KAT-Independent Gene Regulation by Tip60 Promotes ESC Self-Renewal but Not Pluripotency

Graphical Abstract

Highlights
- The Tip60 acetylase (KAT) activity is dispensable for gene regulation in ESCs
- Tip60-p400 complex limits chromatin accessibility independently of its KAT activity
- The Tip60 KAT activity is necessary for induction of differentiation genes
- Tip60 KAT mutant mice exhibit developmental defects later than null mutants

In Brief
Acharya et al. show that the Tip60 (Kat5) lysine acetyltransferase regulates gene expression and self-renewal independently of its KAT activity in mouse ES cells. The KAT activity is necessary for differentiation and post-implantation mouse development. Therefore, Tip60 has KAT-independent (early) and KAT-dependent (later) functions that are essential for development.

Accession Numbers
GSE85505

Authors
Diwash Acharya, Sarah J. Hainer, Yeonsoo Yoon, Feng Wang, Ingolf Bach, Jaime A. Rivera-Pérez, Thomas G. Fazzio

Correspondence
thomas.fazzio@umassmed.edu

Acharya et al., 2017, Cell Reports 19, 671–679
April 25, 2017 © 2017 The Author(s).
http://dx.doi.org/10.1016/j.celrep.2017.04.001
KAT-Independent Gene Regulation by Tip60 Promotes ESC Self-Renewal but Not Pluripotency

Diwash Acharya, Sarah J. Hainer, Yeonsoo Yoon, Feng Wang, Ingolf Bach, Jaime A. Rivera-Pérez, and Thomas G. Fazzio

1Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
2Division of Genes and Development, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01605, USA
3Lead Contact

*Correspondence: thomas.fazzio@umassmed.edu

http://dx.doi.org/10.1016/j.celrep.2017.04.001

SUMMARY

Although histone-modifying enzymes are generally assumed to function in a manner dependent on their enzymatic activities, this assumption remains untested for many factors. Here, we show that the Tip60 (Kat5) lysine acetyltransferase (KAT), which is essential for embryonic stem cell (ESC) self-renewal and pre-implantation development, performs these functions independently of its KAT activity. Unlike ESCs depleted of Tip60, KAT-deficient ESCs exhibited minimal alterations in gene expression, chromatin accessibility at Tip60 binding sites, and self-renewal, thus demonstrating a critical KAT-independent role of Tip60 in ESC maintenance. In contrast, KAT-deficient ESCs exhibited impaired differentiation into mesoderm and endoderm, demonstrating a KAT-dependent function in differentiation. Consistent with this phenotype, KAT-deficient mouse embryos exhibited post-implantation developmental defects. These findings establish separable KAT-dependent and KAT-independent functions of Tip60 in ESCs and during differentiation, revealing a complex repertoire of regulatory functions for this essential chromatin remodeling complex.

INTRODUCTION

Embryonic stem cells (ESCs)—cells derived from the inner cell mass of the early blastocyst—have been utilized as an in vitro model of differentiation due to their pluripotency and unlimited capacity for self-renewal in culture (Keller, 2005). A complex array of signaling pathways and transcription factors control ESC fate, promoting self-renewal in the presence of either leukemia inhibitory factor (LIF) or inhibitors of differentiation-promoting kinases MEK1/2 and Gsk3β (Ying et al., 2008). In addition to transcription factors, a number of chromatin regulatory proteins help control the expression of pro-self-renewal and pro-differentiation genes (Chen and Dent, 2014). Although dozens of chromatin regulators necessary for ESC self-renewal or differentiation have been identified, the specific contributions of many chromatin regulatory proteins to ESC self-renewal and differentiation are poorly understood, due to the redundant and context-dependent contributions of most chromatin modifications to gene expression (Rando and Chang, 2009).

