












IRAK4 kinase activity is dispensable for NF-�B and MAPK
activation downstream of TLR activation

We have found that inhibition of IRAK4 can strongly inhibit
MyD88-dependent TLR cytokine production (Fig. 3) while
unexpectedly stabilizing the myddosome complex (Figs. 4 and
5). To further identify the mechanisms underlying ablation of
TLR cytokine responses by IRAK4 kinase inhibition, we exam-
ined its effects on signaling molecules downstream of TLR acti-
vation. First, we pretreated BMDMs with DMSO or the IRAK4
inhibitor before stimulating cells for 30–90 min with LPS to elicit
TLR4 activation. This revealed that although BMDMs pretreated
with the IRAK4 inhibitor showed a loss of P-IRAK4, only a minor
effect was seen on IRAK1 levels and the activation of both NF-�B
p65 and p38 MAPK (Fig. 6A). We next examined TLR1/2, an
entirely MyD88-dependent pathway to account for any compen-

satory effects of TRIF signaling during TLR4 responses. Again,
whereas P-IRAK4 was abolished, we only observed minor effects
on the other TLR signaling molecules examined (Fig. 6B).

We then examined the nuclear translocation of NF-�B p65
following IRAK4 kinase inhibition. Similar to the phosphoryla-
tion of NF-�B p65 (Fig. 6B), IRAK4 kinase inhibition modestly
reduced TLR1/2-induced NF-�B p65 translocation into the
nucleus; however, this response was not totally ablated (Fig. 6, C
and D). These results demonstrate that specific inhibition of
IRAK4 activity has minimal effects on the activation of NF-�B
and MAPK signaling, as well as NF-�B p65 nuclear transloca-
tion downstream of TLR activation. Importantly, these findings
are supported by recent work demonstrating that the kinetics of
NF-�B translocation are a critical determinant for levels of TNF
cytokine production (13).

Figure 4. IRAK4 kinase inhibition stabilizes TLR-induced myddosome interactions. A, BMDMs were pretreated with either DMSO or 20 �M I4 inhb for 30
min. Cells were then left untreated or stimulated with 1 �g/ml LPS for a further 30 min. WCLs were then subjected to MyD88 IP followed by immunoblotting
for IRAK4, IRAK1, P-IRAK4, and MyD88 or directly subjected to immunoblotting with the same antibodies. MyD88 immunoblotting also acted as a loading
control. The data presented are representative of three independent experiments. B, WT iBMDMs were treated as in A, before WCLs were subjected to MyD88
IP followed by immunoblotting for IRAK4, IRAK1, and MyD88 or directly subjected to immunoblotting with the same antibodies. The data presented are
representative of three independent experiments. C, BMDMs were pretreated with either DMSO or 20 �M I4 inhb for 30 min. Cells were then left untreated or
stimulated with either 500 ng/ml P3C or 0.5 �M CpG DNA 1826 for a further 30 min. WCLs were then subjected to MyD88 IP followed by immunoblotting for
IRAK4, IRAK1, P-IRAK4, and MyD88 or directly subjected to immunoblotting with the same antibodies. MyD88 immunoblotting also acted as a loading control.
The data presented are representative of three independent experiments. D, Irak4�/� iBMDMs expressing IRAK4-mCitrine were treated as in A before WCLs
were subjected to GFP IP, followed by immunoblotting for MyD88 and GFP, or directly subjected to immunoblotting for P-IRAK4, IRAK1, GFP, and MyD88. The
data presented are representative of three independent experiments. E, Irak4�/� iBMDMs expressing either mCitrine alone, IRAK4-mCitrine, or IRAK4 KD-
mCitrine were stimulated with 1 �g/ml LPS for 30 min before WCLs were subjected to GFP IP followed by immunoblotting for MyD88 and GFP or directly
subjected to immunoblotting with the same antibodies. The data presented are representative of four independent experiments. F, BMDMs were pretreated
with either DMSO or 20 �M I4 inhb for 30 min. Cells were then left untreated or stimulated with 1 �g/ml LPS for a further 2 or 4 h. WCLs were then subjected to
MyD88 IP, followed by immunoblotting for IRAK4, IRAK1, P-IRAK4, and MyD88, or directly subjected to immunoblotting with the same antibodies. MyD88
immunoblotting also acted as a loading control. The data presented are representative of three independent experiments.

