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Splenic differentiation and emergence of
CCR5þCXCL9þCXCL10þ monocyte-derived
dendritic cells in the brain during cerebral malaria
Isabella C. Hirako1,2,*, Marco A. Ataide1,3,*, Lucas Faustino2, Patricia A. Assis1, Elizabeth W. Sorensen2,

Hisashi Ueta2, Natalia M. Araújo1,3, Gustavo B. Menezes3, Andrew D. Luster2,** & Ricardo T. Gazzinelli1,3,4,**

Dendritic cells have an important role in immune surveillance. After being exposed

to microbial components, they migrate to secondary lymphoid organs and activate

T lymphocytes. Here we show that during mouse malaria, splenic inflammatory monocytes

differentiate into monocyte-derived dendritic cells (MO-DCs), which are CD11bþF4/80þ

CD11cþMHCIIhighDC-SIGNhighLy6cþ and express high levels of CCR5, CXCL9 and CXCL10

(CCR5þCXCL9/10þ MO-DCs). We propose that malaria-induced splenic MO-DCs take a

reverse migratory route. After differentiation in the spleen, CCR5þCXCL9/10þ MO-DCs

traffic to the brain in a CCR2-independent, CCR5-dependent manner, where they amplify the

influx of CD8þ T lymphocytes, leading to a lethal neuropathological syndrome.
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M
onocytes, macrophages and dendritic cells (DCs) are
heterogeneous cell populations that have critical roles
in tissue repair, sensing the presence of invasive

microorganisms and initiating protective immune responses.
These cell subsets have overlapping functions. DCs are more
specialized in antigen presentation and shaping T-cell-mediated
immunity, whereas macrophages primarily act as a source of
proinflammatory cytokines and phagocytic cells that effectively
destroy pathogens. Monocytes are less specialized cells that
contribute to the overall production of inflammatory cytokines,
anti-microbial effector functions and are the main progenitors for
DCs and macrophages1–3.

DCs, monocytes and macrophages are thought to have an
important role in host resistance to both mouse and human
malaria4,5. During malaria, DCs are activated through Toll-like
receptors (TLRs), primarily TLR9 (refs 6–9), and serve as an
important source of interleukin (IL)-12. IL-12 activates natural
killer cells to produce interferon-g (IFNg) and promotes
differentiation of T-helper type 1 (Th1) lymphocytes that
orchestrate acquired protective immunity against Plasmodium
infection10–16. Importantly, uptake of infected erythrocytes seems
to inhibit maturation and function of human DCs17, and a low
number of circulating DCs is associated with impairment of
antigen-specific T-cell responses in symptomatic patients infected
with either Plasmodium falciparum or Plasmodium vivax,
suggesting their role in resistance to human disease18. In
addition, inflammatory monocytes in mouse (CCR2þLy6cþ

and F4/80þ ) and humans (CD14þCD16high), as well as in
DCs, are important sources of inflammatory cytokines and
reactive nitrogen and oxygen intermediates that effectively
destroy Plasmodium parasites within phagocytosed infected red
blood cells (iRBCs)11,19–21.

DCs also contribute to the pathogenesis of mouse malaria.
Blockade of T cell and DC interaction prevents a deleterious
response that is associated with a wasting syndrome and
hypothermia in Plasmodium chabaudi-infected mice22. DCs are
also required for the development of experimental cerebral
malaria (ECM)23. In addition, a subset of Ly6cþ monocytic cells
is critical for recruiting CD8þ T cells to the central nervous
system (CNS) and development of ECM24. Furthermore, a high
proportion of inflammatory monocytes and DCs express
inflammasomes and on a secondary microbial stimuli release
excessive levels of IL-1b, both in mouse and human malaria25.

Although most DC progenitors that enter peripheral tissues
at homeostasis are not monocytes, studies have demonstrated
that in response to infection or inflammation, monocytes
can be induced to differentiate and provide important DC
functions26–36. Monocyte-derived DCs (MO-DCs) share many
morphological and functional characteristics with conventional
DCs (cDCs), including antigen capture and presentation to
CD4þ T lymphocytes, as well cross-presentation to CD8þ T
lymphocytes. Monocytes are more abundant than DCs in the
blood and bone marrow (BM), and the in vivo mobilization of
this monocyte reservoir to generate potent antigen-presenting
DCs is of central importance during microbial infection31–34,36.

Studies have defined markers that enable the distinction of
cDCs and inflammatory monocytes from MO-DCs; however, the
role of MO-DCs in mouse malaria, as well as in neuroinflamma-
tion observed during ECM, has not been explored. Here we report
that MO-DCs emerge as a main splenic DC population during
early stages of Plasmodium berghei ANKA (PbA) infection in
mice. These MO-DCs are unique in that they express high levels
of the chemokine receptor CCR5, as well as the IFN-inducible
CXCR3 chemokine ligands CXCL9 (MIG) and CXCL10 (IP10)
(CCR5þCXCL9/10þ MO-DCs). CCR5þCXCL9/10þ MO-DCs
are the main DC subset in the CNS of mice with cerebral malaria.

Importantly, emergence of MO-DCs in the CNS and
development of ECM is dependent on MO-DC CCR5 expression
and independent of CCR2 expression. Our results reveal a
previously unappreciated role of MO-DCs in PbA-induced
neuroinflammation and the mechanism by which CCR5 mediates
the development of ECM.

Results
Malaria infection induces MO-DCs. Recent studies have
demonstrated that in vivo microbial challenge signal inflamma-
tory monocytes to differentiate into MO-DCs35,36. Here we
evaluated whether MO-DCs emerge during mouse malaria by
searching for CD11cþMHC IIhighCD11bþF4/80þDC-SIGNhigh

cells in the spleen, a main site of phagocytic cell interaction with
Plasmodium iRBCs. For this purpose, we gated double-positive
CD11b and F4/80 spleen cells for MHC IIhighDC-SIGNþ

CD11cþ (ref. 35). The results presented in Fig. 1a indicate that
the frequency of MO-DCs in total CD11bþF4/80þ splenic cells
was increased from 18% in uninfected to 74% in PbA-infected
mice. In addition, the level of expression, as indicated by the
mean fluorescence intensity (MFI), of DC-SIGN and major
histocompatibility complex (MHC) II in MO-DCs from infected
mice increased threefold. A fraction of these cells also expressed
different levels of Ly6c. In contrast, the frequency of CD11bþF4/
80þDC-SIGNintMHC II�CD11c�Ly6chigh cells (inflammatory
monocytes) decreased from 19% to 4.4%, suggesting that
inflammatory monocytes were converted into MO-DCs.
After infection, most monocytes (Gate 3, CD11bþ

F4/80þDC-SIGN�MHC II�CD11c� ) became Ly6chigh, but as
a whole the difference in number of cells was not statistically
significant when comparing uninfected with infected wild-type
(WT) mice. We also performed the initial gating on
CD11cþMHC IIhigh cells and then on the DC-SIGNþLY6cþ

population, and confirmed that over 89% of these cells in
PbA-infected mice were CD11bþF4/80þ (Supplementary
Fig. 1A). In addition, our analysis indicated that the frequency
of CD11cþMHC IIhighCD11b�F4/80�DC�SIGN�Ly6c� cells,
which correspond to cDCs, decreased from 48% in uninfected
control mice to 20% of total CD11cþMHC IIhigh in infected mice.

To further characterize the MO-DCs, we sorted MO-DCs
(95–99% purity) by flow cytometry (Supplementary Fig. 2) and
analysed by Giemsa staining. and optical and scanning electronic
microscopy (SEM) (Fig. 1b). The results obtained from SEM
show that morphology of MO-DCs is heterogeneous. Although a
significant proportion of MO-DCs from PbA-infected mice were
typical DCs with a smooth surface and dendrites, other cells
displayed characteristics of monocytes or transitional morpholo-
gical phenotypes. Interestingly, we found in the Giemsa staining
that a high frequency of MO-DCs purified from infected mice
contained haemozoin, which are haem polymers produced by the
parasite. To further evaluate the phagocytic capacity of MO-DCs,
we incubated spleen cells from uninfected controls and infected
mice with erythrocytes infected with a PbA clone that expresses
green fluorescent protein (GFP). By flow cytometry, we demon-
strated that MO-DCs were highly efficient phagocytic cells, when
compared with inflammatory monocytes and monocytes (Fig. 1c).
In addition, we observed that unlike inflammatory monocytes and
monocytes, MO-DCs express very high levels of CD80 and CD86
(Fig. 1d and Supplementary Fig. 1B). Furthermore, MO-DCs,
but not monocytes, cross-presented soluble antigens (Fig. 1e),
suggesting that they play an important role on activating CD8þ

T lymphocytes either in the spleen or in the CNS.

