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S U M M A R Y

Tuberculosis (TB) remains the deadliest infectious disease. The widely used bacille Calmette–Guérin

(BCG) vaccine offers only limited protection against TB. New vaccine candidates for TB include subunit

vaccines and inactivated whole-cell vaccines, as well as live mycobacterial vaccines. Current

developments in TB vaccines are summarized in this review.

� 2016 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

According to a recent analysis, tuberculosis (TB) has killed one
billion people over the last 200 years, more victims than from
smallpox, malaria, plague, influenza, cholera, and AIDS together.1

Indeed towards the end of the 19th century, one in five of all deaths
was caused by TB.2 Although TB is considered a disease of the past
in some circles, it remains the deadliest contagious disease
globally. In 2015, 10.4 million new cases of active TB were
recorded, resulting in 1.8 million deaths (World Health Organiza-
tion, WHO).3

Approximately two billion people are infected with the
causative agent, Mycobacterium tuberculosis, but only a small
proportion of those individuals living with a latent TB infection
(LTBI) are at risk of developing active disease (somewhere in the
order of 10% over a lifetime).4 This is because our immune system
is capable of containing the pathogen in a dormant stage.5

However, since the immune response fails to achieve sterile
eradication, individuals with LTBI are at risk of developing TB later
in life.

TB reactivation is greatly accelerated by co-infection with HIV.3

Of the 15 million individuals suffering from co-infection with HIV
and M. tuberculosis, 1.2 million have developed TB in 2015, rendering
HIV co-infection a major driving force in the TB pandemic. An
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additional complication is the increasing incidence of multidrug-
resistant (MDR)-TB[15_TD$DIFF] annually; this accounts for half a million new
cases with only a 50% chance of cure by drug treatment. Globally
some 50 million individuals are already latently infected with MDR
M. tuberculosis, creating a remarkable resource for future cases of
active TB with insufficient treatment options.3[14_TD$DIFF] Nevertheless, the
WHO has vowed to reduce TB morbidity by 90% and TB mortality by
95% by 2035.6 This ambitious goal can only be accomplished
successfully if more rapid diagnostics, new drugs for shorter
therapy, and new vaccines to prevent pulmonary TB become
available.6 A short up-to-date overview of vaccines is provided here.

2. The disease and the pathogen

TB is primarily a disease of the lung, which serves as the port of
entry and site of disease manifestation.7 M. tuberculosis is
transmitted by aerosol; if these bacteria reach the alveoli in the
deeper lung, they are engulfed by alveolar macrophages and
interstitial dendritic cells. These antigen-presenting cells transport
M. tuberculosis to draining lymph nodes, where T lymphocytes are
stimulated. Although antibodies are produced abundantly in
response to M. tuberculosis infection, T-cells are generally
considered the main mediators of protection during natural
infection.7 Orchestrated by T-cells, solid granulomas are formed
in the lung parenchyma, where M. tuberculosis is contained in a
persistent stage.8 Such solid granulomas are present in the two
billion individuals with LTBI. Active disease emerges when
granulomas lose their sophisticated structure and become necrotic
ciety for Infectious Diseases. This is an open access article under the CC BY-NC-ND
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or even caseous due to massive cell death. During LTBI, M.

tuberculosis reduces its metabolic and replicative activity to
become dormant.9 However, in caseous granulomas, M. tuberculo-

sis reactivates its metabolism and replicates to reach high
numbers. Rupture of a caseous granuloma allows for M.

tuberculosis dissemination to other tissue sites and to the
environment. Expectoration of cellular material containing M.

tuberculosis serves as the source of disease transmission.7

Although TB has long been considered to have two clearly
defined states (LTBI and active TB disease), recent evidence
suggests the existence of a whole spectrum of disease ranging from
LTBI to active TB.10

3. The current vaccine and future candidates

A vaccine against infant TB was introduced in 1921 by the
French scientists Albert Calmette and Camille Guérin, which was
accordingly named bacille Calmette–Guérin (BCG). This vaccine is
now widely used to prevent severe forms of extrapulmonary TB
such as miliary TB in infants.11,12 However, BCG fails to prevent the
most common form of disease – pulmonary TB – at any age.11,12

BCG is an attenuated strain of Mycobacterium bovis, the etiological
agent of TB in cattle. Although it is well tolerated, it can
disseminate in immunocompromised individuals, notably HIV-
infected persons, causing a disease termed BCGosis.7 Accordingly,
BCG is not recommended for HIV-exposed neonates in several
countries.

