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ARTICLE

Chemical modifications of adenine base editor
mRNA and guide RNA expand its application scope
Tingting Jiang1, Jordana M. Henderson2, Kevin Coote3, Yi Cheng3, Hillary C. Valley3, Xiao-Ou Zhang 4,

Qin Wang 5, Luke H. Rhym6,7, Yueying Cao1, Gregory A. Newby8,9,10, Hermann Bihler 3, Martin Mense 3,

Zhiping Weng4, Daniel G. Anderson 6,7,11,12, Anton P. McCaffrey2, David R. Liu8,9,10 & Wen Xue 1,13,14,15✉

CRISPR-Cas9-associated base editing is a promising tool to correct pathogenic single

nucleotide mutations in research or therapeutic settings. Efficient base editing requires cel-

lular exposure to levels of base editors that can be difficult to attain in hard-to-transfect cells

or in vivo. Here we engineer a chemically modified mRNA-encoded adenine base editor that

mediates robust editing at various cellular genomic sites together with moderately modified

guide RNA, and show its therapeutic potential in correcting pathogenic single nucleotide

mutations in cell and animal models of diseases. The optimized chemical modifications of

adenine base editor mRNA and guide RNA expand the applicability of CRISPR-associated

gene editing tools in vitro and in vivo.
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G ·C-to-A·T base pair substitution accounts for approxi-
mately half of known pathogenic single nucleotide
mutations in humans1. Adenine base editor (ABE), which

is constructed by fusing adenine deaminase to catalytically inac-
tive CRISPR-associated (Cas) protein, can precisely and perma-
nently convert A·T to G·C with the guidance of target specific
guide RNA without creating a double-strand DNA break or
requiring an exogenous DNA repair donor1,2. Thus, ABE may be
a useful tool to model or treat genetic diseases that are associated
with single nucleotide mutations. Indeed, many ABE variants
have been widely studied and applied3–9. However, high cellular
expression of ABE agents is required for effective base
editing10,11, which limits the application of ABE plasmids in cells
that are difficult to transfect.

To date, the therapeutic potential of ABE has been demon-
strated by delivery of DNA-encoded base editors to adult animal
disease models via plasmids4 or AAVs9,12,13. However, these
approaches raise the potential for DNA integration or off-target
effects due to long-term exposure to the gene editing machinery,
hindering their clinical relevance. Developing non-DNA-encoded
base editor and non-viral delivery methods may facilitate broader
application of ABE.

Microinjection of cytidine base editor mRNA and in vitro
transcribed guide RNA can introduce effective base editing in
mouse embryo or pig oocyte14,15, suggesting the potential of
using RNA-encoded base editors to mediate editing. However, the
editing efficiency mediated by RNA-encoded ABE system has not
been studied in somatic cells, and its application potential and
delivery method have not been addressed.

Here, we engineer an RNA-encoded ABE system by introdu-
cing various chemical modifications to both ABE mRNA and
guide RNA. The optimized base editing system exhibits higher
editing efficiency at some genomic sites compared to DNA-
encoded system. Furthermore, we demonstrate that this RNA-
based system mediates robust editing in hard-to-transfect cystic
fibrosis bronchial epithelial cells. Moreover, by encapsulating
modified ABE mRNA and guide RNA into lipid nanoparticle
(LNP), we successfully deliver the RNA-encoded ABE into the
liver of Tyrosinemia I mice, correct the disease mutation, and
rescue the phenotype. Our engineered RNA-encoded system
expands the application scope of base editors.

Results
Uridine depleted ABE mRNA modified with 5-methoxyuridine.
We recently engineered a codon-optimized variant of ABE
(“RA6.3”), recognizing “NGG” PAM sequence, with improved
editing efficiency in HEK293T cells4. Hydrodynamically-injected
plasmids delivered RA6.3 and guide RNA to mouse liver and
corrected a splice-site mutation of fumarylacetoacetate hydrolase
(Fah) gene. Yet, when we tested a non-viral delivery method of
RA6.3 in vivo, we found that lipid nanoparticle (LNP)-mediated
delivery of unmodified mRNA supported three-fold lower editing
efficiency compared to plasmid-delivered RA6.3 in Tyrosinemia I
mice4. This lower editing rate may be due to instability of
unmodified RA6.3 mRNA, and subsequently, poor expression in
cells. Indeed, protein expression level by transiently transfecting
unmodified RA6.3 mRNA is much lower than that from the well-
characterized and widely-applied chemically modified Cas9
mRNA16,17 (Supplementary Fig. 1a). To increase its cellular
expression, we set out to optimize the chemical composition of
ABE mRNA.

