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Abstract
HIV-2 and SIVMAC are AIDS-causing, zoonotic lentiviruses that jumped to humans and

rhesus macaques, respectively, from SIVSM-bearing sooty mangabey monkeys. Cross-spe-

cies transmission events such as these sometimes necessitate virus adaptation to species-

specific, host restriction factors such as TRIM5. Here, a new human restriction activity is

described that blocks viruses of the SIVSM/SIVMAC/HIV-2 lineage. Human T, B, and myeloid

cell lines, peripheral blood mononuclear cells and dendritic cells were 4 to >100-fold less

transducible by VSV G-pseudotyped SIVMAC, HIV-2, or SIVSM than by HIV-1. In contrast,

transduction of six epithelial cell lines was equivalent to that by HIV-1. Substitution of HIV-1

CA with the SIVMAC or HIV-2 CA was sufficient to reduce HIV-1 transduction to the level of

the respective vectors. Among such CA chimeras there was a general trend such that CAs

from epidemic HIV-2 Group A and B isolates were the most infectious on human T cells, CA

from a 1° sooty mangabey isolate was the least infectious, and non-epidemic HIV-2 Group

D, E, F, and G CAs were in the middle. The CA-specific decrease in infectivity was observed

with either HIV-1, HIV-2, ecotropic MLV, or ALV Env pseudotypes, indicating that it was

independent of the virus entry pathway. As2O3, a drug that suppresses TRIM5-mediated

restriction, increased human blood cell transduction by SIVMAC but not by HIV-1. Nonethe-

less, elimination of TRIM5 restriction activity did not rescue SIVMAC transduction. Also, in

contrast to TRIM5-mediated restriction, the SIVMAC CA-specific block occurred after com-

pletion of reverse transcription and the formation of 2-LTR circles, but before establishment

of the provirus. Transduction efficiency in heterokaryons generated by fusing epithelial cells

with T cells resembled that in the T cells, indicative of a dominant-acting SIVMAC restriction

activity in the latter. These results suggest that the nucleus of human blood cells possesses

a restriction factor specific for the CA of HIV-2/SIVMAC/SIVSM and that cross-species
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transmission of SIVSM to human T cells necessitated adaptation of HIV-2 to this putative

restriction factor.

Author Summary

HIV-1 and HIV-2, the two lentiviruses that cause AIDS in humans, are members of a fam-
ily of such viruses that infect African primates. HIV-1 is a zoonosis that was transmitted to
humans from chimpanzees. HIV-2 was transmitted to humans from sooty mangabey
monkeys. In several documented cases of cross-species transmission of lentiviruses it has
been shown that replication of the virus in the new host species necessitated that the virus
adapt to species-specific antiviral factors in the host. Here we report that human blood
cells possess an antiviral activity that exhibits specificity for viruses of the HIV-2/SIVMAC/
SIVSM lineage, with restriction being greatest for SIVSM and the least for epidemic HIV-2.
Here we show that this dominant-acting, antiviral activity is specific for the capsid and
blocks the virus after it enters the nucleus. The evidence suggests that, in order to jump
from sooty mangabey monkeys to humans, the capsid of these viruses changed in order to
adapt to this antiviral activity. In keeping with the practice concerning anti-lentiviral activ-
ities we propose to call this new antiviral activity Lv4.

Introduction
Human immunodeficiency virus type 1 (HIV-1) is the major cause of the acquired immune
deficiency syndrome (AIDS) pandemic. Among the immunodeficiency viruses that infect at
least 40 of the primate species in sub-Saharan Africa, the simian immunodeficiency viruses
(SIVs) found in central African chimpanzees and gorillas are monophyletic with HIV-1 [1,2].
Each of the four HIV-1 lineages (groups M, N, O, and P) is believed to have resulted from inde-
pendent cross-species transmission of simian immunodeficiency viruses from chimpanzees
(SIVCPZ), and perhaps from gorillas (SIVGOR) [3–6]. SIVCPZ itself is probably a recombinant
virus that resulted from co-infection of a chimp with viruses transmitted from a red-capped
mangabey (SIVRCM) and a greater spot-nosed monkey (SIVGSN) [7]. Until recently it was
believed that SIVCPZ did not cause disease in chimpanzees but extensive observation of feral
animals has demonstrated that this is not the case [8].

HIV-2, a second AIDS-causing virus that has highest prevalence in West Africa, was trans-
mitted to people from sooty mangabey monkeys (Cercocebus atys) on multiple occasions [9–
12]. There is no evidence for disease in sooty mangabey monkeys infected with SIVSM, but
cross-species transmission to another non-native host, rhesus macaques (SIVMAC), resulted in
AIDS [13,14].

Though transmission of primate lentiviruses to humans has occurred on multiple occasions
and may still be occurring [15], these events are probably uncommon. Primate lentiviral
sequences can be grouped into clades that are specific for a given host species [2]. Species cross-
overs are prevented in part by innate immune mechanisms, of which restriction by intracellular
proteins is an important component. Proteins of the TRIM (Tripartite Motif) family can dis-
rupt retroviral replication in a species-dependent manner [16–18]. TRIM proteins displaying
anti-retroviral activity are present in all primates tested so far [19]. Moreover, phylogenetically
and functionally related genes have been found in cattle [20,21] and in rabbits [22]. TRIM5α
was the first member of this family to be identified as an anti-retroviral gene [23] and has been
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extensively studied. It targets incoming susceptible retroviruses, trapping them in cytoplasmic
bodies that seem to form around the virus [24]. Inhibition of retroviral replication requires spe-
cific recognition of retroviral capsid motifs, and a TRIM5α-CA interaction can be detected in
various settings [25–27]. Additionally, treatment with proteasome inhibitors partially relieves
the restriction, suggesting that TRIM5α targets susceptible retroviruses to a proteasomal degra-
dation pathway [28–30]. Finally, TRIM5α prevents nuclear transport of restricted retroviruses
[28,30–32].

HIV-1 is inhibited by TRIM5α from a number of African and Asian monkey species, such
as rhesus macaques, African green monkeys, and sooty mangabeys [19,33]. The human ortho-
logue of TRIM5α restricts some non-primate lentiviruses such as the N-tropic strains of the
murine leukemia virus (N-MLV) and the equine infectious anemia virus (EIAV) [34–36].
However, it has minimal activity against HIV-1 and various strains of SIVs such as SIVMAC

and SIV from African green monkeys (SIVAGM) [32,36–39].
Thus, available data suggest that the early post-entry stages of SIVMAC replication are not

inhibited by TRIM5α in human cells. These experiments, however, all used immortalized
adherent cell lines such as TE671 (rhabdomyosarcoma) [32,40,41], HOS (osteosarcoma) [42]
or HeLa cells (adenocarcinoma) [23,31,43]. Hofmann and colleagues compared the infectivity
of vectors derived from SIVMAC or HIV-1 in a range of mammalian cell lines [44]. They found
that HIV-1 vectors were up to 9-fold more infectious than SIVMAC vectors in several human
cell lines, e.g. Raji (B lymphocyte) and in the T lymphocyte cell lines Jurkat, HuT78 and
CEM. This raised the possibility that lentiviruses could be inhibited in a cell-type specific fash-
ion in human cells. In the work presented here, we investigated restriction to SIVMAC replica-
tion in peripheral blood lymphocytes (PBLs) as well as in various cell lines. Our data reveal a
TRIM5α-independent restriction activity targeting SIVMAC, and the related SIVSM and HIV-2,
in human blood cells.

Results

Human blood cells are less permissive for SIVMAC, SIVSM, and HIV-2,
than for HIV-1
Human cell lines were challenged with VSV G-pseudotyped, single-cycle vectors derived from
HIV-1NL4-3 and SIVMAC239, as previously described [45]. In each case, nef was replaced with
GFP coding sequence, such that the fluorescent reporter was expressed from the respective
LTR. The two vectors were produced in parallel by collecting supernatant from transfected
293T cells. The vector-containing supernatants were checked for reverse transcriptase activity
[46], normalized for titer on highly permissive CRFK feline kidney epithelial cells [47], and
then used to infect a panel of human cell lines by serial dilution (Fig 1).