Figure 5. Examination of IRAK1 in myddosome interactions. A and B, WT iBMDMs expressing IRAK1-mCerulean were left untreated (UT) or stimulated with
1 �g/ml LPS for 2 or 4 h. A, cells were collected and subjected to flow cytometric analysis to determine levels of mCerulean fluorescence. WT iBMDMs alone were
also included as a negative control. Data are representative of three independent experiments. B, WCLs were subjected to immunoblotting for IRAK1, GFP, and
actin as a loading control. Endogenous IRAK1 and IRAK1-mCer are indicated with arrows, whereas smears in GFP immunoblots representing ubiquitinated and
phosphorylated IRAK1 are indicated with a line. Data presented are representative of three independent experiments. C, WT iBMDMs expressing IRAK1-
mCerulean were pretreated with either DMSO or 20 �M I4 inhb for 30 min. Cells were then left untreated or stimulated with 1 �g/ml LPS for 2 h. WCLs were
subjected to immunoblotting for IRAK1, GFP, P-IRAK4, and actin as a loading control. Data presented are representative of three independent experiments. D,
WT iBMDMs expressing IRAK1-mCerulean were left untreated or stimulated with 1 �g/ml LPS for 30 min or 2 h. WCLs were then subjected to GFP IP followed
by immunoblotting for MyD88 and GFP or directly subjected to immunoblotting with the same antibodies. MyD88 in WCLs also served as a loading control. The
data presented are representative of three independent experiments. E, WT iBMDMs expressing IRAK1-mCerulean were pretreated with either DMSO or 20 �M

I4 inhb for 30 min. Cells were then left untreated or stimulated with 1 �g/ml LPS for a further 30 min. WCLs were then subjected to GFP IP followed by
immunoblotting with MyD88 and GFP or directly subjected to immunoblotting for GFP, P-IRAK4, and MyD88. The data presented are representative of four
independent experiments.
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Discussion

The molecular integrity of the myddosome is critically
required to facilitate downstream TLR signal transduction.
However, to date, the molecular mechanisms controlling as-
sembly, stability, kinetics, and composition of myddosome sig-
naling complexes remain poorly understood. Here, we isolated
myddosome complexes from TLR-activated primary mouse
macrophages and from IRAK reporter macrophages, demon-
strating rapid assembly and slow disassembly kinetics. To our
knowledge, this is the first full examination of the kinetics of the
myddosome.

IRAK4 is thought to become activated via trans-autophos-
phorylation following incorporation into the myddosome
structure (9). Hence, our novel approach of isolating myddo-
some complexes in primary mouse macrophages via P-IRAK4
IP represents interactions within the active structure, whereas
reciprocal IPs of MyD88 allowed us to examine the total con-
stituents of the myddosome, even in the absence of P-IRAK4.
This was further explored via generation of IRAK4-mCit and
IRAK1-mCer reporter macrophages to examine interaction
with total IRAK4 or IRAK1, respectively, via GFP IPs. Interest-

ingly, these approaches led us to observe that whereas P-IRAK4
appears to be lost around 30 min post-LPS stimulation, the
interactions of total IRAK4, MyD88, and IRAK1 are stable for
up to 2 h. Collectively, these data show that IRAK4 kinase func-
tion is actively shut off within the myddosome complex. Addi-
tionally, this demonstrates that IRAK4 dephosphorylation
appears to occur independent of myddosome disassembly and
is therefore unlikely to initiate this process. Together with our
findings that IRAK4 inhibition or expression of a kinase-dead
IRAK4 failed to inhibit myddosome formation, these data sug-
gest that the catalytic activity of IRAK4 is dispensable for both
assembly and disassembly of the myddosome.