Malaria-induced CCR5þCXCL9/10þ MO-DCs. To further
characterize MO-DCs, lysates of highly purified fluorescence-
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activated cell-sorted MO-DCs (Supplementary Fig. 2) were
obtained and gene transcripts analysed for 547 immune-related
genes plus 14 housekeeping genes using a commercially available
set of nanostring probes. We observed an increase in the
expression of B18% of the analysed genes in MO-DCs isolated

from the spleens of infected mice compared with uninfected mice.
Of note, the induction in the expression of CXCL9 (24-fold
increase) and CXCL10 (19-fold increase) stood out. In addition,
the expression of CCR5 was enhanced sixfold (Fig. 2a). As CXCL9
and CXCL10 have been shown to play an important role on
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ECM37–39, we further investigated the expression of these
chemokines in spleens of PbA-infected mice. The results
presented in Supplementary Fig. 3A show that expression of
CXCL9 and CXCL10 messenger RNA achieved the highest level
from 5 to 7 days post infection, coinciding with the peak of MO-
DCs in the spleen. We also used the reporting expression of
CXCR3 ligands (REX3) transgenic mice that express the red
fluorescent protein (RFP) and blue fluorescent protein (BFP) as
reporter genes under the control of the CXCL9 and CXCL10
promoters, respectively40. We found that a large proportion of the
double-positive RFPþBFPþ cells from infected mice were
MO-DCs (Fig. 2b,c). Likewise, over 80% of these cells were
CCR2þCCR5þ , whereas the inflammatory monocytes and
MO-DCs from uninfected mice were CCR2þ , but CCR5�

(Fig. 2d).
We also asked whether MO-DCs might be directly recruited

from the BM. WT mice were infected with PbA and emergence of
inflammatory monocytes or MO-DCs in the BM and spleens
evaluated side-by-side. Our results presented in Fig. 3a,b indicate
that there is an increase of F4/80þ , CD11bþ and MHCIIþ in
the BM. However, in contrast to spleen MO-DCs, these cells were
both CD11C� and CCR5� . Hence, our results suggest
that inflammatory monocytes acquire the MO-DC phenotype
elsewhere and cannot be recruited directly from the BM by
CCR5 ligands. Importantly, we performed the adoptive cell
transfer experiments. Monocytes (F4/80þCD11bþDC�SIGN�

MHCII�CD11c� ) were enriched from spleens of uninfected
CD45.2 C57BL/6 mice and two million cells transferred to either
uninfected or PbA-infected CD45.1 congenic mice. Two days
later, we gated F4/80þCD11bþ cells and looked for distribution
of DC-SIGN�MHCII� , DC-SIGNþMHCII� and DC-SIGNþ

MHCIIþ , which were either CD45.2þ or CD45.1þ . We found
that the frequencies of splenic CD45.2þ MO, inflammatory
monocytes and MO-DCS, as well as splenic CD45.1þ MO,
inflammatory monocytes and MO-DCs, were similar, respectively
(Fig. 3c). In uninfected mice, we found that migration of
F4/80þCD11bþ CD45.2þ MO to the spleen was highly reduced
and we detected very low frequency of either CD45.1þ MO-DCs
or CD45.2þ MO-DCs. These data are consistent with the
hypothesis that splenic monocytes are differentiating into
MO-DCs.

CCR5þCXCL9/10þ MO-DCs in the CNS of PbA-infected mice.
We next evaluated the presence of MO-DCs in the CNS of mice
undergoing ECM. To analyse the presence of MO-DCs in the
CNS of PbA-infected mice, we first gated the CD45high brain
mononuclear cells to discriminate haematopoietic cells from

microglia (CD45interm). As the cellular infiltrate in ECM is highly
enriched for CD8þ T cells, we then gated on CD45highCD8�

cells. MO-DCs emerge at day 5 and peaked at day 7 post infection
with PbA, which coincides with the expression of CXCL9 and
CXCL10, and other inflammatory mediators in the CNS (Fig. 4a
and Supplementary Figs 3B and 4A). Importantly, most of
CD45þCD11cþMHC IIhigh cells in the CNS were also
CD11bþF4/80þ , which is consistent with the MO-DC
phenotype. We further analysed brain mononuclear cells from
PbA-infected mice for CXCL9, CXCL10 and CCR5 expression.
We found no cells expressing CXCL9 and CXCL10 in uninfected
REX3 mice (Fig. 4b). In infected REX3 mice, BFPþRFPþ cells
were CD45high. CD45highCD8þ cells were BFP�RFP� , whereas
B60% of CD45highCD8� cells were BFPþRFPþ (Fig. 4c).
Furthermore, 80% of CD45highCD8�BFPþRFPþ cells were
CD11bþLy6cþCD11cþ MHC IIhigh, consistent with the
hypothesis that MO-DCs are also a main haematopoietic source
of CXCL9 and CXCL10 in the CNS of infected mice (Fig. 4c).
CD45interm and CD45� cells, most probably microglia and
neuron or glial cells, respectively, were both BFP and RFP
negative. Finally, we evaluated the expression of CCR2 and CCR5
in MO-DCs derived from CNS of infected mice. The results
shown in Fig. 4d demonstrate that B60% of brain MO-DCs from
infected, but not from control mice, were double positive for
CCR2 and CCR5.

IFNc-induced expression of CXCL9 and CXCL10 by MO-DCs.
A recent study has demonstrated that IFNg is an important
mediator of MO-DC differentiation36. In addition, IFNg has been
shown to induce the expression of CXCL9 and CXCL10 in
macrophages. Hence, we used IFNg� /� and REX3IFNgR� /�

mice infected with PbA. We first evaluated the profile of gene
expression in highly purified splenic MO-DCs (Supplementary
Fig. 2) isolated from infected C57BL/6 and IFNg� /� mice. From
98 PbA-induced genes, 58 (60%) were dependent on endogenous
IFNg. Expression of CXCL9 and CXCL10 mRNA induced by PbA
infection was totally absent in MO-DCs from IFNg� /� mice,
whereas enhanced expression of other genes, such as CCR5, CCL7
and CCL8, was independent of endogenous IFNg (Fig. 5a).
Consistently, MO-DCs from REX3, but not from REX3IFNgR� /�

mice, expressed high levels of RFP and BFP (Fig. 5b,c).
We also tested whether IFNg is necessary for differentiation of

MO-DCs. We noticed an accumulation of inflammatory mono-
cytes and decreased frequency of MO-DCs in REX3/IFNgR� /�

and IFNg� /� relative to REX3 and C57BL/6 mice infected
with PbA (Fig. 5b,c and Supplementary Fig. 5). Together, these
results indicate that differentiation of precursor inflammatory

Figure 1 | Differentiation of splenic MO-DCs in PbA-infected mice. Spleens were harvested 5 days after PbA infection. (a) Splenocytes were first gated

for F4/80þCD11bþ cells and then for DC-SIGNþMHC IIhigh cells. F4/80þCD11bþDC-SIGNhighMHC IIhigh cells were checked for CD11cþ and Ly6cþ

expression. Bar graphs correspond to total number of cells (four mice per group). The data shown are representative of eight independent experiments.

Results are expressed as median±s.d. An asterisk indicates that difference is statistically significant when comparing infected and non-infected mice

(Po0.01) after Mann–Whitney U-test. (b) Splenocytes were labelled with fluorescent antibodies and CD11cþCD11bþF4/80þDC-SIGNhighMHC IIhigh

MO-DCs purified by flow cytometry and analysed by Giemsa staining and optical microscopy, as well as SEM. Panel 1 and panels 2, 3 and 4 of SEM

illustrate MO-like and DC-like cells, respectively. White arrows indicate haemozoin crystals inside purified MO-DCs (scale bar, 10mm). (c) Flow cytometry

histograms show the MFI results from spleen cells of uninfected (shaded lines) versus infected (open lines) incubated, at 1:1 ratio, with uninfected RBCs

(blue) or RBCs infected with GFP-expressing PbA (red). The results indicate the phagocytic activity of MO-DCs, inflammatory monocytes and monocytes,

as indicated. Bar graphs correspond to the MFI average of three to four mice per group. The data shown are representative of two independent

experiments. (d) Expression of co-stimulatory molecules CD80 and CD86 on cell surface of monocytes, inflammatory monocytes and MO-DCs. (e) Cell

Trace-labelled naive OT-I cells were cultured with monocytes or MO-DCs (495% purity) from PbA-infected mice at indicated APC/T cell ratio in the

presence of OVA protein (40mg ml� 1), and 3 days later the percentage of Cell Tracelow CD8þ T cells was evaluated. Representative histograms on the left

and top right graph show average and s.e. of T-cell proliferation. Average and s.e. of IFNg production in the medium of co-cultures at 1:3 ratio measured by

enzyme-linked immunosorbent assay are shown in the right bottom graph. Data are representative of two independent experiments with three mice per

group, which yielded similar results. Results expressed as mean±s.d. Differences considered statistically significant comparing infected and non-infected

mice after two-way analysis of variance, *Po0.05, **Po0.01.
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Figure 2 | Expression of CXCL9 and CXCL10 by MO-DCs from PbA-infected mice. Splenocytes were harvested at 6 days post PbA infection.