Based on the primary structure of RA6.3 (Supplementary
Fig. 1b) as well as the reports that 5′ capping stabilizes mRNA18

and uridine substitution or modification increases Cas9 mRNA
activity16, we engineered three versions of 5′ capped RA6.3

mRNA: unmodified, uridine-depleted, and 5-methoxyuridine-
modified (5moU) (Fig. 1a). For uridine-depleted mRNA, we
used synonymous codons to deplete the transcript of as many
uridines as possible without altering the coding sequence. 5moU
mRNA was derived from uridine-depleted mRNA, and replaced
all remaining uridines with 5-methoxyuridine. After transient
transfection into HEK293T cells, only 5moU mRNA (hereafter
5moU-6.3) yielded stable protein expression comparable to Cas9
mRNA (Fig. 1b). The expression dynamics of 5moU-6.3 were
also similar to Cas9 mRNA—detectable at 6 h post-transfection,
reached peak expression after 1 day, and degraded after
2 days (Supplementary Fig. 1c). Thus, we elected to use our
modified RNA-encoded ABE, 5moU-6.3, for subsequent experi-
ments to test the editing efficiency of an RNA-encoded ABE
system.

Moderately modified gRNA mediates robust editing. The guide
RNA of CRISPR-Cas9-associated editing system consists of a
CRISPR RNA (crRNA) and a transactivating crRNA (tracrRNA).
After electroporating 5moU-6.3 and unmodified tracrRNA:
crRNA to HEK293T cells, we observed minimal editing (<1%;
Supplementary Fig. 1d, e) at a genomic site where DNA-encoded
RA6.3 and guide RNA mediated an average A-to-G conversion
rate of 19.5% as described before4. Previous reports suggest that
chemical modifications improve guide RNA stability19–21. To
improve the editing efficiency of our RNA-encoded ABE system,
we designed moderately modified or heavily modified20 tracrRNA
and crRNA (Supplementary Fig. 1d), and co-electroporated them
with 5moU-6.3 to compare editing efficiencies. Moderately
modified tracrRNA:crRNA (2′-O-methyl 3′-phosphorothioate
modification at first and last three nucleotides) conferred the
highest editing efficiency (Supplementary Fig. 1e, f), and was
comparable to guide RNA expressed from plasmid (Fig. 1c).
Because plasmid-expressed guide RNA is single guide RNA, we
then designed moderately modified single guide RNA (sgRNA)
(Supplementary Fig. 1g). 5moU-6.3 and modified sgRNA could
mediate the A-to-G conversion rates comparable to RA6.3 and
sgRNA expressed from plasmids4 (Fig. 1c). We also tested the
editing efficiency of 5moU-6.3 and moderately modified sgRNA
at two genomic sites where DNA-encoded RA6.3 mediates lim-
ited conversion rates. Our RNA-encoded ABE system showed
significantly higher editing rates at all “A” sites within the editing
window (Fig. 1d, e). Next, we compared the editing efficiency
between unmodified and 5-methoxyuridine-modified ABE
mRNA, when delivered with moderately modified sgRNA. We
first measured A-to-G conversion rate at the same genomic site as
in Fig. 1c at different concentrations (ranging from 0.0015 to
0.5 µg) of unmodified-6.3 or 5moU-6.3 (Supplementary Fig. 2a).
We found that, at lower dosages (less than 0.015 µg), 5moU-
6.3 shows ~1.5-fold higher editing efficiency compared to
unmodified mRNA. Similarly, at two other genomic sites (same
sites as in Fig. 1d, e), 5moU-6.3 mediated substantially higher A-
to-G conversion rates than unmodified mRNA (Supplementary
Fig. 2b). These data demonstrate a robust chemically modified
RNA-encoded system for base editors.

To compare the off-target effects raised by DNA versus
modified RNA-encoded ABE systems, we analyzed A-to-G
conversion rates at the top known off-target loci for the two
guide RNAs22,23 used in Fig. 1d, e. Deep sequencing data show
that, overall, base editing rates at the off-target sites are low
(<0.2% in all groups) (Supplementary Fig. 3a, b). A significant
increase in A-to-G conversion rate was only detected at 2 of the
14 “A” sites in 5moU-6.3-treated cells compared to control or
DNA-encoded ABE-treated cells. Our results suggest that
chemically-modified ABE mRNA can improve on-target editing
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compared to DNA-encoded ABE without substantially increasing
off-target effects.