Utilizing single-molecule fluorescence microscopy of GFP-
tagged MyD88 in Myd88�/� iBMDMs, Bryant and colleagues
showed that MyD88 rapidly forms membrane-bound macro-
molecular complexes, which are removed from the cell surface
within about 10 min following LPS stimulation (13). LPS stim-
ulation did not induce formation of TLR4 oligomers on the cell
surface, suggesting a stoichiometric mismatch between acti-
vated receptor complexes and oligomeric myddosomes (13).
These observations from live single cells, together with our

Figure 6. IRAK4 kinase activity is dispensable for NF-�B and MAPK activation downstream of TLRs. A–C, BMDMs were pretreated with either DMSO or a
20 �M concentration of a selective I4 inhb for 30 min. Cells were then left untreated or stimulated with 1 �g/ml LPS (A) or 500 ng/ml P3C (B) for an additional
30, 60, or 90 min. WCLs were then subjected to immunoblotting for IRAK1, P-IRAK4, NF-�B P-p65, P-p38 MAPK, and actin as a loading control. Data presented
are representative of at least three independent experiments. C, cells were then left untreated (UT) or stimulated with 500 ng/ml P3C for an additional 4 h before
fixation and staining with an NF-�B P-p65 antibody, followed by a specific secondary antibody conjugated to an Alexa-488 fluorophore. Samples were then
examined by confocal microscopy. Representative images are presented from three biological replicates. Scale bar, 10 �m. D, NF-�B P-p65 nuclear transloca-
tion was then quantified by examining the mean fluorescence intensity of the Alexa-488 signal in cell nuclei. Nuclear intensity was made relative to DMSO-
untreated samples and presented as the mean � S.E. (error bars) (DMSO versus IRAK4 inhb: *, p � 0.05; **, p � 0.01) combined from BMDMs derived from three
individual mice (biological replicates).
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findings that stable myddosome interactions can be detected
for up to 2 h from LPS-stimulated BMDMs using biochemical
analysis of whole cellular lysates, suggest that following an
initial TIR-driven process mediated by activation of surface
TLR4 –MD-2 receptor complexes, myddosomes may detach
from the intracellular domains of TLR4 and be released into the
cytosol. This idea is strengthened by observations that a specific
de novo mutation in the TIR domain of MyD88 (L265P) leads to
constitutive myddosome complexes driving aberrant NF-�B
activation and inflammation in a number of B-cell human lym-
phomas (23), which to date has not been shown to be dependent
on TIR domains from TLRs.

Surprisingly, we found that a loss of IRAK4 activity by either
chemical inhibition or genetic manipulation resulted in a sig-
nificantly more stable myddosome structure. This increase in
stability is suggestive of a prominent protein scaffold role of
IRAK4, independent of its kinase activity, in which IRAK4
interacts with MyD88 and IRAK1, tethering them together into
the myddosome complex. Indeed, several earlier reports noted
higher-affinity interactions of MyD88, TRAF6, and IRAKs with
kinase-inactive versions of IRAK1 or IRAK4 in overexpression
studies (26, 31, 37, 38). Additionally, using luminescence-based
mammalian interactome mapping (LUMIER), a technique ena-
bling examination of protein–protein interactions (39), it was
shown that the association of MyD88 with IRAK4 KD is signif-
icantly greater (�5-fold) compared with that of WT IRAK4
(40). The phosphorylation of IRAK proteins may reduce intrin-
sic protein–protein binding affinities within the myddosome by
facilitating changes in surface-binding interfaces within their
respective kinase domains or changes in their overall protein
conformation. This is supported by the observation that de-
phosphorylation of full-length IRAK4 in solution with �-phos-
phatase leads to formation of stable dimeric complexes,
whereastheadditionofATPinducesautophosphorylatedmono-
meric IRAK4 (9). Furthermore, the same was true when the
kinase domain of IRAK4 alone was examined (9). This is highly
suggestive that the kinase domain of IRAK4 plays a critical role
in stabilizing IRAK4 dimers and likely the myddosome complex
itself, independent of the DD–DD interactions that organize
the primary complex formation.

We identified that the kinase activity of IRAK4 is critical for
MyD88-dependent cytokine production but is unnecessary for
myddosome formation, activation and nuclear translocation of
NF-�B p65, and activation of the MAPK pathway. Interestingly,
like IRAK4 kinase activity, the enzymatic function of TRAF6
was shown to be essential for cytokine production but play only
a minor role in the activation of NF-�B and MAPK signaling
molecules following TLR activation (41). These paradoxical
observations are made clearer by recent findings from human
monocytes, where the kinase activity of IRAK4 was critical for
TLR7/8 cytokine responses via specific control of nuclear
translocation of IRF5 but redundant for NF-�B (42). These
data, together with our observation, strongly support a
model in which IRAK4 plays a dual role in myddosome for-
mation and TLR signaling in macrophages. Primarily, IRAK4
itself is essential as a scaffold molecule during the assembly
of the myddosome, facilitating NF-�B and MAPK signaling
(Fig. 7A). Although dispensable for NF-�B activation, the

kinase activity of IRAK4 is specifically required to elicit an
inflammatory cytokine response (Fig. 7B), which may be
mediated via activation of IRAK1/2 and the E3 Ub ligase
activity of TRAF6.