SIVMAC transduction efficiency was 4 to 20-times less than that of HIV-1NL4-3 when the two
vectors were used to challenge any of a panel of T cell lines, including Jurkat, SupT1, and
CEM-SS cells, the Burkitt lymphoma-derived B cell line Raji, or the myelomonocytic cell lines
U937 and THP-1 (Fig 1). The infectivity of SIVMAC was similar to that of HIV-1NL4-3 in adher-
ent epithelial cell lines, including HeLa cells, HT1080 fibrosarcoma cells, TE671 rhabdomyo-
sarcoma cells, U87 glioblastoma cells, and NP2 glioma cells (Fig 1).

Signal intensity by immunofluorescence microscopy of individual GFP-positive cells after
SIVMAC transduction was at least as great as that after HIV-1NL4-3 transduction (Fig 2A). Mean
fluorescence intensity by flow cytometry was 219.6 +/- 15.5 for SIVMAC and 170.3 +/- 11.3 for
HIV-1NL4-3 (n = 6; p<0.01, Mann-Whitney). Based on these parameters, the decrease in appar-
ent infectivity of SIVMAC did not appear to be explained by poor expression of the GFP
reporter from the SIV LTR. The latter point was demonstrated more conclusively by using
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3-part lentiviral vectors in which the GFP reporter was expressed from the HIV-1 and SIVMAC

vectors using an identical spleen focus-forming virus (SFFV) promoter (Fig 2B); the relative
decrease in CRFK-normalized, SIVMAC infectivity on Jurkat with the 3-part vector was at least
as great in magnitude as it was with the 2-part vectors.

Fig 1. SIVMAC transduction of human blood-derived cell lines is less efficient than is transduction by HIV-1. VSV G-pseudotyped HIV-1NL4-3GFP
(black squares) and SIVMAC239GFP (white circles) were generated by plasmid transfection of 293T cells. In each plasmid, env was disrupted and nef
replaced with GFP, such that the fluorescent reporter gene was expressed from the 5’ LTR. Vector stocks were normalized by titer on CRFK cells, and then
used to challenge the indicated cell lines. 48 hrs post vector challenge, the percentage GFP-expressing cells was determined by FACS. Data is plotted as
percent GFP+ (infected) cells (Y axis) versus CRFK infectious units (IU) x 1,000 (X axis).

doi:10.1371/journal.ppat.1005050.g001
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Next, the infectivity of SIVMAC was compared with that of HIV-1NL4-3 in primary human
blood cells using the two-part vectors. Peripheral blood mononuclear cells (PBMCs) were pre-
pared, stimulated with PHA for three days, and challenged with the single-cycle vectors. SIV-

MAC transduction was less efficient than for HIV-1NL4-3 (Fig 3A). The magnitude of this
difference was ~20-fold. Similar magnitude differences were observed when three-part vectors
were used to challenge human, monocyte-derived dendritic cells in the presence of Vpx+-VLPs
(Fig 3B). The dendritic cell experiments were carried out as previously described by providing
SIV Vpx in trans using SIV VLPs [48–50].

Fig 2. The decrease in T cell transduction efficiency by SIVMAC is not explained by differences in reporter gene expression. (A) CRFK cells (left
panel) and Jurkat T cells (right panel) were transduced with VSV G-pseudotyped, single-cycle, two-part HIV-1NL4-3GFP or SIVMAC239-GFP vectors, as in Fig
1. Virus stocks were normalized by reverse transcriptase activity prior to transduction. 48 hrs after transduction, cells were visualized by phase contrast and
fluorescence microscopy. Shown are representative fields for each condition at 100x magnification. Fluorescence intensity of individual T cells transduced
with SIVMAC239-GFP is at least as strong as that in cells transduced with HIV-1NL4-3GFP. (B) VSV G-pseudotyped, HIV-1NL4-3 (black squares) and
SIVMAC239 (white circles) three-part vectors were generated by plasmid transfection of 293T cells. In each case, the viral genomic RNA was designed to
transduce an identical SFFV-GFP reporter gene. Vector stocks were normalized by titer on CRFK cells, and then used to challenge Jurkat T cells. 48 hrs post
vector challenge, the percentage GFP-expressing cells was determined by FACS. Data is plotted as percent GFP+ (infected) cells (Y axis) versus CRFK
infectious units (IU) x 1,000 (X axis).

doi:10.1371/journal.ppat.1005050.g002
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SIVMAC and HIV-2 are believed to have arisen from cross-species transmission of SIVSM

from sooty mangabey monkeys to rhesus macaques and humans, respectively [1,2]. We there-
fore investigated to what extent other members of the SIVSM lineage are capable of transducing
Jurkat cells. An env-minus, VSV G-pseudotyped HIV-2ROD vector, in which nef was replaced
with GFP, was normalized to the HIV-1NL4-3GFP and SIVMAC239GFP vectors by transduction
titer on CRFK and used to transduce Jurkat T cells. The normalized titer for SIVMAC was

Fig 3. SIVMAC transduction of human peripheral bloodmononuclear cells or of monocyte derived
dendritic cells is less efficient than by HIV-1. (A) VSV G-pseudotyped HIV-1NL4-3GFP (black squares) and
SIVMAC239GFP (white circles) two-part vectors were generated by plasmid transfection of 293T cells. Vector
stocks were normalized by titer on CRFK cells, and then used to challenge human peripheral blood
mononuclear cells. (B) VSV G-pseudotyped, HIV-1NL4-3 (black squares) and SIVMAC239 (white circles) three-
part vectors were generated by plasmid transfection of 293T cells. In each case, the viral genomic RNA was
designed to transduce an identical SFFV-GFP reporter gene. Vector stocks were normalized by titer on
CRFK cells, and then used to challenge monocyte derived dendritic cells (DCs). 2 days post-challenge, the
percentage of GFP-expressing cells was determined by FACS. Data is plotted as percent GFP+ (infected)
cells (Y axis) versus CRFK infectious units (IU) x 1,000 (X axis). Shown are representative data with cells
from 4 independent blood donors.

doi:10.1371/journal.ppat.1005050.g003

Capsid-Specific Restriction of SIVMAC/SIVSM/HIV-2 by Lv4

PLOS Pathogens | DOI:10.1371/journal.ppat.1005050 July 16, 2015 6 / 29



roughly 20-fold lower than that for HIV-1NL4-3 on Jurkat cells (Fig 4A). HIV-2ROD transduc-
tion was nearly 10-fold lower than HIV-1NL4-3 on Jurkat cells (Fig 4A).

SIVMAC239, the virus utilized in the experiments above, is highly adapted to rhesus
macaques, having been passaged many times in these animals since the 1960s [13,51].
SIVSME041 is a virus that was isolated directly from sooty mangabey monkeys [52]. SIVSME543
was passed twice through rhesus macaques [53] and would therefore be expected to have a

Fig 4. SIVMAC, HIV-2, and SIVSM transduction of human T cells is less efficient than transduction by
HIV-1. (A) Transduction efficiency of VSV G-pseudotyped two-part vectors for HIV-1NL4-3GFP (white
squares), HIV-2RODGFP (grey triangles), or SIVMAC239GFP (black circles) on Jurkat T cells. (B) Chimeric
vectors were generated in which gag-pol of SIVMAC239GFP (white squares) was replaced with gag-pol from
SIVSME543 (grey triangles) or SIVSM041 (black circles). In each case (A and B), VSV G-pseudotyped vectors
were generated by plasmid transfection of 293T cells. Vector stocks were normalized by titer on CRFK cells,
and then used to challenge Jurkat T cells. 48 hrs post-challenge, the percentage of GFP-expressing cells
was determined by FACS. Data is plotted as percent GFP+ (infected) cells (Y axis) versus CRFK infectious
units (IU) x 1000 (X axis).

doi:10.1371/journal.ppat.1005050.g004
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modest level of adaptation to the new host. As compared with SIVMAC239, a three-part vector
generated from the non-adapted SIVSME041 [54] had decreased Jurkat-specific transduction
efficiency (Fig 4B). A three-part vector generated from SIVSME543 [54], the SIVSM virus that
had been serially replicated in a non-native host (macaques), had transduction activity more
similar to that of SIVMAC239 (Fig 4B). These results suggest that, in order to efficiently infect
humans or rhesus macaques, SIVSM must acquire resistance to a putative restriction activity
present in blood cells.

