak3 deficient mice which have 

been previously determined to function comparably to wild type with regards to proliferation 

and IL-2 production. Jak3-I- CD4 SP thymocytes were injected intravenously into RAG-/- 

mice where expansion and differentiation could occur in the presence of functionally replete 

immune accessory cells that have intact Jak3 signaling. In summary of this data, Jak3-1- 

CD4 SP thymocytes which expand in the presence of Jak3+ accessory cells develop a 

phenotype consistent with peripheral T cells isolated from unmodified 8 week old Jak3-1- 

mice suggesting that the T cell defects are cell intrinsic. 

5. Chapter Seven: "Comparison of Global Gene Expression Patterns in wild type, Jak3-I-, 

STAT5ab-I- and lymphopenia-induced homeostatically expanded CD4+ CDD44-high T 

cells." The global gene expression patterns of STAT5ab-I- CD4+ CD44-high cells and Jak3- 

1- CD4+ CD44-high cells suggest a role for IL-10 mediated disruption of RAS-RAF 

mediated MAPK activation in the inhibition of IL-2 production in Jak3-I- peripheral CD4+ T 

cells. By expanding the populations of CD4+ CD44-high T cells in our microarray analyses 

to include CD4+ CD44-high T cells from STATSab deficient mice which have defects in 

proliferation but not IL-2 production and thus are only partially unresponsive, we were able 

to observe a dichotomy between gene expression and induction of genetic programs that are 



potentially responsible for the defect in IL-2 production versus the defect in proliferation in 

Jak3-I- T cells. This data indicates a distinct down regulation in Mef-2C and Elk-1 uniquely 

in the Jak3-I- CD4+ T cells. Mef-2C and Elk-1 are downstream targets of the RAS-RAF 

mediated MAPK pathway and are important in the establishment of the AP-1 complex and 

thus IL-2 synthesis. Since, IL-10 has been determined to specifically block RAS-RAF 

activation; these data establish a link between the induction of immunosuppressive genetic 

programs mediated by IL-10 and potentially TGF-P and EN-y and the unresponsive 

phenotype of Jak3-I- CD4+ CD44-high T cells. We next hypothesized that upon in vivo 

expansion Jak3-I- T cells underwent typical attenuation mechanisms necessary to maintain 

control of immune responses such as PD-1 induction. However in contrast to a wild type T 

cell, in the absence of Jak3Iyc signals these attenuation mechanisms dominate and thus lead 

to unresponsiveness in Jak3 deficient T cells. Consistent with this, microarray analysis of 

CD4+ CD44-high T cells derived fiom RAG2-I- mice that received wild type CD4+ T cells 3 

weeks prior, display similar upregulation of PD-1. In addition, homeostatically expanded 

CD4+ T cells have moderate increases in expression of IL-10, TGF-P, and IFN-y. 

Interestingly, these T cells do not exhibit decreased expression of Mef-2C and Elk- 1. 

In total, this work suggests that the importance of Jak3 in CD4+ T cells is to 

overcome or temper typical attenuation mechanisms. In the absence of Jak3 mediated 

signals, CD4+ T cells can undergo primary expansion and IL-2 production. However, this 

will result in the induction of modulatory factors such as surface receptors and cytokines 



which act to shut down the response. In the absence of positive signals mediated by Jak3, the 

switches that shut down the immune response cannot be overcome and therefore dominate. 

The maintenance of these negative signaling pathways then reset genetic programs which 

lead to the differentiation of T cells with regulatory characteristics. 



Chapter 11. 

MATERIALS and METHODS 



MATERIALS and METHODS: 

Mice: 

Jak3-I- and Jak3+/- mice '53 have been described previously. Mice have been backcrossed to 

C57BLI6 a minimum of 8 generations. Jak3-I- mice and littermate controls were used at 8- 

10 weeks of age and maintained in a specific-pathogen-free facility. RAG2-/- mice (Taconic, 

Germantown, NY) were used for the adoptive transfer experiments. 

T cell purification: 

Spleens or thymuses were removed from 8- to 10-wk-old Jak3-I-, and littermate controls. 

For CD4+ T cell purzication, after RBC lysis of total splenocytes, single-cell suspensions 

were incubated with a-CD4-coated magnetic microbeads and passed through AutoMACS 

LS' columns according to the manufacturer's protocol (Miltenyi Biotec, Auburn, CA).To 

isolate CD4+ CD44-high T cells the resulting CD4+ enriched population of cells were then 

stained with antibodies to CD4 (a-CD4- FITC, BD PharMingen, San Diego, CA) and CD44 

(a-CD44-CyChrome (Cy), BD PharMingen, San Diego, CA) and sorted for CD4+ CD44- 

high cells on a BD Biosciences FACStar. For CD4 single positive (SP) T cell enrichment, 

after RBC lysis of total thymocytes, single cell suspensions were incubated with anti-CD8- 

coated magnetic microbeads and passed through AutoMACS LS+ columns as previously 

described. The negative fraction was then used as enriched CD4+ thymocytes. T cell 



isolation methods used typically yielded CD4+ CD44-high peripheral T cells with greater 

than 95% purity and thymic CD4 SP cells of approximately 70% purity. 

Abs andflow cytometry: 

Cells were stained with the indicated Abs in HBSS supplemented with 3% FCS for 20 min on 

ice. Cells were then washed and analyzed on a BD Biosciences FACSCalibur. Data were 

analyzed using CellQuest software (BD Immunocytometry Systems, San Jose, CA). The Abs 

and flow cytometry reagents used were a-CD4-FITC, a-CD44-CyChrome (Cy), (BD 

PharMingen, San Diego, CA), and a-PD-1-PE, a-PD-L1-PE, a-armenian hamster IgG-PE, 

a-rat IgG2a,h-PE,(eBioscience, San Diego, CA). 

Microarray: 

For RNA isolation, total RNA extraction from purified C D ~ +  CD44-high T cells was 

performed with TRIzol (GibcoBRL, Gaithersburg, MD) according to the manufacturer's 

instructions. An additional purification of the total RNA was performed using RNeasy spin 

columns (Qiagen, Germany). cRNA preparation and subsequent steps leading to 

hybridization and scanning of the mU74Av.2 GeneChip Arrays were carried out according to 

the manufacturer's instructions (AffymetrixTM, Santa Clara, CA). Briefly, 5-10 pg of each 

total RNA sample were converted into double-stranded cDNA using a cDNA synthesis kit 

(Superscript Choice, GibcoBRL) with a special 01igo(dT)~~ primer containing a T7 RNA 

polymerase promoter site added 3' of the poly T tract (Genset). Subsequently, biotin-labeled 

anti-sense cRNA was generated from the cDNA sample by in vitro transcription reaction 

(IVT) using the ENZOTM BioArray Highyield RNA Transcript Labeling Kit. The labeled 



cRNA was purified using RNeasy spin columns (Qiagen, Germany). Approximately twenty 

micrograms of each cRNA sample were fragmented by mild alkaline treatment, at 94 OC for 

35 min and then used to prepare the hybridization cocktail. A mixture of four control cRNAs 

for bacterial and phage genes was included in the hybridization cocktail (bioB, bioC, bioD, 

and cve, at 1.5, 5,25, and 100 pM, respectively) to serve as tools for comparing hybridization 

efficiency between arrays and for relative quantization of measured transcript levels. A 

biotinylated oligonucleotide, B2, was also added to the hybridization cocktail, which 

hybridized to unique features at the center and four comers of each chip to facilitate accurate 

orientation and mapping of the probe sets. Additionally, standard Test GeneChip arrays 

(Affymetrix, Santa Clara, CA) were performed on all samples prior to mU74Av.2 

hybridization as an additional means of testing sample integrity. Oligonucleotide array 

hybridization and scanning was performed at the University of Massachusetts Medical 

Center Affymetrix Core Facility in accordance with the manufacture's instructions. Briefly, 

the sample cocktails were heated to 99 OC for 5 min, equilibrated to 45 OC for 5 min, and 

clarified by centrifugation (14,000g) at room temperature for 5 min. Aliquots of each sample 

(15 pg of fragmented cRNA in 300 p1 of hybridization cocktail) were hybridized to U74A 

GeneChip arrays at 45 OC for 16 h in a rotisserie oven set at 60 rpm. The arrays were then 

washed with non-stringent wash buffer (6 x SSPE, 0.01% Tween 20) and stringent wash 

buffer (100 mM MES, 0.1 M[N~+], and 0.01% Tween 20), stained with R-phycoerythrin 

Streptavidin (Molecular Probes), washed again, and read by the GeneArray Scanner (Agilent 

Technologies). For Oligonucleotide array data analysis, initial data analysis was 



performed by Affymetrix Microarray Suite (MAS) 4.0 software. Initial absolute analyses for 

gene expression were performed without scaling while subsequent comparison analysis files 

were created by scaling all data sets to a uniform value (so-called Target Signal, 250) to 

normalize all probe sets. Pair-wise comparisons between each control (Jak3+/-) and 

experimental (Jak3-I-) sample were carried out. During a comparison analysis, each probe set 

on the experiment array (Jak3-I-) was compared to its counterpart on the baseline array 

(Jak3+/-), and the changep-value calculated by the Wilcoxon's signed-rank test. All arrays 

were performed in triplicate. Reproducibility between replicates was measured on a gene per 

gene basis for genes of interest and globally using GenespringTM 6.1 software. In 

Genespring, global gene scaling was first performed for all samples on all 12,422 genes 

contained within the mU74Av.2 array(s). For similarity analysis, the target sample (Jak3-I-) 

was compared to replicate samples and similarity measured using the Genespring Find 

Similar Sample feature. For this comparison, all genes on the array were considered and 

similarity determined using a weighting coefficient of 0.25. In this analysis, a correlation 

value of 1 = perfect match, -1 = opposite and 0 = no match. Additional comparison 

analyses, clustering and heat map plot generation was also performed using GeneSpringTM 

software. 

Real-time quantitative PCR: 

Purification of C D ~ '  CD44-highT cells was performed as previously described. Total RNA 

was isolated using either TRIzol (GibcoIBRL) or the Qiagen RNeasy kit (Valencia, CA) 

according to the manufacturer's protocol. After DNase treatment (Promega, Madison, WI), 1 



pg of total RNA was reverse transcribed into cDNA using Superscript I1 and Random 

Hexamers (Invitrogen, Carlsbad, CA) according to the manufacturer's protocol. Real-time 

quantitative PCR amplification was performed on a Bio-Rad iCycler using SYBR Green PCR 

Core Reagents (PE Applied Biosystems, Foster City, CA). To quantify the amount of cDNA 

for an individual transcript, SYBR Green fluorescence was measured at the end of each 

cycle. The cycle threshold (C,), the cycle at which exponential growth of the PCR product is 

first detected, was determined for known concentrations of plasmid DNA, and a standard 

curve was created. Template copy numbers were calculated for each sample by interpolating 

the Ct values on the standard curve using the iCycler software. All samples and standards 

were run in triplicate for any given experiment. The value of PD-1 was normalized to p-actin 

by dividing the average copy number of the respective transcript by the average copy number 

of p-actin in the respective sample. The data was then represented graphically as relative 

units. The PCR was as follows: templates were initially denatured at 95°C for 10 min 

followed by 40 cycles of denaturation at 95°C for 20 s, 25 s of primer annealing at 62°C for 

p-actin and PD-1, and lastly a 72°C extension for 25 s. Primers were: B-actin sense, 5'- 

CGAGGCCCAGAGCAAGAGAG-3', antisense, 5'-CGGTTGGCCTTAGGGTTCAG-3'; PD- 

1 sense 5'-TGGAACCGCTCTGATCTC TGG-3', antisense, 5'-GGTTTAGGG 

GCTGGTTGTTGC-3'. Specific products were verified by melt-curve analysis and gel 

electrophoresis. For the generation of standard curves, a plasmid containing a cDNA clone 

for 0-actin (gift from R. Gerstein, University of Massachusetts Medical School, Worcester, 



MA) was used. A 180-bp fragment of PD-1 (145-324) was cloned into pGEM-T Easy 

(Promega) for use in the generation of a PD-1 standard curve. 

Adoptive transfer: 

CD4 SP thymocytes fiom Jak3+/- or Jak3-I- thymus were isolated by AutoMACS separation 

as previously described. 1 x lo6 CD4 SP thymocytes were injected intravenously into 

RAG2-I- (Taconic, Germantown, NY) mice. After 2, 4, 6, and 8 weeks spleens fi-om i.v. 

injected or control mice were harvested and analyzed. 

T cell stimulation: 

Either total splenic CD4+ or CD4+CD44-high cells were purified as described above. 5 x 

lo5 cells were plated with between 2.5 and 10 pg/ml immobilized a-CD3 (clone 145-2C11, 

PharMingen, San Diego, CA). Cells were stimulated between 6h and 72h depending on 

experiment. For co-culture experiments target cells were mitomycin-C treated and stimulated 

at a 1 : 1 targetlresponder ratio at a total cell density of 5 x 1 05. 

In vitro proliferation assay: 

Cells were stimulated as described previously. [ 3 ~ ]  Thymidine (NEN, Boston, MA) was 

added at 1pCiIwell at 36 h and incubated for an additional 16 h, plates were harvested on a 

Tomtec Harvester 96 (Orange, CT), and [ 3 ~ ]  thymidine incorporation was quantified on a 

Trilux microbeta counter (PerkinElmer, Wellesley, MA). 

ELISA : 



5 x lo5 cells were stimulated with 1 Ouglml plate-bound a-CD3 for 18-22 hours in a 96 well 

plate. Cells were removed by centrifugation and the supernatant was serially diluted and 

assayed for the presence of IL-2 (OptEIATM Mouse IL-2 Set), IFN-y (OptEIATM Mouse IFN- 

y Set ), IL-4 (OptEIATM Mouse IL-4 Set ), IL-5(OptEIATM Mouse IL-5 Set ), IL-10 

(OptEIATM Mouse IL-10 Set ), (PharMingen, Sand Diego, CA) and TGF-P (Emax 

Immunoassay System), (Promega, Madison WI) according to the manufacturer's protocol. 

The absorbance was read at 450 nrn using an ELISA reader (EL 340 from Bio-Tek 

Instruments). 

Intracellular cytokine staining: 

T cells (5 x lo5) were cultured with 10pg/ml plate bound a-CD3 for 6h and 16 h in a 96-well 

plate. Golgi Stop andlor Golgi Plug (BD PharMingen, San Diego, CA) were added for the 

last 2 h. The cells were stained with a-CD4 FITC for 30 min, fixed for 20 min, then 

permeabilized, and stained intracellularly with either a -1L-2-PE or a-ILl O-PE according to 

the CytofixICytoperm kit protocol (BD PharMingen). Cells were immediately analyzed by 

flow cytometry. 



Chapter 111. 

Results 

Global Differential Gene Expression in CD4+ CD44- 

high T cells from Jak3+1- versus Jak3 deficient mice. 



Differences in global gene expression between CD4+ CD44-high Jak3+/- and Jak3-/- T 
cells 

As an initial approach to determining the effects of T cell activation in the absence of 

Jak3-dependent cytokine signals, we used microarray analysis to compare global patterns of 

gene expression between Jak3-I- and Jak3+/- CD4+ CD44-hi cells immediately following ex 

vivo isolation. The differential expression of 12,400 genes was determined using Affymetrix 

GeneChip array mU74Av.2. Our criteria for determining significance was that changes in 

gene expression should be >2.9-fold (as determined by Test GeneChip results), have p- 

values of less than or equal to 0.05, and should be reproducible among triplicate experiments. 

From these analyses, we found that Jak3-I- T cells had approximately 149 genes up-regulated 

3 fold or higher and 208 genes 3 fold down-regulated compared to Jak3+/- T cells. These 

changes spanned many functional categories relevant to proper T cell activation and function 

including cell surface markerslreceptors, cell cycle/apoptosis/survival, cytokine signaling, 

and transcription/translation (Table 5 and Supplemental (Supp.) 1-6). 

In general, there was an increase in inhibitory cell surface receptor gene expression 

(PD- 1, LAG-3, TJ6) and a decrease in transcriptionltranslation factors known to have a 

positive role in T cell function (LKLF, SATB1). Surprisingly, even though Jak3-I- CD4+ T 

cells do not proliferate in vitro we did not detect any global down regulation of genes 

involved in basal cell cycle events and instead saw an up-regulation of many of these genes 

(Cyclin A1 ,B1 and Lamin B1) (Table 5, Cell Cycle). Consistent with our previous data that 



Table 5. Differntial Gene Ex~ression in Jak3-1- CD4+ CD44-h~h T cells 

JaW+/- 
CD4+ CD44-hi 

Abs 
,--,,,-,..-..S.ignal..... .... 

192.8 P 

275.4 P 

253.8 P 

358.4 P 

90.9 A 

1165.7 P 

140.9 P 

138.8 A 

151.5 P 

271.9 P 

-59.1 A 

5021.1 P 

-17.3 A 

33.8 A 

31.3 A 

30 P 

1405 P 

1287.6 P 

Jam+/- vs. Jak3-1- 
CD4+ CD44-hi 

Diff Fold 
Call .... Change..- 

I 3.1 

I 3.2 

I 4.1 

I 4.5 

I 3.4 

I 4 

I 3.3 

I 4.9 

I 3.9 

D 3.4 

I 3.1 

I 3.1 

I 3.1 

I 3.4 

I 22.8 

I 3.5 

D 7.2 

D 7.6 

Ja  k3-1- 
CD4+ CD44-hi 

Abs 
Signal .... alL ... 

605.2 P 

756.3 P 

985.9 P 

1057.3 P 

406.3 P 

4248.9 P 

464.5 P 

639.7 P 

591.7 P 

-60.2 A 

277.4 P 

15461.8 P 

108.1 P 

375.3 P 

3028.4 P 

199.4 P 

143.9 A 

168.5 P 

Gene Information 

Accession # Description 
......-..........-...--................e....e.....~e.e.~e..e...e.e..e..e..e.....e....e...e.e...e.e.e...e..e....e........e....e...e...e.e..e.....~.........-..--.-..--.-... .... 

Cell Surface Markers1 
Receptors 

M31226 immune suppressor factor TJ6 

X67914 PD-1, B7 family 

X98113 Lymphocyte-activation gene 3 

Cell Cycle 

X75483 Cyclin A2 

X64713 cyclin B1 

X66032 cyclin B2 

M35153 Lamin B1 

L29480 serinelthreonine kinase (sak-b) 

AF013 166 serinelthreonine kinase (nek2) 

M13945 Proviral integration site 1 (pim-1) 

Cytokine Signaling 

KO0083 Interferon gamma 

AF065947 small inducible cytokine A5 (RANTES) 

M37897 interleukin 10 

L12120 Interleukin 10 receptor, alpha 

X62502 MIP-lb macrophage inflammatory protein 

L19932 Transforming growth factor, beta 

Transcription/Translation 

U25096 Kruppel-like factor LKLF 

U05252 nuclear matrix attachment protein SATBl 



Table 5. Differential Gene Expression in CD4+ CD44-high Jak3-I- T cells. Global gene 
expression was compared between Jak3+/- and Jak3-1- CD4+ CD44-high T cells by 
microarray. Experimentally adjusted Signals for each sample are shown as is an absolute 
Present (P) or Absent (A) call which was determined by analysis in MAS 4.0. The difference 
call (Diff Call) between samples are expressed as Increases (I) and Decreases (D) in gene 
expression and the level of change in gene expression indicated as fold change. These data 
were determined by analysis in MAS 4.0 and further confirmed by Genespring analyses. 
These results are representative of triplicate experiments performed. 



Jak3-I- CD4+ T cells produced transcripts for certain cytokines lS5, we detected the increased 

expression of the rnRNAs encoding FNy, IL-10, IL-lORa, Mip-1 p, and TGF-P (Table 5, 

Cytokine Signaling). 

Cell Surface marker/Receptors. 

T lymphocytes depend on signals from their surroundings for proper activation, 

homeostasis and survival. These signals can be modified then, not only by changes in the 

release of chemical mediators from surrounding cells, but also by differential expression of 

receptors on the surface of a T cell. Based on our comparison of global gene expression 

there were several changes in expression of surface markerslreceptors on CD4+ CD44-high 

Jak3-I-T cells compared to CD4+ CD44-high Jak3+/- T cells (Table 5,  Surface Markers). 

