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Abstract Vitamin B12 is an essential micronutrient that functions in two metabolic pathways: the

canonical propionate breakdown pathway and the methionine/S-adenosylmethionine (Met/SAM)

cycle. In Caenorhabditis elegans, low vitamin B12, or genetic perturbation of the canonical

propionate breakdown pathway results in propionate accumulation and the transcriptional

activation of a propionate shunt pathway. This propionate-dependent mechanism requires nhr-10

and is referred to as ‘B12-mechanism-I’. Here, we report that vitamin B12 represses the expression

of Met/SAM cycle genes by a propionate-independent mechanism we refer to as ‘B12-mechanism-

II’. This mechanism is activated by perturbations in the Met/SAM cycle, genetically or due to low

dietary vitamin B12. B12-mechanism-II requires nhr-114 to activate Met/SAM cycle gene

expression, the vitamin B12 transporter, pmp-5, and adjust influx and efflux of the cycle by

activating msra-1 and repressing cbs-1, respectively. Taken together, Met/SAM cycle activity is

sensed and transcriptionally adjusted to be in a tight metabolic regime.

Introduction
Metabolism lies at the heart of most cellular and organismal processes. Anabolic metabolism produ-

ces biomass during development, growth, cell turnover, and wound healing, while catabolic pro-

cesses degrade nutrients to generate energy and metabolic building blocks. Animals must be able

to regulate their metabolism in response to nutrient availability and to meet growth and energy

demands. Metabolism can be regulated by different mechanisms, including the allosteric modulation

of metabolic enzyme activity and the transcriptional regulation of metabolic genes. Changes in met-

abolic enzyme level and/or activity can result in changes in metabolic flux, which is defined as the

turnover rate of metabolites through enzymatically controlled pathways. Metabolic flux can result in

the accumulation or depletion of metabolites (Watson et al., 2015; van der Knaap and Verrijzer,

2016; Wang and Lei, 2018). These metabolites may interact with enzymes directly to allosterically

affect the enzyme’s catalytic properties. Alternatively, metabolites can alter the transcriptional regu-

lation of metabolic enzymes by interacting with transcription factors (TFs) and changing their activity

or localization (Desvergne et al., 2006; Giese et al., 2019). A classic example of the transcriptional

regulation of metabolism is the activation of cholesterol biosynthesis genes in mammals by SREBP

that responds to low levels of cholesterol (Espenshade, 2006).

Vitamin B12 is an essential cofactor for two metabolic enzymes: methylmalonyl-CoA mutase and

methionine synthase. Methylmalonyl-coenzyme A mutase (EC 5.4.99.2) catalyzes the third step in the
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breakdown of the short-chain fatty acid propionate, while methionine synthase (EC 2.1.1.13) con-

verts homocysteine into methionine in the Methionine/S-adenosylmethionine (Met/SAM) cycle

(Figure 1A). The Met/SAM cycle is part of one-carbon metabolism, which also includes folate metab-

olism and parts of purine and thymine biosynthesis (Ducker and Rabinowitz, 2017). The one-carbon

cycle produces many important building blocks for cellular growth and repair, including nucleotides

and SAM, the major methyl donor of the cell. SAM is critical for the synthesis of phosphatidylcholine,

an important component of cellular membranes, as well as for the methylation of DNA, RNA, and

histones (Ye et al., 2017). Both vitamin B12-dependent metabolic pathways have been well studied

at the biochemical level; however, little is known about how these pathways are regulated

transcriptionally.

The nematode Caenorhabditis elegans is a highly tractable model for studying the relationships

between diet, disease, and metabolism (Yilmaz and Walhout, 2014; Zhang et al., 2017). C. elegans

is a bacterivore that can thrive on both high and low vitamin B12 diets (MacNeil et al., 2013;

Watson et al., 2013; Watson et al., 2014). We previously discovered that perturbations of the

canonical propionate breakdown pathway, either genetically or by low dietary vitamin B12, results in

the transcriptional activation of five genes comprising an alternative propionate breakdown pathway,

or propionate shunt (Figure 1A, Watson et al., 2016). Activation of the propionate shunt occurs

only with sustained propionate accumulation and absolutely depends on the nuclear hormone recep-

tor (NHR) nhr-10 (Bulcha et al., 2019). nhr-10 functions together with nhr-68 in a type one coherent

feedforward loop known as a persistence detector (Bulcha et al., 2019). We refer to the regulation

of gene expression by accumulation of propionate due to low vitamin B12 dietary conditions as

‘B12-mechanism-I’.

Here, we report that vitamin B12 represses the expression of Met/SAM cycle genes by a propio-

nate-independent mechanism we refer to as ‘B12-mechanism-II’. We find that B12-mechanism-II is

activated upon perturbation of the Met/SAM cycle, either genetically or nutritionally, due to low die-

tary vitamin B12. This mechanism requires another NHR, nhr-114, which responds to low levels of

SAM. B12-mechanism-II not only activates Met/SAM cycle gene expression, it also activates the

expression of the vitamin B12 transporter pmp-5 and the methionine sulfoxide reductase msra-1,

and represses the expression of the cystathionine beta synthase cbs-1. The regulation of the latter

two genes increases influx and reduces efflux of the Met/SAM cycle, respectively. These findings

indicate that low Met/SAM cycle activity is sensed and transcriptionally adjusted to be maintained in

a tightly controlled regime. Taken together, in C. elegans the genetic or nutritional perturbation of

the two vitamin B12-dependent pathways is sensed by two transcriptional mechanisms via different

NHRs. These mechanisms likely provide the animal with metabolic adaptation to develop and thrive

on different bacterial diets in the wild.

Results

Low dietary vitamin B12 activates two transcriptional mechanisms
As in humans, vitamin B12 acts as a cofactor in two C. elegans pathways: the canonical propionate

breakdown pathway and the Met/SAM cycle, which is part of one-carbon metabolism (Figure 1A).

These pathways are connected because homocysteine can be converted into cystathionine by the

cystathionine beta synthase CBS-1, which after conversion into alpha-ketobutyrate is converted into

propionyl-CoA. When flux through the canonical propionate breakdown pathway is perturbed,

either genetically or nutritionally, that is, when dietary vitamin B12 is low, a set of genes comprising

an alternative propionate breakdown pathway or propionate shunt is transcriptionally activated

(Macneil and Walhout, 2013; Watson et al., 2013; Watson et al., 2014; Watson et al., 2016). Low

vitamin B12 results in an accumulation of propionate, which, when sustained, activates a gene regu-

latory network circuit known as a type one coherent feedforward loop with an AND-logic gate com-

posed of two transcription factors, nhr-10 and nhr-68 (Bulcha et al., 2019). The first gene in the

propionate shunt, acdh-1, acts as a control point: its expression is induced several hundred fold

when vitamin B12 is limiting (Macneil and Walhout, 2013; Watson et al., 2013; Watson et al.,

2014; Watson et al., 2016).