The capsid of SIVMAC, HIV-2, or SIVSM is sufficient to decrease HIV-1
transduction efficiency in a T cell-specific manner
The experiments described above suggest that SIVMAC, SIVSM, and HIV-2 transduction is sen-
sitive to a restriction activity that is elaborated by human blood cells. Since capsid (CA) is the
retroviral determinant that confers sensitivity to several restriction factors, including Fv1 [17],
TRIM5 [23,45], and Mx2 [55–57], the transduction efficiency of the 2-part HIV-1 vector
described above was compared with that of an isogenic vector in which CA coding sequence
was replaced with that from SIVMAC239 or HIV-2ROD. Neither of the two chimeras had trans-
duction activity on CRFK cells or on HeLa cells.

Since restriction factor sensitivity determinants are often located within the N-terminal
two-thirds of CA [58], we then trimmed the C-terminal coding sequences of HIV-2ROD and
SIVMAC239 CA back to amino acid 202, using HIV-1 CA sequences to encode amino acids 203
to 230 (Fig 5A). When normalized by RT activity [46] the two chimeras exhibited transduction
efficiency on CRFK and HeLa cells very similar to the parental vector (Fig 5B and 5C, respec-
tively). In contrast, the chimeric vectors bearing SIVMAC239 or HIV-2ROD CA transduced Jur-
kat T cells less efficiently, with a magnitude reduction that correlated with the respective
parental vectors (Fig 5D).

Having established that CA from either SIVMAC239 or HIV-2ROD is sufficient to reduce Jur-
kat T cell transduction efficiency by a 2-part HIV-1 vector (Fig 5D), fifteen additional chimeras
were generated in the context of a 3-part HIV-1 vector using CA coding sequences from nine
different HIV-2 Groups (Fig 5E). Many of the non-epidemic HIV-2 Groups in the database
consist of single isolates, for which only partial HIV-2 CA sequences (encoding amino acids 1
to 162) are available [11]. In the case of these partial CAs, HIV-2ROD sequence was substituted
for the missing HIV-2 sequences (amino acids 163 to 202). As with the 2-part vectors, no infec-
tivity was observed unless CA amino acids 203–230 were provided by HIV-1. Among the chi-
meras generated, representatives from Groups AB, A, D, E, F, and H, and from a primary
SIVSM, were sufficiently infectious to evaluate CRFK-normalized transduction efficiency on
Jurkat T cells. As a general trend, chimeras generated with CA from the epidemic Groups (A
and B) were the most infectious on Jurkat T cells, those from the non-epidemic Groups (D, E,
F, and H) were less infectious, and that from SIVSM was the least infectious (Fig 5F). These
results suggest that SIVSM must acquire resistance to the putative CA-specific restriction activ-
ity present in human blood lymphoid cells in order to efficiently infect human blood cells.

The defect in Jurkat transduction associated with SIVMAC CA is
independent of the viral entry pathway
All of the experiments above were conducted with vectors pseudotyped with VSV G. To deter-
mine if the decreased transduction efficiency associated with the SIVMAC CA is observed with
other glycoproteins, a two-part, env-minus HIV-1 vector with GFP in place of nef, or an iso-
genic vector in which CA1-202 coding sequences were replaced with those from SIVMAC239,
were pseudotyped with Env glycoproteins from either HIV-1HXB2, HIV-2MCN, ecotropic MLV,

Capsid-Specific Restriction of SIVMAC/SIVSM/HIV-2 by Lv4
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Fig 5. The capsid of SIVMAC, HIV-2, or SIVSM is sufficient to decrease HIV-1 transduction efficiency in a T cell-specific manner. (A) Chimeric vectors
were generated in which the coding sequence for HIV-1 CA amino acid residues 1 to 202 of the two-part HIV-1NL4-3GFP vector (white squares) was replaced
with sequence encoding the corresponding amino acid residues from HIV-2ROD (grey triangles) or SIVMAC239 (black circles). VSV G-pseudotyped vector
was generated for each by transfection of 293T cells. Stocks were normalized by RT and used to challenge CRFK cells (B) or HeLa cells (C). Stocks were

Capsid-Specific Restriction of SIVMAC/SIVSM/HIV-2 by Lv4
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or ALV-A (Fig 6). The transduction titer of each pseudotyped vector was first measured on
HeLa cells bearing either human CD4, murine mCAT1 ecotropic receptor, or avian TVA
receptor. Each was then used to challenge Jurkat T cells that had been stably transduced to bear
the cognate receptors, as appropriate. 48 hrs post-challenge, the percentage of GFP-expressing
cells was determined by FACS. In each case, the chimeric vector bearing SIVMAC CA

1-202 was
as defective as the VSV G-pseudotyped vector (Fig 6A–6D). These results demonstrate that the
Jurkat transduction defect associated with the SIVMAC CA is independent of the pathway of
viral entry.

As2O3 increases SIVMAC transduction of human blood cells
Given the results described above, evidence was sought that the cell type-specific defect in SIV-

MAC transduction efficiency might be due to a dominant-acting, human blood-specific, restric-
tion factor. Restriction activity of the capsid-specific restriction factors Fv1 and TRIM5 is
saturated by large quantities of virus-like particles (VLPs) bearing restriction-sensitive cores
[17]. Flat, epithelial cells work well as viral targets in TRIM5 saturation experiments; in con-
trast, saturation experiments have not been possible in T cell lines [59,60]. Attempts here to
saturate putative SIVMAC-specific restriction activity in Jurkat T cells with SIV VLPs were also
unsuccessful.

As2O3 rescues retroviruses from CA-specific restriction by TRIM5 but has no effect on ret-
rovirus transduction efficiency in the absence of TRIM5-mediated restriction [31,35,47,61,62].
The exact mechanism by which As2O3 blocks TRIM5-mediated restriction is not known,
though the effect results in increased reverse transcription and correlates with disruption of
mitochondrial membrane potential [31,61].

To test the hypothesis that SIVMAC transduction of human blood cells might be restricted
by TRIM5, or by a cellular factor with similar properties, the effect of As2O3 on SIVMAC trans-
duction was assessed. As2O3 had no effect on the transduction efficiency of VSV G-pseudo-
typed, 2-part vectors for either SIVMAC239 or HIV-1NL4-3 in TE671 (Fig 7A), an adherent
rhabdomyosarcoma cell line in which SIVMAC infectivity was equivalent to that of HIV-1NL4-3
(Fig 1). In contrast, As2O3 increased SIVMAC transduction of Jurkat T cells 3-fold, and trans-
duction of PBMCs or primary CD4+ T cells 7-fold (Fig 7B–7D). HIV-1NL4-3 T cell transduction
of any of these cells was increased less than 2-fold by As2O3 (Fig 7B–7D). Thus, As2O3

enhanced SIVMAC transduction of human blood cells in which relative transduction efficiency
of SIVMAC was compromised. These results are consistent with the presence of a TRIM5-like,
SIVMAC-specific, restriction factor in human blood cells.

SIVMAC transduction efficiency in human CD4+ T cells does not increase
with disruption of endogenous TRIM5α or CypA
TRIM5 is a well-characterized host cell restriction factor that decreases retroviral transduction
in a capsid-specific fashion [23,45]. Though ectopic expression of human TRIM5α in adherent
cell lines shows minimal restriction activity against SIVMAC [23,34] it was important to

then normalized for CRFK transduction activity and used to challenge Jurkat T cells (D). 48 hrs post-challenge, the percentage of GFP-expressing cells was
determined by FACS. Data is plotted as percent GFP+ (infected) cells (Y axis) versus RT activity (B and C), or versus CRFK infectious units (IU) x 1000 (X
axis). (E) Chimeric vectors were generated in which the coding sequence for HIV-1 CA amino acid residues 1 to 202 of the HIV-1 gag-pol expression vector
(white) was replaced with sequence encoding the corresponding amino acid residues from various HIV-2 isolates (grey) or SIVSME041 (black). Three-part,
VSV G-pseudotyped, SFFV-GFP bearing vectors were generated for each CA chimera by transfection of 293T cells. Stocks were then normalized for CRFK
transduction activity and used to challenge Jurkat T cells. 48 hrs post-challenge, the percentage of GFP-expressing cells was determined by FACS. Data is
plotted as CRFK normalized transduction of Jurkat cells, relative to the parental HIV-1 vector (F). Accession numbers for the different CA coding sequences
are as follows: HIV-2(AB), 731744; HIV-2(A), GH123; HIV-2(D), L33083; HIV-2(E), L33087; HIV-2(F), U75441; HIV-2(H), AY5308; SIVSME041, HM059825.