CD11cþCD11bþF4/80þDC-SIGNhighMHC IIhigh MO-DCs were purified by flow cytometry (Supplementary Fig. 2) and analysed for (a) RNA expression of

immune-related genes using an nCounter Analysis System. The results indicate fold increase of gene expression, when comparing MO-DCs isolated from

three infected mice compared with three non-infected mice. (b) Confocal microscopy of the spleen from an infected REX3 mouse. Top panels shows

F4/80þ (APC converted in green), CXCL9-RFP and CXCL10-BFP staining. Bottom panels show CD11cþ (APC converted in green), CXCL9-RFP and

CXCL10-BFP staining. Arrows and arrowheads show double- and triple-positive cells, respectively (scale bar, 100mm). (c) PbA-infected REX3 mice

were killed at day 6 post infection and splenic MO-DC cells analysed for CXCL9 and CXCL10 expression. Spleen cells were first gated on double-positive

CXCL9/CXCL10, and then on F4/80þCD11bþ and DC-SIGNþMHC IIþ cells. All CXCL9þCXCL10þF4/80þCD11bþDC-SIGNþMHC IIþ cells were

CD11cþ . (d) Spleen cells harvested 6 days post infection were first gated on F4/80þCD11bþ and then on CD11cþMHC IIþ cells. The majority of

MO-DCs from uninfected and PbA-infected mice were CCR2þCCR5� and CCR2þCCR5þ , respectively. Representative primary flow cytometric dot plots

are shown. The data are representative of three experiments with three mice per group that yielded similar results. Results are expressed as median±s.d.

Difference considered statistically significant when comparing infected and non-infected mice (**P40.01) after Mann–Whitney U-test.
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Figure 3 | Differentiation of splenic MO-DCs in mice infected with PbA. Spleens and BM were harvested from mice, either uninfected or 5 days post PbA

infection. Splenocytes and BM cells were then labelled and analysed by fluorescence-activated cell sorting. We first gated F4/80þCD11bþ cells and then

CD11cþMHC IIhigh cells, which are the MO-DCs. (a) Representative primary flow cytometric dot plots are shown. Upper bar graph on the right
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F4/80þCD11bþ population. (b) Flow cytometry histograms show the MFI results of CCR5 expression in total F4/80þCD11bþ cells of uninfected (shaded

lines) versus infected (open lines). Bar graph corresponds to MFI average of CCR5 expression. The data shown in a and b are representative of two

independent experiments (three mice per group). (c) Enriched splenic F4/80þCD11bþDC-SIGN�MHC-II� cells from uninfected CD45.2þ donor mice
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results. Results are expressed as mean±s.d. Differences were considered statistically significant when *Po0.05, as indicated by two-way analysis of

variance, ***Po0.001.
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Figure 4 | High levels of MO-DCs in the brain from PbA-infected mice. (a) MO-DCs (CD45highCD8�CD3�CD11bþ Ly6cþMHC IIþDC-SIGNhigh

CD11cþ ) were quantified by flow cytometric analysis within brain mononuclear cells (BMNCs) isolated at 0, 5 and 7 days post infection with PbA.

(b) BMNCs from uninfected REX3 mice were analysed by flow cytometric analysis. Cells that were first selected on CD45high and then CD8� cells were

negative for CXCL9 (RFP) and CXCL10 (RFP). (c) Cells first selected on CD45high and then CD8� from BMNCs from PbA-infected REX3 mice were B70%

double positive for the CXCL9 and CXCL10 reporters. Eighty percent of CD45hiCD8�CXCL9þCXCL10þ cells were CD11bþLy6cþCD11cþMHC IIþ .

CD45low/negativeCD8� BMNCs were all negative for CXCL9-RFP and CXCL10-BFP. Representative primary flow cytometric dot plots are shown after

CD45high gating for leukocytes. (d) BMNCs were harvested from WT mice at 0 and 7 days post infection and expression of CCR2 and CCR5 analysed in

MO-DCs, first selected on CD45high, gated on CD8�CD3� and then on Ly6cþCD11bþ . The histogram in the far right represents the MFI of CD11c

expression on MO-DCs from uninfected and PbA-infected mice. Data represent the average of three or four mice per group and results are representative

of three independent experiments. Differences were considered statistically significant when *Po0.05 or **Po0.01 as indicated by two-way analysis of

variance (values are means±s.d.). (a) or Mann–Whitney U-test (values are medians±s.d.) (d).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13277 ARTICLE

NATURE COMMUNICATIONS | 7:13277 | DOI: 10.1038/ncomms13277 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


105

105

104

104

103

F
4/

80
F

4/
80

4.82 32.2 24.7 0.40

0.2830.440.6

13.2

7.98

17.9

2.34 31.1 12.2 0.95

76.269.210.3

9.48

C
X

C
L9

C
X

C
L9

D
C

-S
IG

N
D

C
-S

IG
N

MO-DCs
(Gate 1)

Monocytes
(Gate 3)

In
fla

m
m

at
or

y
m

on
oc

yt
es

 (
G

at
e 

2)

37.6

Rex3 transgenic mice

Rex3 transgenic IFNγR–/– mice

4.76

CD11b
MHC II CXCL10

CD11b MHC II

CD11b+ F4/80+
G1 - CD11b+ F4/80+

DC-SIGN+ MHC+

G2 - CD11b+ F480+
DC-SIGNint MHC–

G3 - CD11b+F480+
DC-SIGN– MHC II–

CD11b+F4/80+DC–SIGN+
MHC II+CXCL9+CXCL10+

12 80

60

40

20

0

9

6

3

0

%
 o

f c
el

ls

%
 o

f c
el

ls

50

40

20

10

30

0

%
 o

f c
el

ls

50

40

40

4

0

60

80

820

10

30

0

%
 o

f c
el

ls

%
 o

f c
el

ls

Non-
infected

Rex3

Rex3IFNγR

6 days post-
infection

Non-
infected

6 days post-
infection

Non-
infected

6 days post-
infection

Non-
infected

6 days post-
infection

Non-
infected

6 days post-
infection

****
****

****
**

CXCL10

N
on

-in
fe

ct
ed

In
fe

ct
ed

N
on

-in
fe

ct
ed

In
fe

ct
ed

103

0

105

104

103

0

105

104

103

102

0

105

104

103

102

0

105

104

103

102

0

105

104

103

102

0

105

104

103

0

105

104

103

0

105

104

103

0

0 1051041030

1051041030 1051041030

1051041030

1051041030

1051041030 1051041030 1051041030

105

104

103

0

105

104

103

0

105

104

103

0

1051041030 1051041030 1051041030

0.5 1.0 8.0

CD11c+CD11b+F4/80+

DC-SIGN+MHC IIhigh

G
1 

fr
om

 IF
N

γ–
/–

in
fe

ct
ed

G
1 

fr
om

 C
56

B
L/

6
in

fe
ct

ed

*

*

a b

c

Cc111
Cc112
Cc119
Cc12
Cc120
Cc122
Cc124
Cc125
Cc126
Cc13
Cc14
Cc15
Cc16
Cc17
Cc18
Cc19
Ccr10
Ccr2
Ccr3
Ccr4
Ccr5
Ccr6
Ccr7
Ccr8
Ccr9
Chuk
Cx3c11
Cx3cr1
Cxc11
Cxc110
Cxc111
Cxc112
Cxc113
Cxc115
Cxc13
Cxc19
Cxcr1
Cxcr2
Cxcr3
Cxcr4
Cxcr5
Cxcr6
Ikbkb
Ikbkg
Jak2
Jak3
Mapk1
Nfkb1
Nfkbia
Ppbp
Prkcd
Ptk2
Rela
Src
Stat1
Stat2
Stat3
Stat5b
Xc11
Xcr1
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were infected with PbA and their spleens harvested at 6 days later. (a) Gene expression was analysed in total RNA extracted from highly purified (over

98% purity) MO-DCs from infected C57BL/6 and IFNg� /� mice by nCounter Analysis System. Data represent the average of gene expression of three

mice per group. (b) Representative primary flow cytometric dot plots are shown for splenic MO-DCs from REX3 and REX3/IFNgR� /� mice gated on
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monocytes into MO-DCs is impaired in mice lacking either
functional IFNg or IFNgR genes.