Strikingly, several of these changes were increases in surface receptors known to inhibit T 

cell activation or function. Moreover, many of these same changes in surface markers in 

Jak3-1- T cells have been correlated to anergic T cells, regulatory T cells or both. First, 

immune suppressor factor TJ6 was 3.1 fold increased. TJ6 has been previously shown to be 

induced on T cells during T cell activation, anergy and pregnancy and is thought to attenuate 

the T cell response to a developing fetus. Programmed death receptor-1 (PD-1) and 

lymphocyte activating gene-3 (LAG-3) were also shown to be upregulated on Jak3-1- 

CD4+CD44-high T cells by a fold change of 3.5 and 4.1 respectively and this was confirmed 



by real-time PCR analysis (Supp.7). PD-1 is a recently identified member of the B7:CD28 

signaling family of molecules 14730. Interaction with its ligand, PD-L1 (B7-HI) is inhibitory 

to T cells and results in decreased proliferation and IL-2 secretion 36 . PD-1 is thought to 

play a role in peripheral tolerance because mice deficient in PD-1 develop 

lymphoproliferative and autoimmune pathologies lS6. Furthermore, PD-1+ T cells in 

rheumatoid arthritis (RA) synovial fluid are enriched, and phenotypic analysis suggests that 

these cells constitute a unique anergic T cell subset which play a role in disease progression 

Is'. Additionally, studies have investigated the roles of PD-1 and its ligands, PD-L1 and PD- 

L2, in the induction of regulatory cells by intratracheal delivery of alloantigen. Interestingly, 

PD-1-PD-L1 interaction has been shown to be essential for induction of this type of 

regulatory T cell 89. LAG-3 is a CD4-related, activation-induced cell surface molecule that 

binds to MHC class I1 with high affinity 188-190. Similarly to PD-1, the cross-linking LAG-3 

results in a dramatic reduction in proliferation and IL-2 production as well as decreased 

calcium flux 191-194 . In addition, recent studies suggest that T cells expressing LAG-3 display 

regulatory function both in vivo and in vitro lg4. These results suggest multiple pathways that 

may lead to the development of unresponsive T cells in Jak3 deficient mice. 

Cell Cycle. 

There were many differentially expressed cell cycle associated genes upregulated in 

Jak3-1- CD4+ CD44-high T cells (Table 5, Cell cycle). These included changes in members 



of the cyclin (A2, B1, and B2) and lamin (Bl) family. Cyclins and lamins are critical factors 

in the initiation of DNA synthesis and cell cycle progression lg5. The upregulation of many 

pro-cell cycle genes in JaW-I- T cells indicates that while these cells are non-proliferative in 

vitvo, they are capable of cell division in vivo and are potentially turning over at a higher rate 

than Jak3+/- T cells. This is consistent with BrdU labeling experiments which demonstrate 

the in vivo proliferative capacity of Jak3-I- T cells 110,196 

The expression of cell cycle associated serinelthreonine kinases were differentially 

regulated in Jak3-1- CD4+ CD44-high T cells including pim-1, sak-b, and nek-2 (Table 5, 

Cell cycle). Kinases play essential roles in regulation of the cell cycle and proliferation. 

Sak-b and nek-2 which are non-cell specific cell cycle regulators were increased while Pim-1 

expression was decreased in Jak3-1- T cells. Interestingly, Pim-1 has been shown to be 

specifically induced upon TCR cross linking and synergize with the TCR in mediating cell 

differentiation and survival signals lg7 . Moreover, forced expression of pim-1 reconstitutes 

thymic cellularity in mice lacking IL-7 or yc 197. These results suggest that while Jak3-1- T 

cells may be receiving proliferative signals, in the absence of Jak3, these T cells fail to 

induce factors involved in TCR mediated, T cell specific proliferative signals, like pim-1, and 

therefore may result in an incomplete activation pathway ultimately leading to 

unresponsiveness. 

Cytokine Signaling. 



Cytokines have essential roles in the development and control of immune responses. The 

biological functions of cytokines mainly depend on cytokine mediated gene activation or 

repression. Changes in expression of cytokine genes then can act as an indicator of the types 

of signals a T cell has received and how a T cell has differentiated. Based on microarray 

data, CD4+CD44-high Jak3-1- T cells upregulate the expression of IFNy, IL-10, IL-lORa, 

Mip-lp, and TGF-P (Table 5, Cytokine Signaling) in addition to many IFN-y, IL-10 and 

TGF-P-related genes which include the receptors and down stream inducible targets of these 

cytokine signaling pathways (Table 6, Cytokine Inducible). IFN-y, IL-10 and TGF-p are 

cytokines that have potent immunomodulatory and suppressive properties 81,1987199. While 

EN-y promotes inflammation 200, IL-10 and TGF-P are considered anti-inflammatory 

cytohnes that have potent immunomodulatory and suppressive properties 201,202 . Secretion of 

large amounts of IFN-y is a defining feature of Thl cells and functions to directly promote 

cell mediated immunity 49. IL-10 exerts several immune stimulating, as well as inhibitory 

effects 203. CD4+ Th2 cells provide the primary source of IL-10 in the immune system and 

thus, IL-10 plays a role in humoral immunity 5 5 .  IL-10 also plays a key regulatory role in the 

immune system as has been demonstrated by IL-10 mediated dampening of both Th2- and 

Thl-associated diseases as well as the fact that to date most T cell subsets associated with 

regulatory function produce primarily IL- 10 82,204. TGF-p has complex and pleiotropic 

effects on T cells including the inhibition of T-cell proliferation, the development of 

cytotoxic T cells, and the differentiation of Thl and 2 lineages 205-207 . However, under 

certain conditions, TGF-P has also been found to stimulate 



sinnal Call 

Cvtokine Inducible Genes 

Jak3-I- Jak3-I- -I- VS. +I- -I- VS. +I- 
Fold - 

sinnal Diff Call Change Accession Description 

INTERFERON GAMMA RELATED 
lnterferon regulatory factor 1 

predicted interferon inducible GTP binding protein (IRG-47) 

interferon inducible G-protein-like LRG-47 
lnterferon dependent positive acting transcription factor 3 
gamma 

GTPl protein 

lnterferon gamma receptor 

lnterferon activated gene 204 

lnterferon activated gene 203 

TRANSFORMING GROWTH FACTOR RELATED 
Latent transforming growth factor beta binding protein 3 

TAKI (TGF-beta-activated kinase) 

transcription factor GIF (gamma inducible factor) 

Runxi! 

Transforming growth factor, beta receptor II 

Transforming growth factor, beta induced 

Transforming growth factor beta 1 induced transcript 4 

IL-10 RELATED 
Interleukin 10 receptor, beta 

suppressor of cytokine signalling-3 (SOCS-3) 

CC chemokine receptor-5 (CCR5) 

Chemokine (C-C) receptor 1 (CCRI) 



Table 6. Differential Gene Expression in CD4+ CD44-high Jak3-I- T cells. 

Global gene expression was compared between Jak3+/- and Jak3-1- CD4i CD44-high T 
cells by microarray. Experimentally adjusted Signals for each sample are shown as is an 
absolute Present (P) or Absent (A) call which was determined by analysis in MAS 4.0. The 
difference call (Diff Call) between samples are expressed as Increases (I) and Decreases (D) 
in gene expression and the level of change in gene expression indicated as fold change. 
These data values were determined by analysis in MAS 4.0, specific data mining was 
however first performed using Genespring clustering and pathway analyses. These results 
are representative of triplicate experiments performed. 



T cells, partly by preventing apoptosis, but also by inducing proliferation 201,202,205,208 

Interestingly, TGF-j3 secretion is not associated with either differentiated Thl or Th2 cells, 

but is a potent imrnunoregulatory cytokine that contributes to the function and generation of 

most regulatory T cell subsets ' 09 .  

Signaling events tightly control the differentiation, activation and function of most 

cell types including T cells by activating or repressing transcription factors. It was therefore 

of interest to determine changes in expression of transcriptional and translational regulators 

in CD4+ CD44-high Jak3-I- T cells since such factors can influence the functional activity of 

these cells. Microarray analysis comparing Jak3+/- CD4+ CD44-high T cells to Jak3-1- 

CD4+ CD44-high T cells revealed a decrease in gene expression of two transcription factors, 

LKLF (Lung Kriippel Like Factor) and SATBl (Special A-T rich Binding Protein-1) which 

have been previously shown to have important roles in T cell function (Table 5, 

Transcription and Translation and Supp.8). LKLF encodes a nuclear DNA-binding 

transcription factor of the Kriippel zinc finger family and is expressed in a range of tissues 

2'0. In T cells it is highly expressed in resting cells and quiescent memory cells, but the 

mRNA and protein are rapidly downregulated during T-cell activation and this is thought to 

be mediated by yc cytokines IL-2 and -7 2117212. LKLF-knockout mice die as embryos fiom 

defects in blood vessel walls, and have lung defects 213. However, RAG-2 blastocyst -LKLF- 



knockout embryonic stem cell chimeras yield mice with few CD4 or CD8 T cells in the 

periphery which are hyperactivated, suggesting that LKLF plays an essential role in 

maintaining T cells in a quiescent state 213. A decrease in expression of LKLF in CD44-high 

Jak3-I- CD4 T cells compared to CD44-high Jak3+/- T cells may be solely due to the 

inability of Jak3-I- T cells to receive yc signals. A deficiency in LKLF could result in the 

inability of Jak3-I- T cells to maintain a quiescent state accounting for the accumulation of 

CD44-high T cells and potentially leading to exhaustion or unresponsiveness. SATBl is a 

cell type specific nuclear protein that recruits chromatin-remodeling factors that regulate 

numerous genes during thymocyte differentiation and T cell activation 214. In different 

contexts, SATBl can function as a repressor of transcription or as an activator 215. 

Additionally, SATBl is induced upon T cell stimulation in peripheral T cells as an IL-2 

dependent immediate early gene product 216, and has been implicated in the modification of 

IL-2Ra, IL-7Ra, PD-1, c-myc and CD8 alpha gene loci in T cells 214,217 . Decreased 

expression of SATB 1 mRNA in CD4+ T cells may alter the expression of activation genes, 

such as c-myc and PD-1, and result in the inability of Jak3-I- to cells to proliferate and 

secrete IL-2. 

In summary of our initial gene expression profiling of Jak3+/- CD4+ CD44-high versus Jak3 

-1- CD4+ CD44-high T cells, we demonstrate that in Jak3-I- T cells there was an increase in 

inhibitory cell surface receptor gene expression (PD-1, LAG-3, TJ6) and a decrease in 

transcriptionltranslation factors known to have a positive role in T cell function (LKLF, 

SATBl). Surprisingly, even though Jak3-I- CD4+ T cells do not proliferate in vitro we did 



not detect any global down regulation of genes involved in basal cell cycle events and instead 

saw an up-regulation of many of these genes (Cyclin A1 ,B1 and Lamin B1) (Table 5, Cell 

Cycle). Consistent with our previous data that Jak3-1- CD4+ T cells produced transcripts for 

certain cytokines lS5, we detected the increased expression of the mRNAs encoding IFNy, IL- 

10, IL-1 ORa, Mip-lp, and TGF-P (Table 5 ,  Cytokine Signaling). In total, this data suggested 

that the Jak3-1- CD4+ T cells were not merely anergic but rather had differentiated into a 

subset of T cell that no longer produced IL-2. This hypothesis will be finther discussed and 

investigated in Chapter IV. 



Chapter IV. 

Results 

A) The role of the PD-1:PD-L1 co-inhibitory 

pathway and other B7:CD28 or TNFR superfamily 

molecules in the unresponsiveness of Jak3-/- CD4+ 

CD44-high T cells. 



Increased expression of PD-1 in Jak3 deficient T cells 

Of the cell surface receptors upregulated in Jak3-I- T cells, PD-I is the most well- 

characterized in terms of its expression and function. Additionally, the known negative 

regulatory effect of PD-1 :PD-L1 on T cells suggests the intriguing possibility that this 

pathway may contribute to the development of unresponsive T cells in Jak3-deficient mice. 

Therefore we focused on confirming the differential expression of PD-1 between Jak3+/- and 

Jak3-I- T cells and on examining the functional consequences of this altered expression. To 

confirm the increased expression of PD-1 in T cells deficient in Jak3 we first measured 

relative RNA levels in CD4+ CD44-high Jak3-I- T cells compared to CD4+ CD44-high 

Jak3+/- T cells by Real-time PCR. CD4+ T cells were enriched from either Jak3+/- or Jak3- 

1- spleens and then sorted to at least 95% purity for CD44-high expression. As shown in Fig. 

6A, PD-1 RNA expression was approximately 3 times more abundant in sorted Jak3-I- T 

cells than Jak3+/-. This increase in PD-1 RNA expression correlates with the difference seen 

by microarray (Table 5, Surface Markers). Next, to confirm that the increase in RNA 

expression in Jak3-1- T cells translates into increased surface protein, we measured the 

expression of PD-1 on CD4+ CD44-high Jak3-I- T cells compared to CD4+ CD44-high 

Jak3+/- T cells by flow cytometry. Total splenocytes were isolated from either Jak3+1- or 

Jak3-1- mice and stained for CD4, CD44, and PD-1. As shown in Fig. 6B, PD-1 is 

significantly up-regulated on the surface of Jak3-1- CD4+ CD44-high T cells, 60% compared 

to only 10% in Jak3+/- CD4+ CD44-high cells. The upregulation of PD-1 suggests that it is 



F i ~ u r e  6. PD-I expression in Jak3-1- mice 



Figure 6. Jak3-I- CD4+CD44-high peripheral T cells have increased levels PD-1 mRNA 
and protein. 

A) Purification of C D ~ '  CD44-high splenic T cells fiom either Jak3+/- or Jak3-1- mice was 
performed as described previously. Total RNA was isolated using either TRIzol or the 
Qiagen RNeasy kit according to the manufacturer's protocol. After DNase treatment, 1 pg of 
total RNA was reverse transcribed into cDNA using Superscript I1 and Random Hexarners 
according to the manufacturer's protocol. Real-time quantitative PCR amplification was 
performed on a Bio-Rad iCycler using SYBR Green PCR Core Reagents. To quantify the 
amount of cDNA for an individual transcript, SYBR Green fluorescence was measured at the 
end of each cycle for known concentrations of plasmid DNA and used to generate a standard 
curve. All samples and standards were run in triplicate for any given experiment and 
represented as mean relative unit (+I-SD). The value of PD-1 was normalized to p-actin by 
dividing the average copy number of the respective transcript by the average copy number of 
p-actin in the respective sample. The data was then represented graphically as relative units. 
Data is representative of two independent experiments performed. 

B) Total splenocytes were isolated as described previously from either Jak3+/- (top panel) or 
Jak3-I- (lower panel) and were stained with the indicated Abs in HBSS supplemented with 
3% FCS for 20 min on ice. Cells were then washed and analyzed on a BD Biosciences 
FACSCalibur. Data were analyzedusing CellQuest software. The Abs and flow cytometry 
reagents used were a-CD4-FITC, a-CD44-CyChrome,and a-PD-1-PE, a-armenian hamster 
IgG-PE. Cells are shown gated based on live FSC/SSC and CD4+ CD44-high staining. 
Percent positive cells are indicated in the histograms. Black filled= a -  Armenian hamster 
IgG isotype control, Gray line=a-PD-1. Data is representative of four independent 
experiments performed using 3 to four mice per genotype. 



unresponsive state of these cells. 

4 Increased expression of PD-LI in the periphery of Jak3 deficient mice 

Since the function of PD-1 as a negative regulator of T cells is dependent on ligand 

binding, we were interested in determining the expression levels of PD-1 ligands in Jak3-I- 

mice. Two ligands for PD-1 have been described, PD-L1 and PD-L2. To accomplish this, 

the levels of PD-Lland PD-L2 were compared on Jak3-I- and Jak3+/- splenocytes by flow 

cytometry analysis. Total splenocytes from either Jak3 +I- or Jak3-I- mice were stained with 

antibodies to CD4, and PD-L1 and PD-L2. The expression of PD-L2 was comparable 

between Jak3-I- and Jak3+/- splenocytes (Figure 7). However, as shown in Fig. 8A, the 

expression of PD-Ll is dramatically increased in the splenic microenvironment of Jak3- 

deficient mice. Strikingly, 85% of Jak3-I- splenocytes express PD-L1 compared to only 26% 

of the comparable subset of Jak3+/- splenocytes. This increase is specific to the T cell- 

negative compartment, as CD4+ T cells from Jak3+/- and Jak3-/- show comparable PD-L1 

expression (-15% of cells; Figure 8B). The increased expression of PD-L1 in the Jak3-1- 

spleen further suggested the potential that Jak3-I- T cells may be negatively-regulated by the 

PD- 1 -PD-L1 pathway. 

? 
I 

PD-Ll+ Jak3-/- splenocytes can inhibit wild type T cell function 



Fi~ure 7. PD-L2 expression on total splenocvtes from Jam+/- or Jam-I- mice 

Total Splenocytes 



1 Figure 7. PD-L2 is expressed comparably on splenocytes from Jak3i-I- or Jak3-I- mice. 
j Total splenocytes were isolated as described previously fiom either Jak3+/- (black shaded 
I histogram) or Jak3-1- (gray line) and were stained with the indicated Abs in HBSS 
1 supplemented with 3% FCS for 20 min on ice. Cells were then washed and analyzed on a BD 

i 
Biosciences FACSCalibur. Data were analyzed using CellQuest software. The Abs and flow 
cytometry reagents used were a-PD-L2-PE and a-rat IgG2a,h-PE (not shown). Cells are 
shown gated on live cells based on FSC/SSC. Percent positive cells are indicated in the 
histograms and are shown as percent positive Jak3+/- over percent positive Jak3-1- in each. 
Data is representative of two independent experiments performed. 



Figure 8. PD-Ll expression in Jak3-I- mice 
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Figure 8. Increased population of PD-L1+ cells in the periphery of Jak3-deficient mice 
can mediate inhibition of wild type cell proliferation. 

A) & B) Total splenocytes were isolated as described previously from either Jak3+/- (top 
panel) or Jak3-I- (lower panel) and were stained with the indicated Abs in HBSS 
supplemented with 3% FCS for 20 min on ice. Cells were then washed and analyzed on a BD 
Biosciences FACSCalibur. Data were analyzed using CellQuest software. The Abs and flow 
cytometry reagents used were a-CD4-FITC, a-PD-L1-PE and a-rat IgG2a,h-PE. Cells are 
shown gated on live cells based on FSCISSC. Percent positive cells are indicated in the 
histograms. Black filled= a-rat IgG2a,h isotype control, Gray line=a-PD-L1. 
C) Total Jak3-I- splenocytes were isolated and then depleted of CD4+ T cells. The resulting 
population of PD-L1+ Jak3-I- (85-90% PD-L1+) cells were mitomycin-C treated and 
cultured at a 1:l ratio with Jak3+/- CD4+ T cells for 36h on either 2.5 (gray bar), 5 
(hatched bar), or 10 (black bar) pg/ml a-CD3 antibody-coated plates at a total cell density 
of 5 x lo5. Jak3+/- CD4+ T cells or Jak3-/- CD4+ T cells alone, and Jak3+/- CD4+ T cells 
co-cultured with T cell depleted Jak3+/- splenocytes were treated similarly as controls. On 
day 3, cells were harvested and proliferation was determined by 3~-thymidine incorporation. 
The values are the mean counts per minute (+I- SD) of triplicate determinations. Results are 
representative of five experiments performed. Significance of these results was determined 
by student's t test to be for (Jak3 +I- & Jak3 +I-) at lOug p < 0.04, 5ug p < 0.03, 2ug p < 
0.03; and for (Jak3 +/- & Jak3 -I-) at lOug p < 0.003, 5ug p < 0.01,2ug p < 0.007. 



Since PD-L1 can mediate negative signals to T cells, we next determined whether the PD- 

L1+ Jak3-I- cells could mediate T cell inhibition. CD4+ T cells were depleted from Jak3-1- 

total splenocytes. The resulting population of PD-L1+ Jak3-I- (85-90%) cells were 

mitomycin-C treated and cultured at a 1: 1 ratio with Jak3+/- T cells for 36h in 96 well plates 

coated with 2.5, 5 ,  or 10 pglml a-CD3. Proliferation was measured by 3~ incorporation. As 

shown in Figure 8C, PD-L1+ Jak3-I- cells inhibit Jak3+/- T cell proliferation while Jak3+/- T 

cell depleted splenocytes have no effect. To specifically determine whether PD-L1 was 

mediating the inhibitory effect, the above experiments were repeated with the addition of 

blocking antibodies to either PD-L1 alone or in combination with blocking antibodies to PD- 

L2, a secondary ligand for PD-1. As shown in Fig. 9A, the addition of PD-L1 blocking 

antibodies to co-cultured cells greatly reduced the inhibitory effect of the PD-L1+ Jak3-1- 

cells on Jak3+/- T cells. Additionally, treating co-cultures with blocking antibodies to both 

PD-Ll and PD-L2, resulted in reduced inhibition but the reduction was not significantly 

different from treatment with a-PD-L1 alone. Finally, to address whether secreted factors 

might be contributing to the inhibitory effects of the PD-Lit-Jak3-I- cells, we performed co- 

culture experiments in transwell plates. As shown in Fig. 9B, the physical separation of PD- 

L1+ Jak3-I- cells from Jak3+/- T cells resulted in the inability of the PD-L1+ Jak3-I- cells to 

inhibit T cell proliferation. Importantly, these results suggest that the PD-Ll expressed on 

Jak3-1- splenocytes is functional and that the particular cell type expressing PD-L1 can 

interact with and mediate inhibition of T cells. 