Previously, we showed that RNAi-mediated knockdown (KD) of components of the well-conserved Tip60-p400 (also called NuA4) chromatin regulatory complex resulted in multiple defects in ESC pluripotency (Fazzio et al., 2008a). ESCs depleted of Tip60-p400 subunits exhibit cell and colony morphologies indicative of differentiation and reduced expression of some pluripotency markers. However, Tip60-p400-depleted cells are also defective in normal ESC differentiation, forming small, abnormal embryoid bodies under differentiation conditions that fail to up-regulate some markers of differentiated cells (Chen et al., 2013; Fazzio et al., 2008a). Consistent with this self-renewal defect, homozygous knockout of the Tip60 gene in mouse results in embryonic lethality at approximately the blastocyst stage (the stage at which ESCs are derived) (Hu et al., 2009). Tip60−/− blastocysts are morphologically abnormal and fail to hatch from the zona pellucida when cultured in vitro. No post-implantation Tip60−/− embryos were observed, demonstrating an absolute requirement for Tip60 at or before this stage.

Tip60-p400 has two biochemical activities that contribute to its functions within the nucleus. The Tip60 subunit is a lysine acetyltransferase (KAT) that targets histones H4 and H2A, H2A variants, and non-histone proteins (Ikura et al., 2000; Keogh et al., 2006; Squatrito et al., 2006; Xu and Price, 2011). Histone acetylation near gene promoters or enhancers is strongly associated with gene expression, consistent with Tip60’s known function as a co-activator that collaborates with numerous transcription factors (Squatrito et al., 2006). In addition to its role as a co-activator, Tip60 also directly regulates the activities of numerous transcription factors through acetylation of lysine residues (Farria et al., 2015). Finally, besides regulation of transcription, Tip60 plays important roles in DNA repair, senescence, and apoptosis (Doyon et al., 2004; Ikura et al., 2000; Kusch et al., 2004; Xu and Price, 2011; Jiang et al., 2011; Sykes et al., 2006; Tang et al., 2006; Van Den Broeck et al., 2012). Importantly, the KAT activity of Tip60 has been shown to be essential for its role in each of these processes.
The second chromatin remodeling activity found within the Tip60-p400 complex is catalyzed by the p400 subunit (gene name: Ep400). The p400 protein, like its homologs in other eukaryotes, catalyzes ATP-dependent incorporation of histone H2A variant H2A.Z into chromatin via exchange of H2A-H2B dimers within nucleosomes for free H2A.Z-H2B dimers (Gévy et al., 2007; Mizuguchi et al., 2004). Interestingly, p400 was recently shown to incorporate histone H3 variant H3.3 into chromatin (Pradhan et al., 2016). H2A.Z and H3.3 are often enriched near gene regulatory regions, consistent with a role for p400 (like its homologs). However, p400 also appears to repress transcription in some contexts as well as promote DNA repair in concert with Tip60 (Gévy et al., 2007; Papamichos-Chronakis et al., 2011; Xu et al., 2012).

How does Tip60-p400 promote ESC self-renewal and pre-implantation development? Tip60-p400 binds near the promoters of both active genes and lowly expressed developmental genes in ESCs and acetylates the promoter-proximal histones of both groups (Chen et al., 2013, 2015; Fazzio et al., 2008a; Ravens et al., 2015). Given the well-established activating roles of histone acetylation, these data imply that Tip60-p400 may drive expression of highly expressed housekeeping and pluripotency genes but that its developmental targets are resistant to this activation, possibly due to the repressive activities of Polycomb complexes or other factors (Aloia et al., 2013; Simon and Kingston, 2013). However, this model is unlikely to be correct, since Tip60-p400 is largely dispensable for transcriptional activation in ESCs, and instead functions mainly to repress its developmental targets (Chen et al., 2013; Fazzio et al., 2008a, 2008b). Therefore, either the Tip60 KAT activity must inhibit transcription of developmental genes in ESCs, or repression of these genes by Tip60-p400 is KAT independent.