TLR-induced expression of CXCL9 and CXCL10 by MO-DCs.
Cheong et al.35 demonstrated that lipopolysaccharide induces

differentiation of inflammatory monocytes into MO-DCs.
It is also well established that Plasmodium infection activates
the innate immune system primarily by activation of TLR9
(refs 6–9,41) and other nucleic acid sensors42,43. The activation of
TLR9 during PbA infection induces the production of IL-12 by
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DCs, culminating in the production of IFNg, primarily T
lymphocytes6,22,41. Hence, we decided to evaluate whether PbA
infection was inducing differentiation of MO-DCs via TLR
activation. With this in mind, we used E6446, an antagonist that
prevents activation of TLR7 and TLR9 by single-stranded RNA
and DNA41,44. The results presented in Supplementary Fig. 6
show that therapy with E6446 prevented lethality when given in
the very early days of infection (from day � 1 to 3 post infection).

The data presented in Fig. 6a,b show that treatment with E6446
inhibits the expression of IFNg mRNA by spleen cells and results
in decreased circulating levels of IFNg in sera of mice at 6 days
post infection with PbA. In addition, at 5 days post infection, the
proportion of activated (CD44high/CD62Llow) CD4þ T and
CD8þ T lymphocytes was augmented to 55.5% and 39.9%, when
compared with 14.7% and 12.2% in uninfected controls or 27.8%
and 10.2% in infected mice treated with E6446, respectively
(Fig. 6c). The percentage of resting T cells (CD44low/CD62Lhigh)
was inversely proportional to activated cells and decreased to
32.9% of CD4þ T and 37.3% of CD8þ T lymphocytes in infected
mice, as compared with 77.7% and 78.1% in uninfected controls
and 59.6% and 64% in infected mice treated with E6446,
respectively. Likewise, E6446 inhibited the expression of IFNg
by both CD4þ T and CD8þ T cells from infected mice. The
results presented in Fig. 6d were obtained by using GREAT mice
that express a YFP gene under the IFNg promoter. Expression of
yellow fluorescent protein (YFP) by CD4þ T and CD8þ T cells
isolated from controls and infected mice increased from 2.16 to
8.99% and from 3.94% to 14.40%, respectively. In GREAT mice
infected with PbA and treated with E6446, only 3.05% and 4.60%
of CD4þ T and CD8þ T cells expressed YFP, respectively.

As a consequence of inhibition of IFNg production by
T lymphocytes, treatment with E6446 also inhibited the expression
of CXCL9 and CXCL10 mRNA by spleen cells (Fig. 6e), as well as
RFP (CXCL9) and BFP (CXCL10) by MO-DCs from infected
WT and REX3 mice, respectively (Fig. 6f). Immunocytochemistry
analysis revealed the inhibitory effect of E6446 treatment
on CXCL9 and CXCL10 expression by spleen cells from
PbA-infected REX3 mice (Supplementary Fig. 6B).

IFNc-dependent recruitment of MO-DCs to the CNS. The
results presented in Supplementary Fig. 3B show that expression
of IFNg and chemokine genes (that is, CCL2, CCL3, CCL4, CCL5,
CCL8, CXCL9 and CXCL10) is induced and peaks in the brain
at 6–7 days postinfection with PbA. Our experiments also
demonstrated that expression of these genes is not seen or
largely decreased in the brains of PbA-infected IFNg� /� mice or
PbA-infected C57BL/6 mice treated with E6446 (Fig. 7a,b).
As MO-DCs express both CCR2 (receptor for CCL2–MCP1)
and CCR5 (receptor for CCL3–MIP1a, CCL4–MIP1b and
CCL5–RANTES), we evaluated the emergence of MO-DCs in the

brain of PbA-infected IFNg� /� mice and infected C57BL/6 mice
treated with E6446. We observed that migration of MO-DCs into
the brain of infected IFNg� /� mice or E6446-treated WT mice
was also impaired (Fig. 7c). Consistent with the importance of
MO-DCs in recruitment of CD8þ T cells and development of
ECM37–39, the total number of CD8þ T lymphocytes was
reduced, but not absent, in the CNS of either IFNg� /� mice or
PbA-infected C57BL/6 mice treated with E6446. Based on these
results and those published elsewhere4,45–48, we propose that
IFNg is a key cytokine mediating ECM by also promoting the
recruitment of MO-DCs into the brain and consequently
amplifying recruitment of CD8þ T cells to the CNS.

CCR5-dependent recruitment of MO-DCs to the CNS. We
hypothesized that CCL2, CCL3, CCL4 and CCL5 are largely
responsible for recruiting MO-DCs to the CNS of PbA-infected
mice. The data presented in Fig. 8a provided evidence that iso-
lated MO-DCs (75–85% purity) migrate towards both CCL2 and
CCL5 in vitro, although CCL5 appeared to be a more efficacious
chemoattractant for MO-DCs. We also noticed an additive effect
of the two chemokines. As CCL2 and CCR2 have been shown to
be important for recruitment of inflammatory monocytes during
infection with Toxoplasma gondii and P. chabaudi19,49, we
evaluated the role of CCR2 in the development of ECM. As
expected, we observed a decreased frequency of MO-DCs in the
spleen of both uninfected and PbA-infected CCR2� /� mice
(Supplementary Fig. 7A,B). However, the number of MO-DCs in
the CNS of PbA-infected CCR2� /� mice was only marginally
reduced (Fig. 8c). In contrast, we observed no difference in the
frequency or number of splenic MO-DCs in infected CCR5� /�

mice (Supplementary Fig. 8A,B). Furthermore, we observed no
impairment on activation and IFNg production by CD4þT and
CD8þT cells in spleens from CCR5� /� mice infected with PbA
(Supplementary Fig. 9A,B). Nevertheless, emergence of MO-DCs
in the CNS of PbA-infected CCR5� /� mice was highly
compromised (Fig. 8c). Consistent with numbers of MO-DCs
in the CNS, CCR5� /� mice, but not CCR2� /� mice, were
more resistant to the development of ECM than PbA-infected
WT mice (Fig. 8d).

Importantly, over 80% of MO-DCs in the CNS of infected
C57BL/6 mice expressed CCR5. Less than 10% of CD4þ T and
CD8þ T lymphocytes expressed CCR5, whereas over 99%
expressed CXCR3 (Fig. 9a,b). Hence, we hypothesize that CCR5
is a key receptor for MO-DC recruitment to the CNS, whereas
CXCR3 and its ligands, CXCL9 and CXCL10, are responsible for
attracting T lymphocytes to the CNS. Consistently, there is a
decrease in the absolute number of both MO-DCs and CD8þ

T cells in the CNS of PbA-infected CCR5� /� mice (Fig. 9c).
We also performed in vivo imaging experiments to evaluate the
role of CCR5 in the recruitment of MO-DCs to the CNS.

Figure 6 | E6446 inhibits expression of IFNc by T cells and CXCL9 and CXCL10 by MO-DCs. C57BL/6, GREAT and REX3 mice were infected with PbA

and treated with either E6446 (120 mg kg� 1 per day) or vehicle from � 1 to 3 days post infection. (a) Spleens were harvested from WT mice at 0, 5 and 7

post infection, total RNA extracted and expression levels of IFNg mRNA analysed by quantitative PCR. The results were normalized to b2-MICROBULIN.

(b) Sera from infected C57BL/6 mice were collected at different times post infection and used to measure the levels of IFNg by Cytometric Bead Analysis.

The inhibitory effect of E6446 on the levels of circulating IFNg was evaluated at 6 days post infection (right panel). (c) Spleens from untreated and

E6446-treated C57BL6 mice were harvested 5 days post infection. Cells were gated on CD44 and CD62L from CD4þ or CD8þ . Bar graphs correspond to

the percentage of naive (CD62LhighCD44low) versus activated effector (CD62LlowCD44 high) CD4þ T (top panels) and CD8þ T (bottom panels) cells.