For some time, IRAK4 kinase inhibitors have been an attrac-
tive target for therapeutic use in chronic inflammatory and
autoimmune diseases. Interestingly, IRAK4 kinase inhibition
has selective effects on cytokine responses from differing
human cell populations (20). Our findings that IRAK4 inhibi-
tion maintains the scaffolding function of IRAK4 for myd-
dosome-dependent NF-�B and MAPK activation may help
to explain these observations. Although IRAK4 kinase inhib-
itors have shown great efficacy in various murine inflamma-
tory disease models (24, 43), it is yet to be determined
whether this will translate to positive outcomes in human
conditions. Our findings may help explain why, to date, tar-
geting IRAK4 kinase activity has not been more successful.
Furthermore, we highlight that targeting the scaffold func-
tion of IRAK4 may be an attractive alternative for therapeu-
tic inhibition.

Experimental procedures

Reagents

Reagents included were as follows: LPS from Escherichia coli,
serotype EH100 (Ra)-TLR grade (Enzo Life Sciences); P3C,
1826 CpG DNA, high-molecular weight poly(I:C) (Invivogen);
DMSO, CMA, also known as 9-oxo-10(9H)-acridineacetic acid
(Sigma-Aldrich); IRAK4 inhibitor, also known as PF-06426779
or compound 38 (Pfizer) (44).

Cell culture

The use of mice in this study for generating primary BMDMs
was approved by the Walter and Eliza Hall Institute Animal
Ethics Committee. BMDMs were obtained by culturing bone
marrow cells harvested from 6 – 8-week-old WT C57BL/6 mice
in Dulbecco�s modified Eagle�s medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS; Sigma-Aldrich), 100
units/ml penicillin, 100 �g/ml streptomycin, and 20% L929
conditioned medium at 37 °C in a humidified atmosphere with
10% CO2. Six days later, adherent BMDMs were harvested and
plated for experiments. HEK293T cells and iBMDMs (WT,
Irak4�/�, and Tlr4�/�) (45) were maintained in DMEM with
10% FBS, 100 units/ml penicillin, and 100 �g/ml streptomycin
at 37 °C in a humidified atmosphere with 10% CO2.

Generation of IRAK reporter macrophages

Retroviral plasmids expressing murine IRAK4 (pR-IRAK4-
mCitrine) or a KD version of IRAK4 (pR-IRAK4 KDK213A/K214A-
mCitrine) fused to mCitrine at the C-terminus were
generated as described previously (16). The pRH-IRAK1-
mCerulean retroviral plasmid expressing murine IRAK1-
mCerulean was generated by amplifying murine IRAK1 from
the pEF-V5-IRAK1 expression vector (31) using specific
primers (forward, 5�-tttggatccATGGCCGGGGGGCCGG-3�;
reverse, 5�-aaactcgagGCTCTGGAATTCATCACTTTCTTC-
AGGTC-3�) before the resultant PCR product was digested
with BamHI and XhoI and cloned in-frame into the corre-
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sponding sites of the pRH-mCerulean retroviral vector.
Irak4�/� iBMDMs expressing either mCitrine alone, IRAK4-
mCitrine, or IRAK4 KD-mCitrine were generated by retroviral
transduction with the pR-mCitrine, pR-IRAK4-mCitrine, or
pR-IRAK4 KDK213A/K214A-mCitrine plasmids, respectively.
Following retroviral transduction, cells were then sorted based
on positive expression of mCitrine to approximately the same
levels between the three cell lines. WT iBMDMs expressing
murine IRAK1-mCerulean were generated by retroviral trans-
duction with the pRH-IRAK1-mCerulean plasmid. In this case,
positive cells were selected via antibiotic treatment with 600
�g/ml hygromycin (Invivogen) for at least 7 days. All retroviral
transduction and selection was performed using a well-de-
scribed protocol (46).