Because of these limitations of BCG, novel TB vaccine candidates
have been developed, of which several have reached the clinical
trial pipeline. These TB vaccine candidates can be categorized into
the following: (1) preventive pre-exposure vaccines, which are
administered prior to first exposure to M. tuberculosis, typically to
igure 1. Pipeline of major TB vaccines in clinical trials. RUTI and Vaccae are therapeutic vaccines; all other vaccines are preventive. For further explanations of antigens,

djuvants, and genetic modifications of the vaccines, see Tables 1–5. (Abbreviations: GSK, Glaxo Smith Kline; MPIIB, Max Planck Institute for Infection Biology; VPM, Vakzine

rojekt Management; SII, Serum Institute India; SSI, Statens Serum Institute; McMaster U, McMaster University; TBVI, Tuberculosis Vaccine Initiative; UOXF, University of

xford; RIBSP, Research Institute for Biological Safety Problems.).
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neonates; these are also known as priming vaccines; (2) preventive
post-exposure vaccines, which are targeted at adolescents and
adults with LTBI and prior BCG immunization; these are also
known as boosting vaccines; (3) therapeutic vaccines, which are to
be administered in adjunct with canonical TB drugs, notably to
persons at higher risk of developing recurrent disease.

Figure 1 provides an overview of the major TB vaccine
candidates in the clinical pipeline. Preventive vaccines come in
three generic types: subunit vaccines, viable whole-cell vaccines,
and inactivated whole-cell vaccines.

Subunit vaccines are composed of one or more antigens that are
considered protective (Table 1). Often several antigens are
combined to improve vaccine efficacy. Yet, protectivity is generally
defined loosely and based on protection measured in one or more
experimental animal models. To increase protectivity, antigens are
either formulated with adjuvant or expressed by a recombinant
viral vector (Tables 2 and 3). A number of current vectored vaccine
candidates are based on recombinant adenovirus or vaccinia virus,
many of which express the antigen 85A (Table 3).13–22 Another
viral vectored vaccine against TB harnesses a replication-deficient
influenza virus expressing M. tuberculosis antigens. Some vectored
vaccines are being developed not only as BCG boosters, but also as
prime boost strategies comprising different viral vectors and/or M.

tuberculosis antigen combinations.20 The recombinant modified
vaccinia Ankara (MVA) vector expressing antigen 85A (MVA85A)
was one of the most advanced TB vaccines, but it failed to
demonstrate protection in a preventive pre-exposure phase IIb
trial.23 Generally, these subunit vaccines are given as a boost after a
BCG prime, with the aim of improving BCG-induced protection, i.e.
to increase efficacy and prolong duration.

Since pre-exposure vaccines are mostly confronted with
metabolically active M. tuberculosis, antigens for this type of



Table 5
Inactivated whole-cell mycobacterial vaccines

Name Inactivated organism Goal

[13_TD$DIFF]DAR-901 Non-tuberculous Mycobacterium Prevention

Mw Mycobacterium indicus pranii Therapy

Vaccae Mycobacterium vaccae Therapy

RUTI Mycobacterium tuberculosis Therapy

Table 2
Adjuvants used for TB vaccines

Vaccine Name Composition

H1, H4, H56 IC31 Cationic [11_TD$DIFF]peptide/TLR9 agonist

H1 CAF01 Cationic liposome/immunomodulatory glycolipid

ID93 GLA-SE Oil in water emulsion/TLR4 agonist

M72 AS01E [12_TD$DIFF]Liposome/TLR4 agonist

TB, tuberculosis; TLR, toll-like receptor.

Table 3
Viral vectors used for TB vaccines

Name Vector

MVA Modified vaccinia Ankara virus

Ad5 Adenovirus 5

Ad35 Adenovirus 35

ChAd Chimpanzee adenovirus

FLU Replication-deficient influenza virus (H1N1)

TB, tuberculosis.

