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Abstract

Background

Circulating microRNAs may reflect or influence pathological cardiac remodeling and contrib-

ute to atrial fibrillation (AF).

Objective

The purpose of this study was to identify candidate plasma microRNAs that are associated

with echocardiographic phenotypes of atrial remodeling, and incident and prevalent AF in a

community-based cohort.

Methods

We analyzed left atrial function index (LAFI) of 1788 Framingham Offspring 8 participants.

We quantified expression of 339 plasma microRNAs. We examined associations between

microRNA levels with LAFI and prevalent and incident AF. We constructed pathway analysis

of microRNAs’ predicted gene targets to identify molecular processes involved in adverse

atrial remodeling in AF.
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Results

The mean age of the participants was 66 ± 9 years, and 54% were women. Five percent of

participants had prevalent AF at the initial examination and 9% (n = 157) developed AF over

a median 8.6 years of follow-up (IQR 8.1–9.2 years). Plasma microRNAs were associated

with LAFI (N = 73, p<0.0001). Six of these plasma microRNAs were significantly associated

with incident AF, including 4 also associated with prevalent AF (microRNAs 106b, 26a-5p,

484, 20a-5p). These microRNAs are predicted to regulate genes involved in cardiac hyper-

trophy, inflammation, and myocardial fibrosis.

Conclusions

Circulating microRNAs 106b, 26a-5p, 484, 20a-5p are associated with atrial remodeling and

AF.

Introduction

Atrial fibrillation (AF) is the world’s most common arrhythmia, affecting over 46 million indi-

viduals worldwide in 2016, and the prevalence of AF is increasing [1]. Although AF is strongly

related to the duration and the intensity of exposure to traditional cardiovascular risk factors,

a substantial portion of an individual’s risk for AF is unexplained by known AF risk factors

[2,3]. Although AF is heritable, allelic variation does not fully account for AF heritability, sug-

gesting that other genetic or epigenetic factors may contribute to the development of a sub-

strate vulnerable to this arrhythmia [4].

Micro-ribonucleic acids (microRNAs) are short, endogenous non-coding RNAs that regu-

late post-transcriptional gene expression that are integral to cardiac structure and function

[4,5]. In addition to their direct physiologic and pathologic roles, microRNAs are readily

detectable in the circulation and may provide insights into gene expression in tissues in several

acute and chronic cardiovascular diseases (CVD), including acute myocardial infarction, heart

failure, and AF [6,7]. MicroRNAs also have provided some insight into gene regulatory net-

works implicated in the pathogenesis of CVD and may represent attractive therapeutic targets.

Atrial structural remodeling, as measured echocardiographically by left atrial (LA) size and

LA phasic function, is a potent intermediate phenotype that reflects prior CVD risk factor

exposure intensity and has been associated with risk for development of AF [8]. We recently

demonstrated strong associations between echocardiographic LA function index (LAFI), a

composite measure of both LA structure and function, with incident AF and CVD in the Fra-

mingham Offspring Cohort [9]. LAFI, unlike other echocardiographic parameters, captures

AF vulnerability even in the presence of normal LA size because it incorporates atrial function

in addition to volume-based measurements.

Experimental studies have shown that exposure to cardiovascular risk factors influences LA

gene expression, pathological cardiac remodeling, and AF [10]. Recently, we demonstrated

that plasma microRNAs related strongly to AF as well as recurrence of AF after catheter abla-

tion [11,12]. In the present study, we employed a mechanism-based framework to identify

promising candidate plasma microRNAs and then explored associations of those microRNAs

with incident and prevalent AF in a community-based cohort.
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Materials and methods

Study population

The data, analytic methods, and study materials have been made available to other researchers

for purposes of reproducing the results or replicating the procedure. The data have been depos-

ited in dbGaP (https://www.ncbi.nlm.nih.gov/gap) under the accession number phs000007

[13].

The Framingham Offspring Study is an ongoing longitudinal cohort study that started in

1971 with the enrollment of the children of the Original Framingham Heart Study cohort [14].