Figure 9. Inhibition of WT CD4+ T cells is mediated bv PD-Ll 
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Figure 9. Inhibition of wild type CD4+ T cells by Jak3-1- PD-L1+ CD4-negative 
splenocytes is dependent on PD-L1 and cell-to-cell contact. 

A) Stimulation of CD4+ Jak3+/- T cells co-cultured at a 1:l ratio with CD4-PD-Ll+Jak3-I- 
cells was performed as described previously with 10pgIml plate-bound a-CD3 antibody in 
addition to the presence of blocking antibodies to PD-Ll alone or to PD-L1 plus PD-L2. The 
control groups shown are Jak3-t-I-CD4+ T cells alone (+I-), Jak3 +I- CD4+ T cells & Jak3+/- 
T cell depleted splenocytes (+I- &+I-), or Jak3 +I- CD4+ T cells & Jak3+/- T cell depleted 
splenocytes in addition to a blocking antibody against PD-L1 (+I- &+I- & a-PD-Ll). The 
experimental groups are Jak3 +I- CD4+ T cells & Jak3-I- T cell depleted splenocytes (+I- &- 
I-), or Jak3 +I- CD4+ T cells & Jak3+/- T cell depleted splenocytes in addition to blocking 
antibody against PD-L1 (+I- &-I- & a-PD-Ll) or PD-L1 and PD-L2 (+I- &-I- & a-PD-L1& 
a-PD-L2). On day 3, cells were harvested and proliferation was determined by 3~-thyrnidine 
incorporation. The values are the mean counts per minute (+I- SD) of triplicate 
determinations. Results are representative of five experiments performed. Significance of 
these results was determined by student's t test to be p <O.Olfor (+I- &-I- & a-PD-Ll), p 
<0.002 (+I- &+I- & a-PD-L1) and p < 0.03(+/- &-I- & a-PD-L1& a-PD-L2). 
B) 2.5 x lo5 Jak3+/- CD4+ T cells (+I-) were cultured in either standard 96 well plates (-) or 
transwell plates (+) coated with 10pgIml a-CD3 antibody. 2.5 x 10' T cell depleted 
splenocytes from either Jak3 +I- (+I-) or Jak3-I- (-I-) mice were co-cultured with the Jak+/- 
CD4+ T cells. On day 3, cells were harvested and proliferation was determined by 3 ~ -  

thymidine incorporation. The values are the mean counts per minute (+I- SD) of triplicate 
determinations. Results are representative of three experiments performed. Significance of 
these results was determined by student's t test to be p <0.05for (+I- &+I- transwell+), p 
<0.002 (+I- &-I- transwell+). 



Origin of PD-L1+ splenocytes in Jak3-de$cient mice 

Given the interesting finding that there is increased expression of PD-L1 on Jak3-1- 

CD4-negative splenocytes and that these cells can mediate inhibitory signals to wild type T 

cells, it was next of interest to us to address the nature of the cell type(s) expressing PD-Ll. 

While, Jak3-I- mice lack many of the cell subsets typically residing in the spleen such 

as B, NK, yF T, and CD8aa DC cells ( 153,154 and unpublished data M. Wallace) they display 

overt splenomegaly. Previous data fi-om our lab indicated that many of the cells 

accumulating in Jak3-I- spleens were lineages that appeared to be hematopoietic progenitors 

(unpublished data, M. Wallace). Interestingly, PD-L1 but not PD-L2 expression has been 

observed on subsets of thymocytes, bone marrow derived pre-B and myeloid cells, and, 

notably, a significant proportion of the most immature lineage-marker negative and c-Kit- 

positive bone marrow cells 34. This led us to investigate whether the PD-Ll+ Jak3-I- 

splenocytes were lineage negative progenitor-like cells. To this end, freshly isolated 

splenocytes from Jak3-I- mice were stained with FITC-conjugated monoclonal antibodies 

specific for lineage markers including Thy 1.2, B220, TER- 1 19, Gr- 1, Mac- 1, CD 19,and 

DX-5, APC-conjugated a-c-kit mAb, and biotinylated-a -PD-Ll rnAb, followed by PE- 

conjugated streptavidin. After the lineage (Lin) negative region was defined (representative 

plot shown in Figure IOA), the expression profile of c-kit and PD-L1 was determined. A 

significant portion (50%) of the Lin- PD-LI+ cells was in fact c-Kit+ (Figure 1OB). As 

shown in Figure 11A&B, c-Kit+ cells are generally present at a higher frequency in Jak3-I- 





Figure 10. A proportion of Jak3-I- PD-L1+ splenocytes are c-Kit+. 

A) & B) Freshly isolated splenocytes from Jak3-1- mice were stained with FITC-conjugated 
monoclonal antibodies specific for lineage markers including Thy 1.2, B220, TER- 1 19, Gr- 1, 
Mac-1, CD19,and DX-5 in addition to an MC-conjugated a-c-kit mAb (gray line) or 
isotype control (black shaded histogram), and biotinylated-a -PD-L1 mAb, followed by PE- 
conjugated streptavidin. After the lineage (Lin) negative region was confined (representative 
plot shown in A), cells were gated on PD-L1+ staining and the expression profile of c-kit is 
shown in B). Cells are shown gated on live cells based on FSCISSC. Percent positive cells 
are indicated in the histogram and are shown as percent positive isotype control over percent 
positive Jak3-I-. Data is representative of two independent experiments performed. 



splenocytes compared to Jak3+/-, particularly in the CD4-negative subsets (R6/R7 and 

R8R9). Surprisingly, we detect that a portion of Jak3-1- splenocytes were CD4 negative, 

TCRaP + and c-kit+ (30%; Figure 1 lB, R81R9) of which 60% also express PD-L1+ (Figure 

11C). Since in Jak3-I- mice the population of CD8+ peripheral T cells is absent (R9 gate 5 

1 % CD8+), these CD4 negative TCRaP+ cells are a rare subset of CD4lCD8-double 

negative, TCRaP + (DNTC), c-kit+,PD-L 1 + cells. 

While conventional splenic T cells are typically CD4+ or CD8+, unusual populations 

of DNTC have been described. DNTCs exist in wild type mice comprising -1% of the 

splenic population and in higher proportions at sites of extrathymic T cell development such 

as the liver and appendix 218. Additionally, DNTCs have been described in several mouse 

models. The most well characterized of these is the DNTCs that exist in abundance in the 

spleens of Ipr mice 219. Interestingly, in lpr mice and wild type mice, extrathymically derived 

DNTC have been shown to originate from c-Kit+ Lin- cells in the appendix and liver 220. 

Based on these reports, one hypothesis is that the unique splenic subset of PD-L1+ c-Kit+ 

DNTCs in Jak3-I- mice is extrathymically derived. Although, PD-Ll expression has, to our 

knowledge, not been associated with extrathymically derived T cells, PD-L1 expression has 

been shown on the most immature c-kit+ CD4lCD8-DN thymocyte population in wild type 

mice. It is unlikely that the DNTCs in Jak3-/- mice represent a population of thymic derived 

developing T cells since at this stage (DN, c-kit+) of thymocyte development TCRP gene 

rearrangement and expression has typically not occurred 221-223 



If": 



Figure 11. c-Kit+ cells are more abundant in Jak3-1- mice. 

Total splenocytes were isolated as described previously from either Jak3+/- or Jak3-/- and 
were stained with the indicated Abs in HBSS supplemented with 3% FCS for 20 min on ice. 
Cells were then washed and analyzed on a BD Biosciences FACSCalibur. Data were 
analyzed using CellQuest software. A) & B) The Abs and flow cytometry reagents used were 
a-CD4-FITC or a-CD8-FITC, a-TCRP-Cy, a-c-Kit -APC and a-PD-L1-PE. Cells are 
shown gated on live cells based on FSCISSC. And in B) are additionally gated on CD4- and 
TCRP- (left panel R6=Jak3+/-, R7=Jak3-I-) or CD4-t cells (right panel RlO=Jak3+/-, 
Rll=Jak3-I-). In (C)  Total splenocytes were depleted of CD4+ T cells by AutoMACS 
separation and the resulting population of cells stained with Abs to CD4, TCR-P, c-Kit and 
PD-Ll. Cells are shown gated on live, CD4-, c-Kit+. Data is representative of three 
independent experiments performed. 



Finally, an alternative hypothesis to the origin of Jak3-I- DNTCs is that they are 

mature peripheral intrathymically derived T cells that have down-regulated the co-receptor. 

In corroboration with this idea, our microarray data demonstrated, at least for Jak3-I-CD4+ T 

cells, a decrease in the transcript levels for the gene encoding SATB 1. SATB 1 is a known 

IL-2 immediate early gene product that mediates chromatin accessibility 214,216 and, further, 

has been specifically implicated in the control of CD8a re-expression after T cell activation 

induced co-receptor internalization 2143217. Thus, it is possible that PD-L1+ Jak3-I- DNTCs 

represent CD8+Jak3-1- T cells that have down-regulated the CD8 co-receptor and in the 

absence of Jak3 mediated IL-2 signals do not express SATB 1 and therefore re-expression of 

the CD8 receptor is impaired. In support of this hypothesis, some studies have noted that 

peripheral populations of DNTC may derive directly from CD8+ T cell precursors based 

primarily on the evidence that CD8 alpha gene demethylation could be detected in these cells 

224. The expression of c-Kit was not determined in these studies and it is unclear the 

mechanism by which a mature peripheral ap+ T cell would express c-Kit except possibly in 

the case of malignant tran~forrnation~~~. Based on this, the hypothesis that Jak3-I- DNTC are 

extrathyrnically derived is favored. 

Decreased expression of CTLA-4 and other co-stimulatory molecules on Jak3-/- CD4+ T 

cells 



I Our data thus far suggests the potential correlation between PD- 1 :PD-L1 upregulation 

i and the inability of Jak3-I- CD4+ T cells to proliferate and secrete IL-2. However, many 

I 
1 

proteins have either co-stimulatory and/or co-inhibitory effects which lead to the 
1 

modification of T cell receptor signals. For example, in addition to PD-1, CTLA-4 has 

j inhibitory effects on T cells and is considered essential in the attenuation of T cell responses 
i 

15,16 . Moreover, receptors outside of the B7:CD28 family have been shown to synergize 

I with and modify T cell receptor signals. The tumor necrosis family receptor (TNFR) 

superfamily molecules (OX40,4-lBB, CD27, and CD30) appear to have an important role in 

initiating and sustaining T cell responses distinct to that of CD28 (reviewed in 226"27). We 

focused our attention on OX40 and 4-1BB since their role in T cell function has been better 

characterized than other TNFR family members. For example, crosslinking either OX40 or 
t 

4-1BB in concert with the TCR, has been shown to augment the secretion of cytokines and 

the proliferation of CD4+ and CD8+ T cells. Engagement of these receptors is thought to 

provide late-acting signals that enhance survival and total effector cell numbers at the peak or 

expansion phase of both primary and secondary immune responses 228,229 

We next addressed whether there were any changes in expression of CTLA-4, 0x40, 

or 4-1BB on freshly isolated or in vitro stimulated CD4+ CD44-high T cells from either 

Jak3-I- or Jak3+/- mice. As shown in Figure 12A, a lower percent of Jak3-I- CD4+ T cell 

express CTLA-4 immediately ex vivo. At 20 hr after stimulation (Figure 12A), there is a 

slight increase in the population of Jak3-I- CD4+ T cells expressing CTLA-4 but the 

proportion of cells is still significantly reduced compared to that on stimulated Jak3+/- 



controls (17% vs. 46%). Similarly, the percent of OX40 and 4-1BB positive T cells are 

reduced in Jak3-I- samples at both 0 hr and 20 hr compared to Jak3+/- controls (Figure 12B), 

although this reduction is not to the degree seen for CTLA-4 at 20 hr after T cell stimulation. 

The decrease in CTLA-4 protein expression on the surface of Jak3-I- CD4+ T cells is 

consistent with a 6 fold reduction in CTLA-4 gene expression which we detected by 

microarray analysis (Supp. 4). Importantly, this suggests that the PD-1:PD-L1 pathway is a 

primary inhibitory cascade effecting the Jak3-I- CD4+ T cells. Moreover, a reduction in 

TNFRs could result in a decrease in important positive costimulatory signals in Jak3-I- CD4+ 

T. A reduction in TNFR signals might be particularly detrimental in Jak3-deficient mice 

since the more potent costimulation mediated by CD28lIL-2 will proceed, but possibly be 

less effective, in the absence of Jak3. Thus, secondary, and possibly redundant, positive 

costimulatory molecules like TNFRs would be more critical in influencing the fate of the T 

cell response. 

These data presented in this chapter suggest an imbalance between positive and 

negative costimulation which ultimately favors the inhibition of T cell responses in Jak3-l- 

CD4+ CD44-high T cells. 
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Figure 12. Reduced Expression of CTLA-4,4-lBB, and OX40 on Jak3-1- CD4+ CD44- 
high peripheral T cells. 

Purification of C D ~ '  CD44-high splenic T cells from either Jak3+/- or Jak3-I- mice was 
performed as described previously. Cells were pooled from eight to ten Jak3+/- or Jak3-1- 
mice. 5 x lo5 cells were stimulated with l0ygIml plate-bound a-CD3 for 24 hours in a 96 
well plate. Stimulated cells (24 hr) along with freshly isolated unstimulated controls (0 hr) 
were then stained with the indicated Abs in HBSS supplemented with 3% FCS for 20 min on 
ice. Cells were then washed and analyzed on a BD Biosciences FACSCalibur. Data were 
analyzed using CellQuest software. Abs used were biotinylated-a -CTLA4, 4-1BB or OX40 
mAb, followed by APC-conjugated streptavidin. Cells are shown gated on live cells based 
on FSCISSC and the percent positive cells are indicated in the upper right of each histogram. 
Data is representative of two independent experiments performed. 



Chapter IV. 

Results 

B) Jak3-I- CD4+ CD4Chigh T cells have 

characteristics of Trl regulatory T cells. 



Skewed cytokineprofile of in vitro stimulated Jak3 deficient T cells 

The microarray data on cytokine gene expression (Table 1) by freshly isolated Jak3-I- 

CD4+ T cells correlated well with our previous findings showing induction of IL-10, IFN- 

y and TGF-P mRNA in Jak3-I- T cells stimulated in vitro. Additionally, this general cytokine 

profile is consistent with that described for some regulatory CD4+ T cell subsets. To 

determine whether Jak3-I- T cells actually secrete increased levels of these cytokines, CD4+ 

CD44-high T cells were isolated from Jak3+/- or Jak3-I- mice and were stimulated in vitro 

for 18-22h with 1 Oug/ml a-CD3 antibody. Supernatants from stimulated cells were collected 

and assayed for IL-2, -4, -5, -10, IFN-)I, and TGF-P by ELISA. Figure 13 shows the results 

of two independent experiments indicating that Jak3-I- T cells indeed secrete significantly 

higher levels of IL-10, IFN-)I and TGF-P compared to Jak3+/- controls. Furthermore, these 

cells secrete no detectable IL-2, and reduced amounts of IL-5 and IL-4. These findings 

demonstrate that Jak3-/- CD4+ CD44-hi T cells are not conventional Thl or Th2 cells, but 

instead, secrete a panel of cytokines associated with a subset of regulatory CD4+ T cells. 

Jak3 deficient T cells can suppress the proliferation of wild type T cells 

As mentioned previously, imrnunomodulatory cytokines such as IL-10, IFN-)I, and 

TGF-P can promote immune suppression, and potentially play a role in the suppressive 

function of some subsets of regulatory T cells in vivo 81,84,209 . Additionally, PD- I expression 





Figure 13. Jak3 -1- CD4+CD44-high peripheral T cells secrete immunosuppressive 
cytokines. 

Purification of C D ~ '  CD44-high splenic T cells from either Jak3+/- or Jak3-1- mice was 
performed as described previously. 5 x 10' cells were stimulated with 10pgIml plate-bound 
a-CD3 for 18-22 hours in a 96 well plate. Cells were removed by centrifugation and the 
supernatant was serially diluted and assayed for the presence of IL-2, IFN-y IL-4 IL-5, IL- 
10, (OptEIATM, PharMingen) and TGF-P (Emax Immunoassay System, Promega), according 
to the manufacturer's protocol. The absorbance was read at 450 nm using an ELISA plate 
reader. The values are the mean pg/ml cytokine production of triplicate experiments 
performed. The results are shown for two independent experiments with five to six mice 
used per group for stimulated CD4+ T cells from either Jak3+/- (black bars) or Jak3-1- (gray 
bars). 



has been associated with both anergic and IL- 10 producing regulatory T cell subsets 89,187,230 

Therefore, we were interested in determining whether Jak3 -1- T cells could suppress the 

i proliferation of wild type CD4+ T cells. Total CD4+ T cells were isolated from either 

1 I Jak3+/- or Jak3-I- mice. 2.5 x lo5 Jak3+/- CD4+ T cells were cultured in 96 well plates 

coated with lOug/rnl a-CD3 antibody. At 24 or 48 hours of culture, 2.5 x lo5 mitomycin-c 

treated Jak3 +I- or 2.5 x lo5 Jak3-I- CD4+ T cells were added to the responder T cells. In 

addition, 5 x lo5 Jak3+/- or Jak3-I- CD4+ T cells were stimulated in isolation as controls. 

On day 3, cells were harvested and proliferation was determined by 3~-thymidine 

incorporation. When Jak3 -1- T cells were added to the control responder T cells at the 

initiation of the culture, or 24 hours later, there was no apparent effect on responder T cell 

proliferation (Figure 14 and data not shown). Interestingly, however, when Jak3-I- T cells 

were added on day 2 of culture, Jak3+/- T cell proliferation was inhibited by approximately 

50%. The fact that Jak3-I- T cells rapidly die following in vitro culture 231 may account for 

i the inability of these cells to inhibit when they are added early on in the stimulation period. 

Finally, to determine if the inhibitory function of Jak3-I- T cells is mediated by PD- 1 or IL- 

i' 10, we added blocking antibodies into the co-culture experiments. Blocking either PD-1 or 
i 

t 
IL- 10 with up to 5pgIml of antibody had only a minimal effect on the inhibition mediated by 

I Jak3-I- T cells (Figure 15). 



3H Thymidine incorporation (cpm) 



Figure 14. Jak3-deficient T cells can suppress the proliferation of wild type T cells. 

2.5 x 10' Jak3+/- CD4+ T cells were cultured in 96 well plates coated with IOpgiml a-CD3 
antibody. At 24 (day 1) or 48 (day 2) hours of culture, 2.5 x lo5 mitomycin-C treated Jak3 
+I- (light gray bar) or 2.5 x 10' Jak3-I- CD4+ T (hatched bar) cells were added to the 
responder T cells. In addition, 5 x lo5 Jak3+/- (dark gray bar) or Jak3-/- (white bar) CD4+ T 
cells were stimulated in isolation as controls. On day 3, cells were harvested and 
proliferation was determined by 3~-thymidine incorporation. The values are mean count per 
minute (+I- SD) of triplicate determinations. Data is representative of eight experiments 
performed. Significance of experiments was determined by student's t test to be p < 0.003 
2XJak3+/-; p < 0.00 1 2XJak3-I-; p< 0.02 (Jak3+/-) + (Jak3+/-) day 1; p< 0.009 (Jak3-I-) + 
(Jak3-I-) day 1; p< 0.01 (Jak3+/-) + (Jak3+/-) day 2; p< 0.009 (Jak3-/-) + (Jak3-I-) day 2;. 





Figure 15. Suppression of wild type CD4+ T cells by Jak3-1- CD4+ T cells is not 
reversed by blocking either PD-1 or IL-10. 