ABE corrects a nonsense mutation in cystic fibrosis model.
Next, we investigated whether our engineered RNA-encoded ABE
system can correct a pathogenic single nucleotide mutation in a
cystic fibrosis (CF) cell model. Approximately 10% of CF patients
carry cystic fibrosis transmembrane conductance regulator
(CFTR) nonsense mutations that cannot be treated with any
FDA-approved CFTR modulators, and around half of these
mutations are correctable by ABE24 (Supplementary Fig. 4a). The

second most common CFTR nonsense mutations, W1282X25,26,
is caused by a G>A mutation in exon 23 that produces minimal
amount of functional CFTR protein and abolishes its Cl− trans-
port activity27. A previous report showed that the human bron-
chial epithelial cell line (CFF-16HBEge CFTR W1282X),
homozygous for W1282X mutation, recapitulates the phenotype
of primary W1282X CF cells25, making it a good cell model to
study the correction of CFTR mutation. SV40 (polyomavirus
simian virus 40), which was used to immortalize the 16HBEge cell
line’s parental 16HBE14o- cells, is integrated into one of the
CFTR alleles28. The CFTR allele with SV40 incorporation does
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not produce protein29. Unlike other cells (Supplementary
Fig. 4b), 16HBE14ge cells poorly express genes that are delivered
by plasmid (Fig. 2a). In contrast, electroporated mRNA expressed
well in this cell line, suggesting that we could test our RNA-
encoded ABE system to correct CFTR W1282X mutation. RA6.3
could correct this mutation by recognizing the “TGG” PAM
sequence, and the target “A” site falls at position 9 of a proto-
spacer that RA6.3 could use to correct this mutation, just at the
upper edge of the editing window (Fig. 2b). We electroporated
modified sgRNA with either unmodified-6.3 or 5moU-6.3 into
16HBEge cells to compare editing efficiency of unmodified versus

5-methoxyuridine-modified ABE mRNA. 5moU-6.3 achieved a
significantly higher A-to-G conversion rate (26.4 ± 7.40%) at A9
target site compared to unmodified-6.3 (13.1 ± 0.509%). Fur-
thermore, 5moU-6.3 restored full length CFTR protein expression
to ~10% of the level in wild-type cells (Fig. 2d).

Notably, the editing efficiency at the bystander “A” site at
position 5 (Fig. 2b; 45.1 ± 5.66%) was higher than the target
A9 site (Fig. 2c), and was associated with the corrected CFTR
allele (Supplementary Fig. 4c). This bystander mutation changes
codon 1281 from glutamine (Q) to arginine (R). To investigate
whether this amino acid alteration affects CFTR function, we
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isolated three single-cell clones with or without the bystander
mutation. Each clone had one ABE-corrected CFTR allele (~50%
A-to-G conversion at A9; Supplementary Fig. 4d). Clone 1
contained the bystander mutation on the corrected allele, clone 2
contained the bystander mutation on the uncorrected allele, and
clone 3 did not contain bystander editing at majority (~80%) of
corrected alleles (Supplementary Fig. 4e). Because SV40 disrupts
the protein expression of one CFTR allele29, we measured CFTR
protein expression in each of these edited clones. Clones 1 and 2
had fully restored CFTR expression compared to wild-type cells,
but clone 3 showed no CFTR expression (Fig. 2e). We conclude
that the corrected target site in clone 3 is on the SV40-disrupted
allele (Fig. 2f and Supplementary Fig. 4f). Next, we evaluated Cl−

channel activity mediated by ABE-edited CFTR and found that
the cells in clones 1 and 2 exhibited similar Cl− channel activity
comparable to parental 16HBE41o- cells expressing wild type
CFTR (Fig. 2g, h). This suggests that ABE-corrected CFTR has
normal function and the bystander Q1281R mutation does not
affect CFTR function. The cells in clone3 did not have any
restored CFTR function. Our findings demonstrate that RA6.3
can correct a CF mutation, and RNA-encoded system could
mediate robust adenine base editing in hard-to-transfect cells.