The participants are serially evaluated every 4 to 8 years. A total of 2888 Offspring Study partic-

ipants underwent 2-dimensional transthoracic echocardiogram with digital image acquisition

during examination 8 (2005–2008). For the present analysis, we excluded the participants with

suboptimal LA imaging, and those with incomplete data for key covariates, including compo-

nents of the Cohorts for Heart and Aging Research in Genomic Epidemiology–Atrial Fibrilla-

tion (CHARGE-AF) risk score (Fig 1) [15]. The baseline characteristics of FHS Offspring

participants with and without measurable LAFI did not differ [9]. The protocol for the Fra-

mingham Offspring study was approved by the Boston University Medical Center Institutional

Review Board and all analyses were approved by the University of Massachusetts Medical

School Institutional Review Board (IRB #H0010802). All participants provided written

informed consent.

Fig 1. Enrollment, screening, and transcriptomic profiling and echocardiographic measurements of the framingham offspring exam 8 cohort.

https://doi.org/10.1371/journal.pone.0236960.g001
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Ascertainment of AF

During each examination cycle a study physician obtains medical history and performs a

detailed physical examination on each participant. Participants are asked whether they have

been diagnosed with AF. A 12-lead electrocardiogram is obtained during each examination.

Medical records spanning interim hospitalizations and clinic visits are reviewed by study phy-

sicians and potential incident AF cases are adjudicated by two cardiologists. AF is confirmed

if the arrhythmia is seen on a 12-lead electrocardiogram, telemetry recording, or Holter moni-

tor tracing by trained cardiologist over-readers (DDM, SAL, EJB). Any AF diagnosed at or

before examination 8 was considered prevalent AF, whereas AF newly-diagnosed at any point

through December 31, 2014 during the follow-up period after examination 8 was considered

incident AF.

MicroRNA profiling and selection

As part of a genomic/transcriptomic profiling study, a total of 1875 Framingham Offspring

Study participants underwent venipuncture for whole blood collection during examination

cycle 8. Plasma was isolated from blood samples. The methods for processing blood samples,

storing plasma samples, RNA isolation, and microRNA profiling are discussed in S1 Text Sup-
plement: Methodology and have also previously been described [16]. The microRNA profiling

of plasma was performed at the high-throughput Gene Expression Core Laboratory at the Uni-

versity of Massachusetts Medical School.

Echocardiographic measurements

The Framingham Offspring Study employs a standardized protocol for 2-dimensional and

Doppler echocardiographic imaging using parasternal long- and short-axis views in addition

to the apical views [17]. In brief, Simpson’s biplane summation of disks method was used to

make LA volume measurements in apical 2-chamber and 4-chamber views [17]. Maximum

and minimum LA volumes (LAmax, LAmin) were calculated by averaging the respective

volumes in apical 2- and 4-chamber views. LAmax was indexed to the body surface area to cal-

culate LAmax index. Stroke volume was calculated as the difference of left ventricular end-dia-

stolic and end-systolic volumes. Left ventricular outflow tract (LVOT) diameter was measured

in the parasternal long axis view. LVOT velocity-time integral (LVOT-VTI) was derived by

dividing the stroke volume by LVOT area 3:14� LVOT diameter
2

� �� �
[18]. Offline measurements

of LA volumes were performed using the Digisonics DigiView System Software (version

3.7.9.3, Digisonics, Inc, Houston, Texas, USA). LA emptying fraction was calculated as
LAmax� LA min

LA max

� �
� 100. A previously validated formula was used to calculate LAFI [19]. It is

LA emptying fraction � LVOT � VTI
LAmaxindex

� �
.

Statistical analyses

Descriptive statistics were noted with means and standard deviations for continuous variables

and with counts and percentages for categorical variables. A statistically robust, two-step anal-

ysis model was used to leverage a quantitative, intermediate phenotype to identify candidate

microRNAs and inform a mechanism-based, hypothesis-driven framework for examining

microRNA-AF associations. In step 1, we examined the relations between plasma microRNAs

with LAFI. In step 2, we examined the associations of microRNAs identified from step 1 with

prevalent and incident AF.