(d) Splenocytes from uninfected and infected GREAT mice treated with E6446 or left untreated were stimulated with PMA (50 ng ml� 1) and ionomycin

(500 ng ml� 1) for 4 h in culture containing brefeldin A and analysed by flow cytometry gated on CD4þ or CD8þ cells. YFP-positive cells were considered

as IFNg producers CD4þ T (top panels) and CD8þ T (bottom panels) cells. (e) Quantitative reverse transcriptase–PCR (left panels) and (f) flow

cytometry analysis revealed that treatment with E6446 resulted in inhibition of CXCL9 and CXCL10 mRNA expression in the spleen and RFP and BFP

proteins by splenic MO-DCs from PbA-infected C57BL/6 and REX3 mice, respectively. Representative primary flow cytometry dot plots are shown in c–f.

Results are representative of two to three independent experiments with three to five mice per group. Differences considered statistically significant when

*Po0.05, **Po0.01, ***Po0.001 or ****Po0.0001, as indicated by two-way analysis of variance analysis (values are means±s.d.).
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MO-DCs (75–85% purity) from spleens of PbA-infected WT or
CCR5� /� mice were transferred into WT or CCR5� /� mice at
5 days post infection. Migration of carboxyfluorescein

succinimidyl ester (CSFE)-labelled MO-DCs was evaluated from
15 to 60 min after cell transfer. We found high frequency of WT
MO-DCs, primarily in the microvasculature. MO-DCs from
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CCR5� /� mice were less efficient in migrating to the CNS of
infected mice. Furthermore, WT MO-DCs, but not CCR5� /� MO
DCs, migrated to the CNS of CCR5� /� , indicating that expression

of CCR5 is critical for MO-DC migration to the CNS (Fig. 9d and
Supplementary Movies 1–6). No migration of MO-DCs to the CNS
of uninfected mice was observed. Finally, the results presented in
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Figure 8 | Enhanced resistance of CCR5� /� mice to development of ECM. (a) In vitro migration of enriched MO-DCs towards different concentrations
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CD45high cells. The numbers of CD45highCD8�CD3�CD11cþCD11bþDC-SIGNhighLy6cþ are significantly decreased in the brain of PbA-infected
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Fig. 9e show that transfer of enriched WT MO-DC population
restored ECM in PbA-infected CCR5� /� mice.

Discussion
We provide compelling evidence that acute infection with PbA
stimulates differentiation of splenic inflammatory monocytes into
MO-DCs in an IFNg-dependent manner. Malaria-induced
MO-DCs possess a strong phagocytic activity, capacity to

cross-present antigens to CD8þ T cells and express high levels
of CXCL9, CXCL10 and the chemokine receptor CCR5. Hence,
splenic CCR5þCXCL9/10þ MO-DCs seem to play an important
role in recruiting and activating T lymphocytes. We hypothesize
that after differentiation, splenic CCR5þCXCL9/10þ MO-DCs
migrate to the brain in a CCR5-dependent manner and amplify
the recruitment and activation of CXCR3þCD8þ T cells,
promoting neuroinflammation and ECM (Fig. 10).
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DCs and inflammatory monocytes play important roles in host
resistance to malaria. Indeed, there is a very dynamic distribution
of inflammatory monocytes and DC subpopulations in the spleen
of acutely infected mice, which changes with the course of
infection, parasite virulence and infective Plasmodium spp.5. For
instance, DCs exposed to the erythrocytic stage of P. chabaudi
produce high levels of IL-12 and promote the production of IFNg
by both T lymphocytes and natural killer cells14. This cytokine
activates macrophages to produce toxic metabolites, such as
reactive nitrogen intermediates and promotes Ig switch to the

IgG2a/IgG2c, which mediate host resistance to Plasmodium
infection in mice11,50. In addition, both inflammatory monocytes
and DCs can internalize and destroy infected RBCs in the spleens
and mediate resistance to P. chabaudi infection in mice19,21.
However, depending on experimental setting, DCs may become
refractory or impaired for presenting antigen to CD4þ T and
CD8þ T cells51,52. For instance, virulent P. yoelli strains impair
DC functions to prevent the induction of host protective immune
responses15. Inflammatory monocytes and DCs also play key
roles in the deleterious inflammatory response and pathogenesis
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Figure 10 | CCR5þCXCL9/10þ MO-DCs mediate cerebral malaria in PbA-infected mice. Infection with PbA leads to activation of DCs and

induces IFNg-dependent differentiation of inflammatory monocytes into splenic MO-DCs that express high levels of CCR5, CXCL9 and CXCL10

(CCR5þCXCL9/10þ MO-DCs). We hypothesize that after differentiation, CCR5þCXCL9/10þ MO-DCs migrate to the CNS in response to CCR5 ligands
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Figure 9 | CCR5þMO-DCs migrate to the CNS and mediate ECM in PbA-infected mice. (a) Brain mononuclear cells (BMNC) were recovered from

PbA-infected mice gated on CD45high, then on CD3þCD8þ or CD3þCD4þ and analysed for CXCR3 and CCR5 expression. Alternatively, CD45high cells

were gated on CD3�CD8�CD11bþ Ly6cþMHC IIþCD11cþ and then analysed for CXCR3 and CCR5 expression. (b) Top graph shows the frequency of

CD45high cells (that is, MO-DCs, CD4þ T and CD8þ T cells) in total BMNCs isolated from C57BL/6 mice at different time post infection. Bottom panel

shows the frequency of MO-DCs, CD4þ T cells and CD8þ T cells expressing CXCR3 and CCR5. (c) Numbers of both CD45highCD8�CD3�CCR5þ

CD11cþCD11bþDC-SIGNhighLy6cþ and CD45highCCR5�CXCR3þCD8þCD3þ are significantly decreased in the brain of PbA-infected CCR5� /� mice.

These results are representative of four experiments (values are means±s.d.). (d) MO-DC-enriched populations were obtained from WTand CCR5� /� mice

5 days post infection and labelled with CSFE transferred i.v. (1–2 million cells per mouse) in the orbital vein into PbA-infected WT or CCR5� /� mice. As

control, cells were also transferred to uninfected mice. The presence of CSFE labeled cells were detected in the microvasculature and brain parenchyma by

confocal microscopy 15–60 min after cell transfer (Supplementary Movies 1–6). Each point represents total number of labelled cells in four field of views per

mouse (scale bar, 254mm). The results are pool of three independent experiments with two or three mice per group. Differences were considered statistically

significant when ***Po0.0001, as indicated by one-way analysis of variance analysis. (e) Three million splenic MO-DCs derived from either WTor CCR5� /�

mice at 5 days post infection were transferred to CCR5� /� mice at four days post infection. Scores of disease severity and survival curves of PbA-infected

CCR5� /� mice that received WT MO-DCs or CCR5� /� MO-DCs are shown in left and right panels, respectively. PbA-infected WT or CCR5� /� mice that

received no MO-DCs were used as controls. The results are pool of two independent experiments with four mice per group. The survival curves were analysed

by log-rank test. PbA-infected CCR5� /� mice that received WT MO-DCs were more susceptible to infection, when compared with PbA-infected CCR5� /�

mice that received CCR5� /� MO-DCs or PbA-infected CCR5� /� mice that received no MO-DCs (**Po0.01, ***Po0.001).
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of mouse malaria. As examples, DCs promotes cytokinemia and
wasting syndrome in P. chabaudi-infected mice22, and both cDCs
and inflammatory monocytes are required for recruitment of
CD8þ T cells and development of neuroinflammation in the
ECM model23,24,38.

Unexpectedly, we found that most CD11cþMHC IIhigh cells in
the spleen of PbA-infected mice are DC-SIGNhighCD11bþ

F4/80þ consistent with a MO-DC phenotype35,36. As these
cells share various markers with inflammatory monocytes and
conventional myeloid, as well as plasmocytoid DCs, some of the
existing results in the literature may have missed that a significant
proportion of DCs in this mouse malaria model are indeed
MO-DCs. Previous studies using the P. chabaudi model identified
inflammatory monocytes that express low levels of CD11c and a
low frequency of CD11cþ cells that were CD11bþF4/80þ

(refs 19,21). Here we provide evidences that in this model,
splenic inflammatory monocytes and monocytes are progenitors
of MO-DCs. Although the frequency and numbers of MO-DCs
cells were markedly increased in the spleen following infection,
inflammatory monocytes and monocytes were decreased within
the splenic CD11bþF4/80þ population. Furthermore, we
noticed a continuous gradient of MO-DCs expressing Ly6c,
from Ly6chigh to Ly6clow. As inflammatory monocytes are
classically Ly6chigh, we propose that Ly6chighMO-DCs are
recently differentiated, whereas Ly6clow MO-DCs are fully
differentiated. Importantly, we determined here that malaria-
induced MO-DCs, but not inflammatory monocytes or
monocytes, express high levels of CCR5, CXCL9 and CXCL10,
which are all highly relevant for the development of ECM38,39,53.