We have previously used transgenic animals expressing the green fluorescent protein (GFP) under

the control of the acdh-1 promoter as a vitamin B12 sensor (Arda et al., 2010; MacNeil et al.,
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Figure 1. Two mechanisms of gene regulation by low vitamin B12 dietary conditions. (A) Cartoon of vitamin B12-related metabolic pathways in C.

elegans. CDP –cytidine 5’-diphosphocholine; DHF – dihydrofolate; 3-HP – 3-hydroxypropionate; 5,10-meTHF – 5,10-methylenetetrahydrofolate; 5-

meTHF – 5-methyltetrahydrofolate; 10-fTFH –10-formyltetrahydrofolate; BCKDH – branched-chain a-ketoacid dehydrogenase complex; MM-CoA –

methylmalonyl-coenzyme A; *MUT – human methylmalonyl-coenzyme A mutase; *MS – human methionine synthase; MSA – malonic semialdehyde;

Figure 1 continued on next page
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2013; Watson et al., 2014). In these Pacdh-1::GFP animals, GFP expression is high throughout the

intestine on an E. coli OP50 diet, which is low in vitamin B12, and GFP expression is very low on a

Comamonas aquatica DA1877 diet that is high in vitamin B12 (MacNeil et al., 2013; Watson et al.,

2014). Low GFP expression resulting from vitamin B12 supplementation to the E. coli OP50 diet can

be overcome by addition of propionate (Figure 1B, Figure 1—figure supplements 1 and

2; Bulcha et al., 2019). The activation of acdh-1 expression in response to accumulating propionate

is completely dependent on nhr-10 (Figure 1B, Figure 1—figure supplements 1 and

2; Bulcha et al., 2019). Interestingly, we found that while GFP levels are reduced in the anterior

intestine, there is still remaining GFP expression in the posterior intestine in Pacdh-1::GFP transgenic

animals lacking nhr-10 (Figure 1B, Figure 1—figure supplements 1 and 2). Since nhr-10 is abso-

lutely required to mediate the activation of acdh-1 by propionate, this means that there is another,

propionate-independent mechanism of activation. Importantly, the residual GFP expression in

Pacdh-1::GFP; Dnhr-10 was completely repressed by the supplementation of vitamin B12

(Figure 1B, Figure 1—figure supplements 1 and 2). This result was confirmed by inspecting our

previously published RNA-seq data: in Dnhr-10 animals there is residual endogenous acdh-1 expres-

sion which is eliminated by the addition of vitamin B12 (Figure 1C, Supplementary file 1;

Bulcha et al., 2019). These results demonstrate that there is another mechanism by which low vita-

min B12 activates gene expression that is independent of propionate accumulation, which occurs

when flux through the canonical propionate breakdown pathway is perturbed. We refer to the acti-

vation of gene expression in response to canonical propionate breakdown perturbation as ‘B12-

mechanism-I’ and the other, propionate-independent mechanism as ‘B12-mechanism-II’ (Figure 1D).

Met/SAM cycle perturbations activate B12-mechanism-II
To determine the mechanism by which ‘B12-mechanism-II’ is activated, we used the Pacdh-1::GFP

vitamin B12 sensor in the Dnhr-10 mutant background, which cannot respond to B12-mechanism-I.

We first performed a forward genetic screen using ethyl methanesulfonate (EMS) to find mutations

that activate GFP expression in Pacdh-1::GFP;Dnhr-10 animals in the presence of vitamin B12

(Figure 2A). We screened ~8000 genomes and identified 27 mutants, 16 of which were viable and

produced GFP-expressing offspring. Seven of these mutants were backcrossed with the Pacdh-1::

GFP;Dnhr-10 parent strain. Single-nucleotide polymorphism mapping and whole genome sequenc-

ing revealed mutations in metr-1, mtrr-1, sams-1, mthf-1, and pmp-5 (Figure 2B). The first four

genes encode enzymes that function directly in the Met/SAM cycle (Figure 1A). metr-1 is the single

ortholog of human methionine synthase; mtrr-1 is the ortholog of MTRR that encodes methionine

synthase reductase; sams-1 is orthologous to human MAT1A and encodes a SAM synthase; and

mthf-1 is the ortholog of human MTHFR that encodes methylenetetrahydrofolate reductase. We also

found mutations in pmp-5, an ortholog of human ABCD4, which encodes a vitamin B12 transporter

(Coelho et al., 2012).

Next, we performed a reverse genetic RNAi screen using a library of predicted metabolic genes

in Pacdh-1::GFP;Dnhr-10 animals fed E. coli HT115 bacteria (the bacterial diet used for RNAi experi-

ments) supplemented with vitamin B12 (Figure 2C). In these animals, GFP expression is off and we

looked for those RNAi knockdowns that activated GFP expression in the presence of vitamin B12.

Out of more than 1400 genes tested, RNAi of only five genes resulted in activation of GFP

Figure 1 continued

SAH – S-adenosylhomocysteine; SAM – S-adenosylmethionine; THF – tetrahydrofolate; FFL – feed forward loop. Dashed arrows indicate multiple

reaction steps. (B) Fluorescence microscopy images of Pacdh-1::GFP reporter animals in wild type and Dnhr-10 mutant background with different

supplements as indicated. Insets show brightfield images. (C) RNA-seq data of acdh-1 mRNA with and without 20 nM vitamin B12 in wild type and

Dnhr-10 mutant animals (Bulcha et al., 2019). Datapoints show each biological replicate and the bar represents the mean. TPM – transcripts per

million. p adjusted values are provided in Supplementary file 1. (D) Cartoon illustrating two mechanisms of gene regulation by low vitamin B12 dietary

conditions.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Fluorescent microscopy images of Pacdh-1::GFP animals in wild type and Dnhr-10 mutant backgrounds with supplemented

metabolites as indicated.

Figure supplement 2. Boxplot showing median and interquartile range of normalized GFP intensity measurements of fluorescent images shown in

Figure 1B.
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Figure 2. Met/SAM cycle perturbations activate B12-mechanism-II. (A) Workflow for the EMS mutagenesis screen using Pacdh-1::GFP;Dnhr-10 reporter

animals supplemented with 20 nM vitamin B12. WGS – whole genome sequencing. (B) To-scale cartoons of amino acid changes in the proteins

encoded by the genes found in the forward genetic screen. (C) Workflow for RNAi screen using Pacdh-1::GFP;Dnhr-10 reporter animals supplemented

with 20 nM vitamin B12. (D) Fluorescence microscopy images of Pacdh-1::GFP;Dnhr-10 reporter animals subjected to RNAi of the indicated metabolic

Figure 2 continued on next page
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expression: metr-1, mtrr-1, sams-1, mthf-1, and mel-32 (Figure 2D). Four of these genes were also

found in the forward genetic screen (Figure 2B). The fifth gene, mel-32, also functions in one-carbon

metabolism (Figure 1A). It is an ortholog of human SHMT1 and encodes serine hydroxymethyltrans-

ferase that converts serine into glycine thereby producing 5,10-methylenetetrahydrofolate (5,10-

meTHF), the precursor of 5-meTHF, which donates a methyl group in the reaction catalyzed by

METR-1 (Figure 1A). These results show that genetic perturbations in Met/SAM cycle genes activate

B12-mechanism-II, even in the presence of vitamin B12. This indicates that reduced activity of the

Met/SAM cycle, either due to genetic perturbations or as a result of low dietary vitamin B12 acti-

vates B12-mechanism-II (Figure 2E). Therefore, genetic perturbations in either pathway that uses

vitamin B12 as a cofactor activate the vitamin B12 sensor.

B12-mechanism-II activates Met/SAM cycle gene expression in response
to Met/SAM cycle perturbations
To ask what other genes are activated by B12-mechanism-II, we performed RNA-seq using four Met/

SAM cycle mutants identified in the forward genetic screen. All strains were supplemented with vita-

min B12 and gene expression profiles of the Met/SAM cycle mutants were compared to the parental

Pacdh-1::GFP;Dnhr-10 strain. We found a set of 110 genes that are upregulated in all four Met/SAM

cycle mutants, and a smaller set of 11 genes that are downregulated (Figure 3A,

Supplementary file 2). Importantly, endogenous acdh-1 was upregulated in each of the Met/SAM

cycle mutants, validating the results obtained with the Pacdh-1::GFP vitamin B12 sensor

(Supplementary file 2). Remarkably, we found that most Met/SAM cycle genes are significantly

upregulated in each of the Met/SAM cycle mutants, and one of them, mel-32, was significantly

increased in three of the four mutants (the fourth mutant just missing the selected statistical thresh-

old) (Figure 3B, Supplementary file 2).