2.5 x lo5 Jak3+/- CD4+ T cells were cultured in 96 well plates coated with 10pgIml a-CD3 
antibody. After 48 hours of culture, 2.5 x lo5 mitomycin-C treated Jak3 +I- (light blue bar) 
or 2.5 x 105Jak3-I- CD4+ T (dark blue bar) cells were added to the responder T cells alone or 
in addition to 5pglml blocking antibodies to PD-1 or IL-10. In addition, 5 x lo5 Jak3+/- or 
Jak3-/- CD4+ T cells were stimulated in isolation as controls (not shown). On day 3, cells 
were harvested and proliferation was determined by '~ - th~midine  incorporation. The 
values are mean count per minute (+I- SD) of triplicate determinations. Data is 
representative of three experiments performed. p < 0.001 for no treatment group, p < 0.005 
for anti-PD-1 treatment group, p< 0.02 for anti-IL-10 treatment group. 



Chapter IV. 

Results 

C) The phenotypic defects in Jak3-1- CD4+ T cells 

are cell autonomous. 



JakZdeficient CD4+ thymocytes undergo homeostaticproliferation and acquire a 

"regulatory" T cell phenotype in Rag2-deficient hosts 

Since mice lacking Jak3 have pleiotropic defects resulting in numerous immune 

abnormalities, it is difficult to determine whether aberrations in T cell function are strictly T 

cell-intrinsic, or alternatively, is partially dependent on other aspects of the Jak3-I- 

environment. To examine this issue we began with Jak3-I- thymocytes, which are, by all 

criteria, developmentally normal '75y'85. Additionally, Jak3-I- thymocytes do not secrete IL- 

10 nor do they display increased expression of either PD-1 or PD-L2 (Figure 16 and 17), 

indicating that the hnctional defects observed in mature Jak3-I- T cells are acquired post 

emigration from the thymus. 

To address whether the immunosuppressive phenotype of Jak3-I- CD4+ T cells is T 

cell-intrinsic, CFSE labeled Jak3+/- or Jak3-1- thymocytes were adoptively transferred into 

Rag2-I- mice. Rag2-I- mice were chosen as recipients to mimic the lymphopenic 

environment normally encountered by Jak3-I- thymocytes as they enter the periphery. At 2, 

4,6, and 8 weeks post adoptive transfer, splenocytes were harvested from Rag2-I- mice that 

received Jak3+/- (Jak3+1- AT) or Jak3-I- (Jak3-I- AT) thymocytes. At all time points, loss of 

CFSE was assessed and absolute T cell numbers were calculated as an estimate of 

proliferation. Initially, CD4+ Jak3-I- thymocytes proliferated (representative CFSE shown in 

Figure 18) and accumulated (Figure 19) to a similar degree as Jak3+/- CD4+ T cells. 

However, by 6wks post adoptive transfer, there is a decline in Jak3-/-AT T cell numbers 





Figure 16. Jak3-/- thymocytes secrete wild type levels of IL-2 and IL-10 in response to 
stimulation. 

Total thymocytes were isolated from either JaW+/- or Jam-I- mice and stimulated in 96 well plates in the 
presence of lpglml PMA + 5nglml anti-CD3 for 36 hours. Cells were removed by centrifugation and the 
supernatant was serially diluted and assayed for the presence of IL-2 or 1L-10 according to the 
manufacturer's protocol. The absorbance was read at 450 nm using an ELISA plate reader. The results 
are shown for stimulated thymocytes from either JaW+/- (gray bars) or Jak3-I- (black bars). Data is 
representative of one experiment performed. The values graphed are the mean pglml cytokine 
production (+I- SD) of triplicate determinations. 



Counts- 



Figure 17. PD-1 and PD-L1 expression is unaltered on Jak3-1- thymocyte subsets. 

Total thyrnocytes were isolated from either Jak3+/- (purple shaded histograms) or Jak3-1- 
mice (green line) and stained with the indicated Abs in HBSS supplemented with 3% FCS for 
20 min on ice. Cells were then washed and analyzed on a BD Biosciences FACSCalibur. 
Data were analyzed using CellQuest software. Antibodies used were a-CD4-FITC, a-CD8- 
APC, a-PD- 1 -PE, biotinylated a-PD-L1 followed by Cy-conjugated streptavidin. Cells are 
shown gated on live cells based on FSCISSC. Percent positive cells are indicated in the 
histogram and are shown as percent positive Jak3+/- over percent positive Jak3-I-. Data is 
representative of three independent experiments performed. 



Figure 18. Jak3 -I- CD4+ T cells proliferate comparably to Jak3+1- CD4+ T cells in a 
Ivmpho~enic host based on loss of CFSE 
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Figure 18. Jak3-I- CD4+ thymocytes proliferate equally to Jak3+/- CD4+ thymocytes in 
a lymphopenic host based on loss of CFSE. 

Jak3+/- CD4 SP or Jak3-I- CD4 SP thyrnocytes were CFSE labeled and 1 x lo6 cells were 
adoptively transferred by intravenous injection into the tail vein of Rag2 deficient hosts. At 
various time points post adoptive transfer, 4 weeks is shown, proliferation was measured 
based on loss of CFSE. At 4 weeks, total splenocytes were isolated from Rag2 deficient 
hosts that received either Jak3+/- (left panel) or Jak3-1- (right panel) and stained with 
antibodies to CD4 in HBSS supplemented with 3% FCS for 20 min on ice. Cells were then 
washed and analyzed on a BD Biosciences FACSCalibur. Data were analyzed using 
CellQuest software. Cells are shown gated on live cells based on FSCISSC. Percent CFSE 
positive cells are indicated in the upper right. CFSE+I- gating was done using CFSE labeled 
in vitro stimulated cells. Data is representative of one experiment perfonned. 



Figure 19. Jam-I- CD4+ T cells initially accumulate comparably to 
Jam+/- CD4+ T cells based on absolute cell numbers 
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Figure 19. Jak3-deficient CD4+ thymocytes undergo homeostatic proliferation in Rag2- 
deficient hosts. 

Two, four, and 6 weeks following adoptive transfers, spleens from RAG2-I- recipients i.v. 
injected with either Jak3+/- (Jak3+/- AT, gray line) or Jak3-1- (Jak3-/- AT, black line) 
CD4+ SP thymocytes were harvested and analyzed. Total splenocytes were stained with 
antibodies to CD4. The absolute number of CD4+ T cells was obtained by calculating this 
number from the absolute number of total lymphocytes times the CD4% as determined by 
flow cytometry analysis. Data are means for four mice at each time point, and are 
representative of two independent experiments. 



(Figure 19). Interestingly, at 8 wks post adoptive transfer we begin to see a rise in Jak3-1- 

AT T cell numbers from the 6 wk drop, however this is based on a very small sample size 

and will have to be repeated. 

r We next determined the cytokine profile of either Jak3+/- AT or Jak3-I- AT CD4+ T 

I cells. At two, four, six and eight week time points, purified splenocytes from adoptive 

i transfer recipients were stimulated in vitro, and IL-2 and IL-10 production was determined 

f by ELISA andlor intracellular cytokine staining (Figure 20 and Figure 21). Surprisingly, 
i 

when CD4+ T cells were stimulated two weeks post adoptive transfer, comparable IL-2 

secretion was detected in both Jak3+/- AT and Jak3-I- AT T cells. As shown in Fig. 20, at 

the 2 week time point, in vitro stimulated Jak3-I- AT T cells secrete approximately 1100 

pgiml IL-2 which was strikingly similar to the IL-2 production detected in Jak3+/- AT T cells 

(950 pgiml). This amount of IL-2 production is in stark contrast to the undetectable levels of 

IL-2 production typically seen in non-transferred Jak3-I- CD4+ T cells isolated from mature 

Jak3 deficient mice and stimulated immediately ex vivo (Figure 13). After 4 and 6 weeks 

post adoptive transfer, IL-2 production in in vitro stimulated Jak3-I- AT T cells begins to 

decrease, falling to 400pgiml (Fig. 20). However, IL-2 secretion in stimulated Jak3+/- AT T 

cells is consistently maintained at approximately 1000pgiml over all time points tested. 

Interestingly, by 8 weeks, intracellular cytokine staining demonstrated that IL-2 production 

in Jak3-I- AT cells declined (0.4%) compared to 4 weeks (2.3%, data not shown) and is 

indistinguishable to that of non-transferred Jak3-I- in vitro stimulated T cells (0.5%) (Figure 

21). Jak3-I- AT cells also produce IL-10 in response to in vitro stimulation at all time 



Figure 20. Jak3-I- CD4+ T cells acquire immunosuppressive 
characteristics after expansion in Ras2 deficient hosts 

2wks 4wks Gwks 2wks 4wks Gwks 





Figure 20 and Figure. 21. Jak3-deficient CD4+ thymocytes acquire a "regulatory" T cell 
phenotype in Rag2-deficient hosts. 

Two, 4, and 6 weeks following adoptive transfers, spleens from RAG2-I- recipients i.v. 
injected with either Jak3+/- (Jak3+/- AT, gray bar) or Jak3-I- (Jak3-I- AT, black bar) CD4+ 
SP thymocytes were harvested. 5 x lo5 cells per well were stimulated with 10pglml plate- 
bound a-CD3 for 6-22 hours in a 96 well plate. The presence of IL-2 or IL-10 in each sample 
was measured by ELISA or Intracellular cytokine staining based on manufacturer's protocol. 
Data is representative of one experiment performed on 3 to 4 mice per group. ELISA results 
are represented as the mean of triplicate determinations (+I- SD). 



points tested (Fig. 20). Interestingly, in contrast to the negative trend seen for IL-2 

production, the levels of IL-10 production in Jak3-1- AT cells increase over time from 

100pgIml at two weeks post adoptive transfer to 600pglml by 6 weeks post adoptive transfer 

(Fig. 20). Additionally, by 8 weeks, ELISA results show that Jak3-1- AT CD4+ T cells 

secrete increased levels of IFN-y and TGF- P similar to that seen for CD4+ Jak3-1- T cells 

(data not shown). This clearly suggests that the propensity of Jak3-1- CD4+ T cells to 

produce immunosuppressive cytokines is T cell intrinsic. 

We then addressed whether changes in PD-1 or PD-L1 expression occurred in the 

adoptive transfer recipients. Jak3+/- AT or Jak3-1- AT cells were harvested at four and eight 

weeks and stained with antibodies to CD4 and either PD-1 or PD-L1. At four weeks post 

adoptive transfer, PD-1 expression is increased on Jak3+/- AT (40% positive) CD4+ T cells 

compared to non-transferred Jak3+/- CD4+ T cells (1 7% positive) (Figure 22, CD4+). Jak3- 

1- AT CD4+ T also express PD-1 (60% positive) at four weeks post transfer. At eight weeks, 

PD-1 expression declines on Jak3+/- AT CD4+ T cells, but remains at high levels on Jak3-1- 

AT CD4+ T cells (Fig. 22). Interestingly, at four weeks following adoptive transfer, PD-L1 

expression on the non-T cell compartment of both Jak3+/- AT and Jak3-1- AT (26% and 

28%) was similar to non transferred Jak3+/- (24%) (Figure 22, CD4-). However, by eight 

weeks, PD-L1 increased on both CD4-negative cells in both types of recipients, but was 

dramatically higher in the Jak3-/-AT recipients. These data suggest the interesting possibility 

that the Jak3-1- CD4+ T cells are inducing the expression of PD-L1 on other cell types, which 



Figure 22. PD-1 and PD-L1 expression is increased after proliferation 
in Rag2 deficient hosts 
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Figure 22. PD-1 and PD-L1 expression is altered on splenocytes in Rag2-deficient hosts. 

Four and 8 weeks following adoptive transfers, spleens from RAG2-/- recipients i.v. injected 
with CD4+ SP thyrnocytes fkom either Jak3+/- (middle and bottom panel, black shaded 
histogram) or Jak3-I- (middle and bottom panel, gray line) or non transferred control 
splenocytes from Jak3+/- (top panel, black shaded histogram) or Jak3-I- (top panel, gray 
line) were harvested and analyzed. Total splenocytes were stained with antibodies to CD4, 
PD-1, and PD-Ll. Cells are shown gated based on live FSCISSC and either CD4+ or CD4- 
surface staining. Percent positive cells are indicated in the histograms and are shown as 
percent positive Jak3+/- over percent positive Jak3-/- in each. Data represents two 
independent experiments performed at each time point. For each experiment, three to four 
mice were used per group. 



may in turn function to negatively regulate the T cells, thereby establishing a self- 

maintaining negative regulatory loop. 

In addition, these data indicate that the unresponsive and immunosuppressive 

characteristics of CD4+ Jak3-1- T cells are cell autonomous. Importantly, we observe that 

initially following adoptive transfer, CD4+ Jak3-I- T cells are capable of IL-2 production 

when activated, but that this capability is lost over time. One possibility is that only a subset 

of CD4+ Jak3-I- T cells is capable of IL-2 production, and that these cells fail to survive in 

the absence of Jak3. Alternatively, the continuous drive to proliferate due to lyrnphopenia, 

the negative signals arising from increased levels of PD-1PD-L1, and the lack of Jak3 

signaling, together might drive the naYve IL-2 producing CD4+ T cells to differentiate into an 

effector subset that acquires the immunosuppressive qualities we observe with adult Jak3-/- 

peripheral CD4+ T cells. 

In summary, the data presented in this chapter establish the following; First, PD-1 

and PD-L1 expression levels are increased in the Jak3-/- microenvironrnent. Interestingly, 

PD-1 upregulation is found on the CD4+ T cell compartment whereas PD-L1 is detected 

primarily on CD4-negative splenocytes. Moreover, PD-L1+ Jak3-1- splenocytes can 

diminish the proliferative capacity of wild type CD4+ T cells, suggesting that the cell type 

expressing PD-L1 can interact with and mediate negative signals to T cells. This suggests 

the intriguing possibility that PD-1:PD-L1 may play a role in the unresponsive (lack of 

proliferation and IL-2 production) phenotype of Jak3-/- CD4+ T cells. It is unlikely however 



that PD-1 :PD-L1 alone can account for the total atypical phenotype including IL-10 

production and T regulatory function. The primary evidence for this is that PD-1 is typically 

upregulated upon T cell receptor stimulation events that would lead to a productive immune 

response and generate IL-2 producing T cells with typical effector function. Consistent with 

this, our experiments in which CD4 SP thyrnocytes from Jak3+/- or Jak3-I- mice were 

transferred into RAG2-I- mice demonstrate that initially both Jak3+l- and Jak3-I- CD4+ T 

cells upregulate PD-1 and to a lesser degree PD-L1 is upregulated on CD4-negative 

splenocytes. Interestingly though, uniquely in RAG2-I- mice that received Jak3-I- CD4+ T 

cells, the upregulation of PD-1 is maintained and these CD4+ T cells ultimately take on an 

IL-10 producing T cell phenotype. In contrast, the PD-1 expression on transferred Jak3+/- T 

cells returns to levels typical of unmanipulated wild type CD4+ splenocytes and these cells 

maintain the ability to produce IL-2. This point suggests that it is not merely the 

upregulation of PD- 1 but prolonged and continuous signaling via PD- 1 that may lead to 

unresponsiveness. Further, this data suggests that signals through the yc may be important in 

the down regulation of the PD-1 receptor. However, as demonstrated, during this period of 

PD-1 expression the Jak3-I- CD4+ T cells additionally produce IL- 10. The effects of IL- 10 

as well as the IFN-y and TGF-P shown to be produced by CD4+ T cells from an unmodified 

Jak3-I- mouse on the differentiation of Jak3-I- CD4+ T cells into a T cell subset with 

regulatory characteristics cannot then be ruled out. One possibility is that all of these factors- 

- proliferation in the absence of all yc signals, increased/prolonged signaling via PD-1 :PD- 

L1, and potential gene modifications by IL- 10,IFN-y and TGF-P-synergistically lead to the 



atypical CD4+ T cell phenotype in Jak3-1- mice. The role of IL-10, IFN-y, and TGF-P and 

the effects of these cytokines on gene expression in Jak3-/- CD4+ T cells will be further 

I addressed in the Chapter V. 

1 



Chapter V. 

Results 

I 

I 
Comparison of Global Gene Expression Patterns in 

wild type, Jak3-I-, STATSab-I- and lymphopenia- 

1 induced homeostatically expanded CD4+ CD44-high 

T cells. 



Lepoulet ou l'oeuf --- (The chicken or the egg) 

The last chapter of this thesis will discuss data from gene array analyses which 

compared global gene expression amongst four populations of CD4+ CD44-high peripheral 

T cells isolated from wild type (Jak3+/- or STATSab+/-), Jak3-deficient, STATSab-deficient, 

or wild type CD4+ T cells that underwent lyrnphopenia induced homeostatic expansion. 

Because the impetus for these experiments and the data analyses are complicated, this 

chapter begins with slightly more detail regarding the rationale behind these experiments as 

well as some detail regarding analysis. Furthermore, while we had some specific objectives 

in mind when we began these experiments, and these will be highlighted below, the data will 

be presented and discussed more from the general view of T cell fitness with some regard to 

specifically addressing the mechanism(s) by which Jak3-I- CD4+ are unable to proliferate 

and secrete IL-2 in vitro. The term fitness is used broadly to include basal cellular functions 

such as cell cycle and apoptosis as well as pathways specifically important to T cell function 

such as cytokine activity and the mitogen activated protein kinase pathway. 

Rationale 

The underlying theme throughout this thesis work is that the interplay of many cell 

surface signaling molecules and signaling mediators, some of which are mediated by 

cytokine, together lead to T cell activation--- a tip in the balance of these signals will lead to 



alternative outcomes such as, deletion, unresponsiveness, andlor the development of T cells 

with regulatory or suppressive effector functions. 

Since T cell activation is an elaborate network of intricately balanced signals 

emanating fiom TCR, cytokine, and other co-stimulatory molecules, discriminating between 

important downstream mediators and cellular targets of the many positive acting or negative 

acting receptors present on a T cell is difficult. This is particularly true in the case of the T 

cell receptor and yc-dependent cytokine signaling, since T cell activation will actually induce 

yclIL-2 cytokine gene expression as well as other cytokines and their receptors. These 

cytokines then directly augment TCR signals and T cell activation. This fact makes the 

separation of TCR signals and yc-cytokine signals a challenge. 

Moreover, the stimulation of these various receptors expressed by T cells are known 

to result in the activation of many redundant signal transduction pathways, and in the 

activation of, some distinct, but also many redundant transcription factors. Accordingly, it 

can be assumed that triggering any of these receptors should result in the expression of some 

redundant cellular target genes. In fact, TCR and IL-2 receptors activate some shared 

signaling pathways, such as the Ras-Raf-MAP kinase and PI-3 kinase/Akt/p70 S6 hnase 

pathways 232. However, there are differences, such as the STAT pathway, which is uniquely 

regulated by cytokines 233. 

Many previous studies have shown the specific induction of at least a subset of genes 

in T cells directly by IL-2 such as those encoding the IL-2Ra-chain, cyclin D2, SOCS1, 

CIS1, Pim-1, c-myc Bcl-XL, BCL-2, c-fos, and c-jun 234-236 . Further studies corroborated 



this and in addition showed that yc-cytokines IL-2, IL-7, and IL-15 all induce very similar 

patterns of gene expression in T cells 237. Consistent with these data our original microarray 

analyses comparing Jak3+/- and Jak3-I- CD4+ T cells showed a decrease in transcripts 

encoding Cis1 , pim-1 ,and Bcl-2 (Table 5). 

While IL-21yc cytokines can induce these genes in T cells, most of these genes can be 

induced by multiple regulatory elements. For example, one of these genes, the IL-2Ra gene 

is regulated by at least five positive regulatory regions (PRRs) 238-242 . PRRI is a T cell 

receptor response element /NF-KB binding site that is required for IL-2Ra promoter activity 

in response to PHA or PMA, whereas PFUUII and PRRIV are both required for IL-2-induced 

IL-2Ra induction 238-242. A fifth element is a CD28 response element 242. Thus, in the IL- 

2Ra gene, different enhancer-like elements differentially respond to different stimuli. The 

coexistence of antigen and cytokine response elements in other genes as well might account 

for the highly overlapping gene expression profiles previously reported between yc- 

dependent cytokine signaling, PI-stimulation and lymphocyte receptor specific stimulation in 

B and T cells. In this regard, IL-15 and T cell receptor stimulation were recently shown to 

induce many of the same genes in CD8+ memory T cells "'. 