Cytokine mRNA analysis by quantitative PCR

RNA was isolated using the EZ-10 DNAaway RNA Miniprep
Kit (Bio Basic) according to the manufacturer’s protocol before
cDNA synthesis. Quantitative real-time PCR (qPCR) was per-
formed on cDNA using the Maxima SYBR Green/ROX qPCR
Master Mix (Thermo Scientific) on a Viia 7 real-time PCR sys-
tem (Thermo Scientific). Primer sequences used were as
described previously (47). Expression of target genes was nor-
malized to respective housekeeping genes. Cytokine mRNA
expression data are presented as mean � S.E., from three com-
bined experiments.

Measurement of secreted cytokines by ELISA

Levels of murine TNF cytokine in cell culture supernatants
were measured by ELISA (Thermo Scientific) as per the man-
ufacturer’s instructions. ELISA data are presented as mean �
S.E., from at least three combined experiments.

Generation of whole-cell lysates

For immunoprecipitation experiments, �10 � 106 iBMDMs
or 20 � 106 BMDMs were lysed on ice for 30 min with 750 �l of
1� Nonidet P-40 buffer (1% Nonidet P-40, 20 mM Tris-HCl, pH
7.4, 150 mM NaCl, 1 mM EGTA, 10% glycerol, 10 mM NaPPi, 5
mM NaF, and 1 mM Na3VO4) supplemented with 1 mM phenyl-
methylsulfonyl fluoride and cOmplete protease inhibitors
(Roche Applied Science). For immunoblotting experiments,
�1.0 � 106 iBMDMs or BMDMs were lysed on ice with 120 �l
of 1� radioimmune precipitation buffer (20 mM Tris-HCl, pH
7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 10% glycerol,
0.1% SDS, 0.5% deoxycholate, 10 mM NaPPi, 5 mM NaF, and 1
mM Na3VO4) supplemented with 1 mM phenylmethylsulfonyl
fluoride and cOmplete protease inhibitors (Roche Applied Sci-
ence). Whole-cell lysates were subsequently clarified by centrif-
ugation at 13,000 � g for 10 min at 4 °C.

Immunoblotting

For immunoblotting experiments, 60 �l of whole-cell lysate
were diluted in 20 �l of 4� reducing SDS-PAGE sample loading

Figure 7. A model of MyD88-dependent TLR signaling events in the presence and absence of IRAK4 kinase activity. A, activation of TLR dimers at
membranes leads to rapid recruitment of the TIR adaptor MyD88 and the ordered assembly of an oligomeric signaling platform termed the myddosome, which
comprises four layers: 2� molecules of MyD88, 4� molecules of MyD88, 4� molecules of IRAK4, and 4� molecules of IRAK1/2. Myddosome formation
facilitates IRAK4 autophosphorylation and subsequent phosphorylation of IRAK1. The E3 Ub ligase, TRAF6, is then thought to simultaneously activate signaling
pathways leading to the transcriptional activity of NF-�B, AP-1 and cAMP-response element– binding protein (via the MAPK pathway), and IRF5, which act in
concert for the production of inflammatory cytokines. B, in the absence of IRAK4 kinase activity, the myddosome assembles into a more stable complex
following TLR activation. The activation of NF-�B and MAPK signaling is only moderately affected by IRAK4 inhibition.
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buffer (1.25% SDS, 12.5% glycerol, 62.5 mM Tris-HCl, pH 6.8,
0.005% bromphenol blue, 50 mM DTT) and heated to 95 °C for
10 min before 20 –35 �l was run on Novex 4 –12% precast SDS-
polyacrylamide gels (Thermo Scientific) with MES running
buffer (Thermo Scientific). Separated proteins were transferred
onto polyvinylidene difluoride membranes (Millipore) and
blocked in 5% skim milk powder in PBS with Tween 20 before
overnight incubation with specific primary antibodies: anti-
MyD88 (R&D Systems; AF3109, 1:1000), anti-P-IRAK4 Thr-
345/Ser-346 (Pfizer (20), 1:500), anti-IRAK4 (Thermo Scien-
tific; clone 2H9, MA5-15883, 1:500), anti-IRAK1 (Santa Cruz
Biotechnology, Inc.; clone H-273, sc-7883, 1:1000 (discontin-
ued)), anti-P-p65 Ser-536 (Cell Signaling Technology; clone
93H1, 3033, 1:500), anti-P-p38 Thr-180/Tyr-182 (Cell Signal-
ing Technology; 9211, 1:1000), anti-GFP (Thermo Scientific;
A-11122, 1:1000), or anti-actin (Santa Cruz Biotechnology;
clone I-19, sc-1616, 1:2000 (discontinued)). Membranes were
then washed and incubated with appropriate secondary anti-
bodies, and immunoreactivity was imaged using the ChemiDoc
Touch Imaging System (Bio-Rad).