Table 1
Antigens used in subunit TB vaccines

Vaccine Antigen Description

M72 Rv1196 PPE family member

Rv0125 Peptidase

H1 ESAT-6 Prominent antigen of Mtb

encoded in region of difference 1

Ag85B Mycolyl transferase

H4 TB10.4 Prominent TB antigen

Ag85B Mycolyl transferase

H56 H1 + Rv2660c Dormancy antigen

ID93 Rv2608 PPE family member

Rv3619 Virulence factor

Rv3620 Virulence factor

Rv1813 Dormancy antigen

Ad5Ag85A Antigen 85A Mycolyl transferase

MVA85A Antigen 85A Mycolyl transferase

Ad35 Antigen 85A Mycolyl transferase

TB10.4 Prominent TB antigen

Ag85B Antigen 85B Mycolyl transferase

TB-FLU-04L Antigen 85A Mycolyl transferase

TB, tuberculosis; PPE[8_TD$DIFF], proline, poline, [9_TD$DIFF] glutamate [10_TD$DIFF]residues; Mtb, Mycobacterium

tuberculosis.
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vaccine are chosen from those expressed during the stages of
active replication and metabolism. These include the hybrid H1
and H4 vaccines.21,22 In contrast, post-exposure vaccines are
administered to persons with M. tuberculosis in a dormant stage
and need to include antigens expressed during latent infection.
Ideally, a combination of antigens in the form of fusion proteins is
administered to cover both active and latent stages. These so-
called multistage vaccines include H56, M72, and ID93
(Table 1).15,17,24

Viable vaccines were originally considered as replacement
vaccines only and given instead of BCG. Hence, their first target
population would be neonates (Table 4). The most advanced
vaccine candidate is the recombinant BCG vaccine, VPM1002,
which has shown a better safety and efficacy profile than standard
BCG in preclinical models.25 It has completed clinical phase I and
phase II trials in adults and neonates and is currently being
assessed in HIV-exposed neonates. It was shown that VPM1002
Table 4
Viable TB vaccines

Name Vaccine Modification

VPM1002 BCG Chromosomal int

deletion of ureas

MTBVAC Mycobacterium tuberculosis Deletion of PhoP

TB, tuberculosis; BCG, bacille Calmette–Guérin.
was well tolerated in adults with childhood BCG immunization,
and protected against TB in an experimental post-exposure mouse
model.26 Hence, this vaccine is currently being developed also as a
preventive post-exposure vaccine for adolescents and adults.
[17_TD$DIFF]Accordingly, a vaccination protocol has been submitted to prevent
recurrence of TB in previously cured TB patients. Even after
successful completion of drug treatment for active TB, over 10% of
patients experience recurrence and develop TB for a second time,
thus presenting a high risk group for vaccine trials. The second
viable vaccine candidate that has successfully completed a phase I
clinical trial is a double deletion mutant of M. tuberculosis termed
MTBVAC.27

[16_TD$DIFF]

3.1. Inactivated whole-cell mycobacterial vaccines for the prevention

of TB

Inactivated whole-cell mycobacterial vaccines used in a
multiple-dose schedule were shown to be effective preventive
vaccines in experimental models and in humans over 70 years ago,
but were not developed further after single-dose BCG became the
de facto preventive vaccine of choice.28,29 More recently SRL172,
an inactivated whole-cell vaccine derived from a non-tuberculous
Mycobacterium, was shown to be safe, well-tolerated, and
immunogenic in phase I and II trials. Efficacy was subsequently
documented in a phase III randomized, controlled, booster trial
among HIV-infected adults in Tanzania,30 making it the only new
TB vaccine in development for which efficacy in humans has been
demonstrated. The SRL172 master cell bank was used to develop
scalable manufacturing for the booster vaccine now known as
DAR-901. Safety and tolerability were demonstrated in a phase I
trial of the DAR-901 booster in adults primed with BCG in
childhood. DAR-901 induced both cellular and humoral responses
to mycobacterial antigens comparable to those observed with
SRL172, but did not result in conversion of the interferon gamma
release assay (IGRA). A randomized, controlled phase IIb trial is
now underway for the prevention of infection with M. tuberculosis

among adolescents in Tanzania.
A heat-inactivated whole-cell vaccine derived from Mycobacte-

rium vaccae (‘Vaccae’) is also being studied for the prevention of TB
after already being approved in China for the adjunctive treatment
of TB.31 The prevention trial was initiated in 2013 and was
designed to enroll 10 000 subjects with a positive tuberculin skin
test, but additional public information is not presently available
(Table 5).