All of the aforementioned factors significantly complicate the interpretation of much 

of our microarray data generated by comparing CD4+CD44-high T cells from Jak3+/- mice 

to CD4+ CD44-high T cells from Jak3-I- mice. Changes in gene expression could be the 

direct result of Jak3 dependent dysregulated signaling, or rather, the result of indirect effects 

on the general robustness of T cell receptor signals at points of which these signaling 



1 pathways converge. Additionally, some genes known to be induced by yc cytokines might 

j not be down-regulated in Jak3-I- CD4+ T cells because they are compensated for by signals 

1 through the TCR alone or the IL-2 independent effects of CD28. For example, TCR driven 
1- 

homoeostatic expansion signals mediated to Jak3-1- CD4+ T cells resulting from the 

1 
I lymphopenia associated with the Jak3 deficiency could induce some similar sets of genes as 

1 yc signals. Since the major role of yc signals, like IL-2, in T cell activation is to augment 

survival and proliferation other signals that initiate cell cycle and survival in T cells will 

I potentially have cellular targets that overlap with cytokines, as has been shown to be the case 

i for T cell receptor signals. 

In the Jak3-deficient model, our data suggests that the issue of determining the 

Jak3Iyc dependent events important in T cell responsiveness becomes even more 

complicated. First, Jak3-I- deficient T cells secrete a number of immunosuppressive 

I cytokines (Fig. 13) which based on gene expression data act in an autocrine manner, directly 

inducing de novo gene expression in Jak3-I- CD4+ T cells (Table 6). Second, the 

upregulated expression and potential increase in interaction of PD-1 :PD-Ll in Jak3-I- mice 

(Fig.6 & Fig. 8), may play a role in the unresponsiveness of Jak3-I-CD4+ T cells and could 

I also lead to altered gene expression. Data regarding the precise downstream effector 

t molecules that facilitate PD-1 driven inhibition in T cells and the cellular targets of these 

molecules is lacking and the general effects of PD-1:PD-L1 signaling could have on gene 

induction or repression in Jak3-I- CD4+ T cells is unclear. 



Therefore, addressing the question of which Jak3 dependent gene targets are 

important in influencing T cell responsiveness andlor lead to the immunosuppressive 

phenotype in Jak3-I- CD4+ T cells is confounded by at least three potential factors: 

expansiodTCR signals that overlap with yc cytokine signals, signaling via PD-1 :PD-L1, and 

signals mediated by IL-10, TGF-P and IFN-y. Like all cells, the genetic profile of Jak3-I- T 

cells reflects the whole of its "experiences". Therefore, deciphering between cause or effect 

and thus "which came first" becomes a challenge. To begin to clear up these rather 

complicated possibilities, we decided to perform hrther microarray analyses, generating 

thousands of additional data points. The underlying goal was to eliminate some of the 

variables discussed above by essentially "normalizing" those variables using populations of 

CD4+ T cells that shared some of the "experiences" but lacked others. For example, 

comparing CD4+ Jak3-1- expression profiles to CD4+ T cells that also lacked yc signaling, 

underwent some homeostatic expansion, but did not induce immunosuppressive cytokines 

would provide us with more clear information on whch gene expression modifications were 

related more specifically to the yc signaling deficiency as opposed to the increased signaling 

via immunosuppressive cytokine-receptor pairs. 

To this end, we isolated highly purified (>95%)CD4+ CD44-high peripheral T cell 

populations from either STATSab-deficient mice as well as wild type CD4+ splenocytes that 

had acquired a memory-CD44-high phenotype as a result of lymphopenia induced 

homeostatic expansion after adoptive transfer in a Rag2-/- host. The wild type CD4+ T cells 

that expanded in a Rag2-I- host will here in be referred to as HPH (homeostatically 



proliferated CD44-high) CD4+ T cells. HPH cells were isolated at 3 weeks post adoptive 

transfer. At the 3 week time point, the majority of the CD4+ T cells were CD44-high (80%) 

and remained responsive to in vitvo stimulation based on proliferation and IL-2 production 

(data not shown). 

STAT5 T cells were chosen for several reasons. First, STAT5 it is directly activated 

by Jak3 and is essential in mediating the induction of yclIL-2 responsive genes in T cells. 

Activation of Jak3 will lead to the phosphorylation of specific residues in the cytoplasmic 

domains of the IL-2RP. These phosphotyrosine motifs serve as docking sites for the SH2 

domain in STAT5. Upon binding to the receptor complex, STAT5 will become 

phosphorylated, dimerize and translocate into the nucleus inducing the transcription of its 

target genes 244. STAT5 exists in two different forms, STAT5a and STATSb, encoded by 

separate genes. The two genes are highly homologous but differ in the C-terminus region 245. 

STAT5 is expressed in a variety of tissues and although its biological effects are still 

incompletely understood, it is known to be of crucial importance for IL-2 mediated T cell 

proliferation. The second reason for choosing STAT5ab-deficient mice was that the 

phenotype of the peripheral CD4+ T cell is remarkably similar to Jak3-I- CD4+ T cells. In 

both of these knock-out models, the peripheral CD4+ T cells are virtually all CD44-high, 

memory-like and do not proliferate in response to stimulation. It should be noted, with 

regards to both of these attributes, the phenotype is more drastic in Jak3-deficient T cells. In 

contrast to Jak3-/- T cells, STAT5ab-I- CD4+ splenocytes do secrete IL-2 in response to in 

vitro stimulation. Additionally, the STAT pathway is activated uniquely by cytokines 233. 



Based on this, comparing gene expression profiles of CD4+CD44-high T cells fi-om Jak3-I- 

versus STATSab-I- mice will address the dysregulated gene expression that is uniquely 

associated with the absence of JaklyclSTATS signaling in T cells (=similar changes in gene 

expression between Jak3-I- and STATSab-I- as compared to wild type), and differences in 

gene expression that might account for the inability of Jak3-I- CD4+ T cells to produce IL-2 

(=dissimilar changes in gene expression Jak3-I- vs. STATSab-I-). Importantly, to our 

knowledge STATSab-deficient T cells did not induce immunosuppressive cytokines and 

therefore the induction of gene expression by these cytokines would not further complicate 

these analyses. Unfortunately, this gene expression comparison may not necessarily exclude 

potential effects of homeostatic expansion since the STATSab deficiency is likely to also 

lead to at least partial lyrnphopenia, leading to the memory CD44+ phenotype in the 

STAT5ab-I- CD4+ T cells. However, there is some evidence to suggest that the "degree" of 

homeostatic expansion that occurs in CD4+ T cells from STAT5ab-I- is less than that of 

Jak3-I- mice. First, the thymus cellularity is much greater in STAT5ab-/- than Jak3-I- mice 

and therefore there are a higher number of thymic emigrants in STAT5ab-I- mice. Second, in 

the periphery of STATSab-I- mice there are a greater number of CD8+ T cells and more 

nayve CD4 and CD8 T cells 246-248. Together these points suggest that the periphery of 

STATSab-I- mice is more replete than that of Ja.3-I- mice resulting in less expansion of the 

CD4+ T cells. 

The comparison of gene expression patterns in Jak3-I-CD4+ CD44-high T cells to 

HPH CD4+ T cells will allow the potential effects of homeostatic driven proliferation on 



gene expression patterns (=similar changes between Jak3-1- vs. HPH) to be accounted for and 

separated from those effects related more specifically to the complete absence of yc signaling 

(=similar changes in Jak3 and STAT compared to HPH). 

Global Gene Array Analyses 

Global gene array analyses were performed using MAS 4.0 and Genespring 6.1 

software. Biological replicates were performed for all populations to account for random 

variability in gene expression and due to technical procedures. Therefore we were first 

interested in determining the similarity between our replicate samples for each CD4+CD44- 

high population and assessing the similarity between Jak3+/- and StatSab+/-. Similarity was 

measured using the Genespring Find Similar Sample feature which calculates the degree of 

similarity between the samples. For this comparison, all genes 12,422 (excluding Affyrnetrix 

controls) on the mU74Av.2 array were considered. The similarity measured used was 

Pearson correlation, and therefore a correlation coefficient of 1 indicates a perfect match, -1 

= opposite and 0 = no match. The results from this analysis indicated a high degree of 

correlation between all replicates within in each group with 0.100 to 0.050 (1 0-5%) variation 

in the calculated correlation coefficient, thus, there was at least 90-95% similarity amongst 

replicates (reflected in Fig. 23). In addition, by this measure Jak3 and StatSab heterozygous 

mice appear indistinguishable and for the purpose of these analyses are considered identical. 



Correlation coefficient 



Figure 23. Correlation between Jak3-I- CD4+ T cells and other CD4+ T cell 
populations based on global gene expression levels. 

A)The Genespring Find Similar Sample tool was used to determine the global similarity in 
gene expression levels between replicate samples performed within each population of CD4+ 
cells and between Jak3-I- CD4+ CD44-high T cells and wild type (WT), STATSab-I-, and 
HPH CD4+CD44-high population. For this comparison, all 12,422 (excluding Affymetrix 
controls) genes on the mU74Av.2 array were considered. Pearson correlation was used as 
the similarity measure, and therefore a correlation coefficient of 1 indicates a perfect match, - 
1 = opposite and 0 = no match. The data represents triplicate experiments performed as 
shown on the graph. 



Measuring global similarity between samples also provided a unique way to 

f determine the similarity in gene expression changes on a global level between wild type, 
\ 

i Jak3-I-, STAT5ab-I-, and HPH CD4+ T cells. Interestingly, when Jak3-I- CD4+CD44-high 

T cells are set as the target and all other samples (wild type, STAT5ab-I-, HPH) are ranked 

according to highest degree of similarity to the target (Jak3-I-), Jak3-I-CD4+ T cells are most 

similar based on global changes in gene expression patterns to HPH CD4+ T cells with a 

coefficient of 0.770 or 77% similarity. Strikingly, the Jak3-I- CD4+ T cells are least similar 

to STAT5ab-I- CD4+ T cells (0.541, Fig. 23). This pattern can be further appreciated by 

representing the global changes in gene expression as a heat map plot (Fig.24) where changes 

in gene expression are indicated by a change in color. 

1 For the generation of this heat map plot and all other comparison analyses presented 

, 

here, the level of gene expression detected in wild type CD4+ CD44-high T cells was set as 

baseline gene expression level (WT gene expression level intensity on a per gene basis =1) 

data was then log transformed. Therefore, changes in gene expression levels in the 

experimental samples (Jak3-I-, STATSab-I-, or HPH) is a ratio of experimental gene 

expression over baseline gene expression, or the equivalent of fold change. The normalized 

data was then filtered based on the following criteria: p-value 10.05, with a present or 

marginal detection flag in at least one of the 4 samples being compared. These criteria 

generated a gene list of approximately 3,500 genes. Gene groups and clustering 

classifications (i.e. cell cycle, MAPK, etc) are based on GO ontology groups or defined 



KEGG pathways. In some cases, the change in expression of specific genes was determined 

by searching the data with the Genespring Find Gene tool. 





Figure 24. Variations in Global Gene Expression patterns in Jak3-I-, STATSab-1- and HPH 
CD4+CD44-high T compared to wild type. 

A) A heat map plot of global gene expression patterns across CD4+ T cell populations was 
generated in GeneSpring. Each linehox represents one gene. Change in gene expression 
between CD4+ populations can be read by following the linehox across fiom left (WT) to 
right (Jak3-I-, STAT5-I-, HPH). Change in gene expression is represented as a shift in color 
from yellow. After data normalization wild type CD4+ CD44-high T cells were set as 
baseline gene expression level on a per gene basis. Expression level in the comparison 
population of CD4+ T cells from Jak3-I-, STAT5ab-I- or HPH is indicated as a change in 
color. 
B) For an increase in gene expression, the color will become "hotter" (orangelred). To 
represent a decrease in gene expression the color becomes "cold" (graylgreenhlue). Yellow 
reflects no change in gene expression. In general, gene expression will be described as 
marginally or significantly changed depending on the magnitude of color shift which is 
directly proportional to the magnitude of the change in expression level. The range in gene 
expression changes will change for each heat map plot and will be listed in the corresponding 
figure legend. All changes in gene expression were determined to be significantly significant 
by GeneSpring software based on Wilcoxon's Rank test or Standard Correlation (p<0.05) for 
triplicate experiments performed. 



Cell cycleLWegative Regulation of Cell cycle/Cell cycle arrest 

The interesting finding that Jak3-I- CD4+ CD44-high T cells had a global gene expression 

profile most similar to HPH CD4+ CD44-high T cells lead us to hypothesize that a great 

majority of this similarity might be due to more active proliferation i.e. homeostatic 

expansion occurring in Jak3-I- and HPH populations compared to either wild type or 

STAT5ab-I- CD4+CD44-high T cells. An increase in proliferation could be reflected by 

changes in gene expression of cell cycle related mRNAs. Consistent with this hypothesis, 

there is a vast degree of similarity in cell cycle gene expression in Jak3-I- and HPH CD4+ T 

cells (Fig. 25 A, and gene list Supp. 9). The general trend reflects an upregulation of many 

cell cycle genes in Jak3-I- (50%) and HPH (36%) and interestingly a down-regulation in 

STAT5ab-I- (65%, 25% upregulated). To be sure that the upregulation of cell cycle genes 

associated with Jak3 and HPH samples was not biased towards genes that would ultimately 

impair or arrest cell cycle events, we next looked at changes in gene expression amongst 

negative regulators of cell cycle and cell cycle arrest genes. As shown in (Fig. 25 B & C, and 

gene lists Supp. 10 & 1 I), negative cell cycle factors such as cyclin dependent kinase 

inhibitors p27 and p21 are not up-regulated in Jak3-I- or HPH. The up-regulation of cell 

cycle factors in Jak3-I- and HPH is specific to pro-mitotic genes such as lamin and cyclin 

family genes. The fact that Jak3-I- CD4+ T cells have a higher degree of cell cycle gene 

induction than STAT5ab-I- and the gene expression pattern is similar in HPH CD4+ T cells, 

adds merit to the notion that STAT5ab-I- are undergoing less homeostatic expansion. 



Figure 25. Increased expression of many cell cycle genes in Jak3-I- CD4+ CD44-hi T cells 
*Groups are based on GO biological Processes .............................. ........... - ...................................................................................................................... ........................................................................................................ ............................................................................................................................................................... 

Cell cycle Negative i of cell cycl Cell cycle arrest 



Figure 25. An increase in the expression of cell cycle genes in Jak3-1- CD4+ CD44-high 
T cells. 
Gene expression patterns of genes involved in A) Cell cycle B) Negative regulation of Cell 
Cycle or C) Cell cycle arrest were clustered based on similarity. Similarity was measured by 
standard correlation (p<0.05). Gene classifications are based on the Gene Ontology 
Consortium (GO) gene annotations. Information on the genes contained in each group can be 
found in Supplemental Data 9-1 1. Gene expression data for CD4+ CD44-high T cells is 
listed in the following order: WT, Jak3-I-, HPH, STATSab-I-. Heat map plot expression 
level ranges are for A) +I- 6; for B) +I- 4 and C) +I- 3. Data is representative of triplicate 
experiments performed. 



1- Cytokine 

Our second hypothesis leading into these experiments was that, neither STAT5ab-I- 

1 or HPH CD4+ T cells would have an immunosuppressive cytokine profile that we have 

1- 1 
described previously for Jak3-1- CD4+ T cells. To assess this, we looked at the changes in 

i 
I 

gene expression in Jak3, STAT, or HPH compared to wild type CD4+ T cells for IFN-y, 

I TGF-P and IL-10. As shown in figure 26 A, in contrast to the up-regulation of these 

I cytokines in Jak3-I- CD4+ T cells, STAT5ab-I- CD4+ show a decrease in transcripts that 

I encode these cytokines. Surprisingly, HPH CD4+ T cells share the upregulated pattern of 

I gene expression for IFN-y and TGF-P (Fig. 26 A). IL-10 is also upregulated but only 

mildly. Since we had previously shown that in Jak3-I- CD4+ T cells many IFN-y, TGF-P, 

l and IL- 10 related/inducible genes were also upregulated (Table 6), we next wanted to address 

whether we could detect any of these same gene inductions in either STAT5ab or HPH. The 

expression profile of these genes were compiled in Genespring using the Find Gene Tool and 

depicted as a heat map plot. Consistent with the changes in gene expression for cytokine 

1 specific genes in Jak3-/- CD4+ T cells, there is an upregulation of these cytokine inducible 

genes in HPH (50% compared to 80% in Jak3-I-). In contrast, there is a clear down- 

regulation of these genes in STAT5ab-/- (Fig. 26 B). 

Cytokin e Activity 





I 

Figure 26. Homeostatic Expansion of WT CD4+ T cells also results in the induction of 
IFN-y, TGF-P, IL-10 and related genes. 

A) Expression levels of transcripts encoding IFN-y, TGF-P, or IL-10 from either Jak3-I-, 
HPH, or STATSab-I- were plotted as a heat map in Genespring. 
B) IFN-y TGF-P IL-10 related gene classifications are based on signaling pathways 

1 
compiled by and based on Gene Ontology (GO) Consortium. Gene expression data for CD4+ 
CD44-high T cells is listed in the following order: WT, Jak3-I-, HPH, STATSab-I-. All heat 

j map plot Expression levels in A) and B) range from +10 to -1 0. Data is representative of 
triplicate experiments performed. 



IFN-y, TGF-P and IL-10 and the expression of cytokines in T cells could suggest a number of 

things about both T cell function and differentiation, we next wanted to address whether we 

could detect any other unusual pattern of cytokine gene activity. For this analysis we 

grouped the cytokine activity genes based on similarity in gene expression patterns amongst 

the four populations in CD4+ T cells using the k-means clustering tool in Genespring. k- 

means clustering divides genes into groups based on their expression patterns. Standard 

correlation was used to measure similarity in expression and the data was clustered into 5 

groups (around 5 centroids) after 100 iterations. The gene expression levels of all of the 

genes in one sample that are clustered together are averaged and therefore the trend in gene 

expression per cluster group is depicted as a single line on each graph (Figure 27, Supp.12- 

16). The striking general pattern that can be detected in this data is that in four (Groupl, 2, 3, 

4) out of the 5 groupings, the pattem of cytokine gene activity is most similar between Jak3- 

I- and HPH CD4+ T cells. This equates to 81% similarity between Jak3-I- and HPH cytokine 

activity gene expression. In every group (Fig. 27, group 1-5), the pattern of gene expression 

in STAT5ab-I- CD4+ T cells is the reciprocal of Jak3-I- CD4+ T cells. Some of the genes 

represented overlap with those previously noted, such as an increase in IL-10 (Group 2, Fig. 

27, Supp. 13) and IFN-y (Group 3 Fig. 27, Supp. 14) in Jak3-I- and HPH CD4+ CD44-high 

T cells. Additionally, this analysis reveals an upregulation of genes such as IL-12 alp, IL- 

11, IL-15, INF-a, and MIP-1 P in Jak3-I- and HPH (Group 2 & 3). And these are down- 

regulated in STAT5ab-I-. Interestingly, genes that are increased in STATSab-I- and HPH 
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Figure 27. Cytokine activity genes grouped by gene expression patterns. 

Cytokine Activity genes were based on GO gene annotations and classifications. Genes with 
similar patterns of gene expression were determined by k-means clustering around 5 
centroids after 100 iterations using standard correlation as the similarity measure ( ~ ~ 0 . 0 5 ) .  
The line on the graph represents the average pattern of gene expression within each group. 
The number of genes classified in each group is listed below the graphs. Information on the 
genes contained with in each group can be found in Supplemental Data 12-16. Data is 
representative of triplicate experiments performed. 



but decreased in Jak3-I- include those that encode yc cytokines IL-7 and IL-2 (Group 5, 

Supp. 16). 