ABE corrects a splice site mutation in Tyrosinemia I mouse
model. Finally, we tested the non-viral delivery of adenine base
editor to the liver of a mouse model of Tyrosinemia I. Tyr-
osinemia I mice harbor a homozygous G•C to A•T point muta-
tion in the last nucleotide of exon 8 in the Fah gene, causing exon
8 skipping, FAH protein deficiency, and liver damage. To
maintain body weight and survival, these mice are given water
supplemented with NTBC [2-(2-nitro-4-trifluoromethylbenzoyl)-
1,3-cyclohexanedione], a tyrosine catabolic pathway inhibitor.
RA6.3 can correct the causative mutation using a protospacer that
places the target nucleotide at position 9 (Fig. 3a). Hepatocytes
with corrected FAH protein will gain growth advantage and
eventually repopulate the liver30. We used LNP to separately
encapsulate 5moU-6.3 and modified sgRNA. After confirming
LNP-delivered 5moU-6.3 could be expressed in cells (Supple-
mentary Fig. 5a), we injected LNP via tail vein into adult mouse
liver for four dosages based on reported studies4,20. One week
after the last injection, we replaced NTBC-supplemented water
with normal water to allow the repopulation of corrected cells.
Treated mice maintained their body weight, while the untreated
mouse rapidly lost its body weight (Fig. 3b), suggesting restora-
tion of FAH function in LNP-treated mice. We observed wide-
spread FAH-positive patches in mouse liver by staining with a
FAH-specific antibody (Fig. 3c), and protein restoration rate was
comparable to that in mice treated with plasmid-delivered RA6.3
via hydrodynamic injection (Supplementary Fig. 5b). Next, we
investigated efficiency of Fah gene correction. On the tran-
scriptome level, RT-PCR results from liver tissues of LNP-treated
mice revealed that the majority of Fah mRNA was now properly
spliced (Fig. 3d). On the DNA level, we observed an A-to-G
correction rate of 12.5 ± 2.67% at the target site in the liver tissues
of LNP-treated mice (Fig. 3e), which is comparable to our pre-
viously reported plasmid-delivered ABE system (9.5 ± 4.0%)4.
Notably, there is a bystander site within the editing window (A6,
Fig. 3a). The A-to-G conversion at this site changes a serine
codon into alanine (S235A) in the FAH enzyme. Because S235 is
near the FAH enzyme active site31, A-to-G conversion at A6 site
will not rescue the splicing defect but may affect enzyme activity4.
Surprisingly, at this bystander site, we observed a significantly
lower editing rate (0.096 ± 0.032%) in LNP-treated mice com-
pared to our previously reported rate (1.9 ± 0.9%)4 (P= 0.0006,
Supplementary Fig. 5c), suggesting that the short half-life of ABE

mRNA might minimize bystander conversions in vivo. This LNP-
mediated non-viral delivery of modified RNA-encoded ABE,
unlike hydrodynamic injection of plasmid DNA, provides a
clinically-relevant therapeutic method for genetic diseases caused
by single nucleotide mutations.

Discussion
By applying various chemical modifications to ABE mRNA and
guide RNA, we successfully engineered an RNA-encoded base
editing system. Although previous reports show that unmodified
cytidine base editor mRNA and guide RNA could effectively edit
embryos and oocytes14,15, our data show that unmodified ABE
mRNA does not effectively express in HEK293T cells and
unmodified guide RNA cannot mediate efficient editing in
somatic cell culture. This might be because unmodified mRNA
and guide RNA are not stable and will quickly undergo degra-
dation after being delivered to cell culture. We further demon-
strate that chemical modifications are essential for RNA-encoded
base editor to mediate efficient editing. It has been reported that
uridine depletion and pseudo-uridine could increase the activity
of Cas9 mRNA and reduce immune responses elicited by Cas9
mRNA16. In this study, we demonstrate that uridine depletion
and 5-methoxyuridine modification is critical for the stable
expression of ABE mRNA. Furthermore, we expect this optimized
RNA system will be applicable for other CRISPR-associated
editors, e.g., primer editors22.

We did not observe significant off-target effects raised by our
modified mRNA-encoded ABE at top known off-target sites for
guide RNAs. Some off-target events of base editors, on both the
DNA and RNA level, may be independent of guide RNA
sequence5,14,32–34. Therefore, future work should perform
unbiased screens to detect off-target editing by modified ABE
mRNA at the whole genome and transcriptome levels.