Here, we show that Tip60 functions independently of its KAT activity to repress differentiation genes in ESCs and promote ESC self-renewal. Consistent with this repressive function, Tip60 limits promoter-proximal chromatin accessibility at many Tip60 target genes, and this function is similarly KAT independent. By contrast, KAT-deficient ESCs are impaired for differentiation, revealing a critical role for the Tip60 KAT activity in pluripotency. Upon induction of differentiation, KAT mutant ESCs exhibit defects in production of mesoderm and endoderm cell types, due to reduced induction of numerous key drivers of differentiation. Unlike Tip60 null mice (Hu et al., 2009), KAT-deficient mutant mice proceed past the blastocyst stage, consistent with the ability of KAT mutant ESCs to self-renew. However, KAT mutant mice exhibit post-implantation developmental defects beginning around the start of gastrulation, analogous to the ESC differentiation defect observed in vitro. Together, these findings establish separable KAT-independent and KAT-dependent roles of Tip60 in pluripotency and embryonic development that are both essential but that act at different stages.

**RESULTS**

**Tip60 KAT Activity Is Dispensable for Gene Regulation and Self-Renewal in ESCs**

Tip60 is one of several histone acetyltransferases (HATs) that acetylate the N-terminal tails of histones H4 and H2A, whereas p400 is one of two SWI/SNF (switch/sucrose non-fermentable) family ATPases that mediate H2A.Z deposition (Altaf et al., 2009; Lalonde et al., 2014). To test the importance of these activities in ESCs, we generated independent ESC lines with homozygous mutations encoding amino acid substitutions in the acetyl coenzyme A (CoA)-binding site of Tip60 (Tip60<sup>671–679</sup>) or the ATP-binding pocket of p400 (Ep400<sup>400VPP</sup>; Figures S1A and S1B), both of which were previously shown to block enzymatic activity (Ikura et al., 2000; Xu et al., 2010). We confirmed that these mutations broadly reduced H4 acetylation and H2A.Z deposition, respectively, in ESCs (Figures S1C and S1D). Since Tip60 or Ep400 depletion in ESCs causes loss of self-renewal (Fazzio et al., 2008a), we utilized previously validated short hairpin RNAs (shRNAs) (Chen et al., 2013) to perform acute KD of Tip60 or Ep400, along with an Ep400 hypomorphic mutant (Ep400<sup>680VPP</sup>) that exhibits reduced levels of p400 protein (Figure S1E), for comparison. Surprisingly, Tip60<sup>671–679</sup> and Ep400<sup>400VPP</sup> lines had normal ESC morphology and maintained expression of pluripotency markers such as alkaline phosphatase (AP; Figure 1A), and stage-specific embryonic antigen 1 (SSEA-1) (Figure S1F), whereas Tip60 KD or Ep400<sup>680VPP</sup> cells exhibited reduced AP and SSEA-1 staining and flattened colony morphologies, as observed previously (Chen et al., 2015; Fazzio et al., 2008a, 2008b). Tip60<sup>671–679</sup> and Ep400<sup>400VPP</sup> cells proliferated more rapidly than Tip60 KD and Ep400<sup>680VPP</sup> cells (Figure 1B), although Tip60<sup>671–679</sup> cells proliferated slightly less rapidly than wild-type controls. Finally, to test for functional redundancy, we constructed double-homozygous mutant Tip60<sup>671–679</sup> Ep400<sup>400VPP</sup> lines. As with the single mutants, these lines expressed markers of pluripotent stem cells and normal ESC colony morphology, similar to that of Tip60<sup>671–679</sup> single mutants (Figures S1F and S1G). These data suggest that loss of Tip60 KAT activity and p400 ATP-dependent nucleosome remodeling activity have minimal effects on ESC maintenance.