Apoptosis Regulators 

Because of the importance of yc signaling in T cell survival and activation induced 

cell death and the known role for Jak31yclSTAT5 signals in the induction of anti-apoptotic 

factors Bcl-2 and Bcl-X1, we next looked at genes relating to the regulation of apoptosis. As 

shown in Fig. 28 A, there is a 70% similarity in gene expression changes between Jak3 and 

HPH CD4+ CD44-high T cells. STAT5 shares about 48% of these same changes. If we 

then sub-categorize the apoptosis regulators based on apoptosis inhibitory activity (Fig. 28 B) 

or apoptosis activator activity (Fig. 28 C), there is a distinct down regulation of apoptosis 

activators in STAT5ab-I- CD4+ T cells while genes such as PTEN and Bax are upregulated 

uniquely in Jak3-I- CD4+. In terms of apoptosis inhibitor activity, there is a high degree of 

similarity across all genes in all three samples including a down-regulation of Bcl-2 and Bcl- 

xl compared to the baseline, but also an upregulation of many Birc/survivin/IAP apoptosis 

inhibitor family members. Furthermore, by viewing the apoptosis related genes within the 

context of the apoptotic pathway (Figure 28 D), the changes in apoptosis gene expression 

between the CD4+ populations can be summarized. In general, there is an increase in pro- 

apoptotic genes (Bad, Bid) and a decrease in anti-apoptotic (Bcl-2, Bcl-xl) genes of the 

intrinsic pathway amongst all three CD4+ populations compared to wild type. Regarding the 

extrinsic apoptotic pathway, Jak3-I- CD4+ and HPH CD4+ T cells similarly upregulate both 



pro-apoptotic (Caspases) and anti-apoptotic (Birc/surviviniIAP) factors. STATSab-I- CD4+ 

T cells share the upregulation in many of the extrinsic apoptotic regulators. 
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Figure 28 9. ADOD~OS~S Inhibitors 









Figure 28. Gene expression patterns of genes involved in Apoptosis. 

A) Gene expression patterns of genes involved in Apoptosis Regulation B) Apoptosis 
Activation or C) Apoptosis Inhibition were clustered based on gene expression pattern 
similarity. Similarity was measured by standard correlation (p<0.05). Gene classifications 
are based on the Gene Ontology Consortium (GO) gene annotations. The Affymetrix 
identification number and gene name is listed to the right or below each gene. Data is 
representative of triplicate experiments performed. 
D) The legend for gene names and locations corresponding to the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) derived Apoptosis pathway. 
E) Gene expression data for CD4+ CD44-high T cells is listed in the following order: WT, 
Jak3-I-, HPH, STAT5ab-I-. Gene expression data corresponding to the CD4+ T cell 
populations is represented as a standard heat map plot and merged with the KEGG derived 
Apoptosis pathway. Data is representative of triplicate experiments performed. 



Specific mediators of T cell activation and IL-2 production: 

Protein tyrosine kinases, Protein kinase C, MAPK and NF- KB signaling family 

Due to the fact that Jak3-I- and STATSab-I- T cells do not proliferate and Jak3- 

deficient CD4+ T cells are additionally unable to secrete IL-2, we were next interested in 

investigating whether we could detect any differences in gene expression patterns in known 

mediators of T cell activation and IL-2 production. 

The sequence of events which ultimately lead to T-cell activation and IL-2 production 

involve a number of protein kinases which lead to the phosphorylation of a myriad of 

substrates. These proximal signaling pathways involve protein tyrosine kinases (PTKs) of 

the Src, Syk, and Tec families lo'. The src-family kinases p561ck (Lck) and p 5 9 M  (Fyn) are 

among the first signaling molecules to be activated downstream of the T cell receptor (TCR). 

This leads to the activation of Syk family members such as ZAP-70, and Syk substrates 

(Vavl , Vav3, SLP-76, LAT) ZAP-70-mediated LAT phosphorylation then leads to the 

recruitment and activation of Tec family kinases 249. Tec family kinases, Itk, Rlk and Tec are 

important for the full activation of phospholipase C-gamma1 (PLC-gammal) leading to the 

production of diacylglycerol (DAG) and activation of protein kinase C (PKC). The novel 

(PKC) isoform, PKC 0 is expressed in a relatively selective manner in T lymphocytes. PKC 

0 is essential for mature T cell activity. The requirement of PKC 0 for T cell activation, 

proliferation, and cytokine production reflects the essential role of this molecule in inducing 

signaling pathways, such as the MAP kinase and IKK pathways, leading to the activation of 



the transcription factors AP-1 and NF-KB in a T cell-specific manner 250. The transcription 

I factors AP-1 and NF-KB along with the nuclear factor and activator of transcription (NF-AT) 

1 directly promote the induction and synthesis of IL-2 25'. TO investigate whether we could 

detect any global genetic changes that might lead to the defects in Jak3-I- or STATSab-I- we 

i 
I looked at gene expression patterns amongst groups of PTKPKC signaling molecules, MAP 
I 
I Kinases, and NF-KB related genes. The data is presented in detail for genes within in each 

I 

1 group and then a summary of the data along with some discussion is included at the end of 

I 
I this chapter. 
I 

PTK &PKC 

There were a total of 21 8 genes contained within the PTWPKC ontological group 

which included the members of the Src, Syk, and Tec families and many of the signaling 

intermediaries discussed above as well as all of the PKC isoforms. Interestingly, 68% of the 

genes had similar expression patterns in CD4+ T cells from Jak3-/-, HPH, and STAT5ab-I-, 

25% of these genes were up-regulated and 43% downregulated (Fig. 29 A). Within these 

regions of similarity are upregulated genes encoding many factors important for T cell 

activation and IL-2 production including, itk, rlk, Ras, Rho, Zap-70, Vav, LAT, PI3K p85 

regulatory subunit and the PKC isoforms gamma and delta. PKC 8 however is slightly 

down-regulated and Grb2 significantly down-regulated uniquely in STAT5ab-I- CD4+ 

CD44-high T cells (Fig. 29 B). 



Figure 29. Gene Expression Pattern of PTWPKC. 



Figure 29. Gene Expression patterns of protein tyrosine kinases and protein kinase C 
isoforms involved in T cell activation and IL-2 production. 

Gene expression patterns of genes encoding PTKs and PKCs were clustered based on gene 
expression pattern similarity. Similarity was measured by standard correlation (p < 0.05). 
Gene classifications are based on the Gene Ontology Consortium (GO) gene annotations. 
A) Region of similarity between all four CD4+ populations contains many PTKs important 
in T cell activation (itk, rlk, Ras, Rho, Zap-70, Vav, LAT, PI3K p85) (p< 0.05). 
B) Region of genes decreased uniquely in STAT5ab-I- CD4+ T cells including PKC 0 and 
Grb2 (~K0.05). Data is representative of triplicate experiments performed. 



MAPK 

There are three major groups of MAP kinases (MAPK) in mammalian cells including 

the extracellular signal-regulated protein kinases (ERK), the p38 MAP kinases, and the c-Jun 

NH2-terminal kinases (JNK) (Fig. 30, adapted from 252). In general, the MAPKs are 

activated by MAPK kinases (MAPKK), which are in turn activated by several different 

MAPKK kinases (MAPKKK). Different upstream signals can lead to the activation of 

MAPKKK but small G proteins have a major role. For example, the Erk pathway can be 

activated by Ras via the Raf group of MAPKKK. However, the p38 and Jnk MAPK are 

activated by the Rho family GTPases such as Rac and Cdc42. MAPKs play important roles 

in many aspects of T lymphocyte biology including T cell development, activationII1-2 

production, and differentiatiodeffector functions (reviewed in 252) . 

To assess changes in gene expression patterns in either MAPKKKK (1 1 genes), 

MAPKKK (1 1 genes), MAPKWMAPKK (23 genes) or the transcription factors (21 genes) 

downstream of these signaling molecules we utilized the KEGG derived MAPK signaling 

pathway provided by Genespring (Figure. 3 1 & 32). 

Of the 1 1 MAPKKKK genes represented only 3 (27%; NFI, GLK, GCK) show 

down-regulation in Jak3-I- CD4+ T cells, and two of these are also decreased in HPH CD4+ 

T cells (NFI, GLK) (Fig. 32 A). STATSab-/- CD4+ T cells have decreased transcripts for 6 

of the 11 MAPKKKKs 4 of which are uniquely down-regulated, but only moderately (1-1.5 

fold; TAB2, PKC, PKA). 





Figure 30. Map kinase of the Erk, p38, and JNK Pathways (adapted from 246). 

There are three major groups of MAP kinases (MAPK) in mammalian cells including the 
extracellular signal-regulated protein kinases (ERK), the p38 MAP kinases, and the c-Jun 
NH2-terminal kinases (JNK). In general, the MAPKs are activated by MAPK kinases 
(MAPKK), which are in turn activated by several different MAPKK kinases (MAPKKK). 
Different upstream signals can lead to the activation of MAPKKK but small G proteins have 
a major role. For example, the Erk pathway can be activated by Ras via the Raf group of 
MAPKKK. However, the p38 and Jnk MAPK are activated by the Rho family GTPases such 
as Rac and Cdc42. MAPKs play important roles in many aspects of T lymphocyte biology 
including T cell development, activatiodIL-2 production, and differentiatiodeffector 
functions. 



MAPK SIGNALING PATHWAY 

ISO -, Proliferation, 
differentiation 

holiferation, 
differentiation, 
inflammation 

- - holiferatwn, * differentiation 

I I RAPKICKK RAPKKK RAPM l A P K  T a u a i m  
WOlObS3 2127104 frh 



Figure 31. KEGG derived MAPK Signaling Pathway. 

The legend of the gene names and locations in the MAPK signaling pathway. 





I Figure 32. MAPK Signaling Pathway. 

Gene expression data for CD4+ CD44-high T cells is listed in the following order: WT, 
Jak3-I-, HPH, STATSab-I-. Gene expression data corresponding to the CD4+ T cell 
populations is represented as a standard heat map plot and merged with the KEGG derived 

I 
A- MAPK pathway. Data is representative of triplicate experiments performed (p<0.05). 
7- 



Of the MAPKKKs depicted, 3 are similarly decreased in JAK3-I- and STAT5ab-I- 

CD4+ T cells (MEKK4,Cot, MOS) and 2 of these are also decreased in HPH CD4+ T cells 

(Cot, MOS; Fig. 32 B). Interestingly, one gene uniquely down-regulated in STAT5ab-I- 

CD4+ T cells but upregulated in Jak3-/- T cells, is a TGF-P inducible gene (TAU)  which 

plays a role in the activation of NF-KB. 

Of the 23 MAPKK and MAPKs shown, most have an upregulated pattern of gene 

expression and only the transcript encoding Evil is uniquely down-regulated in Jak3-I- CD4+ 

T cells. In the STAT5ab-deficient T cells there is a more decreased trend (-45%) in 

MAPKWMAPK gene expression but again many of these reflect only a moderate down 

regulation. Some genes uniquely down-regulated in STAT5ab-I- CD4+ T cells include NLK 

and NIK which lead to Wnt signaling and NF-KB activation respectively 253. 

The transcription factors down-stream of the MAP kinase family molecules will 

ultimately lead to proliferation and differentiation of cells by inducing specific target genes. 

While many of the MAP kinases were upregulated or uneffected in Jak3-/- CD4+ T cells, 

surprisingly, 50% of the MAP kinase related transcription factors are either mildly (c-myc, p- 

53, Max, Nur77,Elk-1 ) or significantly (c-fos, PRAK, MAPKAPK,Sapla, MEF-2C) down- 

regulated. Interestingly, some of these decreases in gene expression are shared with 

STAT5ab-I- T cells suggesting the possibility that the induction of these genes might be 

dependent on yc cytokine signaling (PRAK, MAPKAPK, Max, p53). c Jun  which is known 

to be an IL-2 responsive gene is down-regulated in Jak3-I-, STAT5ab-I- and HPH CD4+ T 

cells. 



i 
I NF-kB 

I NF-KB is important for the expression of a wide variety of genes that are involved in 
1 

the control of the immune response and in the regulation of cellular proliferation and 

I 
! 
i 

survival. NF-KB is downstream of the MAP kinase pathway, and along with the nuclear 

i factor and activator of transcription (NF-AT) and AP-1, directly promotes the induction and 

synthesis of IL-2 (reviewed in 251). One of the key steps in the activation of the NF-KB 

1 
I 

pathway is the stimulation of the inhibitor of KB kinases (I-KB), via the I-KB kinases KK.  

Therefore, we next looked at gene expression patterns in molecules important in the 

activation of the NF-KB. The 96 genes included in the NF-KB ontological group were 

clustered by k-means clustering as previously described. Of the 5 clusters, two of them 

(Group 1 and 4) contained genes that had a decreased pattern of gene expression in Jak3-1- 

and STATSab-1- CD4+ T cells compared to wild type and HPH (Figure. 33 and Supp. 17 & 

20). This suggests that a high proportion of the NF-KB related genes are down-regulated in 

Jak3 and STATSab-I- CD4+ T cells (46%). Most of these contained within Group 1 (Fig. 33, 

Supp. 17) are immunoglobulin genes and therefore would not effect the proliferation or 

activation status of the CD4+ T cells. The one interesting exception is a decrease in the gene 

encoding NF-ATcl which plays a role in IL-2 production. Of the 3 remaining clusters of 

genes, the gene expression pattern in Jak3-I- CD4+ T cells is comparable to wild type and/or 

I 
HPH CD4+ T cells. In contrast, two additional groups (Group2 and Group 5, Fig. 33, Supp. 

t 
18 & 21) both contain additional genes which are 

t 
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Figure 33. NF-KB signaling pathway genes grouped by expression pattern. 

NF-KB signaling related genes were based on GO gene annotations and classifications. 
Genes with similar patterns of gene expression were determined by k-means clustering 
around 5 centroids after 100 iterations using standard correlation (p < 0.05) as the similarity 
measure. The line on the graph represents the average pattern of gene expression within each 
group. The number of genes classified in each group is listed below the graphs. Information 
on the genes contained with in each group can be found in Supplemental Data 17-2 1. Data is 
representative of triplicate experiments performed. 



down-regulated in STAT5ab-I- CD4+ but not Jak3-/- CD4+ T cells. Some of these genes 

have an important role in NF-KB activation including IKKP, NF-KB 1 precursor (p 105), NF- 

KB2 precursor (p 100) and RelA. 

Summary of changes in gene expression among specz3c mediators of T cell activation and 

IL-2 production 

Our analysis of gene expression patterns amongst protein tyrosine kinases and PKC 

signaling molecules which included many of the important TCR proximal signal molecules 

suggests that in the absence of yc signaling the induction of these genes remains intact. 

Moreover, Jak3 deficient T cells do not show gross signs of down-regulation among the 

MAP kinase family of molecules (26%). Instead there is an upregulation in 62% of the genes 

(MAPKKKK (711 I), MAPKKK (711 l), MAPKKIMAPK (14123)). While, STAT5ab-l- 

CD4+ T cells show a much greater degree of down-regulation (48%, 26% were upregulated), 

the majority of these are of approximately 2 fold or less compared to wild type. Although 

many of these upstream signaling mediators do not appear decreased at the gene expression 

level in Jak3-I- CD4+ T cells, some of the transcription factors which they induce are down- 

regulated (50%). Of these, the down-regulation of c-myc, MEF-2C, Elk-1, c-fos, and c-jun 

in Jak3-I- CD4+ T cells could all have a negative impact on in T cell proliferation and IL-2 

production. For example, MEF-2C and Elk-1 have been shown to augment IL-2 production 

and c-foslc-jun make up the AP-1 complex which directly binds to and promotes 



transcription of the IL-2 gene 254,255 . Interestingly, we did not detect a down-regulation of 

NF-KB in Jak3-I- CD4+ T cells. It is unclear why the upstream MAPK related mediators 

appear in tact, but only a subset of the transcription factors downstream which promote IL-2 

production are affected in Jak3-1- CD4+ T cells. One intriguing possibility is that the 

additional cytokines produced by the Jak3-I- CD4+ T cells are influencing these pathways in 

various ways. In support of this idea, IL-10 signaling has been reported to block the Ras-Raf 

mediated MAPK pathway and potentially disrupts the induction and activation of MEF-2C 

and Elk-1 256. TGF-P on the other hand stimulates the MAPK pathway and NF-KB 

activation via TAKl (transforming growth factor beta activated kinase-1) ( 253,257,258 , SUPP. 

22) which was shown to be upregulated in Jak3-I- CD4+ T cells by microarray analysis (Fig. 

32 B). 

Interestingly, with the exception of c-jun and some components of the NF-KB 

pathway, the STAT5ab-I- CD4+ T cells whch produce IL-2 in vitvo, do not have decreases 

in genes encoding many of the transcription factors known to promote IL-2 gene activity. 

The fact that c-myc and c-fos are not down-regulated in STAT5ab-I- CD4+ T cells is 

surprising since both of these genes have been previously shown to be IL-2 responsive genes. 

This suggests that there is a compensatory mechanism for the induction of these genes or 

alternatively that signal events proximal to STAT5 in the Jak-STAT pathway suffice to 

induce the expression of these genes. Additionally, a newly generated STAT5ab-deficient 

mouse model has suggested the possibility that the STAT5ab-I- mice used in these 

experiments may only be a partial knock-out, or knock-down (personal communication, J. 



O'Shea). Despite this possibility, many of the genes known to be downstream of yc- 

cytokines such as pim-1, cis-1, LKLF, c-fos, Bcl-2, and SATBl were decreased similarly in 

Jak3-I- and STAT5ab-I- CD4+ T cells suggesting that in fact STAT5ab-I- T cells had 

sufficient impairments in Jak-STAT signaling and thus were an appropriate cell type to use 

for these experiments. 

In summary, this chapter highlights gene expression changes detected between wild 

type CD4+ CD44-high T cells, homeostatically expanded wild type CD4+ CD44-high T 

cells, and CD4+ CD44-high T cells isolated fiom Jak3-I-, and STATSab-deficient mice. 

These microamay analyses demonstrate several interesting points regarding Jak3-deficient T 

cells. First, genes known to be downstream of IL-10, IFN-y and TGF-P were upregulated in 

Jak3-I- T cells. The induction of genes by these cytokines suggests that these 

immunosuppressive cytokines may be directly influencing the fate of andlor shaping the 

regulatory-like qualities displayed by Jak3-I- T cells as described in Chapter 4. Consistent 

with the notion that these cytokines play a role in the regulatory qualities of Jak3-I- T cells, 

MEF-2C and ELK-1 were decreased in Jak3-I- T cells and IL-10 has been shown to block 

IL-2 production via disruption of MEF-2C and ELK-1 activity. A second interesting 

conclusion from these experiments was that wild type T cells undergoing homeostatic 

expansion in lymphopenic hosts show many common patterns of gene expression to fieshly- 

purified unrnanipulated Jak3-I- T cells. For instance, microarray analysis of gene expression 

in wild type CD4+ T cells after lymphopenia induced homeostatic expansion show a similar 

pattern of upregulation in surface markers (PD- 1 and LAG-3), and cytokine signaling 



molecules (IL-10 and IFN--y cytokine, receptors, and inducible gene targets) to that of Jak3- 

I- CD4+ T cells immediately ex vivo. In fact, using standard correlation as a similarity 

measure, there is a high correlation amongst global changes in gene expression between wild 

type homeostatically expanded CD4+ T cells and Jak3-I- CD4+ T cells with a positive 

correlation coefficient of 0.770 on a scale fiom zero to one. Despite, the number of 

similarities in gene expression between Jak3-I- and HPH CD4+ T cells, HPH T cells remain 

responsive in vivo where as Jak3-I- CD4+ T cells develop regulatory T cell characteristics . 

These data suggest that the process of homeostatic proliferation normally induces immune 

attenuation mechanism, but that full differentiation into a regulatory T cell phenotype is 

prevented by yc-dependent cytokine signals. 



Chapter VI. 

DISCUSSION 



In this study we demonstrate that Jak3-deficient T cells express high levels of PD-1, 

secrete a Trl -type cytokine profile following direct ex vivo activation, and suppress the 

proliferation of wild type T cells in vitro. These characteristics indicate that CD4+ Jak3-I- T 

cells share properties with regulatory T cell subsets that have an important role in peripheral 

tolerance and the prevention of autoimmunity 61,82. While the precise mechanism by which 

Jak3-deficient T cells acquire these characteristics is currently unclear, our data indicate that 

one important component is a T cell-intrinsic requirement for Jak3 signaling. When Jak3-1- 

naTve thymocytes were adoptively transferred into lymphopenic Rag2-I- mice, these cells 

proliferated and selectively acquired regulatory T cell characteristics in the absence of any 

additional activation signals. 

These findings indicate several interesting aspects of T cell biology. First, these 

adoptive transfer studies, in addition to the increase in cell cycle specific mRNAs detected by 

microarray analysis in freshly isolated Jak3-I- CD4+ CD44-high, demonstrate that 

homeostatic proliferation of CD4+ T cells is not dependent on signaling via yc-dependent 

cytokine receptors. In fact, over the first four weeks following adoptive transfer, the 

population of Jak3-1- T cells expanded comparably to that of wild type T cells. It was only at 

the later time points of six to eight weeks that Jak3-I- cell numbers began to decline in the 

adoptive transfer recipients, strongly suggesting a defect in survival, rather than proliferation. 

This latter notion is consistent with previous studies suggesting that yc-dependent cytokines 

184,259 such as IL-7 play a more critical role in naTve CD4+T cell survival than proliferation . 