For step 1 of our analyses, we used ordinary least-squares linear regression to quantify asso-

ciations between microRNA levels and LAFI in all participants with AF. We adjusted for
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components of the augmented CHARGE-AF model, a composite risk score based on various

clinical and electrocardiographic risk factors, including: age, race, height, weight, systolic

blood pressure, diastolic blood pressure, current smoking, antihypertensive medication use,

diabetes, prior myocardial infarction, heart failure, and electrocardiographic PR interval and

left ventricular hypertrophy [15]. This risk score was selected because it was developed for pre-

diction of AF [20,21]. To account for multiple testing, we employed Bonferroni correction to

establish a more restrictive threshold for defining statistical significance. The α for achieving

significance was set at 0.05/340 = 0.000147 a priori. We then compared Cq with LAFI directly.

Note that Cq represents an inverse log measure of concentration, with exponentiation factor

2. Cq is not normally distributed and microRNA concentrations are reported as medians and

IQR.

In step 2 of the analysis, we examined the associations of microRNAs identified from step 1,

with prevalent AF using a logistic regression model, and incident AF with a Cox regression

model. Here, the continuous Cq values, which correspond to the inverse of plasma microRNA

levels, were compared with AF status. Lastly, we calculated Kaplan-Meier estimators to com-

pare differences in time to incident AF as a function of plasma microRNA levels. For this, we

used 1/Cq as a surrogate for plasma levels and then dichotomized our continuous data based

on median value of 1/Cq. In our graphical representation of the Kaplan-Meier curve, we chose

to use 1/Cq, as it directly corresponds to microRNA plasma levels, and thus best conveys our

message regarding relationships between plasma levels and AF status. Proportional hazards

(PH) assumptions were checked and none of the models of miRs that are related to AF violated

the PH assumptions.

To avoid over-fitting our statistical model, we did not re-perform adjustments for compo-

nents of the augmented CHARGE-AF in step 2, as these adjustments had already been made

in step 1. Furthermore, we did not perform a second correction for multiple testing when

LAFI-associated microRNAs were examined in relation to AF. This decision was defined a pri-
ori as multiple steps of correction was deemed overly conservative and inconsistent with meth-

ods employed in similar studies [22–24].

Note that a table of the distribution of correlations for all microRNAs (S1 Table), a pairwise

correlation matrix (S2 Table) and quantile-quantile plots (S1 Fig) are provided.

Differentially expressed microRNAs were analyzed using miRDB, an ontology network

that captures microRNA and gene target interactions [25]. We also searched PubMed for

all English-language manuscripts with the microRNA of interest as a search parameter. We

focused on those manuscripts that examined relations between microRNA expression with

processes involved in cardiac structural or electrophysiological remodeling, including cell-cell

signaling, ion channels, myocardial fibrosis, inflammation, cardiomyocyte hypertrophy. All

statistical analyses were performed using SAS (v9.4, SAS Institute Inc., Cary, North Carolina,

USA).

Results

The baseline demographic, clinical, and echocardiographic characteristics of the 1788 study

participants are outlined in Table 1. Study participants were middle aged to older adults (mean

age 66.4 years); over half (N = 972, 54%) were women. Two out of three (N = 1198, 67%) par-

ticipants had a history of hypertension and (N = 85, 5%) had a history of AF.

When we examined the distribution of correlations from all microRNAs included in our

analyses, we observed that 25% were strongly correlated (with correlation coefficients of 0.738

or higher, (S1 Table). Strong correlations between microRNAs may explain why a higher than
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expected number of microRNAs remained associated with LAFI after multivariable adjust-

ment and correction for multiple testing using stringent criteria.