The finding that Met/SAM cycle genes are transcriptionally activated in response to genetic Met/

SAM cycle perturbations implies that these genes may also be activated by low vitamin B12. Indeed,

inspection of our previously published RNA-seq data (Bulcha et al., 2019) revealed that expression

of Met/SAM cycle genes is repressed by vitamin B12 (Figure 3C, Supplementary file 1). In contrast

to propionate shunt genes, however, Met/SAM cycle genes are not induced in response to propio-

nate supplementation, nor are these genes affected in nhr-10 or nhr-68 mutants, which are the medi-

ators of the propionate response (B12-mechanism-I, Figure 3D, Supplementary file 1). Therefore,

Met/SAM cycle gene expression is activated by B12-mechanism-II in response to either genetic or

nutritional (low vitamin B12) perturbations in the Met/SAM cycle (Figure 3E).

nhr-114 mediates Met/SAM cycle activation in response to low Met/
SAM cycle flux
How do perturbations in the Met/SAM cycle activate B12-mechanism-II? There are two components

to this question: (1) which TF(s), and (2) which metabolite(s) mediate Met/SAM cycle gene induction?

We first focused on identifying the TF(s) involved in B12-mechanism-II. Previously, we identified

more than 40 TFs that activate the Pacdh-1::GFP vitamin B12 sensor in wild type animals

(MacNeil et al., 2015). Subsequently, we found that only a subset of these TFs are involved in B12-

mechanism-I, most specifically nhr-10 and nhr-68 (Bulcha et al., 2019). To identify TFs involved in

B12-mechanism-II, we performed RNAi of all TFs that regulate the acdh-1 promoter (MacNeil et al.,

2015; Bulcha et al., 2019) in Pacdh-1::GFP;Dnhr-10 animals harboring mutations in Met/SAM genes.

As mentioned above, these animals express moderate levels of GFP in response to the activation of

B12-mechanism-II by Met/SAM cycle mutations. RNAi of several TFs reduced GFP expression,

including elt-2, nhr-23, cdc-5L, lin-26, sbp-1, and nhr-114 (Figure 4A, Figure 4—figure supplement

1). Most of these TFs function at a high level in the intestinal gene regulatory network, elicit gross

physiological phenotypes when knocked down, and are also involved in B12-mechanism-I

(MacNeil et al., 2015; Bulcha et al., 2019). For instance, elt-2 is a master regulator that is required

Figure 2 continued

genes. Insets show brightfield images. (E) Cartoon illustrating the activation of B12-mechanism-II by low vitamin B12 or genetic perturbations in the

Met/SAM cycle.
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Figure 3. Genetic mutations in Met/SAM cycle genes activate Met/SAM cycle gene expression. (A) Hierarchal clustering of log10-transformed fold

change RNA-seq data. Changes are relative to the Pacdh-1::GFP;Dnhr-10 parent strain with the cutoffs of a fold change of 1.5 and a p adjusted value

less than 0.01. Only genes that change in expression in all four Met/SAM cycle gene mutants are shown. (B) Bar graphs of Met/SAM cycle gene

expression by RNA-seq in the four Met/SAM cycle mutants and in the Pacdh-1::GFP;Dnhr-10 parent strain. Datapoints show each biological replicate

Figure 3 continued on next page
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for the intestinal expression of most if not all genes and is therefore not specific (McGhee et al.,

2009; MacNeil et al., 2015). The TFs nhr-23 and lin-26 were not found to be involved in B12-mecha-

nism-I and could therefore potentially be involved in B12-mechanism-II. However, RNAi of these TFs

causes severe developmental delay across all strains and thus their contribution could be less specific

(Figure 4—figure supplement 1). Only nhr-114 RNAi, which we previously found not to be involved

in B12-mechanism-I, specifically repressed GFP expression in the nhr-10 deletion mutant background

(Figure 4A, Figure 4—figure supplements 2 and 3; Bulcha et al., 2019). This indicates that nhr-114

mediates the response to B12-mechanism-II. Interestingly, nhr-114 RNAi greatly slowed develop-

ment in Met/SAM cycle mutants but not in the parental strain (Figure 4A, inset, Figure 4—figure

supplement 2, insets). This indicates that combined nhr-114 and Met/SAM cycle perturbations pro-

duce a synthetic sick phenotype and points to the functional importance of nhr-114 in Met/SAM

cycle metabolism.

Previously, it has been reported that nhr-114 loss-of-function mutants develop slowly and are

sterile when fed a diet of E. coli OP50 bacteria, while they grow faster and are fertile on a diet of E.

coli HT115 (Gracida and Eckmann, 2013). E. coli HT115 bacteria are thought to contain higher lev-

els of vitamin B12 than E. coli OP50 cells (Watson et al., 2014; Revtovich et al., 2019). Therefore,

we asked whether Dnhr-114 mutant phenotypes could be rescued by vitamin B12 supplementation.

Indeed, we found that both sterility and slow development of Dnhr-114 mutants fed E. coli OP50

could be rescued by supplementation of vitamin B12 (Figure 4B and C, Figure 4—figure supple-

ment 4).

The Met/SAM cycle generates SAM, the major methyl donor of the cell that is critical for the syn-

thesis of phosphatidylcholine (Ye et al., 2017; Figure 1A). It has previously been shown that pertur-

bation of sams-1, which converts methionine into SAM (Figure 1A), leads to a strong reduction in

fecundity and large changes in gene expression (Li et al., 2011; Ding et al., 2015). Importantly,

these phenotypes can be rescued by supplementation of choline, which supports an alternative

route to phosphatidylcholine biosynthesis (Walker et al., 2011; Figure 1A). Therefore, in C. elegans,

the primary biological function of the Met/SAM cycle is to produce methyl donors that facilitate the

synthesis of phosphatidylcholine. We found that the Dnhr-114 mutant phenotypes can also be res-

cued by either methionine or choline supplementation (Figure 4B and C, Figure 4—figure supple-

ment 4). Although Gracida and Eckmann did not find that methionine rescued nhr-114 RNAi knock

down animals, it is possible this was due to methodological differences. For example, they added

bulk L-amino acids and at only one concentration. The actual concentration of ingested methionine

might have been masked by other amino acids or was simply too low to provide an observable res-

cue (Gracida and Eckmann, 2013). Rescue of nhr-114 mutant phenotypes by choline and methio-

nine support the hypothesis that low levels of phosphatidylcholine are the underlying cause of the

Dnhr-114 mutant phenotypes on low vitamin B12 diets, when B12-mechanism-II cannot activate Met/

SAM cycle gene expression. This result provides further support for the functional involvement of

nhr-114 in the Met/SAM cycle, and leads to the prediction that nhr-114 activates Met/SAM cycle

gene expression in response to genetic or nutritional perturbation of the cycle’s activity. To directly

test this prediction, we performed RNA-seq on Pacdh-1::GFP and Pacdh-1::GFP;Dnhr-10;metr-1

(ww52) animals supplemented with vitamin B12 and subjected to nhr-114 or vector control RNAi.

We also included Pacdh-1::GFP;Dmetr-1 animals, which have wild type nhr-10. We found that Met/

SAM cycle genes are robustly induced in both metr-1 mutants, recapitulating our earlier observation

(Figures 4D and 3B, Figure 4—figure supplement 5, Supplementary files 3 and 2). Importantly,

we found that this induction is absolutely dependent on nhr-114 (Figure 4D, Figure 4—figure sup-

plement 5, Supplementary file 3). Overall, the induction of 32 of the 110 genes that are upregu-

lated by Met/SAM cycle perturbations requires nhr-114 (Figure 4E). These genes are candidate

modulators of Met/SAM cycle function. Interestingly, in the presence of vitamin B12, basal Met/SAM

Figure 3 continued

and the bar represents the mean. TPM – transcripts per million. p adjusted values are provided in Supplementary file 2. (C) RNA-seq comparison of

Met/SAM cycle (blue) and propionate shunt (red) gene expression in response to 20 nM vitamin B12. Bar represents the mean of two biological

replicates. p adjusted values are provided in Supplementary file 1. (D) Comparison of Met/SAM cycle and propionate shunt genes in response to 20

nM vitamin B12 plus 40 mM propionate or in nhr-10 and nhr-68 mutant animals. Bar represents the mean of two biological replicates. p adjusted values

are provided in Supplementary file 1. (E) Cartoon illustrating met/SAM cycle gene activation in response to B12-mechanism-II.
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Figure 4. nhr-114 is required for B12-mechanism-II in response to Met/SAM cycle perturbations. (A) nhr-114 RNAi reduces GFP expression in Pacdh-1::