Unlike in the well-established CRISPR-Cas9 field, to date stu-
dies of using protein or RNA-encoded base editor to correct
diseases have been exceedingly limited35. Here, we provide the
first report on delivery of RNA-encoded ABE to effectively cor-
rect disease-causing point mutations in vitro and in vivo. The
successful correction of an “untreatable” CF mutation demon-
strates the potential of base editing as a gene therapy method for
CF treatment. However, due to that the incorporation of SV40
disrupts the expression of one of the CFTR alleles28, the effect of
5moU-6.3 on correcting CF phenotype (protein expression and
electrophysiological function) is likely underestimated in our
study. A recent study has used base editor to correct CFTR
nonsense mutations in organoid of cystic fibrosis patients36.
Future work should apply base editing to correct primary CF cells
or animal models.

LNP-based non-viral delivery of ABE successfully correct a Fah
point mutation in Tyrosinemia I mice, providing a clinically-
relevant method to treat genetic diseases with base editing. Cor-
rected cells with normal FAH function have a growth advantage
and outgrow the non-corrected cells, magnifying the therapeutic
effect. To provide a delivery method suitable for treating a broad
array of diseases, future work should optimize delivery dosage
and nanoparticle formulations for base editor encapsulation to
maximize initial editing efficiency.

In summary, our optimized ABE mRNA and guide RNA
reagents unlock new therapeutic possibilities by using adenine
base editing.

Methods
Cell culture. Human embryonic kidney (HEK293T) cells (ATCC) were maintained
in Dulbecco’s Modified Eagle’s Medium (Corning) supplemented with 10% fetal
bovine serum (Gibco) and 1% Penicillin/Streptomycin (Gibco). CFF-16HBEge
CFTR W1282X cells were obtained from the Cystic Fibrosis Foundation’s
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Therapeutic Lab (Lexington, MA). Parental 16HBE14o-cells expressing wild type
CFTR were from Millipore. Cells were cultured in Minimum Essential Medium
(Corning) supplemented with 10% fetal bovine serum (Gibco) and 1% Penicillin/
Streptomycin (Gibco). Flasks were pre-coated by incubating with a thin layer of
coating solution (LHC-8 basal medium (Thermo Fisher), 1.34 µl/ml Bovine serum
albumin 7.5% (Thermo Fisher), 10 µl/ml Bovine collagen solution (Thermo Fisher),
Type 1, 10 µl/ml Fibronectin from human plasma (Advanced Biomatrix)) at 37 °C/
5% CO2 for 3 h. All the cells were incubated at 37 °C in a humidified 5% CO2

atmosphere.

Chemically modified mRNA and guide RNA. Uridine depletion was carried out
using the “optimize codons” tool in Geneious version R8.0.5 (https://www.
geneious.com). A new sequence in Geneious was created; this sequence was
selected, and under the tab “annotate and predict,” the “optimize codons” function
was chosen. Parameters were chosen as follows: source of genetic code, standard;
target organism, Homo sapiens; target genetic code, standard; threshold to be
rare = 1; and avoid restriction sites.

mRNAs were synthesized by T7 RNA polymerase in vitro transcription.
Unmodified or 5-methoxyuridine modified mRNAs were co-transcriptionally
capped to produce cap 1 mRNAs using the CleanCap® Reagent AG (TriLink
BioTechnologies; Cat #: N-7113). All enzymes were purchased from New England
Biolabs. Transcriptions were done in 1× transcription buffer (40 mM Tris, 10 mM
dithiothreitol, 2 mM spermidine, 0.002% Triton X-100, and 16.5 mM magnesium
acetate) using final concentrations of 8 U/μl T7 RNA polymerase (M0251L); 0.002
U/μl inorganic pyrophosphatase (M2403L); 1 U/μl murine RNase inhibitor
(M0314L); 0.025 μg/μl standard or uridine-depleted transcription template; 4 mM

CleanCap Cap 1 AG trimer; and 5 mM each of adenosine triphosphate, cytidine
triphosphate, guanosine triphosphate, and uridine triphosphate (or 5-
methoxyuridine triphosphate; TriLink BioTechnologies; Cat #: N-1093), as
indicated. Unmodified nucleoside triphosphates were purchased from Roche
Diagnostics. Transcription reactions were incubated at 37 °C for 2 h and treated
with final 0.4 U/μl DNase I (M0303L) in 1× DNase I buffer for 15 min at 37 °C.
mRNAs were purified by RNeasy Maxi (QIAGEN, 75162), phosphatase treated for
1 h with final 0.25 U/μg Antarctic phosphatase (M0289L) in 1× Antarctic
phosphatase buffer, and then re-purified by RNeasy. Transcription quality was
measured by bioanalyzer analysis (Agilent 2100 Bioanalyzer).