Associations of microRNAs with AF

LAFI-associated microRNAs (n = 73 microRNAs) were investigated for their relationships

with prevalent AF using logistic regression models, and with incident AF using Cox regres-

sion models. Eighteen LAFI-associated microRNAs were also associated with prevalent AF

(Table 2). Six were associated with incident AF, two of which were associated with incident

AF alone (324-3p and 363-3p), whereas four microRNAs (106b, 26a-5p, 484, 20a-5p) were

associated with both incident and prevalent AF (Table 3). Lower plasma levels of these six

correlated with higher incidence of AF. Furthermore, among the six microRNAs associated

with incident AF (except 363-3p), higher plasma levels correlated with greater LAFI and

lower AF risk. Kaplan-Meier plots for time to incident AF are shown in Fig 2A–2F.

Gene targets of microRNAs associated with AF

We investigated potential targets of the six microRNAs associated with incident AF and LAFI

through miRDB. 2402 genes were predicted as targets for at least one microRNA, among

which 939 genes were predicted as targets for at least two microRNAs. Fig 3 shows the results

of an enrichment analysis performed using Metascape [26]. The microRNA-related genes

were significantly enriched into 20 categories with the two most significant being related to

cell morphogenesis (GO0048667) and signal transduction (GO0007264). Furthermore, a com-

prehensive search of gene ontology databases and the published literature identified several

genes known to influence susceptibility to incident AF that were regulated by the microRNAs

identified in our analyses (Table 4).

Table 1. Characteristics of FHS Offspring study participants included in the analytic sample.

Variable� Study

Participants (n = 1788)

Age, years 66±9

Sex (Female) 972 (54%)

Race (White) 1788 (100%)

Body mass index, kg/m2 28±5

Height (cm) 167±10

Weight (kg) 79±17

Current smoker 173 (10%)

Systolic blood pressure, mm Hg 129±17

Diastolic blood pressure, mm Hg 73±10

Antihypertensive medication use 923 (52%)

Diabetes mellitus 269 (15%)

Heart failure 27 (2%)

Stroke or transient ischemic attack 68 (4%)

Myocardial Infarction 95 (5%)

Atrial fibrillation 84 (5%)

Incident atrial fibrillation�� 157 (9%)

�All variables are reported as mean ± SD or N (%).

��Incident atrial fibrillation is reported for the participants who were free from atrial fibrillation at baseline.

https://doi.org/10.1371/journal.pone.0236960.t001
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Discussion

In our investigation of Framingham Offspring Study Cohort Exam 8 participants, we identi-

fied 73 plasma microRNAs associated with LAFI (S3 Table), a validated marker of structural

and functional left atrial remodeling [9]. We identified 20 microRNAs associated with LAFI

and either prevalent or incident AF. Our investigation validates previously observed associa-

tions between plasma microRNAs and prevalent AF and identifies new associations with inci-

dent AF in a community-based sample. Further, our study may provide potentially important

mechanistic insights by demonstrating associations between common microRNAs, LAFI, and

AF (Fig 3, Table 4). Our findings suggest that adverse structural LA remodeling, as measured

Table 2. Associations between and prevalent atrial fibrillation and plasma levels of LAFI-associated plasma microRNA.

Prevalent AF Cases Non-AF Cases

MicroRNA N Median Cq Q1 Cq Q3 Cq Expression Mean

Cq

N Median Cq Q1 Cq Q3 Cq Expression Mean

Cq

Hazard Ratio 95% CI P-Value

miR_20a_5p 74 17.33 16.46 18.19 17.39 1532 16.84 16.04 17.63 16.87 1.36 1.14 1.61 0.001

miR_106b_5 74 18.16 17.36 19.09 18.23 1520 17.75 16.92 18.5 17.74 1.36 1.13 1.63 0.001

miR_126_5p 78 17.01 16.46 17.87 17.2 1575 16.75 16.03 17.48 16.8 1.32 1.1 1.58 0.003

miR_26a_5p 75 17.7 17.01 18.54 17.76 1549 17.3 16.51 18.15 17.35 1.28 1.07 1.54 0.007