GFP;Dnhr-10 animals harboring Met/SAM cycle gene mutations. Insets show brightfield images. (B) Dnhr-114 mutant growth and fertility phenotypes are

rescued by vitamin B12, methionine or choline supplementation. Difference in exposure time is indicated in yellow. (C) Quantification of body size of

wild type and Dnhr-114 mutant animals that are untreated or supplemented with either vitamin B12, methionine, or choline. Trial two is shown in

Figure 4 continued on next page
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cycle gene expression is not affected by nhr-114 RNAi (Figure 4D, Figure 4—figure supplement 5,

Supplementary file 3). Together with the observation that nhr-114 and Met/SAM cycle perturba-

tions produce a synthetic sick phenotype (Figure 4A, Figure 4—figure supplement 2), this indicates

that nhr-114 is specifically involved in B12-mechanism-II, which is activated when the activity of the

cycle is hampered. Taken together, perturbations in the Met/SAM cycle elicited either by low dietary

vitamin B12 or by genetic perturbations activate Met/SAM cycle gene expression by B12-mecha-

nism-II, which requires the function of nhr-114 (Figure 4F).

Methionine and choline supplementation suppress B12-Mechanism-II
Which metabolites are involved in the activation of B12-mechanism-II? To start addressing this ques-

tion, we first performed targeted metabolomics by gas chromatography-mass spectrometry (GC-

MS) on animals fed a vitamin B12-deplete E. coli OP50 diet with or without supplementation of vita-

min B12. The enhanced activity of the Met/SAM cycle in the presence of supplemented vitamin B12

is apparent because methionine levels increase, while homocysteine levels decrease (Figure 5A). 3-

hydroxypropionate levels are also dramatically decreased by vitamin B12 supplementation, because

propionate is preferentially degraded by the canonical propionate breakdown pathway (Figure 5A;

Watson et al., 2016). We reasoned that either low methionine, low SAM, low phosphatidylcholine

or high homocysteine could activate B12-mechanism-II when activity of the Met/SAM cycle is

perturbed.

We first tested the possibility that the accumulation of homocysteine in Met/SAM cycle mutants

may activate B12-mechanism-II. In C. elegans, RNAi of cbs-1 causes the accumulation of homocyste-

ine (Vozdek et al., 2012). Therefore, we reasoned that, if homocysteine accumulation activates B12-

mechanism-II, RNAi of cbs-1, should increase GFP expression in the Pacdh-1::GFP vitamin B12 sen-

sor. Remarkably, however, we found the opposite: RNAi of cbs-1 repressed GFP expression in

Pacdh-1::GFP;Dnhr-10 animals but not in the Met/SAM cycle mutants (Figure 5B, Figure 5—figure

supplements 1 and 2). This indicates that a build-up of homocysteine is not the metabolic mecha-

nism that activates B12-mechanism-II. The repression of GFP expression by cbs-1 RNAi in Pacdh-1::

GFP;Dnhr-10 animals could be explained by a decrease in the conversion of homocysteine into cysta-

thionine and an increase in the conversion into methionine resulting in support of Met/SAM cycle

activity (Figure 1A). In sum, B12-mechanism-II is not activated by a build-up of homocysteine.

Next, we explored whether low methionine, low SAM or low phosphatidylcholine activates B12-

mechanism-II. We found that either methionine or choline supplementation dramatically repressed

GFP expression in Pacdh-1::GFP;Dnhr-10 animals (Figure 5C, Figure 5—figure supplement 3). How-

ever, neither metabolite greatly affected GFP levels in wild type reporter animals (Figure 5C, Fig-

ure 5—figure supplement 3). Since these animals are fed vitamin B12-depleted E. coli OP50

bacteria and have functional nhr-10 and nhr-68 TFs, GFP expression is likely high due to propionate

accumulation, that is, B12-mechanism-I. Importantly, either methionine or choline supplementation

also repressed GFP expression induced by B12-mechanism-II due to mutations in metr-1 or mthf-1

(Figure 5D, Figure 5—figure supplement 3). However, while choline supplementation repressed

Figure 4 continued

Figure 4—figure supplement 4. Statistical significance was determined by the Kruskal-Wallis test with post hoc comparison using Dunn’s multiple

comparison test. (D) Bar graphs of Met/SAM cycle gene expression by RNA-seq in Pacdh-1::GFP, Pacdh-1::GFP;Dmetr-1 and Pacdh-1::GFP;Dnhr-10;

metr-1(ww52) animals treated with vector control or nhr-114 RNAi. Datapoints show each biological replicate and the bar represents the mean. TPM –

transcripts per million. p adjusted values are provided in Supplementary file 3. (E) Pie chart showing portion of genes upregulated by Met/SAM cycle

perturbation that are nhr-114 dependent. (F) Cartoon illustrating the requirement of nhr-114 in B12-mechanism-II.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Diluted RNAi of indicated TFs repress Pacdh-1::GFP in met/SAM cycle mutants harboring a deletion in nhr-10.

Figure supplement 2. nhr-114 RNAi represses Pacdh-1::GFP expression in all Met/SAM cycle mutants.

Figure supplement 3. Boxplot showing median and interquartile range of normalized GFP intensity measurements of fluorescent images shown in

Figure 4A.

Figure supplement 4. Replicate experiment of rescue of Dnhr-114 mutant developmental phenotype by vitamin B12, methionine, and choline shown in

Figure 4C.

Figure supplement 5. Relative mRNA level expression (fold change) as determined by qRT-PCR of Met/SAM cycle genes whose p adjusted values

were high in RNA-seq shown in Figure 4D.
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Figure 5. Methionine and choline supplementation suppress vitamin B12-mechanism-II. (A) Box plots showing GC-MS data from wild type animals fed

E. coli OP50 with or without supplemented 64 nM vitamin B12. Statistical significance determined by two-tailed t-test. 3-HP – 3-hydroxypropionate. (B)

cbs-1 RNAi reduces GFP expression in Pacdh-1::GFP;Dnhr-10 and Pacdh-1::GFP;Dnhr-10 mutants harboring Met/SAM cycle gene mutations. (C)

Methionine or choline supplementation represses GFP expression in Pacdh-1::GFP;Dnhr-10 animals. Insets show brightfield images. (D) Methionine or

Figure 5 continued on next page

Giese et al. eLife 2020;9:e60259. DOI: https://doi.org/10.7554/eLife.60259 11 of 25

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://doi.org/10.7554/eLife.60259


GFP expression in sams-1(ww51) mutants, methionine supplementation did not (Figure 5D, Fig-

ure 5—figure supplement 3). SAMS-1 converts methionine into SAM, and methionine levels are

greatly increased in sams-1 mutant animals, while being reduced in metr-1, mtrr-1, and mthf-1

mutants (Figures 1A and 5E). Since methionine levels are elevated in sams-1 mutants, and because

methionine supplementation cannot suppress GFP expression in these mutants, these results indi-

cate that low methionine is not the direct activator of B12-mechanism-II, but rather that it is either

low SAM, or low phosphatidylcholine, both of which require methionine for their synthesis. In metr-1

and mthf-1 mutants methionine supplementation supports the synthesis of SAM and phosphatidyl-

choline, and in these mutants, methionine supplementation would therefore act indirectly. We did

observe a mild reduction in GFP levels upon methionine supplementation in sams-1(ww51) animals

likely because it is not a complete loss-of-function allele, and/or functional redundancy with three

other sams genes (Figure 5D, Figure 5—figure supplement 3).