doi:10.1371/journal.ppat.1005050.g005
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determine whether endogenous human TRIM5α contributes to the SIVMAC transduction block
in human blood cells. To investigate this possibility, a miR30-based TRIM5 knockdown cas-
sette was delivered to Jurkat T cells using a lentiviral vector as previously described [48,63,64]
(Fig 8). The vector also expresses a puromycin-resistance gene that was exploited to select
pools of transduced cells. Cyclophilin A (CypA), an HIV-1 capsid binding protein [65] that
promotes TRIM5-mediated restriction in some cell types [66], and appears to protect against
an unknown restriction activity in other cells [17], was also targeted for knockdown with a len-
tiviral vector. As a control for miR30 lentiviral vector transduction and puromycin selection,

Fig 6. The transduction defect associated with SIVMAC CA is independent of the virus entry pathway. A two-part, env-minus HIV-1 vector with GFP in
place of nef (black squares), or an isogenic vector in which CA1-202 coding sequences were replaced with those from SIVMAC239 (white circles), were
produced by 293T transfection. Each vector was pseudotyped with Env glycoprotein from either HIV-1HXB2(A), HIV-2MCN (B), ecotropic MLV (C), or ALV-A
(D) and transduction efficiency was measured on HeLa cells bearing human CD4 (A and B), the mCAT1 ecotropic receptor (C), or the avian TVA receptor
(D), and then used to challenge Jurkat cells bearing the same receptors. 48 hrs post-challenge, the percentage of GFP-expressing cells was determined by
FACS.

doi:10.1371/journal.ppat.1005050.g006
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Jurkat T cells were transduced with an otherwise isogenic lentiviral vector targeting luciferase
(Luc), a gene that is not present in these cells.

TRIM5 knockdown efficiency in Jurkat T cells cannot be assessed by western blot since
endogenous human TRIM5 is not detectable in these cells using available antibodies. Instead,
knockdown efficiency can be deduced by comparing the infectivity of a pair of viruses, one of
which is restricted by human TRIM5 (N-MLV), and the other which is not restricted (B-MLV)
[59]. The three pools of puromycin-resistant Jurkat T cells–either knocked down for TRIM5,
CypA, or Luc—were therefore challenged with N-tropic or B-tropic MLV-GFP reporter
viruses. As shown previously [59], N-tropic MLV was much less infectious than B-tropic MLV

Fig 7. As2O3 specifically increases SIVMAC infectivity in human blood cells. TE671 cells (A), Jurkat T cells (B), human PBMC (C), or human CD4+ T
cells (D) were transduced with two-part, VSV G-pseudotyped HIV-1NL4-3-GFP or SIVMACGFP vectors using a predetermined quantity of virus such that 1% of
cells were infected. As2O3 was added 1 hr prior to vector challenge and maintained for 12 hrs post-infection, at the concentrations indicated on the X axis. 48
hrs post-challenge the percentage of GFP-expressing cells was determined. The Y axis shows the fold increase relative to infection without As2O3.

doi:10.1371/journal.ppat.1005050.g007
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Fig 8. Knockdown of TRIM5 or of cyclophilin A has no effect on SIVMAC transduction of Jurkat CD4+ T
cells. Jurkat T cells (A) or primary human CD4+ T cells (B) were transduced with lentiviral vectors bearing a
puromycin resistance cassette and miR30-based knockdown cassettes targeting either luciferase (black
squares), CypA (gray diamonds), or TRIM5 (white triangles). Puromycin-resistant pools of transduced cells
were challenged with VSV G-pseudotyped N-MLVGFP, B-MLVGFP, HIV-1NL-GFP, SIVmac-GFP, or EIAVGFP, as
indicated. The percentage of GFP+ (infected) cells at 48 hrs is reported. HIV-1NL-GFP and SIVmac-GFP vectors
were two-part vectors, with GFP in place of nef. N-MLVGFP, B-MLVGFP, and EIAVGFP were three-part vectors.

doi:10.1371/journal.ppat.1005050.g008
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in the control (luciferase) knockdown cells (Fig 8A). TRIM5 knockdown increased N-MLV
transduction efficiency up to the level achieved by the non-restricted B-tropic MLV (Fig 8A)
but no effect on the transduction efficiency of HIV-1NL4-3 or SIVMAC was observed (Fig 8A).
Also, as shown previously (3, 4), knockdown of CypA had no effect on N-tropic MLV, B-tropic
MLV, or SIVMAC (Fig 8A), though CypA knockdown decreased HIV-1NL4-3 transduction effi-
ciency by 3 to 4-fold (Fig 8A). Thus, the low relative transduction of Jurkat T cells by SIVMAC

was not increased by knockdown of TRIM5 or CypA.
To extend these findings to primary cells, human CD4+ T cells were enriched from periph-

eral blood by positive-selection with magnetic beads, stimulated with plate-bound anti-CD3
and anti-CD28 antibodies, and transduced with the same lentiviral vectors for stable knock-
down of TRIM5, CypA, or luciferase, as previously described [67] (Fig 8B). Transduced cells
were propagated in puromycin-resistant pools. Transduction with a control vector in which
the puromycin resistance cassette was replaced with GFP demonstrated that primary transduc-
tion efficiency, in the absence of drug selection, was greater than 90%. Growth of transduced
CD4+ T cells in tissue culture was maintained in an ongoing fashion by TCR re-stimulation
every two weeks [67].

CD4+ T cells from one of two representative blood donors are shown in Fig 8B. The titer
of the N-tropic and B-tropic MLV vectors on the stably-transduced, primary human CD4+

T cells, was not sufficient to assess the efficiency of TRIM5 knockdown. Instead, a lentiviral
vector derived from the equine infectious anemia virus (EIAV-GFP) was utilized [68]. As pre-
viously shown in human HeLa cells [34], knockdown of TRIM5 increased EIAV-GFP trans-
duction efficiency (Fig 8B). Though the absolute infectivity of EIAV-GFP in the luciferase and
CypA knockdown cells was at the limit of detection, it was possible to document an increase in
EIAV-GFP transduction efficiency of at least 50-fold in the TRIM5 knockdown cells, confirm-
ing that the TRIM5 knockdown was robust. As expected, CypA knockdown caused a modest
reduction in HIV-1NL4-3 infectivity (Fig 8B). SIVMAC was 50- to 100-times less infectious than
HIV-1NL4-3 in all of the CD4+ T cell knockdown lines tested (Fig 8B). Thus, neither TRIM5
knockdown nor CypA knockdown increased SIVMAC transduction efficiency, in Jurkat T cells
or in primary CD4+ T cells.

The block to SIVMAC transduction in Jurkat T cells occurs prior to
establishment of the provirus, but after entry into the target cell nucleus
To determine where in the retroviral replication cycle the relative block to SIVMAC transduc-
tion occurs, CRFK cells and Jurkat T cells were challenged with the single-cycle, 2-part, HIV-
1NL4-3 GFP reporter vector, or the isogenic vector bearing the SIVMAC239 CA, that were dia-
gramed schematically in Fig 5A. Full-length linear viral cDNA, 2-LTR circle viral cDNA, and
proviral DNA as assessed by Alu-PCR were quantitated by real-time PCR, using previously
described protocols [69,70]. The relative level of PCR product obtained with the vector bearing
SIVMAC239 CA was expressed as a percentage of that obtained with the vector bearing HIV-
1NL4-3 CA, with the latter set at 100%. In CRFK cells, infection with the two vectors resulted in
comparable amounts of full-length linear and 2-LTR circles (Fig 9A). As compared with the
vector bearing HIV-1NL4-3 CA, transduction of Jurkat T cells with the vector bearing SIV-

MAC239 CA resulted in the same amount of full-length linear cDNA and 2-LTR circles, but
10-fold less product for Alu-PCR (Fig 9A).