To test whether gene expression is altered in Tip60<sup>671–679</sup> and Ep400<sup>400VPP</sup> mutant ESCs, in spite of their normal self-renewal, we performed RNA sequencing (RNA-seq) on biological replicates of Tip60<sup>671–679</sup> and Ep400<sup>400VPP</sup> mutants, along with positive and negative controls. Consistent with previous findings (Chen et al., 2013; Fazzio et al., 2008a), Tip60 KD and Ep400<sup>680VPP</sup> cells each exhibited upregulation of numerous genes enriched for developmental factors and downregulation of a smaller group of genes (Figures 1C–1F; Figures S2A and S2B). In contrast, few genes were significantly altered in Tip60<sup>671–679</sup>, Ep400<sup>400VPP</sup>, or Tip60<sup>671–679</sup> Ep400<sup>400VPP</sup> double mutants (Figures 1C–1F; Figures S2C–S2F). These data demonstrate that, while Tip60 and p400 are necessary for gene regulation and self-renewal in ESCs, their catalytic activities are dispensable for these processes.

**KAT-Independent Regulation of Promoter-Proximal Chromatin Accessibility by Tip60**

Since KATs function mainly as co-activators of gene expression, we next focused on how Tip60 functions independently of its KAT activity to repress transcription in ESCs. We confirmed normal expression of Tip60 and p400 in Tip60<sup>671–679</sup> Ep400<sup>400VPP</sup> ESCs (Figure S3A) and found that Tip60<sup>671–679</sup> and Ep400<sup>400VPP</sup> ESCs assemble intact Tip60-p400 complexes with compositions...
similar to that of wild-type cells, in contrast to $\text{Tip60}_{\text{KD}}$ ESCs (Figures 2A and 2B), consistent with the higher chromatin accessibility at $\text{Tip60}$-binding sites than flanking regions (Figures 2A and 2B). Clustering of these data identified two prominent patterns of chromatin accessibility, segregated primarily by whether the Tip60-binding sites were promoter-proximal or -distal (Figure 2C). Examination of promoter-proximal regions of Tip60 target genes revealed that $\text{Tip60}_{\text{KD}}$ increased chromatin accessibility within a several-hundred base-pair window extending from the promoter into the gene body, corresponding to Tip60-p400 binding sites on chromatin (Figure 2D) (Chen et al., 2013, 2015; Ravens et al., 2015). In contrast, KAT-deficient ESCs were minimally affected. Unlike promoter-proximal regions, chromatin accessibility at gene-distal Tip60-binding sites was relatively unaltered by $\text{Tip60}_{\text{KD}}$ or KAT mutation (Figure 2E). Consistent with these findings, KAT-deficient Tip60 bound to Tip60-p400 target genes at levels similar to those of wild-type (Figure S3C). These data demonstrate Tip60 functions independently of its KAT activity to regulate promoter-proximal chromatin accessibility in ESCs.

**Tip60 KAT Activity Is Necessary for Differentiation and Post-implantation Development**

Consistent with the self-renewal defect of $\text{Tip60}_{\text{KD}}$ ESCs (Fazzio et al., 2008a), $\text{Tip60}_{\text{KD}}$ homozygous null ($\text{Tip60}_{\text{KD},+/-}$) mice die at the peri-implantation stage: $\text{Tip60}_{\text{KD},+/-}$ blastocysts fail to hatch and survive in culture, and no post-implantation $\text{Tip60}_{\text{KD},+/-}$ embryos can be recovered (Hu et al., 2009). Since $\text{Tip60}_{\text{KD}}$ ESCs self-renew normally, we next tested whether the Tip60 KAT activity is also dispensable for mouse development. To this end, we generated and intercrossed $\text{Tip60}_{\text{KD},+/-}$ homozygous mice to produce $\text{Tip60}_{\text{ci/ci}}$ homozygous null ($\text{Tip60}_{\text{ci/ci}}$) mice reveal an essential KAT-independent role for Tip60 in early post-implantation development, as well as an essential KAT-dependent role in early post-implantation development.