To distinguish between the possibilities of low SAM or low phosphatidylcholine activating B12-

mechanism-II, we next focused on pmt-2. PMT-2 is involved in the second step of the conversion of

phosphatidylethanolamine into phosphatidylcholine (Yilmaz and Walhout, 2016; Figure 1A). The

expression of pmt-2 is repressed by vitamin B12, but not activated by propionate, is not under the

control of nhr-10 or nhr-68, and is activated in Met/SAM cycle mutants (Bulcha et al., 2019;

Figure 5F, Figure 5—figure supplement 4, Supplementary files 1 and 2). We reasoned that pmt-2

RNAi might allow us to discriminate whether low SAM or low phosphatidylcholine activates B12-

mechanism-II. Specifically, we would expect pmt-2 RNAi to activate B12-mechanism-II if low phos-

phatidylcholine is the main cause, and consequently that GFP expression would increase. Due to the

severe growth delay caused by RNAi of pmt-2, we diluted the RNAi bacteria with vector control bac-

teria. We found that pmt-2 RNAi decreased GFP expression particularly in Pacdh-1::GFP;Dnhr-10

animals (Figure 5G, Figure 5—figure supplements 5 and 6). Predictably, choline supplementation

rescued the growth defect caused by pmt-2 RNAi. While it is possible that RNAi may cause off-tar-

get effects, the rescue by choline suggests that the knock down by pmt-2 RNAi is specific. Impor-

tantly, in both choline-supplemented and dilute RNAi conditions, pmt-2 RNAi repressed Pacdh-1::

GFP. Therefore, we conclude that low phosphatidylcholine is not the inducer of B12-mechanism-II.

Instead, our results support a model in which low SAM levels activate B12-mechanism-II. pmt-2 RNAi

likely represses the Pacdh-1::GFP transgene because SAM levels increase when the methylation

reaction converting phosphatidylethanolamine into phosphatidylcholine, which depends on SAM is

Figure 5 continued

choline supplementation represses GFP expression in Pacdh-1::GFP;Dnhr-10;metr-1(ww52) and Pacdh-1::GFP;Dnhr-10;mthf-1(ww50) animals, while

choline but not methionine supplementation represses GFP expression in Pacdh-1::GFP;Dnhr-10;sams-1(ww51) animals. This experiment was performed

without vitamin B12 supplementation. (E) GC-MS quantification of methionine levels in Met/SAM cycle mutants and in the parental strain. Statistical

significance was determined using one-way ANOVA with post-hoc comparison using Dunnett’s T3 test. (F) RNA-seq data of pmt-2 expression in each of

the datasets. PA – propionic acid; X axis labels match legend in panel E. Datapoints show each biological replicate and the bar represents the mean.

TPM – transcripts per million. p adjusted values are provided in Supplementary files 1, 2 and 4. (G) pmt-2 RNAi suppresses GPF expression in Pacdh-

1::GFP;Dnhr-10 animals. pmt-2 RNAi experiments were diluted with vector control RNAi to circumvent strong deleterious phenotypes. (H) Bar graphs of

RNA-seq data showing Met/SAM cycle gene expression in wild type and Dnhr-114 animals with and without methionine supplementation. p adjusted

values are provided in Supplementary file 4. (I) Cartoon illustrating B12-mechanism-II whereby low vitamin B12 reduces Met/SAM cycle activity,

leading to the depletion of SAM and the activation of met/SAM cycle gene expression mediated by nhr-114.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Met/SAM cycle point mutants expressing Pacdh-1::GFP treated with cbs-1 RNAi.

Figure supplement 2. Boxplot showing median and interquartile range of normalized GFP intensity measurements of fluorescent images shown in

Figure 5B.

Figure supplement 3. Boxplot showing median and interquartile range of normalized GFP intensity measurements of fluorescent images shown in

Figure 5C and D.

Figure supplement 4. Relative mRNA level expression (fold change) as determined by qRT-PCR of pmt-2 whose p adjusted value was high in RNA-seq

shown in Figure 5F.

Figure supplement 5. Wild type or Dnhr-114 expressing Pacdh-1::GFP with pmt-2 RNAi supplemented with and without choline.

Figure supplement 6. Boxplot showing median and interquartile range of normalized GFP intensity measurements of fluorescent images shown in

Figure 5G.

Figure supplement 7. Relative mRNA level expression (fold change) as determined by qRT-PCR of Met/SAM cycle genes whose p adjusted value was

high in RNA-seq shown in Figure 5H.Datapoints show each biological replicate and bar represents the mean.
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blocked (Ye et al., 2017). Taken together, our data support a model in which low Met/SAM cycle

activity results in low SAM levels, which activates B12-mechanism-II.

Next, we asked whether nhr-114 is required for the transcriptional response to low SAM. Since

SAM is not stable and may not be easily absorbed by C. elegans, we used methionine supplementa-

tion, which supports SAM synthesis, except in sams-1 mutant animals. We performed RNA-seq in

wild type and Dnhr-114 mutant animals with or without methionine supplementation and found that

Met/SAM cycle genes are repressed by methionine supplementation in wild type, but not Dnhr-114

mutant animals (Figure 5H, Figure 5—figure supplement 7, Supplementary file 4). Therefore, low

SAM levels due to vitamin B12 depletion activate B12-mechanism-II in an nhr-114-dependent man-

ner (Figure 5I).

B12-mechanism-II activates influx and represses efflux of the Met/SAM
cycle
Some of the most strongly regulated vitamin B12-repressed genes include msra-1 and pmp-5

(Figure 6A and B, Supplementary file 1; Bulcha et al., 2019). In the forward genetic screen, we

identified a mutation in pmp-5 that activates the Pacdh-1::GFP transgene in Dnhr-10 mutant animals

in the presence of supplemented vitamin B12. As mentioned above, pmp-5 is an ortholog of human

Figure 6. nhr-114 transcriptionally regulates Met/SAM cycle influx and efflux. (A, B, C) RNA-seq data from each of the experiments for msra-1 (A), pmp-

5 (B), cbs-1 (C) and nhr-114 (D). Datapoints show each biological replicate and the bar represents the mean. TPM – transcripts per million. p adjusted

values are provided in Supplementary files 1, 2 and 4.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Relative mRNA level expression (fold change) as determined by qRT-PCR of cbs-1 whose p adjusted value was high in RNA-seq

shown in Figure 6C.
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ABCD4, which encodes a vitamin B12 transporter (Coelho et al., 2012). Thus, increased B12 trans-

port may be used by the animal as a mechanism to increase Met/SAM cycle activity. msra-1 encodes

methionine sulfoxide reductase that reduces methionine sulfoxide to methionine (Figure 1A). This

gene provides an entry point into the Met/SAM cycle by increasing levels of methionine. This obser-

vation prompted us to hypothesize that perturbation of Met/SAM cycle activity, either by low dietary

vitamin B12 or by genetic perturbations in the cycle, may activate the expression of these genes.

Indeed, both genes are induced in the Met/SAM cycle mutants (Figure 6A and B,

Supplementary file 2). Further, both genes are repressed by methionine supplementation, in an

nhr-114-dependent manner (Figure 6A and B, Supplementary file 4). As a putative transporter of

vitamin B12 from the lysosome to the cytosol, pmp-5 is also important for vitamin B12-mechanism-I.

Indeed, pmp-5 is upregulated in response to propionate supplementation, and is also regulated by

nhr-10 and nhr-68 (Figure 6B, Supplementary file 1). We also noticed that the expression level

changes of cbs-1 are opposite of those of msra-1 and pmp-5: cbs-1 is activated by vitamin B12,

repressed in Met/SAM cycle mutants, and activated by methionine in an nhr-114-dependent manner

(Figure 6C, Figure 6—figure supplement 1, Supplementary files 1, 2 and 4). As mentioned above,

cbs-1 encodes cystathionine beta synthase, which converts homocysteine into cystathionine

(Figure 1A). Reduced cbs-1 expression upon Met/SAM cycle perturbations would therefore likely

prevent carbon efflux. Finally, nhr-114 expression itself is repressed by both vitamin B12 and methio-

nine and activated by perturbations in Met/SAM cycle genes (Figure 6D, Supplementary files 1,

2 and 4). This suggests that nhr-114 activates its own expression, similarly as the auto-activation of

nhr-68 in response to propionate accumulation (Bulcha et al., 2019). nhr-114 expression is not under

the control of B12-mechanism-I because it does not change when propionate is supplemented or

when nhr-10 is deleted. However, nhr-114 is mildly repressed in Dnhr-68 mutants. This suggests that

there may be some crosstalk between the two B12 mechanisms (Figure 6D; Bulcha et al., 2019).