Since Alu repeats are primate-specific [71], Alu-PCR could not be performed using the
feline CRFK cells as transduction targets. Therefore, similar experiments were performed
with HeLa cells (Fig 9B). In addition, a PCR protocol for 2-LTR circles was used in which one
of the PCR primers spans the circle junction; this distinguishes bona fide 2-LTR circles from
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auto-integrants [72]. No defect in full-length linear cDNA or 2-LTR circles was detected when
transduction of Jurkat cells with the vector bearing SIVMAC239 CA was compared with the vec-
tor bearing HIV-1NL4-3 CA (Fig 9B). As compared with HeLa cells, a specific defect in provirus
establishment in Jurkat T cells by the vector bearing SIVMAC239 CA was observed (Fig 9B).
Similar results were obtained using human PBMCs as target cells, though the signal from Alu-
PCR was insufficient to quantitate the magnitude difference between HIV-1 and SIVMAC

Fig 9. The block to SIVMAC infection of Jurkat T cells occurs after formation of 2-LTR circles.CRFK
and Jurkat (A), or Hela and Jurkat (B), or PBMCs (C) were infected with VSV G-pseudotyped HIV-1NL4-3-
GFP, or with isogenic vector bearing the SIVMAC239 CA residues 1 to 202. 24 hrs post-infection, DNA was
collected from the cells and subjected to qPCR using primers specific for full-length linear viral cDNA, 2-LTR
circles, or proviral DNA, as indicated. Shown is the abundance of signal from vector bearing the SIVMAC239
CA1-202, relative to the amount of signal from HIV-1NL4-3-GFP. In each case, infection was performed in the
presence of an RT inhibitor to control for background levels of signal.

doi:10.1371/journal.ppat.1005050.g009
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(Fig 9C). These results indicate that reverse transcription and nuclear transport by particles
bearing SIVMAC CA is equivalent to that of particles bearing HIV-1NL4-3 CA, and that the rela-
tive block to SIVMAC transduction likely occurs after entry into the nucleus, prior to
integration.

Poor relative infectivity of SIVMAC239 in human blood cells results from a
dominant-acting restriction activity
Human blood cells such as Jurkat T cells might be less permissive for SIVMAC transduction
because they lack a factor, which is present in epithelial cell lines such as HeLa, that promotes
SIVMAC transduction. Alternatively, human blood cells might possess an inhibitor of SIVMAC

transduction that is absent from the adherent cell lines. To determine which of these two possi-
bilities is correct, Jurkat T cells were fused with HeLa cells using polyethylene glycol. The
resulting heterokaryons were then challenged with the single-cycle, HIV-1NL4-3 GFP reporter
vector (hCA-GFP), or the isogenic vector bearing the SIVMAC239 CA (sCA-GFP), that were
shown schematically in Fig 5A.

A flow cytometry-based assay was established that discriminates infected heterokaryons
from those cells that fail to form heterokaryons (Fig 10). Primary flow cytometry data for a sin-
gle representative experiment is shown in Fig 10A; Fig 10B shows a bar plot of the results for
three independent experiments. The HeLa cells that were used in the fusion stably synthesized
TagRFP-657, a far-red fluorescent protein [73]. The Jurkat T cells that were used in the fusion
stably bore the avian leukosis virus TvA receptor on their surface. The HIV-1 CA-GFP and
SIV CA-GFP vectors were pseudotyped with avian leukosis virus subtype A (ALV-A) Env so
that the vectors were able to enter Jurkat-TvA cells but not the HeLa-RFP cells. Heterokaryons
formed by fusion of the two cell types would bear the cognate receptor for ALV-A Env and
would also be positive for RFP. Infected heterokaryons, then, would be positive for GFP and
RFP.

As a control, HeLa-RFP cells were engineered to express TvA (HeLa-RFP-TvA); in these
cells, transduction with SIV CA-GFP was 1.6-fold higher than with HIV-1 CA-GFP (Fig 10A).
Challenge of the Jurkat-TvA cells with HIV-1 CA-GFP and SIV CA-GFP recapitulated the
phenotype of the parental Jurkat cells. That is, transduction of Jurkat-TvA cells with SIV
CA-GFP was 5.6-fold less efficient than with HIV-1 CA-GFP, though, when these values are
corrected for the transduction efficiency on HeLa-TVA, the difference is 9-fold (Fig 10A).
When Jurkat-TvA cells were mixed with HeLa-RFP cells in the absence of polyethylene glycol,
no GFP/RFP double-positive cells were detected, and transduction with SIV CA-GFP was
6-fold (corrected) less efficient than with HIV-1 CA-GFP (Fig 10A). When Jurkat-TvA cells
were mixed with HeLa-RFP cells in the presence of polyethylene glycol, GFP/RFP double posi-
tive cells were detected, and transduction of this population with SIV CA-GFP was 7.3-fold
(corrected) less efficient than with HIV-1 CA-GFP (Fig 10A). The bar graph in Fig 10B shows
the results for three experiments with the standard deviation. The results of this heterokaryon
assay indicate that Jurkat T cells possess a dominant-acting restriction activity specific for SIV
CA.

Discussion
The characteristics of a previously unreported retroviral restriction activity in human blood
cells are described here. The first clue to the existence of this restriction activity was that SIV-

MAC239 transduced human blood cells less efficiently than did HIV-1. Lower SIVMAC239
transduction efficiency relative to HIV-1 was observed with all human blood-derived cells
tested here, including cell lines of lymphoid and myeloid lineage, human PBMCs and primary
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CD4+ T cells, and, as previously described [49,50,74], monocyte-derived dendritic cells and
macrophages. In contrast to blood-derived cells, fibroblasts, fibrosarcoma, epithelial carci-
noma, and glioblastoma cell lines were transduced as efficiently by SIVMAC239 as by HIV-1.

Fig 10. Evidence for a dominant-acting, capsid-specific, restriction activity in Jurkat T cells. (A) Jurkat and HeLa cells stably expressing the ALV-A
receptor (TvA) or TagRFP-657, as indicated, were fused by treatment with PEG and transduced with ALV-A Env-pseudotyped HIV-1NL4-3-GFP, or with
isogenic vector bearing the SIVMAC239 CA1-202. Shown are flow cytometry dot plots obtained 48 hrs post-transduction. HeLa-TagRFP-657 cells are only
permissive to infection with ALV-A Env-pseudotyped vectors after fusion with Jurkat-TvA. Infected heterokaryons were visualized as GFP and TagRFP-657
double-positive cells. As a positive transduction control, TagRFP-657 and TvA were also co-expressed in HeLa cells, as indicated. The percentage of
transduced cells are indicated. (B) Bar graph showing the infectivity of the SIVMAC239 CA1-202-bearing vector relative to the isogenic vector bearing HIV-1
CA, for the HeLa, Jurkat and heterokaryons. Data from the flow cytometry data shown in A, and two repeat experiments, is shown with the standard
deviation.

doi:10.1371/journal.ppat.1005050.g010
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The presence of a dominant-acting, SIVMAC239-specific, restriction factor in human blood
cells—as opposed to the lack of a cofactor for SIVMAC239 replication in these cells—was sup-
ported by the finding of a block to SIVMAC239 replication in Jurkat/HeLa-heterokaryons of
equal magnitude to the block in Jurkat T cells. Similar heterokaryon experiments demonstrated
the presence of a dominant restriction activity prior to the cloning of the retroviral restriction
factors APOBEC3G, TRIM5, and TETHERIN [42,43,75,76]. Several methods for quantitating
transduction of heterokaryon target cells were tried here, all of which gave similar qualitative
results. Of these assays, the heterokaryon assay presented in Fig 10 gave us the clearest assess-
ment of heterokaryon transduction efficiency; it exploits the specificity of the ALV/TVA inter-
action [77], and the clean spectral separation of GFP from the far-red fluorescent protein
TagRFP-657 [73].

As is the custom for naming dominant-acting, lentiviral restriction activities of unknown
identity [40,43,78,79], the SIVMAC239-specific restriction activity described here will be called
Lv4. Whether this activity is due to a single factor, or due to a multi-factor complex, remains to
be determined. Knockdown experiments presented here showed that Lv4 is distinct from
TRIM5 (Fig 8), the protein responsible for Lv1 activity [23,45]. Lv2 is an HIV-2 env-specific
restriction activity [80]. Lv4 restricts vectors that are pseudotyped with VSV G or with Env
from Lv2-resistant HIV-2 clone MCN (Fig 6) so it must be distinct from Lv2. For that matter it
also restricts vectors pseudotyped with HIV-1 Env, MLV ecotropic Env, or ALV-A Env (Fig 6)
so it acts independent of the viral entry pathway. Lv3 restricts HIV-1 in an env-specific fashion
[79] and so it must also be distinct from Lv4.