Viable live-attenuated vaccines and inactivated vaccines are
termed whole-cell vaccines.32 Since it is not known what antigens
will induce protective immunity in humans, these polyantigenic
egration of listeriolysin encoding gene (perforation of phagosomal membrane);

e gene (acidification of phagosome)

(transcription factor) and of fadD26 (phthiocerol dimycocerosate synthesis)
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vaccines have a greater likelihood than subunit vaccines of
including the critical epitopes required for protective efficacy.

3.2. Vaccines for the treatment of TB

Several vaccines are being developed to improve treatment
outcomes in active TB (reduce mortality or relapse rates). This is a
particular challenge in MDR-TB and extensively drug-resistant
(XDR)-TB with extremely low cure rates of less than 50%, providing
a greater opportunity for identifying the therapeutic efficacy of an
investigational vaccine. The biological hypothesis is that additional
stimulation with mycobacterial antigens may further enhance the
immune response and improve bacterial killing. However, there
are experimental data suggesting that certain types of excessive
immune response might be detrimental in the immune control of
TB in humans.33,34

Mycobacterium indicus pranii (Mw) is an inactivated non-
tuberculous mycobacterial vaccine that has been studied as an
adjunct to therapy for leprosy35 (Table 5). A phase II study of Mw as
an adjunct to therapy for TB has been completed and is being
analyzed. A preclinical study of Mw administration by the aerosol
route will examine immune responses in guinea pig and mouse
models.

RUTI is a vaccine being developed to improve the outcomes in
the treatment of both LTBI and TB disease and to reduce exposure
to antibiotics (Table 5). Its mechanism of action is based on the
induction of a polyantigenic cellular response to non-replicating
bacilli contained in detoxified cell wall nano-fragments of M.

tuberculosis. A phase I trial demonstrated safety and immunoge-
nicity and a phase II trial showed safety and immunogenicity in
both HIV-negative and HIV-positive volunteers with LTBI.36 A
phase IIa trial is planned to investigate the safety and immunoge-
nicity of RUTI therapeutic immunization in patients with MDR-TB.

4. Concluding remarks

Until recently the development of new vaccines against TB was
directed towards containing M. tuberculosis by prolonging LTBI and
blocking active TB disease.4,5 Although an effective vaccine to
prevent TB disease would be an applaudable achievement, the
sterile elimination or prevention of M. tuberculosis infection would
ultimately be preferred. Although the biological mechanisms that
might lead to sterile M. tuberculosis elimination or the prevention
of M. tuberculosis infection are not known, recent evidence suggests
that BCG immunization is capable of preventing infection at least
in part.5,37

[2_TD$DIFF] As a result, some new vaccine candidates are now being
tested to determine whether they have efficacy in preventing M.

tuberculosis infection.38–40 These prevention of infection trials
employ IGRAs, which are based on a simple blood test to detect
infection.

Because TB is a poverty-related disease, cost matters. Hence, it
is critical to accelerate clinical trials and at the same time reduce
their cost. One option towards this goal is stratification based on
high-risk groups.41

[3_TD$DIFF] These include miners, who are at a markedly
elevated risk of developing TB, and patients with successfully
treated TB who have a high rate of recurrent TB, as described above.
Alternatively, biomarkers that predict progression towards active
TB would allow the stratification of study participants at greatest
risk of developing active TB disease within the duration of a
standard clinical trial.41,42 Indeed, biosignatures that can predict
progression to active TB are currently being developed. These
signatures comprise changes in the gene expression of defined
markers at high sensitivity so that they most likely diagnose
subclinical incipient TB.43

Even though the development of an improved vaccine against TB
presents major challenges on several fronts, it is a goal worth
pursuing. After all, an effective vaccine that prevents pulmonary TB
could make a major contribution to the goal of reducing TB morbidity
and mortality by 90% and 95%, respectively, by the year 2035.
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