Isolation of myddosome complexes by immunoprecipitation

Following preparation of samples for immunoblotting, 1–2
�g of primary antibody was added to the remaining whole-cell
lysate: anti-MyD88 (R&D Systems; AF3109), anti-P-IRAK4
Thr-345/Ser-346 (Pfizer (20)), or anti-GFP (Thermo Scientific;
clone E36, A-11120). Samples were then incubated at 4 °C for
up to 2 h (or overnight) on a rotator before 50 �l of Dynabeads
Protein A (Thermo Scientific; 10002D) or Dynabeads Protein G
(Thermo Scientific; 10004D) were added. Samples were then
incubated once more at 4 °C for up to 2 h on a rotator before
beads were extensively washed with lysis buffer using a
DynaMag-2 magnet (Thermo Scientific; 12321D), and proteins
were eluted by the addition of 35 �l of 2� reducing SDS-PAGE
sample loading buffer (2.5% SDS, 25% glycerol, 125 mM Tris-
HCl, pH 6.8, 0.01% bromphenol blue, 100 mM DTT) and heat-
ing at 95 °C for 10 min. Samples were then subjected to immu-
noblotting as described above.

Measuring TLR4 surface expression by flow cytometry

Approximately 1.0 � 106 BMDMs or Tlr4�/� iBMDMs were
harvested on ice using PBS containing 2% FBS. Nonspecific Fc
receptor binding sites were blocked using an anti-mouse
CD16/32 antibody (BioLegend; clone 93, 101301, 1:400) before
cells were stained with a PE/Cy7 anti-mouse CD284 (TLR4)
antibody (BioLegend; clone SA15-21, 145408, 1:100), and sam-
ples were analyzed on an LSR Fortessa cell analyzer (BD
Biosciences).

Immunofluorescence (IF) of NF-�B p65 nuclear translocation

Eight-well �-slides (Ibidi) were coated with poly-L-lysine
(Sigma) before BMDMs were seeded at 2 � 105 cells/well and
experiments were performed. Cells were then fixed with 4%
paraformaldehyde for 30 min, before blocking and permeabi-
lizing cells (IF buffer: PBS, 10% FBS, 0.5% Triton X-100) for 1 h,
before staining with a rabbit monoclonal anti-NF-�B p65 (Cell
Signaling Technology; clone C22B4, 4764, 1:100) overnight at
4 °C. Cells were then stained with a secondary donkey anti-

rabbit Alexa-488 antibody (Thermo Scientific; R37118, 1:1000)
for 1 h at room temperature, before nuclear staining with 4�,6-
diamidino-2-phenylindole (1 �M) for 5–10 min. After each
step, cells were washed 2–3 times with IF buffer or PBS. Cells
were imaged using a Zeiss LSM 780 confocal microscope; 2 � 2
tile scans were obtained for each experimental condition using
a �40 oil objective with Immersol 518 F (Zeiss) and acquired
with ZEN 2012 version 8.1 software (Zeiss). Images were gen-
erated as tagged image bitmap files (TIFF) using FIJI software.
Quantification of nuclear NF-�B p65 was performed using FIJI
software by overlaying nuclei identified with 4�,6-diamidino-2-
phenylindole staining (not shown) onto the Alexa-488 channel
before measurement of mean fluorescent intensity within each
nucleus.

Statistical analysis

Analyses were performed with Prism (GraphPad Software,
Inc.), and data are typically presented as the mean � S.E., where
a p value � 0.05 was considered significant, as determined by an
unpaired two-tailed Student’s t test.
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