Chemically modified Cas9 mRNA (5meC/pseudouridine)17 was from TriLink.
The unmodified RA6.3 mRNA (Supplementary Fig. 1a) was as described4. All the
guide RNA sequences are listed in supplementary table. The modified single guide
RNAs, moderately modified tracrRNA and crRNA were synthesized by Synthego.
Unmodified tracrRNA and crRNA were synthesized by IDT. The heavily modified
crRNA was designed according to a previous report20 and synthesized by IDT.

Transfection of HEK239T cells. To validate the expression of RA6.3 mRNA in
cells (Fig. 1b and Supplementary Fig. 1a, c), HEK293T cells were seeded at 70%
confluence in 12-well cell culture plate one day before transfection. RA6.3 mRNA
or plasmid was transfected using Lipofectamine 3000 reagent (Invitrogen). Speci-
fically, in Fig. 1b, 1 µg Cas9mRNA, 0.5 µg RA6.3 plasmid or the indicated amounts
of RA6.3 mRNA was transfected. In Supplementary Fig. 1a, 2 µg RA6.3 mRNA or
0.5 µg Cas9 mRNA was transfected. In Supplementary Fig. 1c, 1 µg 5moU-6.3
mRNA or Cas9 mRNA was transfected. In Fig. 1b, cells were lysed for western blot
analysis 6 h after transfection of mRNA and two days after transfection of
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plasmids. In Supplementary Fig. 1a, cells were lysed after an 8-h incubation fol-
lowing transfection.

Electroporation of HEK293T cells and 16HBEge cells. The Neon Transfection
System (Invitrogen) was used for electroporation. To assess and compare
editing efficiency of ABE delivered as DNA or RNA (Fig. 1c–e and Supplementary
Fig. 1e, f), 2 µg RA6.3 plasmid and 1 µg guide RNA plasmid or 3 µg 5moU-6.3 and
0.2 pmol of guide RNA was electroporated into 2 × 105 HEK293T cells. For the
control group (Ctrl), 500 ng of a GFP plasmids were electroporated into
HEK293T cells before seeding in a 12-well cell culture plate. To compare A-to-G
conversion rates mediated by modified and unmodified ABE mRNA in
HEK293T cells, 0.015 µg mRNA and 0.1 pmol guide RNA were electroporated into
3 × 104 cells (Supplementary Fig. 2b). HEK293T cells were electroporated using
1150 V, 20 ms and 2 pulses and seeded in 12-well plate. Three microgram of
5moU-6.3 and 0.2 pmol guide RNA was electroporated into 2 × 105 16HBEge cells
using 1300 V, 10 ms and three pulses and then all seeded in pre-coated 12-well
plate. Sixteen hours of post electroporation, the cells were replaced with fresh
culture medium.

Western blot. Post-transfected cells were lysed with RIPA buffer (Boston bio-
products) supplemented with protease inhibitor (Roche) and phosphatase inhibitor
(Thermo Fisher). Protein concentration was measured by BCA assay kit (Thermo
Fisher). Equal amounts of proteins were loaded onto NuPAGE™ 4–12% Bis–Tris
Protein Gels (Invitrogen) and run at 125 V for 90 min. After being transferred to
nitrocellulose membrane, the blots were incubated with indicated antibodies, anti-
Cas9 (A-9000-050, Epigentek Group, dilution: 1:1000), anti-GAPDH (MAB374,
EMD Millipore, dilution: 1:5000) or anti-CFTR (UNC-596, University of North
Carolina at Chapel Hill, dilution:1:1000), followed by incubation with distinct
fluorophore-conjugated secondary antibodies. The images were captured using
Odyssey system (Li-Cor Biosciences).

Mouse experiments. All animal study protocols were approved by the UMass
IACUC (University of Massachusetts Medical School institutional animal care and
use committee). Fahmut/mut mice30 were kept on 10 mg/l NTBC water. Lipid
nanoparticle formulation and treatment was as previously described20. 1 mg/kg
LNP-5moU-6.3 mRNA and 0.5 mg/kg LNP-Fah sgRNA were injected in 7-week-
old female Fahmut/mut mice via tail vein injection and the mice were injected for
four doses (once every 3 days) and kept on NTBC water during the treating period.
For the positive control group (plasmid injected), 30 μg RA6.3 plasmid and 60 μg
sgFah expressing plasmid were injected to mouse for one dose4. One week after the
last injection, NTBC supplemented water was replaced with normal water. At this
point, mouse weight was measured every two days. As per our guidelines, when the
mouse lost 20% of its body weight relative to the first day of measurement (the day
when remove NTBC supplemented water), mouse will be re-treated with NTBC
supplemented water until the body weight is back to original body weight. After the
body weight remained stable for 10 days without the need to be treated with NTBC
supplemented water, mice were euthanized according to guideline.