miR_15b_5p 74 17.17 16.72 18.14 17.36 1544 16.97 16.29 17.66 17 1.31 1.08 1.59 0.007

miR_484 74 18.22 17.59 19.04 18.29 1527 17.92 17.12 18.64 17.9 1.3 1.07 1.58 0.007

miR_93_5p 72 18.27 17.49 19 18.25 1517 17.89 17.1 18.64 17.87 1.28 1.06 1.55 0.011

miR_150_5p 75 17.53 16.5 18.69 17.71 1533 17.01 16.27 18.21 17.28 1.21 1.04 1.41 0.013

miR_30a_5p 77 17.19 16.43 17.91 17.27 1554 16.85 16.15 17.55 16.91 1.25 1.05 1.49 0.013

miR_140_3p 69 19.61 18.73 20.35 19.55 1454 19.18 18.48 19.98 19.21 1.31 1.05 1.63 0.015

miR_199a_3 70 18.92 18.35 19.94 19.02 1489 18.64 17.84 19.54 18.67 1.26 1.04 1.53 0.019

miR_17_5p 73 18.21 17.34 18.9 18.17 1518 17.81 17.05 18.57 17.83 1.24 1.03 1.5 0.023

let_7d_5p 66 20.13 19.25 20.81 19.89 1292 19.58 18.71 20.37 19.55 1.29 1.04 1.6 0.023

miR_23b_3p 68 19.53 18.9 20.54 19.71 1427 19.35 18.63 20.2 19.41 1.28 1.02 1.6 0.032

let_7b_5p 61 19.96 19 20.64 19.82 1323 19.49 18.66 20.36 19.48 1.27 1.02 1.59 0.034

miR_186_5p 65 19.77 19 20.44 19.75 1396 19.48 18.7 20.23 19.44 1.28 1.02 1.61 0.340

miR_27b_3p 61 19.45 18.91 20.41 19.52 1333 19.04 18.26 20.11 19.17 1.23 1.01 1.51 0.041

miR_19a_3p 74 16.07 15.28 16.89 16.12 1539 15.75 14.96 16.55 15.8 1.18 1 1.39 0.048

�Expression levels are reported in Cq (inversely related to plasma levels). Note that hazard ratio described the risk in AF with 1 Cq increase.

https://doi.org/10.1371/journal.pone.0236960.t002

Table 3. Associations between and incident atrial fibrillation and plasma levels of LAFI-associated plasma microRNA.

Prevalent AF Cases Non-AF Cases

MicroRNA N Median Cq Q1 Cq Q3 Cq Expression Mean

Cq

N Median Cq Q1 Cq Q3 Cq Expression Mean

Cq

Hazard

Ratio

95% CI P-Value

miR_324_3p 71 18.21 17.75 20.69 19.05 645 17.95 17.59 19.82 18.59 1.19 1.03 1.36 0.016

miR_26a_5p 141 17.62 16.68 18.4 17.54 1408 17.29 16.51 18.14 17.33 1.16 1.02 1.32 0.026

miR_106b_5p 139 17.99 16.93 18.7 17.93 1381 17.75 16.94 18.51 17.72 1.16 1.02 1.33 0.029

miR_363_3p 112 19.55 18.78 20.59 19.69 1108 19.29 18.59 20.24 19.43 1.17 1.01 1.36 0.043

miR_484 141 18.21 17.23 18.99 18.09 1386 17.91 17.13 18.64 17.89 1.15 1 1.32 0.049

miR_20a_5p 141 16.93 16.13 19.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

�Expression levels are reported in Cq (inversely related to plasma levels). Note that hazard ratio describes the risk in incident AF with 1 Cq increase

https://doi.org/10.1371/journal.pone.0236960.t003
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Fig 2. (A-F). Kaplan-Meier Plots show time to incident AF as a function of 6 microRNA plasma levels. Participants with lower than median microRNA

plasma concentrations (1/Cq) tended to have earlier onset of atrial fibrillation. Blue = Less than median plasma level. Red = Greater than median plasma

level. Subfigures A-F show Kaplan-Meier plots for each identified microRNA.

https://doi.org/10.1371/journal.pone.0236960.g002
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by LAFI, may be influenced by, or related to, the circulating transcriptome and thereby con-

tribute to risk for AF.