Taken together, B12-mechanism-II is employed when Met/SAM cycle activity is perturbed to

increase Met/SAM cycle gene expression as well as Met/SAM cycle activity and influx, and to

decrease Met/SAM cycle efflux (Figure 7).

Discussion
We have discovered a second mechanism by which vitamin B12 regulates gene expression in C. ele-

gans. This B12-mechanism-II is different from B12-mechanism-I, which we previously reported to

Figure 7. Model of B12-mechanism-II. Vitamin B12 modulates the transcription of Met/SAM cycle genes and

controls in/efflux through the sensing of SAM by nhr-114. Dashed arrows indicate regulation of metabolic activity.

Solid arrows indicate transcriptional regulation. Vitamin B12 increases Met/SAM cycle metabolic activity producing

SAM, which represses nhr-114 transcription thereby reducing the expression of Met/SAM cycle related genes.
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transcriptionally activate a propionate shunt in response to persistent accumulation of this short-

chain fatty acid (Bulcha et al., 2019). B12-mechanism-I is activated under low dietary vitamin B12

conditions, or when the canonical vitamin B12-dependent propionate breakdown pathway is geneti-

cally perturbed (Watson et al., 2016; Bulcha et al., 2019). B12-mechanism-I is elicited by two TFs,

nhr-10 and nhr-68 that function as a persistence detector in a type I coherent feed-forward loop with

AND-logic gate (Bulcha et al., 2019). We unraveled B12-mechanism-II in animals lacking nhr-10 that

cannot employ B12-mechanism-I (Bulcha et al., 2019). B12-mechanism-II targets the other vitamin

B12-dependent metabolic pathway in C. elegans: the Met/SAM cycle. It is activated by low activity

of this cycle that results in low levels of SAM and the activation of another NHR TF, nhr-114, which is

not involved in B12-mechanism-I (Bulcha et al., 2019).

The discovery that Met/SAM cycle activity is sensed by a gene regulatory network resulting in the

adjustment of Met/SAM cycle gene expression and in- and efflux modulation indicates that the ani-

mal strives to maintain the activity of this cycle in a tight metabolic regime to support development

and homeostasis. Too little activity hampers the synthesis of phosphatidylcholine, an essential mem-

brane component required for proliferation and growth, thereby inducing sterility and developmen-

tal delay. It is more difficult to assess why excessive Met/SAM cycle activity could be deleterious.

One possibility may be the connection between Met/SAM cycle activity and folate status. When

homocysteine levels are increased, the metr-1 reaction is driven toward methionine production and

consequently 5-methyltetrahydrofolate (5-meTHF) and folate are depleted (Hasan et al., 2019). The

folate cycle is essential in maintaining nucleotide and NADPH pools, which are required for biomass

and redox homeostasis (Locasale, 2013). SAM is not only required for the biosynthesis of phosphati-

dylcholine, but also it is the methyl donor for histone methylation (Towbin et al., 2012). High pro-

duction of SAM could result in extensive histone modifications, which may result in aberrant overall

gene expression (Mentch et al., 2015).

Previously, it has been shown that sbp-1 is important for the expression of Met/SAM cycle genes

(Walker et al., 2011). Interestingly, however, sbp-1 is not specific to B12-mechanism-II as its pertur-

bation also affects the response to propionate accumulation (Bulcha et al., 2019) (this study). Since

sbp-1 functions at a high level in the intestinal gene regulatory network, that is, it influences many

gene expression programs, (MacNeil et al., 2015), it is likely that sbp-1 responds to multiple differ-

ent metabolic imbalances and activates each B12-mechanism. In support of this, sbp-1 activates

both nhr-68 and nhr-114, which are important for B12-mechanism-I and B12-mechanism-II, respec-

tively (Walker et al., 2011; MacNeil et al., 2015). Future studies will reveal the detailed wiring of

sbp-1, nhr-10, nhr-68, and nhr-114 into increasingly intricate gene regulatory networks.

The precise molecular mechanism by which the different NHRs mediate the two B12-mechanisms

remains to be elucidated. We have previously shown that NHR-10 physically interacts with the acdh-

1 promoter (Arda et al., 2010; Fuxman Bass et al., 2016). However, we did not detect any insight-

ful physical promoter-DNA or protein-protein interactions for either NHR-68 or NHR-114, and there-

fore it is not yet known which promoters or other TFs these TFs bind to (Reece-Hoyes et al., 2013;

Fuxman Bass et al., 2016). It is also not yet clear how high propionate or low SAM levels are

sensed. Since NHRs are liganded TFs, an interesting possibility would be that these metabolites

function as ligands where propionate would interact with and activate NHR-10 and/or NHR-68, and

SAM would interact with and inhibit NHR-114. Alternatively, the ratio between SAM and S-adenosyl-

homocysteine (SAH, Figure 1A) could be sensed by nhr-114, either directly or indirectly. Future

detailed studies of propionate shunt and Met/SAM cycle gene promoters will likely provide insights

into the molecular mechanisms governing both B12-mechanisms.

We have used the Pacdh-1::GFP dietary reporter as a crucial tool to elucidate B12-mechanism-I

and B12-mechanism-II. While the reason for activating acdh-1 expression by B12-mechanism-I is

clear (it supports an alternate propionate breakdown mechanism), the reason for inducing this gene

in response to Met/SAM cycle perturbations remains unclear. There are two possibilities: either per-

turbations in the Met/SAM cycle produce propionate which requires ACDH-1 to be degraded, or

ACDH-1 catalyzes another reaction in addition to the conversion of propionyl-CoA into acrylyl-CoA.

Future studies are required to determine if and how acdh-1 functions in Met/SAM cycle metabolism.

Taken together, we have uncovered a second mechanism of gene regulation by vitamin B12 that

ensures the flux of Met/SAM cycle metabolism to be in a tight, homeostatic regime.
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Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(Caenorhabditis
elegans)

N2; wild type Wormbase RRID:WB-STRAIN: WBStrain00000001 Laboratory
reference strain/
wild type

Strain, strain
background
(C. elegans)

TM4695; Dnhr-10 . Wormbase Wormbase ID:
WBVar00253059

Genotype:
nhr-10(tm4695) III

Strain, strain
background
(C. elegans)

VC1527; Dnhr-68 Wormbase RRID:WB-STRAIN: WBStrain00036665 Genotype:
nhr-68(gk708) V

Strain, strain
background
(C. elegans)

VL749; Pacdh-
1::GFP

Wormbase RRID:WB-STRAIN: WBStrain00040155 Genotype:
wwIs24[Pacdh-1::
GFP;unc-119(+)]

Strain, strain
background
(C. elegans)

VL868; ‘Pacdh-
1::GFP;Dnhr-10’

PMID:23540701 Genotype: wwIs24[Pacdh-
1::GFP;
unc-119(+)];nhr-
10(tm4695)

Strain, strain
background
(C. elegans)

VL1127; ‘Pacdh-1::
GFP;Dnhr-114’

PMID:26430702 Genotype:
wwIs24[Pacdh-
1::GFP;unc-119(+)];
nhr-114(gk849)

Strain, strain
background
(C. elegans)

VL1102; ‘Pacdh-
1::GFP;Dmetr-1’

PMID:23540702 Genotype:
wwIs24[Pacdh-1::
GFP;unc-119(+)];
metr-1(ok521)

Strain, strain
background
(C. elegans)

VL1115; ‘Pacdh-
1::GFP;Dsams-1’

PMID:23540702 Genotype:
wwIs24[Pacdh-1::
GFP;unc-119(+)];
sams-1(ok2946)

Strain, strain
background
(C. elegans)