Genomic DNA extraction. To extract the genomic DNA from HEK293T cells,
cells (5 days post transfection) were washed with PBS, pelleted, lysed with 50 µl
Quick extraction buffer (Epicenter), and incubated in a thermocycler (65 °C 15 min
and 98 °C 5min). 2 × 105 16HBE14o- cells (wild type, W1282X, corrected pools
and three single-cell clones) were used for extracting genomic DNA using PureLink
Genomic DNA Mini Kit (Thermo Fisher). The same Kit was also used to extract
genomic DNA from mouse liver tissues (~ 10 mg each), three samples (from
different liver lobes) per mouse.

Immunohistochemistry. Part of Livers were fixed with 4% formalin, embedded in
paraffin, sectioned at 5 μm and stained with hematoxylin and eosin (H&E) for
pathology. Liver sections were de-waxed, rehydrated and stained using standard
immunohistochemistry protocols37. The following antibody was used: anti-FAH
(ab83770, Abcam, dilution:1:400). The images were captured using Leica DMi8
microscopy.

RNA extraction and gene expression analysis using RT-PCR. Liver tissues
(~10 mg each) were used for extracting RNA (three samples from different lobes/
mouse). RNA was purified using Trizol (Invitrogen) and reverse-transcribed using
High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). The
amplicon is from Exon5 to Exon9 in the Fah transcript. Primers used in RT-PCR
are listed in Supplementary Table.

Identification of edited clones. To grow single 16HBE14o- cell clones, the post-
electroporated cells were serially diluted into 10 cells/ml in culture medium and
seeded to pre-coated 96-well plates (100 µl medium/well). The plates were incu-
bated at 37 °C in a humidified 5% CO2 atmosphere. The medium was changed
every three days. After 20 days, the cell colonies were dissociated with 50 µl TrypLE
Express (Gibco) and re-seeded into matching wells of two 24-well pre-coated plates
(Plate 1 and 2).

After cell confluence reached 30% in 24-well plate, cells in plate 1 were used for
extracting genomic DNA with 30 µl Quick extraction buffer (Epicenter) and
incubated in thermocycler (65 °C 15min and 98 °C 5min). One microliter of
extracted genomic DNA was used to amplify the specific CFTR amplicon by
Phusion Flash PCR Master Mix (Thermo Fisher). The PCR condition is as follows:
98 °C for 10 s, then 35 cycles of [98 °C for 1 s, 55 °C for 5 s, and 72 °C for 10 s],
followed by a final 72 °C extension for 3 min. PCR products were purified by
electrophoresis in a 1.5% agarose gel. The purified PCR products were identified for
the targeted A-to-G conversion by sanger sequencing using the PCR forward
primer. Single-cell clones with around 50% A-to-G conversion rate at target
site were expanded from 24-well plate 2, further characterized, and cryopreserved.
The primers for amplifying target CFTR genomic site are listed in the
Supplementary Table.

Electrophysiology assays. Corrected 16HBE14ge W1282X cells and parental
16HBE14o- cells were seeded at a density of 4.5 × 105 cells/cm2 onto HTS
Transwell 24-well filter inserts (Corning, 3378) pre-coated with human collagen
type IV (Sigma-Aldrich, C5533). Cells were grown as submerged cultures in MEM
(Gibco, 11095) containing 10% FBS (Hyclone, SH30071.03) and 1% Pen/Strep, and
incubated at 37 °C and 5% CO2. After a total of 7 days, 16HBE cells typically
formed electrically tight epithelia with a transepithelial resistance (Rt) of
200–600Ω cm2 and CFTR-mediated Cl− equivalent current (Ieq) was determined
as described below.