LAFI as an intermediate cardiac phenotype predisposing to AF

Larger mean LA size and lower mean LA phasic function are two validated echocardiographic

markers of adverse LA structural and functional remodeling [8]. Recent data from large com-

munity-based samples demonstrate the importance of LA phasic function, adjusting for LA

volume, as an intermediate cardiac phenotype predisposing to AF [9]. Composite measures of

LA size and function, such as LAFI, may be more sensitive to detecting adverse LA remodeling

Fig 3. miRDB enrichment analysis conducted in metascape of six microRNAs associated with incident AF and. Each bar is labeled with associated

process. The length of each bar is the negative base-10 logarithm of the calculated p-value based on a cumulative hypergeometric distribution.

https://doi.org/10.1371/journal.pone.0236960.g003

Table 4. Known gene targets and phenotypes from gene ontology of the 6 microRNAs associated with LAFI and incident AF.

MicroRNA Expression levels in

relation to LAFI

Expression Levels in

Relation to AF Risk

Function (Target Genes) � Associated Phenotype�

20a-5p " # Smoothened (SMO) [27] Cell Proliferation; Apoptosis; Hh

signaling pathway

26a-5p " # Potassium Voltage-Gated Channel Subfamily J Member 2

(KCNJ2), Cyclins (CCND2, CCNE1, CCNE2 and CDK6) [28,

29, 30]

Altered inward-rectifier potassium

channel function; AF; Suppression of

G1/S phase transition

106b-5p " # Short Stature Homeobox 2 (Shox2), T-Box 3 (Tbx3) [16] Atrial arrythmias; Sinoatrial dysfunction

324-3p " # Dynein Cytoplasmic 1 Light Intermediate Chain 2

(DYNC1LI2), Ankyrin Repeat and Sterile Alpha Motif Domain

Containing 1A (ANKS1), ATP Binding Cassette Subfamily G

Member 1 (ABCG1), Cytohesin 3 (CYTH3), Apoptosis

Resistant E3 Ubiquitin Protein Ligase 1 (AREL1) [19]

Cytoskeletal remodeling; cellular

signaling; Apoptosis

484 " # Mitochondrial Fission protein (Fis1) [31] Decreased Cardiac myocyte apoptosis

363-3p # # DnaJ Heat Shock Protein Family (Hsp40) Member B9

(DNAJB9), Solute Carrier Family 12 Member 5 (SLC12A5),

F-Box and WD Repeat Domain Containing 7 (FBXW7) [21]

Apoptosis; Ion channels; proteosomal

degredation

�The gene targets and associated phenotypes for each of the 6 microRNAs associated with AF were obtained from publicly available gene ontology databases (Methods)

of animal and human studies or from a search of English-language peer-reviewed manuscripts. See Methods section for full details

https://doi.org/10.1371/journal.pone.0236960.t004
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than LA volume or emptying fraction alone. Measures of structural and functional LA remod-

eling correlate with histological evidence of cellular hypertrophy as well as extracellular colla-

gen deposition, metabolic dysregulation, and myocyte cell death [32,33]. Furthermore, a

decrease in atrial phasic function relates strongly to altered calcium-handing and ion channel

dysregulation (i.e., L-type Ca2+ channels and Na+/Ca2+exchanger) in myocytes. Therefore, the

structural and functional LA remodeling, as measured by lower LAFI, may also capture some

aspects of adverse electrical LA remodeling, making LAFI a suitable quantitative cardiac phe-

notype to identify microRNAs that might be associated with AF. Our decision to choose LAFI

as the intermediate phenotype was based on the observations that AF predominantly affects

older adults, relates strongly to duration and intensity of exposure to risk factors, and is fre-

quently preceded over mid-adulthood by the development of an intermediate phenotype,

echocardiographic atrial remodeling. This also incorporates patients with valvular defects, as

valvular defects would alter (LVOT-VTI) measurements contributing to increased incidence

of LAFI and ultimately AF through atrial remodeling.