Depending on TLR or cytokine stimulation, inflammatory
monocytes may differentiate into macrophages or MO-DCs,
which migrate to lymphoid organs and non-lymphoid tissues26–
30,35,36. IFNg not only has an important role in host resistance to
Plasmodium infection but is also a key mediator of malaria
pathogenesis4. The high circulating levels of IFNg elicited during
Plasmodium infection lead to pro-inflammatory priming48,54,
which promotes systemic inflammation25,48,55. In the case of
ECM, treatment with neutralizing anti-IFNg antibodies or genetic
deficiency of IFNg prevents PbA-induced neuroinflammation
and lethality due to ECM46,47,56. Different functions are
attributed to IFNg in the development of ECM, which includes
the enhanced production of pro-inflammatory cytokines and
chemokines, as well as enhanced expression of adhesion
molecules in endothelial cells from brain vasculature57,58.
Important to this study, CXCL9� /� , CXCL10� /� and
CXCR3� /� mice have a less intense infiltrate of CD8þ T cells
in the CNS and are more resistant to development of ECM37–39.
Here we demonstrate that differentiation of MO-DCs is impaired
and expression of CXCL9 and CXCL10 abolished in PbA-infected
IFNg� /� or IFNgR� /� mice.

Different studies suggest that TLR7 and TLR9 are important
receptors involved in the activation of DCs and initiation
of IL-12 and IFNg production during both human and mouse
malaria6–9,14,22,59,60. We found that the lysosomotropic
compound (E6446), which binds to RNA and DNA, and blocks
TLR7 and TLR9 activation, prevents development of ECM41,44.
When given in the first 3 days of infection, treatment with
E6446 inhibited CD4þ and CD8þ T-cell activation and IFNg
production. As a consequence, expression of CXCL9 and
CXCL10 by MO-DCs was not induced. These results are
consistent with earlier studies showing that IFNg produced
by CD4þ T cells induce CXCL9 and CXCL10 expression, and
promotes the recruitment of pathogenic CD8þ T cells to the
brain of PbA-infected mice38,39,46,47,61,62. Plasmodium
DNA and RNA were also shown to activate other families of
cytosolic innate immune receptors. As E6446 binds and

‘inactivates’ DNA and RNA that transit through the lysosomes,
it may also prevent activation of other DNA/RNA cytosolic
sensors that are inducers of type I IFN42,43,63.

We also observed the emergence of CCR5þCXCL9/10þ

MO-DCs in the brain of PbA-infected mice. Among the CD3�

CD8�CD45high haematopoietic cells, most cells expressed
CD11b, F4/80, DC-SIGN, Ly6c, MHC II and CD11c64,65.
The increased frequency of CCR5þCXCL9/10þ MO-DCs
coincided with increased expression of CXCL9 and CXCL10
mRNA in the CNS of PbA-infected mice. Although there are
evidences that endothelial and other non-haematopoietic cells
contribute as sources of CXCL10, we found that among CD45high

cells, MO-DCs were the major source of both CXCL9 and
CXCL10 (RFPþBFPþ cells) in the brain of PbA-infected REX3
mice. Hence, CCR5þCXCL9/10þ MO-DCs are likely to play an
important role in recruiting and activating CD4þ T and CD8þ

T lymphocytes during ECM. Recent studies have also proposed
that endothelial cells are able to cross-present malaria
antigens66,67. Nevertheless, our data suggest that MO-DCs are
key cells presenting malaria antigens to CD8þ T cells in the
brain microvasculature and parenchyma.

Interestingly, we found that malaria-induced MO-DCs, but not
inflammatory monocytes, express high levels of CCR5. Belnoue
et al.53 suggest an involvement of both brain sequestered
leukocytes and non-haematopoietic cells in the CCR5-mediated
ECM. As previously described, we found that microglia
cells express low levels of CD45 and CCR5 (ref. 68), whereas
other non-haematopoietic (CD45neg) cells express no CCR5.
Importantly, MO-DCs were the main cells expressing high levels
of CCR5 in the brain of PbA-infected mice. In addition,
deficiency on CCR5 did not have an impact on MO-DCs
differentiation in the spleen, but clearly affected their emergence
in the brain of PbA-infected mice. Furthermore, our cell transfer
experiments show that WT MO-DCs precipitate ECM in
PbA-infected CCR5� /� mice. Hence, we favour the hypothesis
that CCR5þMO-DCs are key mediators of ECM.

A main question raised by our results is whether MO-DCs
differentiate in the CNS from BM-derived inflammatory mono-
cytes or are being directly recruited from the pool of splenic
CCR5þCXCL9/10þ MO-DCs. CCL2 and CCR2 play important
roles in controlling inflammatory monocyte egress from BM and
their migration to the spleen or site of infection19,49. Consistently,
we found an impairment of inflammatory monocytes recruitment
to spleens of PbA-infected mice. However, we found that unlike
CCR5� /� mice, the frequency of MO-DCs in the brain was only
marginally affected and susceptibility to ECM was not altered in
CCR2� /� mice infected with PbA. Our results also demonstrate
that there is only a small frequency of MO-DCs and CD11bþ

F4/80þ -expressing CCR5 in the BM from PbA-infected mice,
suggesting that inflammatory monocytes/MO-DCs are not being
recruited directly from the BM to the brain. Interestingly, we
found that despite of impaired recruitment of inflammatory
monocytes, there is an increased frequency of CD11bþ

F4/80þLy6chigh cells and MO-DCs as well in the spleens of
CCR2� /� mice infected with PbA. Thus, we propose that in
infected CCR2� /� mice, the splenic monocytes are the
precursors cells for MO-DCs.

All three CCR5 chemokine agonists (that is, CCL2, CCL3 and
CCL5) are expressed in the brain of PbA-infected mice and
may act together to recruit CCR5þCXCL9/10þ MO-DCs.
Although most CXCR3þCD8þ T cells do not express CCR5,
their migration to the CNS is also compromised in infected
CCR5� /� mice. These results are consistent with the hypothesis
of an amplification loop involving MO-DCs (important source of
CXCR3 ligands) and CD8þ T lymphocyte (important source of
CCR5 ligands)45,69, resulting in increased CD8þ T cell and
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MO-DC recruitment to the brain in ECM, as recently proposed
for Ly6cþ monocytic cells and CD8þ T cells24. Our study
provides important novel information regarding the pathogenic
mechanism responsible for ECM by demonstrating that the vast
majority of Ly6cþ that emerge in the CNS of PbA-infected mice
are indeed MO-DCs. We also demonstrate how these cells induce
T-lymphocyte recruitment to the CNS, as we clearly show that
they are an important source of CXCL9 and CXCL10. Finally, we
demonstrate that the emergence of these Ly6cþ MO-DCs in the
CNS is dependent on CCR5 and, surprisingly, independent of
CCR2, which is classically involved in inflammatory monocytes
recruitment to lymphoid organs and to other sites of infection.

In conclusion, as illustrated in Fig. 10, we propose that immune
responses during malaria are initiated by exposure of resident
splenic DCs to parasite nucleic acids, which leads to IFNg
production by CD4þ T and CD8þ T lymphocytes and
differentiation of inflammatory monocytes into MO-DCs. The
CCR5þCXCL9/10þ MO-DCs display a potent phagocytic
activity and express high levels of MHC II, CD80 and CD86,
indicating a great potential not only to recruit, but also to present
antigen and activate T lymphocytes. Importantly, CCR5þ

CXCL9/10þ MO-DCs become the dominant subset of splenic
DCs (CD11cþMHC IIhigh) and probably play a key role in
activating parasite-specific T cells and promoting systemic
inflammation during acute malaria. Finally, our results suggest
that MO-DCs are not following the conventional path from non-
lymphoid tissues to secondary lymphoid organs. Instead, they are
being recruited from a pool of splenic MO-DCs to the CNS of
PbA-infected mice. Once they reach the brain, the CCR5þ

CXCL9/10þ MO-DCs execute their pathogenic role by recruiting
and activating CD8þ T cells, which are the effector cells in ECM.