Prior to functional (Ieq) studies, MEM was replaced with fresh HEPES-buffered
(pH 7.4) solutions (assay buffer). A driving force for chloride ions was established
through application of a basolateral to apical chloride ion gradient (see buffer
composition below). Cell plates were mounted onto an automated robotic assay
platform and equilibrated at ~36 °C for 90 min. After equilibration, transepithelial
voltage (Vt) and resistance (Rt) were monitored at ~5 min intervals using a 24-
channel transepithelial current clamp amplifier (TECC-24, EP Design, Bertem,
Belgium). Electrode potential differences for each pair of Ag/AgCl voltage
electrodes were also monitored at 5 min intervals by taking voltage measurements
from a control plate with matching buffer solutions and 16HBE cells that were left
untreated. Ieq was calculated from values of Vt and Rt using Ohm’s law after
correcting for series resistance and (electrode) voltage offsets unrelated to Vt. Ieq
traces are plotted as mean ± SD (n= 3). The first four data points reflect baseline
Ieq currents prior to sequential stimulation of CFTR with forskolin (10 μM)
followed by VX-770/ivacaftor (1 μM). The last six data points were recorded in the
presence of CFTR inhibitor CFTRinh-172 (20 μM). CFTR-mediated changes in Ieq,
(the area under the curve (AUC) between forskolin and CFTRinh-172 addition) are
used as a measure of functional CFTR surface expression or treatment-related
functional rescue of mutant CFTR. Assay buffer: CFTR-mediated transepithelial
currents were recorded using a Cl− concentration gradient. The basolateral
solution contained (mM): 137 NaCl, 4 KCl, 1.8 CaCl2, 1 MgCl2, 10 HEPES and
D-Glucose, adjusted to pH 7.4 with NaOH/HCl ([Cl−]total: 146.6 mM). The apical
solution was matched to the basolateral except for (mM): 137 Na-gluconate
replaced 137 NaCl ([Cl−]total: 9.6 mM).

High throughput DNA sequencing of genomic DNA samples. Genomic sites of
interest were amplified from genomic DNA using the specific primers containing
illumina forward and reverse adapters (listed in Supplementary Table). Twenty
microliter PCR1 reactions were performed with 0.5 μM of each forward and reverse
primer, 1 μl of genomic DNA extract or 300 ng purified genomic DNA, and 10 μl of
Phusion Flash PCR Master Mix (Thermo Fisher). PCR reactions were carried out
as follows: 98 °C for 10 s, then 20 cycles of [98 °C for 1 s, 55 °C for 5 s, and 72 °C for
10 s], followed by a final 72 °C extension for 3 min. After first round of PCR,
unique Illumina barcoding reverse primer were added to each sample in a sec-
ondary PCR reaction (PCR 2). Specifically, 20 μl of a PCR reaction contained
0.5 μM of unique reverse Illumina barcoding primer pair and 0.5 μM common
forward Illumina barcoding primer, 1 μl of unpurified PCR 1 reaction mixture, and
10 μl of Phusion Flash PCR Master Mix. The barcoding PCR2 reactions were
carried out as follows: 98 °C for 10 s, then 20 cycles of [98 °C for 1 s, 60°C for 5 s,
and 72 °C for 10 s], followed by a final 72 °C extension for 3 min. PCR 2 products
were purified by 1% agarose gel using a QIAquick Gel Extraction Kit (Qiagen),
eluting with 15 μl of Elution Buffer. DNA concentration was measured by Bioa-
nalyzer and sequenced on an Illumina MiSeq instrument 150 bp, single-end)
according to the manufacturer’s protocols. Alignment of amplicon sequences to a
reference sequence and calculation of the A-to-G conversion rate were performed
according to reported script1 (Supplementary Note). To analyze the frequency of
bystander and corrected mutation at one CFTR allele, reads were aligned to the
reference sequence to the defined editing window, and base calling of two tested
bases were carried out simultaneously for each read. To calculate A5G9 or G5G9
frequency, we discarded the reads with low quality (Q < 30) for both of edited bases
and used the equation: [frequency of specified point mutation] ÷ [total high-quality
reads].

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
The source data underlying Figs. 1b-e, 2c–e, 3b, d, e and Supplementary Figs. 1a, c, e, f,
2a, b, 3a, b, 4c, d, e, 5a, c are provided as a Source Data File. The raw sequencing data
have been submitted to the NCBI BioProject database (PRJNA616114 (https://www.ncbi.
nlm.nih.gov/bioproject/616114) and PRJNA616118 (https://www.ncbi.nlm.nih.gov/
bioproject/616118)). The all other data are available from the corresponding author upon
reasonable request.

Code availability
The script used to analyze editing efficiency is reported by Gaudelli and coworkers, and is
provided in Supplementary Note.
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