Association of microRNAs with LA remodeling

In our previous work [12], we chose to focus on risk factors related to degree of pathological

atrial remodeling, which included hypertension, heart failure, and myocardial infarction

which are potential mediators of atrial remodeling and AF vulnerability. Thus, in this study,

we chose to focus on the echocardiographic findings of structural remodeling that lead to AF

(i.e. LAFI) because it is an established measure of atrial mechanical function and is strongly

associated with risk for incident AF.

The association of microRNAs with LA structural remodeling has been explored in canine

models with AF and rat models with myocardial infarction. In prior studies, up-regulation of

microRNA-21 and downregulation of microRNAs 26, 29b, 30, 133, and 590 in atrial tissues

has been associated with increased levels of fibrosis mediators such as TGF-β1 and TGFR-2

and histological evidence of left atrial extracellular fibrosis [34,35]. However, few prior studies

have examined quantitative echocardiographic traits in humans in relation to cardiac or

plasma microRNA expression. We identified 73 microRNAs with statistically significant

associations with LAFI after adjusting for CHARGE-AF risk factors (S3 Table), including

microRNAs 21, 26, 29b and 30. Most LAFI-associated microRNAs (n = 61) showed positive

associations (lower levels, lower LAFI). Many of these microRNAs regulate cytoskeletal

remodeling, ion channel function, cardiac fibrosis, myocyte apoptosis, and cardiac hypertro-

phy in human or animal models [36–38]. Our findings suggest the macroscopic LA remodel-

ing, as captured by LAFI, is closely associated with the circulating transcriptome, even after

adjustment for known clinical and electrocardiographic associates of LA remodeling and AF.

Association of microRNAs with AF

Twenty plasma microRNAs were significantly associated with both LAFI and AF after

adjustment for covariates and correction for multiple testing (Tables 2 and 3). While several

microRNAs identified in the present analysis have previously been associated with AF in

experimental models, our results should also be viewed in the context of prior small-to-inter-

mediate sized cross-sectional human and experimental studies examining relations between

cardiac, whole-blood, platelet, or plasma microRNAs with AF [12,39,31]. Although we identi-

fied a different set of microRNAs associated with AF than we observed in our prior study

examining whole blood microRNA levels and AF in the Framingham cohort, significant over-

lap was observed between the findings of this analysis and results from our prior investigation

examining plasma microRNA levels and AF in a prospectively recruited cohort of 112 AF
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patients and 99 referents [7,12]. For example, microRNAs 150, and let-7b were associated with

prevalent AF in both investigations [7]. Differences in the results of this study as compared

with our prior investigation likely result from the current study’s longer duration of follow up,

and known differences in microRNA pools present in plasma and whole-blood because the

whole blood miRNome includes microRNAs in white and red blood cells, as well as platelets

[12,40]. Our results are consistent with prior work, lending confidence to our approach and

findings, but also extend our observations to a larger community-based cohort.

In contrast to prior work, our present analysis was designed and powered sufficiently to

identify plasma microRNAs associated with incident AF. Of the six microRNAs associated

with incident AF, four were also associated with prevalent AF in separate analyses, suggesting

shared gene regulatory networks. Our ontological and enrichment analyses and review of the

literature (Fig 3, Table 4) demonstrate that of the six microRNAs associated with LAFI and

incident AF, four (microRNAs 106b-5p, 26a-5p, 324a-3p, 20a-5p) have established roles in the

pathophysiology of atrial remodeling and AF, whereas two (microRNAs 363-3p, 484), repre-

sent novel discoveries with plausible relations to AF (Table 4). MicroRNAs associated with

AF in our analyses have strong quantifiable associations with genes involved in cell morpho-

genesis (GO004667), signal transduction (GO0007264), cell death, and mitotic transition

(GO0043068, GO2000134), and as well as cellular differentiation and catabolic processes (Fig

3). Interestingly, cellular morphogenesis in GO004667 relates to neuronal differentiation, and

we speculate that microRNAs may exert their influence on AF vulnerability by regulating

genes involved in the autonomic nervous system. This discovery highlights the potential inter-

actions between cardiac structural remodeling, epicardial adipose tissue, and the extensive net-

work of vagal plexi known to affect risk for AF [40].