Regarding survival of memory CD4+ T cells, our microarray analysis demonstrated a 70% 



similarity in expression patterns among apoptosis regulator genes in Jak3-I- and HPH CD4+ 

CD44-high T cells. Although there was an increase in pro-apoptotic genes (Bad, Bid) and a 

decrease in anti-apoptotic genes (Bcl-2, Bcl-xl), many survival factors of the 

Birc/survivin/IAP were upregulated in Jak3-I- CD4+ and some in STAT5ab-I-CD4+ T cells. 

This may indicate that the survivin family of anti-apoptotic molecules plays an important role 

in the survival of memory CD4+ T cells. The similar gene expression pattern detected in 

HPH CD4+ supports this notion. 

A second important conclusion from the adoptive transfer experiments is that the 

weak activation signals normally associated with homeostatic expansion are sufficient to 

drive Jak3-I- T cells into a non-conventional differentiation program. Previous data indicate 

that, for wild type T cells, signaling through both the TCR as well as yc-dependent cytokine 

receptors promote the homeostatic proliferation of T cells in lymphopenic hosts. Since Jak3- 

I- T cells are unable to receive these cytokine signals, their proliferation is likely to be wholly 

dependent on TCR signaling. As a consequence of this TCR signaling, Jak3-I- T cells 

proliferate, but in addition, are induced to upregulate PD-1 and to selectively activate the IL- 

10 locus while shutting off the production of IL-2. Since this fate does not occur for wild 

type T cells in a comparable environment, it is likely that the unique differentiation pathway 

taken by Jak3-I- T cells reflects the effects of TCR signaling in the absence of yc-dependent 

cytokine signaling. 

Interestingly, wild type T cells undergoing homeostatic expansion in lyrnphopenic 

hosts show many common patterns of gene expression to freshly-purified unrnanipulated 



Jak3-I- T cells. For instance, microarray analysis of gene expression in wild type CD4+ T 

cells after lymphopenia induced homeostatic expansion show a similar pattern of 

upregulation in surface markers (PD-1 and LAG-3), and cytokine signaling molecules (IL- 

10 and IFN-)I cytokine, receptors, and inducible gene targets) to that of Jak3-I- CD4+ T cells 

immediately ex vivo. In fact, using standard correlation as a similarity measure, there is a 

high correlation amongst global changes in gene expression between wild type 

homeostatically expanded CD4+ T cells and Jak3-I- CD4+ T cells with a positive correlation 

coefficient of 0.770 on a scale from zero to one. These data suggest that the process of 

homeostatic proliferation normally induces immune attenuation and peripheral tolerance 

mechanism, but that full differentiation into a regulatory T cell phenotype is prevented by yc- 

dependent cytokine signals. 

In addition to these T cell-intrinsic defects, defects in the Jak3-dependent functions of 

other hematopoietic compartments in Jak3-I- mice may contribute to the development of 

Jak3-I- T cells with regulatory characteristics. This is a particularly intriguing idea since 

antigen-presenting cells such as dendritic cells (DC) play a major role in T cell differentiation 

and tolerization. For example, specialized subsets of DC's are thought to control the 

generation of Thl and Th2 cells, termed DC1 and DC2 respectively 92y93260. Some studies 

have also suggested that a third dendntic cell subset (DCr) that secretes IL-10, rather than IL- 

12, directs naive T cells to a Trl subtype 81,85,98,261 

Our data demonstrate that non-T cell compartments present in Jak3-deficient mice are 

modified and may be mediating inhibitory effects on Jak3-I- T cells. Specifically, we find 



that PD-L1 is highly expressed on CD4-negative Jak3-I- splenocytes, and further, that these 

cells can inhibit proliferative responses of wild type T cells in in vitro co-culture assays. 

Interestingly, studies by others have shown that PD-L1 expressed on immature dendritic cells 

(iDC) as well as mature dendritic cells (rnDC) can mediate inhibitory signals to T cells, 

36,262 resulting in reduced IL-2 production and proliferation . In this system, T cell activation 

could be enhanced by the addition of PD-L1 blocking antibodies; interestingly this 

enhancement was most pronounced with weak APC, such as iDCs and IL-1 0-pretreated 

rnDCs, and less pronounced with strong APC such as mDCs. Finally, additional data 

demonstrate a central role for PD-L1 in the regulation of induction and progression of 

autoimmune diabetes in the NOD mouse 38. These findings are consistent with the 

hypothesis that PD-L1 expressed on DCs can reduce the stimulatory capacity of the DCs, and 

further suggest a role for the PD-1PD-L1 pathway in the regulation immune responses. 

Finally, based on these data, we envision the following model to account for the 

alternative T cell differentiation pathway taken by Jak3-1- CD4+ T cells (Figure 34). 

Following emigration from the thymus, naYve Jak3-I- CD4+ T cells are induced to undergo 

homeostatic proliferation, due to the lyrnphopenic environment associated with the Jak3 

deficiency. The drive to proliferate may also be further facilitated by the inability of Jak3-1- 





Figure 34. A Model of events leading to an alternative pathway of CD4+ T cell 
differentiation upon T cell activation in the absence of Jak3. 

Following emigration from the thymus, nayve Jak3-I- CD4+ T cells are induced to undergo 
homeostatic proliferation, due to the lymphopenic environment associated with the Jak3 
deficiency. These activation/proliferation signals, coupled with the complete absence of 
signaling through yc-dependent cytokine receptors, induces Jak3-I- T cells to upregulate PD- 
1 expression and IL-10 production and to lose the ability to produce IL-2. These PD-I+, IL- 
10-producting T cells then modify the APCs in their environment, promoting the up- 
regulation of PD-L1 and the expression of IL-10 by these cells, and thereby establishing a 
self-reinforcing feedback loop that perpetuates this immunosuppressive environment. 



CD4+ T cells to induce the expression of the transcription factor LKLF which is important in 

maintaining T cell quiescence 2'3. LKLF has been previously reported to be regulated by yc- 

dependent cytokines and in support of this we also found LKLF gene expression to be 

decreased in STAT5ab-1- CD4+ T cells. 

These activatiodproliferation signals, coupled with the complete absence of signaling 

through yc-dependent cytokine receptors, induce Jak3-1- T cells to upregulate PD-1 

expression and IL-10 production and to lose the ability to produce IL-2. These PD-1+, IL- 

10-producting T cells then modify the APCs in their environment, promoting the up- 

regulation of PD-L1 and the expression of IL-10 by these cells, and thereby establishing a 

self-reinforcing feedback loop that perpetuates this immunosuppressive environment. 

Several lines of evidence support this model. First, the loss of Jak3 and STAT5 

phosphorylation has been implicated in models of tumor-induced immunosuppression. In 

this system, ovarian carcinoma cells were shown to suppress CD8+ T cell proliferation, and 

to induce these T cells to express IL-10; furthermore, these effects were dependent on the 

disruption of Jak3 signaling 263. Second, in vitro studies have demonstrated that stimulation 

of T cells with high-affinity peptide ligands favors their differentiation into T-helper or Tr-n 

lineages, while, stimulation with lower affinity altered peptide ligands favors the 

development of Trl or Tr2 cells 90110'. This latter situation may be comparable to the 

activation signals received during homeostatic expansion, or may result from reduced TCR 

signaling due to PD-1 -mediated inhibition and/or the absence of yc-mediated signals. 



An alternative explanation for the initial activation signals that drive the expansion of 

Jak3-I- T cells is that, in addition to a lyrnphopenic environment, there is a lack of Tr-n 

regulatory T cells. Several reports demonstrate that IL-2R signals are critical for Tr-n 

maturation 176,264 , and as a consequence, Jak3-I- mice lack the subset of CD4+CD25+ T cells 

base on expression of both CD25 and FOXP3 (IT7 and Fig. 35 & 36). The absence of these 

regulatory T cells may result in a lyrnphoproliferative syndrome, similar to that described for 

IL-2RP-deficient mice 79,176>265. However, since Jak3-I- T cells acquire immunosuppressive 

traits subsequent to this lymphoproliferation, no lethal autoimmunity results, as it does for 

mice lacking IL-2R signaling. 

While several possibilities may exist regarding the stimuli that initiate the in vivo 

differentiation process of Jak3-I- T cells, in the long-term, the outcome is identical. Jak3-I- T 

cells differentiate down an alternative pathway leading to the establishment of an 

immunosuppressive population of T cells and APCs in Jak3-I- mice. 

These data highlight many potential factors leading to alternative CD4+ T cell 

differentiation in Jak3-I- CD4+ T cells including proliferation/expansion signals, PD-1 :PD- 

L1 interactions, and the autocrine and paracrine effects of IL-10, TGF-P, and IFN-y. Many 

of these same phenotype changes occur in wild type T cells undergoing homeostatic 

expansion and therefore alternate T cell differentiation is uniquely dependent on the absence 

of Jak3. In accord with this, one would expect to find a difference in yc responsive genes 

that could account for the fact that the Jak3-I- CD4+ T cells take on these unique 

characteristics but HPH CD4+ cells do not. Counter to this, our microarray data 





Figure 35. Jak3-1- mice lack CD4+ CD25+ splenocytes. 

Splenic T cells from either Jak3+/- (top) or Jak3-1- (bottom) were isolated as described 
previously. Total splenocytes were stained with the indicated a-CD4-FITC and a-CD25-PE 
in HBSS supplemented with 3% FCS for 20 min on ice. Cells were then washed and analyzed 
on a BD Biosciences FACSCalibur. Data were analyzedusing CellQuest software. Cells are 
shown gated on live cells based on FSCISSC and the percent positive cells are indicated in 
the upper right of each histogram. Data is representative of one experiment performed on 
three to five mice per genotype. 



Figure 36. Jak3-I- splenocytes do not express Foxp3 
...................................................................................................................................................................................................................................... .......................................................................................................................................................................................................................... 



Figure 36. Jak3-1- splenocytes do not express Foxp3. 

Total splenocytes from either Jak3+/- or Jak3-1- were isolated and CD4+ T cell populations 
were enriched by auto-MACS separation. Proteins from the enriched CD4+ T cells (lane 3 
or 5) and the negative auto-MACS fraction containing CD4-negative splenocyte populations 
(lane 4 and 6) were separated by SDS-PAGE and blotted with an antibody specific for Foxp3 
along with an a-Erk loading control. Protein lysates from COS cells transfected with 
retroviral vector expressing Foxp3 (lane 1) or empty vector (lane 2) are shown as positive 
and negative control, respectively. The experiment was performed one time with three to 
four mice used per group. 



demonstrated a high degree of similarity in global gene expression patterns between HPH 

and Jak3-I- CD4+ T cells including the down-regulation of many yc-responsive genes (Bcl-2, 

Bcl-XL, c-fos, c-jun). The exception was among some transcription factors, two yc 

responsive cytokines, LKLF and SATBl, as well as the transcription factors Grail and 

Tbr2lEomesodermin. 

SATB 1 is a particularly attractive target responsible for the acquisition of these 

alternative traits in Jak3-I- T cells since it is a T cell specific matrix attachment region- 

chromatin remodeling factor that can orchestrate both repression and activation of a number 

of genes simultaneously 215. SATBl is also down-regulated in STAT5ab-I- CD4+ T cells. 

Since STATSab-I- T cells do not have an immunosuppressive cytokine profile or do they 

display appreciable T cell regulatory function when co-cultured with wild type CD4+ T cells 

(Figure 37), SATBl cannot fully account for the unique features of Jak3-I- CD4+ T cells. 

The two transcription factors we found to be uniquely upregulated in Jak3-I- CD4+ T 

cells and not in HPH or STAT5ab-1- CD4+ T cells may provide some interesting additional 

insight. Both the T-box transcription factor Tbr-2leomesodermin and the anergy related 

transcription factor GRAIL (Supp. 5 and preliminary RT-PCR data A. Prince) are increased 

specifically in Jak3-I- CD4+ T cells. 

GRAIL was recently shown to be induced specifically upon T cell anergy 266. 

Interestingly, GRAIL is an E3 ubiquitin ligase proposed to hnction in anergy by degrading 

proteins important in T cell function. That GRAIL functions at the protein modification level 
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Figure 37. STATSab-1- CD4+ T cells have negligible suppressive effects on the 
proliferation of wild type CD4+ T cells. 

2.5 x lo5 STATSab+/- CD4+ T cells were cultured in 96 well plates coated with 1OpgIml a- 
CD3 antibody. At 24 (day 1) or 48 (day 2) hours of culture, 2.5 x 10' mitomycin-C treated 
STATSab+/- (gray bar) or 2.5 x lo5 STAT5ab-I- CD4+ T (light gray bar) cells were added to 
the responder T cells. In addition, 5 x lo5 STATSab+/- or STAT5ab-I- CD4+ T cells were 
stimulated in isolation as controls (data not shown). Cells were harvested after 48 hours of 
co-culture and proliferation was determined by 'H-thymidine incorporation. Data is 
represented as the average total counts per minute (+I-SD) of triplicate determinations for 
one experiment performed. 



would M h e r  explain our inability to detect many gene expression changes unique to Jak3-1- 

CD4+ T cells. 

Eomesodermin (Eomes) has recently been implicated as important in effector 

functions of CD8+ T cells 267. Specifically, by using dominant negative constructs, it was 

demonstrated that Eomes is important in the induction of IFN-y and granzyme B and thus 

necessary for CD8+ cytolytic killing. Interestingly, not only do the Jak3-I- CD4+ T cells 

produce EN-y at the RNA and protein level but we have also detected a dramatic increase in 

transcripts encoding Granzyrnes B and K (Supp. 1) and an increase in and FasL (Supp. 2). 

This suggests the intriguing possibility that Jak3-I- CD4+ T cells mediate suppression of wild 

type CD4+ T cells not solely by the upregulation of immunosuppressive cytokines and/or 

PD-1 but also via a mechanism of T cell fratricide. 

In addition to the cellular and functional changes in Jak3-I- CD4+ T cells described in 

Chapter Four including increased PD-1 :PD-L1 expression and the production of IL- 10, IFN- 

y, and TGF-P, the microarray data presented in Chapter Five begins to highlight potential 

genetic and molecular modifications that in parallel with the increase in PD-1:PD-L1 and 

immunosuppressive cytokine activity may account for the alternative T cell differentiation 

pathway taken by Jak3-I- CD4+ T (Figure 38). 

In summary of these data we envision the following possible model of molecular 

events that collaboratively lead to alternative T cell differentiation in Jak3-I- CD4+ T cells. 

First, as nayve Jak3-I- CD4+ T cells are induced to undergo homeostatic proliferation they are 

unable to receive signals through IL-21yc cytokines in the absence of Jak3. The absence of yc 



signals directly results in the inability of Jak3-I- CD4+ T cells to induce genes typically 

important for survival, proliferation and IL-2 production (SATB 1 -,c-myc-,Bcl-2-, Pim-1-,c- 

fos-,c-jun-). Despite this, these cells can initially secrete IL-2 and are still able to undergo 

proliferation in vivo. The ability to proliferate with only incomplete signals may in part be 

due to the absence of CD25+Tr-n regulatory T cells, the inability to maintain quiescence in 

the absence of LKLF, andfor an abundance of TCR and other growth signals that in the 

lymphopenic environment are sufficient to induce proliferation. Even though these factors 

may lead to the induction of cell cycle events, they do not provide the Jak3-/- T cells with 

"complete" activation signals and an anergic/unresponsive genetic program ensues resulting 

in the induction of genes such as GRAIL+. In addition, these proliferation signals, coupled 

with the complete absence of signaling through yc-dependent cytokine receptors, induce 

Jak3-I- T cells to induce 1L- 10 cytokine production. IL- 10 signals block the RAS-RAF arm 

of the MAPK pathway leading to the complete inhibition of IL-2 production via reduced 

levels of the transcription factors MEF-2C and ELK-1. TGF-P is induced in Jak3-I- T cells 

by a mechanism that is unclear. TGF-P may in part contribute to the survival and 

proliferation of Jak3-I- CD4+ T cells by activating NF-KB pathway via TAKl induction 

(TGF-P activated kinase 1). Finally, eomesodermin may play a role in the induction and/or 

production of IFN-y as well as Granzyme B which may contribute to the suppressive 

qualities of Jak3-I-CD4+ T cells. The mechanism by which Eomes is induced in Jak3-1- 

CD4+ T cells i s  unclear. One possibility is that SATB 1, which can act as either a 

transcriptional activator or repressor, typically represses the eomesodermin gene locus. 



Since SATBl gene expression is decreased in Jak3-1- CD4+ T cells, this may facilitate 

accessibility of the Eomes gene locus. In accord with this idea, SATB1 has been shown to 

repress the transcriptional activity of a number of brain specific transcripts with 40-60% 

homology to Eomesodermin based on BLAST results. 

The findings presented in this thesis in total indicate several interesting aspects of T 

cell biology. First, the proliferation and accumulation of Jak3-I- CD4+ T cells after adoptive 

transfer into a lyrnphopenic host, in addition to the increase in cell cycle specific mRNAs 

detected by microarray analysis in freshly isolated Jak3-I- CD4+ CD44-high, demonstrate 

that homeostatic proliferation of CD4+ T cells is not dependent on signaling via yc- 

dependent cytokine receptors. A second important conclusion from the adoptive transfer 

experiments is that the weak activation signals normally associated with homeostatic 

expansion are sufficient to drive Jak3-I- T cells into a non-conventional differentiation 

program. Finally, the alternative differentiation program in Jak3-I- CD4+ T cells correlates 

with PD-1 expression and IL- 10 production and differentiation may be further influenced by 

changes in gene expression as a result of PD-1:PD-L1 and immunosuppressive cytokine 

signals. In addition to these gene modifications, the changes in gene expression detected by 

microarray and RT-PCR analyses in transcription factors such as SATB 1, Eomes, and 

GRAIL may play additional roles in the alternative T cell phenotype of Jak3-I- CD4+ T cells 

although further investigation is required. Additionally, this data suggests the intriguing 

possibility these factors also play a role in the maintenance andor induction of wild type 

regulatory T cell subsets. 