CB4856 Wormbase RRID:WB-STRAIN:
WBStrain00004602

Wild isolate

Strain, strain
background
(C. elegans)

VL1199;
‘Pacdh-1::GFP;
Dnhr-10;mthf-
1(ww50)’

This paper See Materials and
methods,
Genotype:
wwIs24[Pacdh-1::
GFP;unc-119(+)];nhr-10(tm4695);mthf-
1(ww50)

Strain, strain
background
(C. elegans)

VL1200;
‘Pacdh-1::GFP;
Dnhr-10;sams-
1(ww51)’

This paper See Materials and
methods,
Genotype:
wwIs24[Pacdh-1::
GFP;unc-119(+)];
nhr-10(tm4695);
sams-1(ww51)

Strain, strain
background
(C. elegans)

VL1201;
‘Pacdh-1::GFP;
Dnhr-10;metr-
1(ww52)’

This paper See Materials and
methods,
Genotype:
wwIs24[Pacdh-1::
GFP;unc-119(+)];
nhr-10(tm4695);
metr-1(ww52)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(C. elegans)

VL1205;
‘Pacdh-1::GFP;
Dnhr-10;mtrr-
1(ww56)’

This paper See Materials and
methods, Genotype:
wwIs24[Pacdh-
1::GFP;unc-
119(+)];nhr-
10(tm4695);
mtrr-1(ww56)

Sequence-
based reagent

q_act-1_F PMID:23540702 qPCR primers ctcttgcccc
atcaaccatg

Sequence-
based reagent

q_act-1_R PMID:23540702 qPCR primers cttgcttgga
gatccacatc

Sequence-
based reagent

q_ama-1_F PMID:23540702 qPCR primers agtgccgagat
tgaaggaga

Sequence-
based reagent

q_ama-1_R PMID:23540702 qPCR primers gtattgcatgtt
acctttttcaacg

Sequence-
based reagent

q_metr-1_F This paper qPCR primers Used for qRT-PCR
as described
in methods,
GGAGCAGCTAC
TGGTAGAC

Sequence-
based reagent

q_metr-1_R This paper qPCR primers Used for qRT-PCR
as described
in methods,
CACAGATGGCGA
AATTGAGAG

Sequence-
based reagent

q_mtrr-1_F This paper qPCR primers Used for qRT-PCR
as described
in methods,
TACGTTCTTC
TCGGTCTCG

Sequence-
based reagent

q_mtrr-1_R This paper qPCR primers Used for qRT-PCR
as described
in methods,
AGAGCTGTCA
GTTGTTTGTC

Sequence-
based reagent

q_sams-1_F This paper qPCR primers Used for qRT-PCR
as described
in methods,
ATTATCAAGG
AGCTCGACCT

Sequence-
based reagent

q_sams-1_R This paper qPCR primers Used for qRT-PCR
as described
in methods,
ATGGGAACTC
AGAGTGACC

Sequence-
based reagent

q_ahcy-1_F This paper qPCR primers Used for qRT-PCR
as described
in methods,
CGATTGCGAG
ATTGACGTC

Sequence-
based reagent

q_ahcy-1_R This paper qPCR primers Used for qRT-PCR
as described
in methods,
GTGTAACGGTC
AACCTGTG

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Sequence-
based reagent

q_mel-32_F This paper qPCR primers Used for qRT-PCR
as described
in methods,
TGACTCATGGA
TTCTTCACCC

Sequence-
based reagent

q_mel-32_R This paper qPCR primers Used for qRT-PCR
as described
in methods,
GATCAACCTTGT
ATGGAAGAGAC

Sequence-
based reagent

q_mthf-1_F This paper qPCR primers Used for qRT-PCR
as described
in methods,
GTTGAGACCGA
TGAGAATGC

Sequence-
based reagent

q_mthf-1_R This paper qPCR primers Used for qRT-PCR
as described
in methods,
TTCATAATGCTT
TGGTGACCAG

Sequence-
based reagent

q_pmt-2_F This paper qPCR primers Used for qRT-PCR
as described
in methods,
TTCATGTCGAAG
TTTACCCA

Sequence-
based reagent

q_pmt-2_R This paper qPCR primers Used for
qRT-PCR as
described in
methods,
GTCCTTCTCGA
TGTATCCG

Sequence-
based reagent

q_cbs-1_F This paper qPCR primers Used for qRT-PCR
as described
in methods,
GAAGCTAGAGTA
TCTCAATATTGCG

Sequence-
based reagent

q_cbs-1_R This paper qPCR primers Used for qRT-PCR
as described
in methods,
CCAATCTCTTC
AGCAAACTGG

Software,
algorithm

CloudMap PMID:23051646

Software,
algorithm

DolphinNext PMID:32306927

Software,
algorithm

DESeq2 PMID:25516281 RRID:SCR_01568

Software,
algorithm

WormFinder.m This paper See methods,
Available on
github: https://github.
com/shiaway/
wormFinder/blob/
master/wormFinder.m

Software,
algorithm

GETprime PMID:21917859

Software,
algorithm

fiji/imageJ PMID:22743772 RRID:SCR_002285
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C. elegans strains
Animals were maintained on nematode growth media (NGM) as described (Brenner, 1974) with the

following modifications. Soy peptone (Thomas Scientific) was used in place of bactopeptone and

0.64 nM vitamin B12 was added to maintain strains. N2 (Bristol) was used as the wild type strain. Ani-

mals were fed a diet of E. coli OP50 unless otherwise noted. The wwIs24[Pacdh-1::GFP + unc-119

(+)] (VL749) strain was described previously (Arda et al., 2010; MacNeil et al., 2013). nhr-114

(gk849), metr-1(ok521), and sams-1(ok 2946) were retrieved from the C. elegans Gene Knock-out

Consortium (CGC), and nhr-10(tm4695) was obtained from the National Bioresource Project, Japan.

All mutant strains were backcrossed three times with N2 wild type animals and crossed with VL749

prior to use in experiments. VL868 [wwIs24[Pacdh-1::GFP + unc-119(+)];nhr-10(tm4695)], VL1127

[wwIs24[Pacdh-1::GFP + unc-119(+)];nhr-114(gk849)], VL1102 [wwIs24[Pacdh-1::GFP + unc-119(+)];

metr-1(ok521)], and VL1115 [wwIs24[Pacdh-1::GFP + unc-119(+)];sams-1(ok2946)] are referred to in

the text as Dnhr-10, Dnhr-114, Dmetr-1 and Dsams-1 respectively. C. elegans strain CB4856 (Hawai-

ian) strain was obtained from the CGC.

Bacterial strains
E. coli OP50 and E. coli HT115 were obtained from the CGC and grown from single colony to satura-

tion overnight in Luria-Bertani Broth (LB) at 37˚C, shaking at 200 rpm. E. coli HT115 carrying RNAi

plasmids were maintained on 50 mg/mL ampicillin.

GFP intensity measurement using image analysis
Raw images were analyzed using Fiji/ImageJ (v1.53, Schindelin et al., 2012). Animals in brightfield

images were outlined manually using the selection tool. Measurements of area, integrated density

and mean gray value were redirected to the same animal in the corresponding fluorescent image.

Several surrounding background measurements were also selected, and their mean gray values were

averaged. Corrected total fluorescence was calculated by subtracting the product of the object’s

area and the mean gray value of the background from the object’s integrated density as described

previously (McCloy et al., 2014).

EMS screen
The EMS mutagenesis protocol was adapted from Jorgensen and Mango, 2002. Pacdh-1::GFP;nhr-

10(tm4695) animals were treated with 50 mM ethyl methanesulfonate (EMS, Sigma) for four hours

and then washed five times with M9 buffer. Mutagenized animals were allowed to recover on NGM

agar plates seeded with E. coli OP50, and 200 animals were picked and transferred to NGM agar

plates containing 20 nM vitamin B12. F2 animals were screened for the presence of GFP. At least

8000 haploid genomes were screened, and 27 homozygous mutants were selected, 16 of which

remained viable.