The Kaplan Meier curves for microRNAs 106b, 324, 484 diverge after nearly 6 years of fol-

low-up, whereas those for microRNAs 26a and 363 separated from the time of transcriptomic

profiling (Fig 2). We submit that these findings support an association for the microRNAs

identified as being associated with AF. Atrial remodeling takes years to occur, precedes the

development of AF, and is likely controlled by subtle perturbations in gene regulatory net-

works over time, as reflected by dysregulated microRNA expression [41]. Therefore, it would

be expected for some microRNAs to take years to affect an intermediate phenotype (lower

LAFI) or end-stage phenotype (AF). Future studies should leverage multiple-time microRNA

data collection for each participant, to test both these hypotheses.

Strength and limitations

Our study had several notable strengths. Our study profiles plasma microRNA expression in

the largest sample of community-based participants to date using highly sensitive and specific

PCR methods that have excellent discriminative ability. We leveraged rigorously adjudicated

clinical and echocardiographic data from a representative sample of participants enrolled in

the community-based Framingham Offspring Study and our statistical analyses adjusted for

clinical and electrocardiographic correlates of LA remodeling and AF. We used a conservative

Bonferroni correction at Step 1. Furthermore, the microRNAs observed to be in association

with AF are highly consistent with respect to the strength of statistical associations and the

directionality of associations with AF when compared to prior work involving separate

cohorts. In addition, our study incorporates measures obtained from a longer participant fol-

low up and captures more cases of incident AF.

Our study does have several limitations. First, because our study sample was comprised of

participants largely of European-American ancestry, the generalizability of our findings to

individuals of other races/ethnicities is uncertain. Secondly, we did not control for medications
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in this study owing to the study sample size although to our knowledge, there have been no tri-

als demonstrating the effects of specific cardiovascular or non-cardiovascular drugs that influ-

ence plasma concentrations of the 20 microRNA associated with prevalent or incident AF.

Furthermore, although the low incidence and prevalence of AF in our study is consistent with

rates seen in other cohorts, we acknowledge that AF can be paroxysmal and elude clinical

detection [2]. Thirdly, as LAFI is mathematically determined from LVOT-VTI, presence of

valvular disease may independently affect LAFI and make it less reliable. The specific effect is

unknown and future investigations should compare LAFI with more traditional measures of

LA function, in patients with valvular disease. Additionally, although our group and others

have demonstrated strong relations between cardiac microRNA and plasma microRNA

expression profiles in patients with AF and other types of CVD, cardiac tissue was not available

from FHS Offspring participants and thus we could not compare the cardiac and circulating

transcriptome [6,12, 41]. Based on our prior data, we strongly suspect that the plasma miR-

nome relates to cardiac gene regulation and microRNA expression, but longitudinal studies

which incorporate a mediation analysis are needed to establish this relationship. Our study

was observational; we cannot rule out residual confounding and we cannot establish causal

relations between the microRNAs, LAFI, and AF.

Conclusion

In our study including 1788 FHS Offspring participants with available echocardiographic, clin-

ical, and microRNA data, we observed that several microRNAs known to regulate genes impli-

cated in cardiac fibrosis, inflammation, and myocyte apoptosis were associated with LAFI and

AF. Our findings contribute to emerging literature consistent with the hypothesis that circulat-

ing microRNAs play a critical role in the pathophysiology of atrial remodeling and fibrillation.
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