SIVMAC239 CA was sufficient to transfer Lv4-sensitivity when it was substituted for HIV-1
CA (Fig 5). This observation puts Lv4 in good company with a growing family of restriction
factors that target the retroviral CA. The CA-specific restriction factors Fv1 and TRIM5 can
be saturated by virus-like particles (VLPs) bearing restriction-sensitive CA [40,43,81,82].
Attempts to saturate Lv4 with SIVMAC239 virus-like particles were unsuccessful, though this
result was not unexpected since Lv4 was only observed in blood cells, and saturation of CA-
specific restriction activities in non-adherent cells that grow in suspension has not been
reported [59].

Others have shown that SIV transduces human T cell lines less efficiently than HIV-1 and
they provided suggestive evidence that this difference was independent of TRIM5 and CypA
[83]. Here, after demonstrating that Lv4 activity does not require TRIM5 through knockdown
experiments in either Jurkat or PBMC (Fig 8), our attention was directed to other potential
CA-specific candidates. Disruption of TNPO3 results in accumulation of the CA-binding pro-
tein CPSF6 in the cytoplasm and an associated block to HIV-1 nuclear entry [72]. Though inhi-
bition of SIVMAC by CPSF6 was slightly greater than that of HIV-1 [84], this differential effect
was much smaller than was observed with Lv4. Additionally, Lv4 blocks SIVMAC at a later stage
in the lentiviral life cycle than does CPSF6 (Fig 9), as demonstrated using the same assay for
bona fideHIV-1 2-LTR circles [72]. In response to the identification of MX2 in a targeted
screen for HIV-1 inhibitors among interferon stimulated genes (ISGs) [85], and prior to identi-
fication of MxB as a lentivirus CA-specific inhibitor [55–57], MX2 was found to inhibit HIV-1
and SIV equally well when ectopically expressed in either HT1080 or HeLa cells, and thus
ruled out as Lv4.

Like the restriction activity conferred by TRIM5 [47,61,67], Lv4 was suppressed by arsenic
(Fig 5). Efficient knockdown of TRIM5 in Jurkat T cells or in primary CD4+ T cells, though,
had no effect on SIVMAC titer (Fig 8), indicating that Lv4 is distinct from TRIM5. How arsenic
works to suppress restriction activity is not known. Among its many effects, arsenic inhibits
NFκB signaling by oxidizing a critical cysteine in IKKα/β [86]. This suggests that arsenic might
inhibit TRIM5 restriction activity by oxidizing critical cysteines. The fact that Lv4 is inhibited
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by arsenic suggests that, like TRIM5, it too might be a cysteine-containing protein. Attempts to
identify the host factor responsible for Lv4 activity by ectopically expressing a panel of 36
TRIM family members [87], each of which possess cysteine-rich zinc-fingers and b boxes, has
so far failed to identify an SIVMAC-specific inhibitor. That being said, the cell type-specific sup-
pression of TRIM5 restriction activity by arsenic [47] suggests that arsenic targets a common
cellular co-factor required for TRIM5 and Lv4 restriction activity. Such a co-factor might be an
innate immune signaling molecule like those shown to be required for TRIM5-mediated
restriction [48].

TRIM5 blocks retroviruses soon after entry into the cell cytoplasm [88]. This is evident as a
block to the accumulation of viral cDNA [23]. If this block to reverse transcription is removed
by arsenic or by proteasome inhibitors, a downstream block is encountered at the level of
nuclear transport, with a decrease in viral cDNA circles [30,31]. The capsid binding proteins
MX2 and, conditionally, CPSF6, both appear to block infection prior to entry in the nucleus
[56,57,72,89]. The block due to Lv4 occurred before integration, but after completion of reverse
transcription and nuclear entry, as indicated by levels of nascent viral cDNA, viral cDNA cir-
cles, and Alu-PCR (Fig 9). Thus, any putative factor underlying Lv4 activity likely interacts
with CA within the nucleus and acts to block integration. These results are consistent with the
steadily increasing evidence, acquired over many years, that CA plays an essential role within
the nucleus of newly infected cells [90–93].

Finally, sensitivity to Lv4 was not unique to SIVMAC but shared by other viruses in the same
family, including HIV-2 and SIVSM (Fig 4). Most studies here were performed with SIVMAC

because the restriction activity was more robust than for HIV-2, but it was not so severe as for
SIVSM, which precluded quantitation of restriction activity against the latter virus. The relative
restriction activity targeting these viruses is consistent with a model in which replication of
HIV-2 necessitated adaption of the SIVSM CA, such that it became relatively resistant to Lv4.
There was indeed a trend such that HIV-2 isolates from non-epidemic Groups were generally
more sensitive to Lv4 than were epidemic HIV-2 strains (Fig 5F). Though HIV-2 infects
humans, relative to HIV-1 this virus is still restricted by Lv4. Thus, Lv4 may contribute to the
fact that HIV-2-infected individuals are less likely to progress to AIDS than are those people
infected with HIV-1 [94].