Figure 38. Events and molecular mechanisms that in parallel account for alternative T 
cell differentiation in Jak3-1- CD4+ T cells. 
1) As naYve Jak3-1- CD4+ T cells are induced to undergo homeostatic proliferation they are 
unable to receive signals through IL-21yc cytokines. The absence of yc signals directly 
results in the inability of Jak3-I- CD4+ T cells to induce genes typically important for 
survival, proliferation and IL-2 production (SATB 1 -,c-myc-,Bcl-2-,Bcl-XL-,Pim- 1 -,c-fos-,c- 
jun-). Despite this, these cells can initially secrete IL-2 and are still able to undergo 
proliferation in vivo. The ability to proliferate with only incomplete signals may in part be 
due to the absence of CD25+Tr-n regulatory T cells, the inability to maintain quiescence 
(LKLF-), and/or an abundance of TCR and other growth signals that in the lymphopenic 
environment are sufficient to induce proliferation. Even though these factors may lead to the 
induction of cell cycle events, they do not provide the Jak3-I- T cells with "complete" 
activation signals and an anergic/unresponsive genetic program ensues (GRAIL+). 2) In 
addition, these proliferation signals, coupled with the complete absence of signaling through 
yc-dependent cytokine receptors, induce Jak3-I- T cells to induce IL-10 cytokine production. 
IL-10 signals will block the RAS-RAF arm of the MAPK pathway leading to the complete 
inhibition of IL-2 production (MEF-2C-, ELK-1- ). 3) TGF-P and Eomesodermin are 
induced by mechanisms that are unclear. TGF-P may in part be contributing to the survival 
and proliferation of Jak3-I- CD4+ T cells by activating MAPK and NF-KB pathway via 
TAK1 (TGF-P activated kinase 1). Eomesodermin may play a role in the induction and/or 
production of FN-y as well as Granzyme B which may contribute to the suppressive 
qualities of Jak3-I-CD4+ T cells. * Indicates a gene that has been demonstrated to be IL-21yc responsive 
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Su~vlemental Data 9.--- Cell Cvcle 

Gene Name 
100062-at 
100128-at 
100149-at 
100444-t 
100885-at 
101 180-at 
101834-at 
1 0 1900-t 
10 195 8-fat 
101959-r-at 
102403-at 
102781-at 
102963-t 
103034-at 
103797-at 
103821-at 
104097-at 
104476-at 
104598-at 
104757-at 
160 127-at 
160159-at 
160538-at 
160638-at 
16065 8-at 
160763-at 
923 10-at 
92323-at 
9248 1-at 
9263 1-f-at 
92639-at 
92647-at 
92770-at 
92879-at 
9291 1-at 
93099-f-at 
93 1 12-at 
93253-at 
93293-at 
93356-at 
93405-at 
93413-at 
93712-at 
9423 1-at 
94294at 
9441 1-at 
94521-at 

Description 
mini chromosome maintenance deficient (S. cerevisiae) 
cell division cycle 2 homolog A (S. pombe) 
mini chromosome maintenance deficient 6 (S. cerevisiae) 
cyclin-dependent kinase 5 
NIMA (never in mitosis gene a)-related expressed kinase 2 
ataxia telangiectasia mutated homolog (human) 
mitogen activated protein kinase 3 
cyclin-dependent kinase Inhibitor 2B (p15, inhibits CDK4) 
transcription factor Dp 1 
transcription factor Dp 1 
cell division cycle 45 homolog (S. cerevisiae)-like 
cyclin L2 
E2F transcription factor 1 
cyclin El  
Mus musculus gene for muCdc7, exon 12 and complete cds. 
cell division cycle 6 homolog (S. cerevisiae) 
budding uninhibited by benzimidazoles 1 homolog (S. cerevisiae) 
retinoblastoma-like 1 (p 107) 
dual specificity phosphatase 1 
ZW 10 homolog (Drosophila), centromerekinetochore protein 
cyclin G1 
cyclin B 1 
cyclin-dependent kinase 4 
cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4) 
cyclin-dependent kinase 7 (homolog of Xenopus M015 cdk-activating kinase) 
rnitogen activated protein kinase 13 
serum-inducible kinase 
mitogen-activated protein kinase 12 
CHK2 checkpoint homolog (S. pombe) 
calmodulin 3 
serinelthreonine kinase 6 
retinoblastoma binding protein 4 
SlOO calcium binding protein A6 (calcyclin) 
protein phosphatase 1G (formerly 2C), magnesium-dependent, gamma isoform 
cyclin A1 
polo-like kinase homolog (Drosophila) 
mini chromosome maintenance deficient 2 (S. cerevisiae) 
Mus musculus DNA for ERK2, complete cds and exon 9. 
Mus musculus calmodulin synthesis (CaM) cDNA, complete cds. 
mini chromosome maintenance deficient 7 (S. cerevisiae) 
E2F transcription factor 3 
telomeric repeat binding factor 2 
cyclin T1 
cyclin Dl 
cyclin B2 
cyclin-dependent kinase 2 
cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4) 



cyclin I 
cyclin I 
chromatin assembly factor 1, subunit A (p 1 50) 
retinoblastorna-like 2 
cell division cycle 2 homolog (S. pombe)-like 1 
disrupted meiotic cDNA 1 homolog 
calmodulin 1 
cyclin E2 
cyclin D2 
GOIG1 switch gene 2 
regulator of G-protein signaling 2 
serinelthreonine kinase 12 
cyclin G2 
menage a trois 1 
serinelthreonine kinase 18 
mitogen-activated protein kinase 7 
RADl homolog (S. pombe) 
cyclin F 
cyclin A2 
germ cell-specific gene 2 
cyclin C 
MAD2 (mitotic arrest deficient, homolog)-like 1 (yeast) 
telomeric repeat binding factor 1 



Su~plemental Data 10.---Cell Cvcle Arrest 

Gene Name 
100278at 
10095 1-at 
10 1429-at 
102264-at 
102292-at 
102395-at 
94337-at 
943 3 8-g-at 
94809-t 
948 13-at 
95471-at 
96801-at 
97375-at 
98067-at 
98789-at 

Description 
cyclin-dependent kinase inhibitor 1B (P27) 
polycystic kidney disease 2 
DNA-damage inducible transcript 3 
schlafen 1 
Mus musculus GADD45 protein (gadd45) gene, complete cds. 
peripheral myelin protein 
growth arrest specific 2 
growth arrest specific 2 
tumor susceptibility gene 10 1 
growth arrest specific 1 
cyclin-dependent kinase inhibitor 1 C (P57) 
adenylate kinase 1 
polycystic kidney disease 1 homolog 
cyclin-dependent kinase inhibitor 1A (P21) 
cyclin-dependent kinase inhibitor 2A 



Su~~lemental  Data 1 1 .---Negative Regulation of Cell Cvcle 

Gene Name 
101457-at 
10201 2-at 
102264-at 
160300-at 
92471-i-at 
92472-f-at 
92959-at 
93 104-at 
93948-at 
94809-at 
96987-at 
98299-spat 

Description 
Janus kinase 2 
src family associated phosphoprotein 2 
schlafen 1 
trefoil factor 1 
schlafen 2 
schlafen 2 
fyn-related kinase 
M.musculus btgl mRNA. 
non-catalytic region of tyrosine kinase adaptor protein 2 
tumor susceptibility gene 10 1 
myeloid/lymphoid or mixed lineage-leukemia translocation to 7 homolog (Drosophila) 
schlafen 3 



Supplemental 12.-Cvtokine Activitv Group 1 

Gene Name Description 
1001 12-at chemokine (C-X-C motif) ligand 12 
10 1 164-at tumor necrosis factor (ligand) superfamily, member 4 
102559-at Mus musculus bone morphogenetic protein 2 (BMP-2) gene, complete cds. 
102630-s-at lymphotoxin A 
102802-at interleukin 1 8 
103037-at cardiotrophin 1 
16051 1-at chemolune (C-X-C motif) ligand 12 
160567-at growth differentiation factor 9 
160995-at RIKEN cDNA E430037F08 gene 
92283-s-at interleukin 4 
924 15-at amino acid feature: putative glycosylation sites, aa 139, 161,293; amino acid feature: 
transmembrane domain, aa 82 .. 103; amino acid feature: transmembrane domain, bp 299 .. 361; Mus musculus 
4-1BB ligand mRNA, complete cds. 
92459-at chemokine (C-C motif) ligand 8 
92476-at growth differentiation factor 3 
92982-at bone morphogenetic protein 8a 
93456-r-at Mus musculus BMP-4 gene, complete cds. 
937 17-at chemokine (C-C motif) ligand 12 
94086-at interledan 3 
94 142-at colony stimulating factor 3 (granulocyte) 
94145-at interferon beta, fibroblast 
94848-at Mus musculus migration inhibitory factor (Mif) gene. 
95349-g-at chemolune (C-X-C motif) ligand I 
98772-at chemokine (C-X-C motif) ligand 5 



Su~plemental 13.---Cvtokine Activitv Group 2 

Gene Name Description 
1003 19-at interleukin 10 
100574fat glucose phosphate isomerase 1 
10067 1-at Mouse alpha-interferon gene, complete cds. 
100773-at interledan 12a 
100779-at interleukin 12b 
10 1403-at chemokine (C-C motif) ligand 25 
101619-at Mus musculus gene for interferon alpha 8 protein precursor, complete cds. 
101788-f-at Mouse gene for interferon alpha 1 (MuIFN-alpha 1). 
102 149-f-at precursor; Mouse interferon alpha-7 gene, complete cds, clone pPL608. 
102736-at JE protein precursor; Mouse platelet-derived growth factor-inducible protein (JE) gene, 
complete cds. 
161037-at interledan 15 
92266-at interleukin 11 
92578-at small inducible cytokine subfamily E, member 1 
92960-at leukemia inhibitory factor 
94 1 12-at tumor necrosis factor (ligand) superfamily, member 10 
94146-at M.musculus MIP-lb gene for macrophage inflammatory protein lb. 
94 166-g-at chemokine (C-C motif) ligand 1 
94755-at interleukin 1 alpha 
96419-f-at putative; Mouse gene for interferon alpha 6 (Mu IFN-alpha 6). 
96537-at Mus musculus ARS component B gene, exons 1-3. 
96574-at P40 T-cell and mast cell growth factor precursor; Mouse P40 T-cell and mast cell growth 
factor (mP40) gene, complete cds. 
971 13-at tumor necrosis factor (ligand) superfamily, member 6 
97783-at chemokine (C-C motif) ligand 17 
99801-at nodal 



Supplemental 14.---Cflokine Activity Group 3 

Gene Name Description 
100327-at precursor; Mouse LT lyrnphotoxin (LT) gene, complete cds. 
101 136-at tumor necrosis factor (ligand) superfamily, member 8 
101436-at chemokine (C-X-C motif) ligand 9 
10 1450-at colony stimulating factor 1 (macrophage) 
102 148-f-at IFN-alpha- 1-9; Mouse interferon-alpha (IFN-alpha-1-9) gene, complete cds. 
1022 18-at interleulun 6 
1023 10-at chemokine (C-C motif) ligand 22 
102424-at chemokine (C-C motif) ligand 3 
103 199-at chemokine (C motif) ligand 1 
104099-at peptidoglycan recognition protein 
104571-at platelet factor 4 
92284-r-at interleukin 4 
93243at bone morphogenetic protein 7 
94 165-at chemokine (C-C motif) ligand 1 
95348-at chemokine (C-X-C motif) ligand 1 
983 18-at Mus musculus CD70 gene, exon 1 & 2 &joined CDS. 
98406-at chemokine (C-C motif) ligand 5 
98600-at S 100 calcium binding protein A1 1 (calizzarin) 
99334-at interferon gamma 
99393-at bone morphogenetic protein 5 
999 15-at amino acid feature: cytoplasmic domain, aa 220..248; amino acid feature: soluble growth 
factor, aa 100..181; amino acid feature: transmembrane domain, aa 192..219; Mus musculus amphiregulin gene, 
complete cds. 



Supplemental 15 .---Cvtokine Activitv Group 4 

Gene Name Description 
100573-f-at glucose phosphate isomerase 1 
101 160-at chemolune (C-X-C motif) ligand 2 
101 3 17-f-at Mus musculus interferon alpha-B (IFN-alpha-B) gene, complete cds. 
101 325-r-at fibrosin 1 
101789-i-at Mouse gene for interferon alpha 4 (Mu IFN-alpha 4). 
10 1790-f-at Mouse gene for interferon alpha 4 (Mu IFN-alpha 4). 
101814-at Mus musculus bone morphogenetic factor 11 (Bmpl 1) gene, exon 3 and complete cds. 
101815-at BMP-10; Mus musculus bone morphogenetic protein 10 (Bmp 10) gene, exon 2 and complete 
cds. 
102025-at chemokine (C-X-C motif) ligand 13 
102029-at interleulun 16 
102345-at endometrial bleeding associated factor 
102929-s-at FMS-like tyrosine lunase 3 ligand 
103486-at interleukin 1 beta 
104388-at chemokine (C-C motif) ligand 9 
104436-at interleukin 1 family, member 5 (delta) 
104646-at Mus musculus MIC-1 gene, exon 1 and joined CDS. 
93066-at acrosornal protein epithelinlgranulin precursor glycoprotein, Mus musculus gene for 
acrogranin, complete cds. 
934 16-at tumor necrosis factor (ligand) superfamily, member 1 1 
93455-spat bone morphogenetic protein 4 
93917-at tumor necrosis factor (ligand) superfamily, member 12 
947 17-f-at Mouse gene for interferon alpha 2 (Mu IFN-alpha 2). 
96968-at limitin 
98793-at growth differentiation factor 5 
99349-at Mus musculus CTLA8 gene, complete cds. 



Supplemental 16---Cytokine Activity Group 5 

Gene Name 
101 657-at 
101791fat 
102629-at 
102705-at 
102940-at 
92372-at 
92485-at 
92849-at 
92948-at 
93858-at 
94 168-at 
94761-at 
95557-at 
97155-at 
975 19-at 
97709-at 
97734-at 
98008-at 
98374-t 
98812-at 

Description 
bone morphogenetic protein 8b 
Mouse gene for interferon alpha 5 (Mu IFN-alpha 5). 
Mus musculus TNFA gene for tumor necrosis factor alpha, exon 4, strain:NOD. 
interleulun 2 
lymphotoxin B 
bone morphogenetic protein 6 
bone morphogenetic protein 15 
chemokine (C-C motif) ligand 6 
Mouse gene for granulocyte-macrophage colony stimulating factor (GM-CSF). 
chemokine (C-X-C motif) ligand 10 
interleukin 13 
M.musculus cytokine gene. 
bone morphogenetic protein 1 
growth differentiation factor 8 
secreted phosphoprotein 1 
interleulun 7 
thrombopoietin 
chemokine (C-X3-C motif) ligand 1 
Murine gene for interleukin 5 (eosinophil differentiation factor). 
tumor necrosis factor (ligand) superfarnily, member 5 



Su~~lemental 17.---NF-kB pathway Group 1 

Gene Name Description 
100299 f a t  immunoglobulin kappa chain variable 28 (V28) 
100682-f-at immunoglobulin kappa chain variable 8 (V8) 
10 1329fat immunoglobulin kappa chain variable 8 (V8) 
10 133 1-f-at immunoglobulin kappa chain variable 8 (V8) 
10 1347-at immunoglobulin kappa chain variable 8 (V8) 
101616-at precursor; Mouse Ig rearranged kappa-chain mRNA, clone AN08K. 
10 1633-at precursor polypeptide (AA -20 to -5) (195 is 1st base in codon); Mouse VK gene for kappa 
light chain variable region and 54 sequence. 
101640-f-at Ig kappa chain precursor VJ5-region; Mouse Ig kappa chain 7B6 rnRNA, V-region (VJ5) of 
monoclonal phOx-specific antibody from a hybridoma. 
10 1656-f-at immunoglobulin kappa chain variable 5 (V5 family) 
1 01 7 18-f-at immunoglobulin kappa chain variable 8 (V8) 
10 1720fat immunoglobulin kappa chain variable 8 (V8) 
102076-at Mus musculus IgVk aj4 gene. 
102 154fat immunoglobulin kappa chain variable 8 (V8) 
102155-f-at Mouse Ig aberrantly rearranged kappa-chain region downstream of J2 gene, from 
plasrnacytoma 3886. 
102156-f-at putative; Mus castaneus IgK chain gene, C-region, 3' end. 
102157fat Ig allele 91A3 V-region kappa chain, Mouse Ig V-kappalo-Ars-A kappa chain gene, 
complete cds. 
102209-at nuclear factor of activated T-cells, cytoplasmic 1 
102585 f a t  immunoglobulin kappa chain variable 8 (V8) 
16099 1-at RTKEN cDNA 2400004009 gene 
93086-at immunoglobulin kappa chain variable 8 (V8) 
93227-f-at immunoglobulin kappa chain variable 8 (V8) 
93395-g-at ectodysplasin-A 
95943-at ESTs 
96670-at RIKEN cDNA 0610025119 gene 
96971 f a t  Mouse DNA for Ig-kappa light chain V-J kappa 5 joining region (cell line CH2). 
96972-f-at put. Ig kappa precursor; Mouse DNA for Ig-kappa light chain V-J kappa 5 joining region. 
96974-at M.musculus Ig Vkappa-HNK20 gene. 
96975-at M.musculus Ig Vkappa-PCG-4 gene. 
96992-r-at Mus musculus immunoglobulin light chain V-region (VJ) gene for immunoglobulin light 
chain kappa. 
97564-f-at Mus musculus immunoglobulin kappa light chain variable region gene, partial cds. 
97566-f-at Mus musculus hybridoma BDI-1 immunoglobulin kappa light chain variable region (V kappa) 
gene, partial cds. 
97567-f-at Mus musculus hybridoma WLA-2C4 immunoglobulin kappa light chain variable region (V 
kappa) gene, partial cds. 
988 13-at reticuloendotheliosis oncogene 
99369-f-at Mus musculus immunoglobulin kappa light chain variable region precursor (VklOc) gene, 
partial cds. 



Suv~lemental 18.---NF-kl3 pathwav Group 2 

Gene Name 
100683-r-at 
101330-f-at 
101641-at 
102430-at 
103328-at 
103614-at 
104755-at 
16 1903-f-at 
93087-r-at 
93394-at 
93416-at 
93706-at 
94 149-at 
97651-at 
978 13-at 
99405-at 

Description 
immunoglobulin kappa chain variable 8 (V8) 
Mus musculus anti-DNA immunoglobulin light chain IgG, antibody 373s. 116, partial cds. 
Mouse Ig L-chain gene variable region, complete cds. 
myeloid differentiation primary response gene 88 
TRAF family member-associated Nf-kappa B activator 
nuclear factor of kappa light polypeptide gene enhancer in B-cells 2, p49lp100 
TNFAIP3 interacting protein 1 
molecule possessing ankyrin-repeats induced by lipopolysaccharide 
immunoglobulin kappa chain variable 8 (V8) 
ectodysplasin-A 
tumor necrosis factor (ligand) superfarnily, member 11 
inhibitor of kappaB kinase beta 
kappa B and Rss recognition component 
polymerase (DNA directed), kappa 
v-re1 reticuloendotheliosis viral oncogene homolog A (avian) 
immunoglobulin kappa chain variable 8 (V8) 



Suvvlemental 19.---NF-kB pathway Group 3 

Gene Name Description 
101332-at immunoglobulin kappa chain variable 3 8(V3 8) 
10 1346-at immunoglobulin kappa chain variable 8 (V8) 
10 1348-at immunoglobulin kappa chain variable 8 (V8) 
101554-at Mus musculus I kappa B alpha gene, exons 2-6, partial cds. 
101632-at tumor necrosis factor receptor superfamily, member 1 1 a 
101 826-at M.musculus extrachromosomal DNA for V kappa and J kappa coding joint (clone pKDE 35). 
10 1902-at recombining binding protein suppressor of hairless (Drosophila) 
103255-at Tnf receptor-associated factor 5 
104042-at solute camer family 35, member B 1 
160760-at protein tyrosine phosphatase, receptor type, K 
161371-r-at protein tyrosine phosphatase, receptor type, K 
162042-i-at v-re1 reticuloendotheliosis viral oncogene homolog A (avian) 
162307-at AVO07877 Mus musculus 18-day embryo C57BLl6J Mus musculus cDNA clone 
1 1 10007A08, rnRNA sequence. 
92493-at recombining binding protein suppressor of hairless-like (Drosophila) 
93074-g-at nuclear factor of activated T-cells, cytoplasmic 2 
94006-at 5-azacytidine induced gene 2 
94 196-at inhibitor of kappaB kmase gamma 
96224-at beta-transducin repeat containing protein 
97975-at nuclear factor of activated T-cells, cytoplasmic 3 
98988-at molecule possessing ankyrin-repeats induced by lipopolysaccharide 
99065-at casein kappa 
99070-at conserved helix-loop-helix ubiquitous kinase 
99396-at immunoglobulin kappa chain variable 8 (V8) 



Supplemental 20.---NF-kB ~athway Group 4 

Gene Name Description 
101727-at nuclear factor of kappa light polypeptide gene enhancer in B-cells irhbitor, epsilon 
103091at avian reticuloendotheliosis viral (v-rel) oncogene related B 
104149-at nuclear factor of kappa light chain gene enhancer in B-cells mhibitor, alpha 
92301-at inhibitor of kappaB kinase epsilon 
932 12-at butyrate-induced transcript 1 
932 13-at immunoglobulin kappa chain variable 28 (V28) 
93226-1-at immunoglobulin kappa chain variable 8 (V8) 
93393-at ectodysplasin-A 
96254-at D n d  (Hsp40) homolog, subfamily B, member 1 
96969-at coding sequence; Protein sequence is in conflict with the conceptual translation; Mouse 
immunoglobulin variable gene V kappa-24 encoding amino acids -4 to 95. 
99886-at opioid receptor, kappa 1 
99982-at nuclear factor of kappa light chain gene enhancer in B-cells inhibitor, beta 



Supplemental2 1 .---NF-kB pathway Group 5 

Gene Name Description 
101731-at RS OW2 (bp 588-293) first start codon is located at base 427.; putative; Mouse Ig germline 
kappa-chain 'recombining sequence' (RS). 
1 04474-s-at opioid receptor-like 
161 162-at nuclear factor of activated T-cells, cytoplasmic 3 
1 62372-f-at avian reticuloendotheliosis viral (v-rel) oncogene related B 
92584-at RIKEN cDNA 24 10003M04 gene 
93073-at nuclear factor of activated T-cells, cytoplasmic 2 
93075-r-at nuclear factor of activated T-cells, cytoplasmic 2 
94448-at B-cell leukemia/lymphoma 10 
97569-at Mus musculus hybridoma 3C4 immunoglobulin kappa light chain variable region (V kappa) 
gene, partial cds. 
97570-at Mus musculus immunoglobulin kappa light chain variable region (Igk-V22) gene, partial cds. 
98427-s-at nuclear factor of kappa light chain gene enhancer in B-cells 1, p105 
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