Mutant mapping
Chromosome assignment was done by crossing EMS mutants into the CB4856 (Hawaiian) strain.

Separate pools of GFP positive and GFP negative F2 animals were mapped using single-nucleotide

polymorphisms as described (Davis et al., 2005).

Whole genome sequencing
Mutant strains ww50, ww51, ww52, ww53, ww54, ww55, and ww56 were backcrossed four to five

times to the VL868 [wwIs24[Pacdh-1::GFP + unc-119(+)];nhr-10(tm4695)] parental strain prior to

sequencing. Genomic DNA was prepared by phenol-chloroform extraction and ethanol precipita-

tion. Fragmentation was carried out on a Covaris sonicator E220 and 300–400 bp size fragments

were collected using AMPure beads. Libraries were prepared and barcoded using the Kapa hyper

prep kit (KK8500). Samples were sequenced at the core facility of the University of Massachusetts

Medical school on an Illumina HiSeq4000 using 50 bp paired-end reads. After filtering out low-qual-

ity reads, 300 million reads were recovered resulting in an 18X average coverage of the genome.

Reads were mapped to the C. elegans reference genome version WS220 and analyzed using the

CloudMap pipeline (Minevich et al., 2012) where mismatches were compared to the parental strain

Giese et al. eLife 2020;9:e60259. DOI: https://doi.org/10.7554/eLife.60259 19 of 25

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://doi.org/10.7554/eLife.60259


as well as to the other sequenced mutants. Variants with unique mismatches were validated by

restriction fragment length polymorphism PCR (RFLP) and sanger sequencing.

RNAi screen
RNAi screening was carried out as described (Conte et al., 2015). Briefly, RNAi clones were cultured

in 96 well deep-well dishes in LB containing 50 mg/ml ampicillin and grown to log-phase at 37˚C.

Clone cultures were concentrated to 20-fold in M9 buffer and 10 mL was plated onto a well of a 96-

well plate containing NGM agar with 2 mM Isopropyl b- d-1-thiogalactopyranoside (IPTG, Fisher Sci-

entific). Plates were dried and stored at room temperature. The next day approximately 15–20 syn-

chronized L1 animals per well were plated, followed by incubation at 20˚C. Plates were screened 72

hr later. The metabolic gene RNAi screen using VL868 [wwIs24[Pacdh-1::GFP + unc-119(+)];nhr-10

(tm4695)] animals was performed twice. The TF RNAi screen using the Met/SAM cycle mutants gen-

erated by EMS was performed six times. All final hits were sequence-verified and retested on 35 mm

NGM agar plates with approximately 200 animals per condition.

Expression profiling by RNA-seq
Animals were treated with NaOH-buffered bleach, L1 arrested and plated onto NGM plates supple-

mented with 20 nM vitamin B12 and fed E. coli OP50. 400 late L4/early young adult animals were

picked into M9 buffer, washed three times and flash frozen in liquid nitrogen. Total RNA was

extracted using TRIzol (ThermoFisher), followed by DNase I (NEB) treatment and purified using the

Direct-zol RNA mini-prep kit (Zymo research). RNA quality was verified by agarose gel electrophore-

sis and expression of known genes were measured via qRT-PCR for quality control. Two biological

replicates were sequenced by BGI on the BGISEQ-500 next generation sequencer platform using

100 bp paired-end reads. A minimum of approximately 40 million reads was obtained per sample.

Raw reads were processed on the DolphinNext RSEM v1.2.28 pipeline revision 7 (Yukselen et al.,

2020). In brief, the reads were mapped by bowtie2 to genome version c_elegans.PRJNA13758

(WormBase WS271), and then passed to RSEM for estimation of TPM and read counts. Default

parameters were used for both bowtie2 and RSEM.

For later RNA-seq experiments we have developed a more cost-effective, in-house method for

RNA-sequencing. Briefly, multiplexed libraries were prepared using Cel-seq2 (Hashimshony et al.,

2016). Two biological replicates were sequenced with a NextSeq 500/550 High Output Kit v2.5 (75

Cycles) on a Nextseq500 sequencer. Paired end sequencing was performed; 13 cycles for read 1, six

cycles for the illumina index and 73 cycles for read 2. Approximately 12 million reads per sample

was achieved.

The libraries were first demultiplexed by a homemade python script, and adapter sequences

were trimmed using trimmomatic-0.32 by recognizing polyA and barcode sequences. Then, the

alignment to the reference genome was performed by STAR with the parameters ‘—runThreadN 4 –

alignIntronMax 25000 –outFilterIntronMotifs RemoveNoncanonicalUnannotated’. Features

were counted by ESAT (Derr et al., 2016) with the parameters ‘-task score3p -wLen 100 -wOlap 50 -

wExt 1000 -sigTest. 01 -multimap normal -scPrep -umiMin 1’. Features in ‘c_elegans.PRJNA13758.

WS271.canonical_geneset.gtf’ were used as the annotation table input for ESAT, but pseudogenes

were discarded. The read counts for each gene were used in differential expression analysis by

DEseq2 package in R 3.6.3 (Love et al., 2014). A fold change cut off of greater than 1.5 and P

adjusted value cut off of less than 0.01 was used. All the processing procedures were done in a

homemade DolphinNext pipeline.

The RNA-sequencing data files were deposited in the NCBI Gene Expression Omnibus (GEO)

under the following accession numbers:

. Bulcha et al., 2019: GSE123507

. This study: GSE151848

Expression profiling by qRT-PCR
Animals were grown and harvested, and RNA was extracted as described for the RNA-seq experi-

ments. qRT-PCR was performed as described previously (Bulcha et al., 2019). cDNA was reverse

transcribed from total RNA using oligo(dT) 12–18 primer (Invitrogen) and Mu-MLV Reverse Tran-

scriptase (NEB). qPCR primers were designed using the GETprime database (Gubelmann et al.,
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2011). qPCR reactions were carried out in technical triplicate using the StepOnePlus Real-Time PCR

system (Applied Biosystems) and Fast Sybr Green Master Mix (ThermoFisher Scientific). Relative

mRNA transcript abundance was calculated using the DDCT method (Schmittgen and Livak, 2008)

and normalized to the geometric mean of ama-1 and act-1 levels.

Body size measurement
Approximately 100 synchronized L1 animals were plated across four wells of a 48-well plate per con-

dition. L4 animals were collected and washed three times in 0.03% sodium azide and transferred to

a 96-well plate. Excess liquid was removed, and plates were rested for an hour to allow animals to

settle and straighten. Pictures were taken using an Evos Cell Imaging System microscope and image

processing was done using a MATLAB (MathWorks) script named ‘wormFinder.m’ written in-house

and made available at the following link: https://github.com/shiaway/wormFinder/blob/master/

wormFinder.m (Ponomarova and Giese, 2020)

Gas chromatography-mass spectrometry
For Figure 5A, gravid adults were harvested from liquid S media cultures supplemented with or

without 64 nM vitamin B12 and fed concentrated E. coli OP50. For Figure 5E, gravid adults were

harvested from NGM agar plates treated with 64 nM vitamin B12 and seeded with E. coli OP50. Ani-

mals were washed in 0.9% saline until the solution was clear and then twice more (3–6 times total).

Metabolites were extracted and analyzed as described previously (Na et al., 2018). Briefly, 50 mL of

a semi-soft pellet of animals was transferred to a 2 mL FastPrep tube (MP Biomedicals) and flash fro-

zen with liquid nitrogen. Metabolites were extracted in 80% cold methanol. Acid-washed micro glass

beads (Sigma) and a FastPrep-24 5G homogenizer (MP Biomedicals) were used to disrupt animal

bodies. After settling, supernatant was transferred to glass vials (Sigma) and dried by speed-vac

overnight. MeOX-MSTFA derivatized samples were analyzed on an Agilent 7890B/5977B single

quadrupole GC-MS equipped with an HP-5ms Ultra Inert capillary column (30 m � 0.25 mm�0.25

mm) using the same method as described (Na et al., 2018).
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