Materials and Methods

Plasmid DNAs
HIV-1NL4-3GFP, SIVMAC239GFP, HIV-2RODGFP, SIVSME041GFP, and SIVSME543GFP
encode modified proviral clones for the respective viruses [31,45,54,95]; each of these plasmids
lacks functional env and encodes GFP instead of Nef. For some experiments, coding sequences
for residues 1 to 202 of HIV-1NL4-3GFP were replaced by overlapping PCR with the corre-
sponding CA coding sequences from HIV-2ROD, SIVMAC239, SIVSME041 or SIVSME543
[54,96,97]. CA1-202 chimeras were also generated within the context of p8.9NdSB [31,45,54,95];
the restriction sites BlpI and BstEII were introduced flanking CA coding sequences and the fol-
lowing sequences, synthesized by GenScript, were inserted at these restrictions sites:
>HIV-2(AB), 731744
GCTCAGCAAGCAGCAGCTGACACAGGAAACAACAGCCAGGTCAGCCAAAATTACCCAGTGCAACAAG
TAGCTGGCAATTATGTCCATGTGCCGTTAAGTCCCCGAACCTTAAATGCCTGGGTAAAATTAGTGGAG
GAAAAGAAGTTCGGGGCAGAAATAGTACCAGGATTTCAGGCACTATCAGAGGGATGTACCCCTTATGA
TATCAATCAAATGCTAAATTGTGTGGGAGAACACCAGGCAGCCATGCAAGTCATTAGAGAAATAAT
CAATGAAGAGGCGGCAGACTGGGACCAGCAACACCCGATACCAGGTCCACTGCCAGCAGGACAACTTA
GAGACCCCAGAGGATCAGATATAGCGGGAACCACCAGCACAGTAGAGGAACAAATACAGTGGATGTACA
GGGGTCAAAATTCCGTCCCAGTGGGGAACATTTATAGAAGATGGATTCAATTAGGATTGCAGAAA
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TGTGTCAGGATGTACAATCCTACTAATATACTAGATGTAAAACAAGGGCCAAAAGAACCCTTCCAAA
GCTATGTAGATAGATTCTACAAAAGCCTACGGGCAGAACAAGCAGACACAGCCGTGAGAGCATGGATGA
CAGAAACACTACTGGTCCAGAATGCTAACCCAGATTGCAAGCTAGTACTC
>HIV-2(A), GH123
TGTACAACAGACAGGCGGTGGCAACTATATCCACGTGCCACTGAGCCCCCGAACTCTAAATGCTTGGG
TAAAATTAGTAGAGGACAAGAAGTTCGGGGCAGAAGTAGTGCCAGGATTTCAAGCACTCTCAGAAGG
CTGCACGCCCTATGATATCAACCAAATGCTTAATTGTGTGGGCGATCACCAAGCAGCTATGCAAATAA
TCAGAGAGATTATCAATGACGAAGCAGCAGATTGGGATGCACAGCACCCAATACCAGGCCCCTTACCA
GCAGGGCAGCTTAGAGACCCAAGGGGGTCTGACATAGCAGGAACAACTAGCACAGTAGAAGAACAGA
TCCAGTGGATGTATAGGCCACAAAATCCCGTGCCGGTAGGGAACATCTACAGAAGATGGATCCAGATA
GGGCTACAGAAGTGTGTCAGGATGTACAACCCAACTAACATCTTAGACGTAAAGCAGGGACCAAAGGAA
CCGTTCCAGAGCTATGTGGACAGGTTCTATAAAAGCTTGAGGGCAGAACAAACAGATCCGGCAGTAAA
GAACTGGATGACCCAAACGCTGCTAATACAGAATGCCAACCCAGACTGCAAGTTAGTACTA
>HIV-2(D), L33083
AGTGCAGCAAGTCGGCGGAAATTATGTCCACCTACCGCTGAGTCCCAGAACATTAAATGCATGGG
TTAAGTTAGTGGAGGACAAAAAATTCGGGGCAGAGGTAGTGCCAGGGTTTCAGGCACTATCGGAAGG
CTGCACTCCGTATGACATCAATCAGATGCTAAATTGTGTAGGAGAACATCAGGCAGCCATGCAGATCA
TAAGGGAAATAATCAATGATGAGGCAGCAGATTGGGATCAGCAGCATCCACAACCAGGCCCACTACCA
GCAGGACAGCTCAGAGATCCACGAGGATCTGATATAGCAGGAACCACTAGCACAGTGGAGGAACAAATA
CAGTGGATGTACAGGCAGCAGAATCCCATACCAGTTGGAAATATCTATAGGAGATGGATCCAGCTA
GGGTTACAGAAATGTGTCAGAATGTACAACCCAACTAACATTCTGGATATAAAACAAGGGCCAAAAGA
GACGTTCCAGAGCTATGTAGATAGATTCTACAA
AAGCTTGAGGGCAGAACAAACAGACCCAGCAGTGAAAAATTGGATGACACAAACACTGCTGATTCAG
AATGCTAACCCAGATTGCAAGTTAGTACTA
>HIV-2(E), L33087
AGTGCAACAGATAGGAAATAACTATGTGCACTCTCCACTGTCCCCAAGAACATTGAATGCATGGGT
CAAATTAGTAGAAGAAAAGAAATTTGGAGCAGAGGTAGTGCCAGGCTTCCAGGCATTATCAGAAGGAT
GCACCCCGTATGACATCAACCAGATGCTTAATTGCGTGGGGGAACATCAGGCAGCCATGCAAATTATCA
GAGAGATAATCAATGAAGAAGCAGCAGATTGGGACGTACAGCATCCAAGAGGGCAACCGCCAGCACA
GGGCCTAAGAGACCCATCAGGATCAGACATAGCAGGGACAACCAGTACCCCCGCAGAACAAATAGA
GTGGATGTACAGGAATCCAAATCCAATCCCTGTGGGAGACATCTATAGAAGATGGATCCAGCTA
GGGCTCCAGAAATGTGTCAGAATGTATAATCCAACAAACATTCTGGACGTCAAACAGGGGCCCAAAGAA
TCTTTTCAGAGCTATGTAGATAGATTCTACAAAAG
CTTGAGGGCAGAACAAACAGACCCAGCAGTGAAAAATTGGATGACACAAACACTGCTGATTCAGAA
TGCTAACCCAGATTGCAAGTTAGTACTA
>HIV-2(F), U75441
AGTGCAGCAGGTAGGAGGAAATTACACCCATATTCCTCTGAGTCCGAGGACATTAAATGCTTGGGTT
AAATTAGTAGAGGAAAAGAAATTTGGGGCAGAAATAGTGCCAGGCTTCCAAGCATTGTCAGAAGGCT
GCACCCCTTATGATATTAATCAAATGTTAAATTGTGTAGGGGAACATCAGGCAGCCATGCAAATAAT
CAGGGAAATAATCAATGAAGAAGCAGCCGACTGGGATCAGAATCATCCAAGGCAGCTGCCAGCGCCAC
CAGGGCTGCGTGATCCGTCAGGATCTGACATTGCAGGAACAACTAGTACAGTACAAGAACAGATAGAAT
GGATGTACAGACAGGGTAACTCAATCCCAGTAGGGGACATTTACAGAAGATGGATCCAAATAGGCCTT
CAAAAATGTGTAAGAATGTACAATCCTACTAATATCCTAGATGTAAAACAGGGACCAAAAGAACCATTT
CAAAGCTATGTAGATAGATTCTACAAAAG
CTTGAGGGCAGAACAAACAGACCCAGCAGTGAAAAATTGGATGACACAAACACTGCTGATTCAGAATGC
TAACCCAGATTGCAAGTTAGTACTA
>HIV-2(H), AY5308
GGTGCAGCAGATAGGTGGCAATTATGCCCACCTACCTCTAAGTCCTAGAACACTCAATGCCTGGG
TAAAACTGGTAGAGGAGAAAAAATTTGGAGCAGAAGTAGTGCCAGGATTTCAGGCACTCTCAGAGGGCT
GCACGCCCTATGATATTAATCAAATGTTAAATTGCGTGGGAGAACATCAAGCTGCTATGCAAATTAT
CAGGGAAATAATTAATGATGAAGCAGCAGATTGGGACACACAGCACCCAAACCAAGGCCCACCACCAG
CAGGGCAACTTAGAGAGCCAAGAGGTTCTGATATTGCAGGAACAACTAGCACAGTGGAAGAGCAGATA
CAGTGGATGTACAGGCCGCAAAATCCAATACCGGTGGGTAACATCTATCGGAGATGGATCCAA
TTGGGCCTACAAAAATGTGTTAGAATGTACAATCCAACTAATATCTTAGATATAAAGCAAGGGCCAAA
GGAGCCATTTCAAAGTTATGTAGATAGATTCTACAA
AAGTTTGAGAGCAGAACAAACAGATCCAGCAGTGAAAAATTGGATGACTCAGACGCTGCTGATTCAGAA
TGCTAACCCAGACTGCAAACTCGTGTTA
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AGTGCAGCAAGTAGGTGGCAATTATACCCACCTACCCTTAAGTCCAAGAACATTAAATGCTTGGG
TAAAATTGATAGAAGAGAAAAAATTTGGGGCAGAAGTAGTGCCAGGATTCCAAGCACTATCAGAAGGCT
GCACTCCCTATGACATCAATCAGATGCTAAATTGTGTAGGGGAGCATCAATCAGCCATGCAAATTATT
AGAGAAATTATAAATGAAGAAGCTGCTGATTGGGATTTACAACACCCACAGCCAGGTCCAATACCAG
CAGGACAACTTAGAGACCCGAGAGGATCAGACATTGCAGGAACTACTAGCACAGTAGAAGAACAAATT
CAATGGATGTATAGGCAGCAAAACCCTATACCAGTAGGTAACATTTACAGAAGGTGGATCCAATTA
GGGCTGCAAAAATGTGTAAGGATGTATAATCCAACAAACATTTTAGATGTGAAACAAGGACCAAAAGA
GCCATTTCAAAGCTATGTAGATAGATTCTACAA
GAGTCTAAGAGCAGAACAAACAGACCCAGCAGTGAAAAATTGGATGACTCAAACACTGCTGATTCAAAA
TGCTAACCCAGATTGCAAATTGGTGCTC

pMD2.G encodes the vesicular stomatitis virus glycoprotein (VSV G) and psPAX2 encodes
HIV-1 Gag and Gag-Pol [98]. pCIG3N and pCIG3B encode N-tropic and B-tropic versions of
murine leukemia virus (MLV) Gag-Pol and pCNCG is an MLV-derived vector expressing GFP
[61,99]. pONY3.1 is an equine infectious anemia virus (EIAV) gag-pol plasmid and pONY8.0
is an EIAV GFP-packaging vector [68].

pAPM is a lentiviral vector expressing puromycin-resistance and a miR30-based knock-
down cassette from the spleen focus forming virus LTR [48,63,64]. The knockdown targeting
sequences used here were as follows: luciferase: 5’-tacaaacgctctcatcgacaag-3’, cyclophilin A
(CypA): 5’-ctggattgcagagttaagttta-3’, TRIM5: 5’-tgccaagcatgcctcactgcaa-3’. pAIP and pAIB are
lentiviral vectors expressing puromycin and blasticidin resistance respectively. The HIV-1 Env
glycoprotein expression plasmid was based on HXB2 [46] and the HIV-2 Env was from the
MCN clone [100]. MLV ecotropic Env was expressed from pFBMOSALF [101] and its cognate
receptor, mCAT1, was stably expressed with the pBABE-puro MLV-based vector. Codon opti-
mized TvA with a triple HA tag derived from pKZ261 [102] was cloned into pAIP (pAIP-TvA).
ALV-A env glycoprotein for virion pseudotyping was expressed from pAB6 [103]. Far red fluo-
rescence protein TagRFP-657 [73] was cloned into pAIB for stable expression (pAIB-RFP).