Methods
Mice. All animals used in this work were 8- to 12-week-old mice. C57BL/6 mice
were obtained from either Animal Facility of the UFMG or Jackson Laboratories.
The REX3 mouse lineage was generated in C57BL6 embryonic stem cells
and crossed with either IFNa/bR� /� or IFNgR� /� to produce the
REX3IFNa/bR� /� and REX3IFNgR� /� (ref. 40) in the A.D.L. lab at
Massachusetts General Hospital (MGH). The GREAT mice (IFNg GFP-reporter),
the CCR2� /� , CCR5� /� and IFNg� /� mice in the C57BL/6 background were
originally purchased from Jackson Laboratories and housed under specific-
pathogen-free conditions at MGH or at Oswaldo Cruz Foundation (Fiocruz). All
procedures were approved by the MGH Subcommittee on Research and Animal
Care and Harvard Committee on Microbiological Safety (IACUC 2005N000176),
as well as the Institutional Ethical Committee for Animal Experimentation at
Fiocruz (CEUA LW 15-14).

Infection. The PbA or GFP transgenic PbA (GFP-PbA) kept in liquid nitrogen
were thawed and maintained into C57BL/6 mice for up to 12 passages. For
experimental infection, PbA iRBCs were collected from donors in heparinized
tubes and 1� 105 iRBCs injected intraperitoneally into naive mice. These mice
were observed daily and parasitemia was estimated by counting Giemsa-stained
thin blood smears. ECM signs were evaluated by two independent observers using
different parameters that included ruffled fur, abnormal postural responses,
reduced reflexes, reduced grip strength, coma and convulsions. Mice that
demonstrated complete disability in all parameters or died between days 7 and
9 post infection were considered as having ECM41.

Flow cytometry. Brains were removed after intracardial perfusion with 30 ml of
PBS; they were minced and the cells were passed through a 70 mm cell strainer and
centrifuged on a 45% Percoll for 30 min at 800 g. The pelleted cells were washed,
diluted 1:1 PBS, counted and stained for flow cytometry. BM cells were obtained by
flushing of the bone cavities of the femurs and tibias, then passed through a 70 mm
strainer, RBCs lysed and the cells counted by using a haemocytometer. Spleens
were removed, passed through a 70 mm strainer, RBCs lysed and splenocytes
counted by using a haemocytometer. For flow cytometry analysis, cells were stained
with antibodies specific for mouse CD11b (PE-Cy7, clone: M1/70, e-Bioscience,
1:4,000), F4/80 (PE-Cy5, clone: BM8, e-Bioscience, 1:400), CD11c (Alexa 700,
clone: N418, e-Bioscience, 1:100), MHC II (phycoerythrin (PE), clone: AF6–120.1,
BD, 1:400), DC-SIGN (APC e-fluor 660, clone: MMD3, e-Bioscience, 1:800), Ly6c
(e-fluor 450, clone: HK1.4, e-Biosciences, 1:400), CD80 (FITC, clone: 16-10A1, BD,
1:200), CD86 (FITC, clone: GL1, BD, 1:200), CD8 (APC Cy7, clone: 53-6.7,

Biolegend, 1:1,000) or (PerCP-Cy 5.5, clone: 53-6.7, e-Bioscience, 1:800), CD3
(Percep Cy5.5, clone: 145-2C11, e-Bioscience, 1:200), CD45 (V500, clone: 30-F11,
BD, 1:800), CD62L (PE-Cy7, clone: MEL-14, BD, 1:200), CD44 (Pacific Blue, clone:
IM7, Biolegend, 1:200) CD4 (APC, clone: RM4-5, Biolegend, 1:800) at room
temperature for 20 min. In REX3 mice, endogenous RFP (CXCL9) and BFP
(CXCL10) were read in PE and Pacific Blue channels, respectively. Cyto-
fluorometry was performed by using a Fortessa Cytometer (Becton-Dickinson) and
analysed with Flowjo software.

Phagocytosis assay by flow cytometry. Blood (2 ml) from GFP-PbA-infected
and non-infected mice were collected in heparinized tubes. The enrichment of
iRBCs was performed using a positive selection kit according to the manufacturer’s
protocol (Miltenyi Biotec, Bergisch Gladbach, DE). Uninfected RBCs were used as
a negative control. The purity was determined by Giemsa-stained thin blood
smears. Total splenocytes (5� 105) from infected (6 days) and non-infected mice
were incubated with iRBCs (5� 105) or RBCs (5� 105) for 1 h at 37 �C (1:1). Cells
were washed and stained with the antibodies specific for mouse CD11b (PE-Cy7),
F4/80 (PE-Cy5, 1:400), CD11c (Alexa 700, 1:100), MHC II (PE, 1:400), DC-SIGN
(APC e-fluor 660, 1:800) and Ly6c (e-fluor 450, 1:400) at room temperature
for 20 min. Flow cytometry was performed by using a Fortessa Cytometer
(Becton-Dickinson) and analysed with Flowjo software.

Cell sorting. Spleens from the C57BL/6 and IFNg� /� control uninfected and
infected mice, at 7 day post infection, were harvested and splenocytes stained
with CD11b (PE-Cy7), F4/80 (PE-Cy5), CD11c (Alexa 700), MHC II (PE) and
DC-SIGN (APC e-fluor 660), and then submitted to purification by using a cell
sorting ARIA (BD). These cells were first gated on FSC-H/FSC-A, to avoid
doublets. Next, we first gated on CD11bþF4/80þ and then on MHC-IIhigh

DC-SIGNhigh. The gated cells were sorted, collected into fresh new tubes,
confirmed to be CD11cþ and then frozen in small aliquots of 10,000 cells used for
gene expression analysis using the nanostring technology. Alternatively, cells were
submitted to cytospin, stained with Giemsa for morphological analysis using
corrected optics � 40 and � 100 (oil) in an optical microscope (Olympus,
GXML3200B).

Scanning electronic microscopy. After cell sorting, aliquots of MO-DCs were
fixed in 2.5% buffered glutaraldehyde solution, 0.1 M pH 7.2, 6 h, 8 �C. Cells were
then washed with the same buffer and fixed in a mixture of 1% osmium tetroxide
and 1.5% (w/v) potassium ferrocyanide, dehydrated in a graded series of ethanol,
infiltrated and embedded in Araldite 502 (Electron Microscopy Sciences, Hatfield,
PA, USA). Sections were stained with 2% uranyl acetate and Reynolds lead citrate
and then analysed using SEM (DSM 960A).

Antigen presentation. Cell trace-labelled CD8þ T cells specific for OVA (OT-I)
were cultured with sorted monocytes or MO-DCs from the spleens of PbA-infected
mice at different APC/T cell ratio (1:3, 1:10 and 1:30) in the presence of
40 mg ml� 1 of OVA protein (OVA grade V, Sigma-Aldrich). For MO and MO-DC
sorting, cells from the spleens 5 days after PbA infection were pre-enriched using
anti-CD11b MACS beads and LS MACS Separation Columns (Miltenyi Biotec).
MO-DCs and monocytes were then sorted as CD11bhiF4/80hiDC-SIGNhiMHCIIþ

CD11c� and CD11bhiF4/80hiDC-SIGN�MHCII�CD11c� , respectively. Splenic
naive OT-I transgenic T cells were pre-enriched by negative selection using Mouse
CD8þ T Cell Isolation Kit (Stemcell Technologies) and then sorted as CD8þ

CD62hiCD44low/� . Sorted naive OT-I cells were labelled with 1.25 mM of
Cell Trace Violet (Invitrogen) and added to 96-well round-bottom plate at
30,000 per well. After 3 days, OVA-specific proliferation of live (Fixable Viability
Dye negative, eBioscience) OT-I cells was evaluated by Cell Trace Violet dilution
and staining with monoclonal antibody to CD8. Sandwich kit ELISA (Biolegend)
was used to measure IFNg in the supernatant co-cultures of OT-I and monocytes
or MO-DCs according to the manufacturer’s recommendations.

Confocal. Spleens were harvested into PLP buffer ([0.05 M phosphate
buffer containing 0.2 M L-lysine pH 7.4, 2 mg ml� 1 NaIO4 and 10 mg ml� 1

paraformaldehyde), fixed for 5–12 h and dehydrated in 30% sucrose before
embedding in OCT freezing media (Sakura Fineteck). Ten-millimetre frozen
sections were cut on a CM3050S cryostat (Leica). Sections were dried for 2 h,
acetone fixed for 10 min, rehydrated, fixed with formaldehyde-calcium solution
and washed with PBS. Sections were blocked in PBS containing American Hamster
or Rat gamma globulin (100 mg ml� 1), stained in PBS, F4/80 (APC) or CD11c
(APC) and embedded in prolong gold. Images were acquired on a LSM510
confocal microscope (Carl Zeiss Mircoimaging).

Adoptive cell transfers. CD11bþF4/80þ cells were enriched from the spleens
of uninfected CD45.2þ donor mice. Spleen cells were incubated with a mix of
PE-labelled antibodies: CD4 (clone: GK1.5, eBioscience), CD8 (clone: 53-6.7,
eBioscience), TCR-b (clone: H57–597, eBioscience), CD19 (clone: 1D3,
eBioscience), Ly6G (clone: 1A8, eBioscience), Ly49 (clone: YLI-90, eBioscience)
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and CD11c (clone: N418, eBioscience), and monocytes were enriched up to
40–60� using the PE-multisort kit (Miltenyi Biotec 130-090-757) for negative
selection. Enriched monocytes (B2� 106 cells) were injected intravenously (i.v.)
into 6-week-old, non-irradiated CD45.1þ recipient mice uninfected or 3 days post
infection with PbA. After 48 h, spleen cells were obtained and analysed by flow
cytometry and the frequency of MO-DCs, inflammatory monocytes and monocytes
from CD45.2þ donor and CD45.1þ recipient mice was determined. Alternatively,
MO-DCs were enriched from the spleens of either WT or CCR5� /� at 5 days
post infection by consecutive positive selection of CD11bþ (catalogue number
130-097-142) and then CD11cþ (catalogue number 130-052-001) cells using the
MicroBeads kit (Miltenyi Biotec, CD11b). MO-DCs were at least 80% pure after
purification. Three million WT or CCR5� /� MO-DCs were then transferred i.v.
to CCR5� /� mice at 4 days post infection with PbA. Mice were checked daily for
signs of ECM and survival.

Intravital confocal microscopy. MO-DCs were purified from the spleens of
PbA-infected from four mice by consecutive positive selection of CD11bþ

(catalogue number 130-097-142) and then CD11cþ (catalogue number
130-052-001) cells using the MicroBeads kit (Miltenyi Biotec, CD11b). The cells
were then incubated with CFSE (2mM per 1� 106 cells in 100 ml) for 8 min and
washed. The vasculature was stained using 10 ml of a PE-coupled anti-CD31
antibody stock solution (0.2 mg ml� 1). Infected mice (5 days post-infection)
were anaesthetized intraperitoneally (100 ml for each animal) with a mixture of
ketamine (37.5 mg ml� 1, final concentration) and xylazine (2.5 mg ml� 1, final
concentration). After anaesthetization, one million of CFSE-stained CD11bþ

CD11cþ cells and anti-CD31 were injected i.v. and a cranial window (2� 2 mm)
was drilled above the parietal cortex, leaving the dura mater intact to exposed and
visualize the brain vasculature. Mouse was immobilized using the stereotaxis
apparatus, and CD11bþ CD11cþ cells and endothelium were observed using a
confocal microscope (Nikon, ECLIPSE 50i, � 20 objective lens) outfitted with a
fluorescent light source (epi-illumination at 510–560 nm, using a 590 nm emission
filter). The number of migrating cells was determined offline during the video
playback analyses. In each animal, a field was recorded and analysed, to determine
the total number of cells. Quantitative image analysis was performed by using the
software Volocity (Version 6.3).

DC migration assay. Splenic CD11bþCD11cþ cells from uninfected and 6 days
postinfection mice were purified using a positive selection kit, as described in the
intravital confocal microscopy section (Miltenyi Biotec). Cells were stained with
anti-CD11b (PE-Cy7, clone: M1/70, e-Bioscience) and anti-CD11c (Alexa 700,
clone: N418, e-Bioscience), and purity checked by FACS analysis. CD11bþ

CD11cþ cells were suspended in RPMI medium plus 10% fetal bovine serum at
1� 105 cells per ml. To assess the migratory capacities of MO-DCs cells, we used a
12-well Transwell microplate (Corning, Amboise, FR) with 5 mm membrane
pore size that forbade the passive diffusion, but allowed the active migration of
MO-DCs. For each condition tested, lower chambers of the transwell were filled
with 600 ml in the absence or presence of 0.1, 1 or 10 ng ml� 1 CCL2 (Biolegend)
and/or CCL5 (e-bioscience). MO-DCs (1� 105 in 100ml) were deposited in the
upper chamber of the Transwell and were allowed to migrate for 3 h at 37 �C.
Migrating DCs were harvested from the lower chamber and were counted using
Neubauer chamber. Enumerations were performed twice, to assess the reliability of
the method.

Cytokine assays. The levels of IFNg were measured in sera of control and infected
mice by using the Cytometric Bead Array Mouse Th1/Th2/Th17 Cytokines Kit (BD
Becton-Dickinson, catalogue number 560485)22.

Quantitative PCR. Total RNA from spleens and brains from uninfected or
PbA-infected mice was extracted by using TRIzol and complementary DNA
prepared using Multiscribe RT (Applied Biosystems). Quantitative PCR was
performed with SYBR Green Master Mix (Applied Biosystems) using a Realplex2
mastercycler (Eppendorf)1. Primer sequences for measuring IFNg and chemokine
gene expression were: CXCL9, 50-AATGCACGATGCTCCTGCA-30 and 50-AGG
TCTTTGAGGGATTTGTAGTGG-30 ; CXCL10, 50-GCCGTCATTTTCTGCC
TCA-30 and 50-CGTCCTTGCGAGAGGGATC-30 ; IFNg, 50-AACGCTACACA
CTGCATCTTGG-30 and 50-GCCGTGGCAGTAACAGCC-30 ; CD8, 50-GACGAA
GCTGACTGTGGTTGA-30 and 50-GCAGGCTGAGGGTGGTAAG-30 ; CCL2,
50-TGGCTCAGCCAGATGCAGT-30 and 50-TTGGGATCATCTTGCTGGTG-30 ;
CCL3, 50-CCAAGTCTTCTCAGCGCCAT-30 and 50-TCCGGCTGTAGGAGAAG
CAG-30 ; CCL4, 50-TCTTGCTCGTGGCTGCCT-30 and 50-GGGAGGGTCAGAGC
CCA-30; and CCL5, 50-CAAGTGCTCCAATCTTGCAGTC-30 and 50-TTCTCTGG
GTTGGCACACAC-30. All samples were normalized using b2-MICROGLOBULIN
or glyceraldehyde 3-phosphate dehydrogenase expression employing either 50-CCG
AACATACTGAACTGCTACGTAA-30 and 50-CCCGTTCTTCAGCATTTGGA-30

or 50-GTGGTGAAGCAGGCATCTGA-30 and 50-GGGAGTCACTGTTGAAGT
CGC-30 primers, respectively.

Quantification of RNA expression by nanostring. Purified MO-DCs from
C57BL/6 and IFNg� /� infected with PbA were analysed by NanoString
methodology. Briefly, 10,000 cells were resuspended in 1.0 ml of Qiagen RLT
lysis buffer and hybridized to the target-specific code set on 65 �C. The code set
contained probes against a panel of 561 genes encoding relevant innate immunity
proteins (nCounter Mouse Immunology). After incubation, samples (three animals
per group) were loaded onto the NanoString Prep station for excess reporter
removal, binding to cartridge surface and probe scanning. After scanning and data
collection onto a digital analyser, data normalization was performed against
positive and negative control oligonucletides and 14 housekeeping genes.
Normalized results are represented as the relative mRNA level. The fold change
was defined by rate of mRNA’s numbers of copies of the infected by non-infected
mice. The software Multiple Experiment Viewer was used to generate the heat
maps. Differences in gene expression were considered significant if Po0.05 as
defined by unpaired t-test.

Drug and treatment. TLR7/9 antagonist (E6446, Eisai Pharmaceuticals) was
dissolved in water and mice were treated 120 mg kg� 1 per day from a day before
infection to the indicated day post infection, given in 100 ml through oral gavage
once daily41. Mice treated with vehicle (water) were used as a control.

Statistical analysis. All data were analysed using Graphpad Prism 6.0 Software.
Two-tailed Student’s t-tests were used for data analysis and generation of P-values.
Mann–Whitney testing was used for non-parametric analysis when data did not fit
a Gaussian distribution. Analysis of variance via post-Tukey’s test for multiple
comparisons was used for comparing more than two samples. A Po0.05 value
was considered statistically significant. All data are represented as median with
individual data points representing individual samples. Bar graph data show s.d.
error bars.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information files.
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