Cells
Cell lines were either grown in DMEM (293T, TE671, HeLa, NP2, U87, HT1080, and Crandall
feline kidney fibroblasts, CRFK cells) or RPMI (Jurkat, SupT1, CEM-SS, Raji, U937, and THP-
1), supplemented with 10% fetal calf serum as described before [61,104,105].

PBMC were separated by Ficoll density centrifugation, stimulated with PHA for 3 days, and
cultured in RPMI supplemented with antibiotics, 10% fetal bovine serum, and 20 IU/ml hIL-2
[67,106].

CD4+ T lymphocytes were enriched from PBMC by positive selection using magnetic beads
(Miltenyi Biotec). Typically the resulting population was>99% CD4+. Cells were stimulated
for 24 hrs on NUNCmaxisorp plates that had been coated with 2 μg/ml anti-CD3 antibody
and 2 μg/ml anti-CD28 antibody (BD Biosciences) in RPMI with 10% FBS, glutamax (Invitro-
gen), and 20 IU/ml hIL-2. Two wks after primary stimulation, cells were re-stimulated using
plate-bound anti-CD3 and anti-CD28 antibodies.

Production of viral stocks
VSV G-pseudotyped viral stocks of HIV-1, SIVMAC239, and the CA chimera vectors described
above, were prepared by co-transfection of the indicated plasmids with pMD2.G in 293T cells,
as described [31]. Virion stocks were normalized by reverse transcriptase assay [31] and by
titer on non-restrictive CRFK cells or HeLa cells [107]. For production of the shRNA-express-
ing APM vectors, 8 x 106 cells were plated per 10-cm plate. The next day, cells were transfected
using Lipofectamine 2000 (Invitrogen) and 20 μg of pAPM, 15 μg of psPAX2 and 5 μg of

Capsid-Specific Restriction of SIVMAC/SIVSM/HIV-2 by Lv4

PLOS Pathogens | DOI:10.1371/journal.ppat.1005050 July 16, 2015 21 / 29



pMD2.G. Supernatant was collected and passed through a 0.45 μM filter at 48 hrs and at 72 hrs
post-transfection, and used immediately to transduce target cells.

Challenge with GFP reporter virus
Reporter virus-containing supernatant was titrated onto 4 x 104 of the indicated target cells, in
0.4 ml media per well, in 24-well plates. As2O3 (Sigma) was prepared as described [31] and,
where indicated, added to the cell culture 15 mins prior to virus addition. Cell supernatant was
replaced with fresh medium without drug, 12 hrs after addition of virus. Cells were trypsinized
when necessary and analyzed by flow cytometry 48 hrs after infection, as described [61].

RNA interference using lentivirus vectors
Jurkat cells or primary CD4+ T cells were spinfected with shRNA-encoding APM vectors
twice, at 24 hr and 48 hr after stimulation with plate-bound anti-CD3 and anti-CD28 antibod-
ies. Spinfection was done at 1,130 rcf for 90 mins, using 2 ml of freshly produced virus superna-
tant for each well of a 6-well plate containing 5 x 105 stimulated lymphocytes. Cells were put in
5 μg/ml of puromycin for 72 hrs, 2 days after the first spinfection.

Reverse transcriptase assay
Virus-containing supernatant was harvested 48 hr post-transfection, clarified by low-speed
centrifugation, and filtered through 0.45 μm pore filters (Sarstedt). Reverse transcriptase (RT)
activity in the supernatant was quantified using a modified Sybr green I-based, real-time PCR,
enhanced RT assay [108,109]. Virions in cell-free supernatant were disrupted by adding an
equal volume of a solution containing 0.25% Triton X-100, 50 mM KCl, 100 mM Tris-HCl pH
7.4, and 0.4 U/μl RNase inhibitor (RiboLock, MBI Fermentas). Virion lysate was then added to
a single-step, RT PCR assay with 35 nMMS2 RNA (Roche) as template, 500 nM of each primer
(5’-TCCTGCTCAACTTCCTGTCGAG-3’ and 5’-CACAGGTCAAACCTCCTAGGAATG-
3’), and hot-start Taq (Promega), all in 20 mM Tris-Cl pH 8.3, 5 mM (NH4)2SO4, 20 mM KCl,
5 mMMgCl2, 0.1 mg/ml BSA, 1/20,000 SYBR Green I (Sigma), and 200 μM dNTPs. All reac-
tions and quantitation of product were carried out with a Biorad CFX96 cycler. The RT step
was 42°C for 20 min, and the PCR was programmed for 40 cycles of denaturation at 95°C for
5 s, annealing 55°C for 5 s, extension at 72°C for 20 s and acquisition at 80°C for 5 s. A standard
curve was obtained using known concentrations of recombinant HIV-1 RT (Ambion).

Quantitation of viral cDNA
Cell-free virions were normalized by RT-activity and incubated with CRFK, Hela or Jurkat
cells in 6-well plates for 12 hrs, for full-length linear cDNA and 2-LTR circles, or 48 hrs, for
Alu PCR. For each virus and cell type, infections were also performed in the presence of 40 μM
AZT, to control for contamination of plasmid DNA in the PCR reaction. Cells were harvested
and washed extensively with PBS. Total DNA was extracted (Qiagen, Qiamp DNAmini kit),
quantified, and subjected to real-time PCR with a Biorad CFX96 cycler.

Full-length linear retroviral cDNA and 2-LTR circles were detected with SYBR-Green I
based reactions using 100 ng template DNA and 320 nM of each primer pair (5’-ACAAGCT
AGTACCAGTTGAGCCAGATAAG-3’ and 5’-gccgtgcgcgcttcagcaagc-3’ for full length linear;
5’-AACTAGGGAACCCACTGCTTAAG-3’ and 5’-TCCACAGATCAAGGATATCTTGTC-5’
or 5’- CAGTGTGGAAAATCTCTAGCAGTAC-3’ for 2-LTR circles) in 20 mM Tris-Cl pH
8.3, 5 mM (NH4)2SO4, 20 mM KCl, 5 mMMgCl2, 0.1 mg/ml BSA, 1/20,000 SYBR Green I
(Sigma), and 200 μM dNTPs. The PCR was programmed for 40 cycles of denaturation at 95°C
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for 5 s, annealing 55°C for 5 s, extension at 72°C for 20 s and acquisition at 80°C for 5 s. Provi-
rus was quantified by Taqman-based ALU-PCR according to the protocol described by Butler
et al. [69] using 200 ng of template DNA, primers 5’-AACTAGGGAACCCACTGCTTAAG-30

and 50-TGCTGGGATTACAGGCGTGAG-30 and probe 50-(FAM)-ACACTACTTGAAGCA
CTCAAGGCAAGCTTT-(TAMRA)-30. PCR was performed with a CFX96 cycler (Biorad):
95°C for 15 seconds and 60°C for 90 seconds, for 50 cycles. Relative quantification of retroviral
cDNA sequences and ALU PCR was with respect to standard curves prepared from serial dilu-
tions of DNA derived from the cell culture with the highest infection, diluted in DNA extracted
from non-infected cells.

Microscopy
CRFK and Jurkat cells transduced with VSV G-pseudotyped HIV-1NL4-3GFP or SIV-

MAC239-GFP vectors were visualized by phase contrast and fluorescence microscopy 4 days
after vector challenge. Pictures of live cell cultures were taken at 100x magnification using a
Nikon Eclipse Ti microscope equipped with a DS-QiMC digital camera and NIS elements
software.

Heterokaryon assay
2 x 107 Hela-RFP and 2 x 107 Jurkat-TvA were washed with serum-free DMEM and slowly
resuspended over 1 min in 500 μl of Polyethylene Glycol 1500 (PEG-1500, GE Healthcare), at
37°C. Cells were incubated for another 2 mins and then 2 ml of serum-free DMEM was added
slowly over a period of 4 minutes at 37°C with constant, gentle agitation. An additional 5 ml of
serum-free DMEM was added and cells were incubated for 5 min at 37°C. Cells were then pel-
leted and resuspended in complete medium before seeding in 24-well plates. 6 hours later, cells
were challenged with ALV-A Env-pseudotyped vectors. A negative fusion control sample was
also produced with no PEG addition. Infected cell cultures were analyzed using a FACS-Canto
(BD) 48 hrs after vector challenge. Fluorescence acquisition was performed using blue (488
nm) and red (633 nm) lasers. Dead cells were excluded from the analysis based on propidium
iodide staining.
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