The phenotypes of $\text{Tip60}_{\text{ci/ci}}$ embryos are evident at or just before gastrulation, where the three primary germ layers are established, suggesting that, although $\text{Tip60}_{\text{ci/ci}}$ ESCs self-renew normally, they may not differentiate properly. We tested this
possibility using embryoid body differentiations of control, Tip60 KD, and Tip60ci/ci ESCs. Previously, we showed that KD of Tip60, Ep400, or (Tip60-p400 subunit) Dmap1 resulted in defects in embryoid body (EB) formation (Chen et al., 2013; Fazzio et al., 2008a), suggesting that Tip60-p400 is required for this initial step of differentiation. In contrast, Tip60ci/ci ESCs efficiently formed EBs, which expanded in culture at near-wild-type levels, although modest differences in EB morphology were observed relative to Tip60fl/+ controls (Figures 3C and 3D). However, induction of mesodermal and endodermal markers was delayed and/or reduced in Tip60ci/ci EBs (Figure 3E), compared to Tip60fl/+ controls. These data suggest that the Tip60 KAT activity is important for specification of mesodermal and endodermal cell types in vitro.

To test whether the ESC differentiation defects were recapitulated in vivo, we stained post-implantation Tip60ci/ci embryos for T (also known as Brachyury), a marker of cells migrating through the primitive streak to become mesodermal or endodermal cell types (Herrmann, 1991; Rivera-Pérez and Magnuson, 2005). Although T staining of Tip60fl/+ and Tip60ci/ci embryos was evident at E6.5 and strong at E7.5, Tip60ci/ci embryos exhibited reduced staining at both stages (Figures 3F and 3G). These data show that gastrulation is delayed or impaired in Tip60ci/ci embryos. This phenotype could result from impaired lineage commitment, poor migration of cells through the primitive streak, or other factors. Regardless, this developmental defect is consistent with the impaired induction of early mesodermal and endodermal markers observed for KAT-defective ESCs in vitro.

**Impaired Expression of Multiple Drivers of Differentiation in KAT-Deficient ESCs**

What is the molecular basis for the in vivo and in vitro developmental defects of Tip60ci/ci mutants? These phenotypes could result from failure to upregulate key lineage-specific transcription factors and/or a disruption in signaling pathways that promote lineage commitment. To address these possibilities, we compared the changes in gene expression during a time course of differentiation of control (Tip60fl/+ and Tip60ci/ci) ESCs using RNA-seq on biological replicate samples. We

---

**Figure 2. KAT-Independent Regulation of Chromatin Accessibility at Tip60 Target Loci**

(A) Example Tip60 target gene showing increased promoter-proximal chromatin accessibility in Tip60 KD, but not Tip60ci/ci, relative to Tip60fl/+ control cells. Shown are normalized ATAC-seq reads ≤ 100 bp for each biological replicate and Tip60 ChIP-seq data from Ravens et al. (2015).

(B) Aggregation plot showing average ATAC-seq signal for two biological replicates of each mutant or KD aggregated over high-quality Tip60-binding sites. A Kolmogorov-Smirnov test of differences in ATAC profiles was used to calculate p values.

(C) K-means clustering (K = 3) for ATAC-seq data over Tip60-binding sites. Promoter-proximal peaks are marked with a black bar at the right, and promoter-distal peaks are marked with a white bar. Norm., normalized.

(D) Aggregation plot of ATAC-seq data (as in B) over Tip60-bound promoter regions aligned so that all gene bodies are at the right. Promoter-proximal regions (pro) and transcription start sites (TSS) are indicated. Tip60 ChIP-seq data (Ravens et al., 2015) are shown for reference.

(E) Aggregation plot over Tip60-bound gene-distal regions.
observed differences in both the timing and levels of markers of mesoderm and endoderm (Figure 4A; e.g., FoxA2, Gata4, Sox17, T, Hand1, and Flk1), expanding on our preliminary analyses (Figure 3E). Next, we used k-means clustering to identify groups of genes induced early or late during differentiation in Tip60fl/+ control cells and characterized the effects of the KAT mutation on their induction. We observed 1,338 genes of this type that mainly fall into three clusters based on the timing of their expression peak (Figure 4B). In Tip60ci/ci cells, we observed reduced or delayed induction of numerous genes with key roles in differentiation, including developmental transcription factors and mediators of growth factor signaling, within each of the three clusters (Figure 4B).

To test whether impaired induction of key signaling proteins hindered activation of their downstream targets, we examined activation of the FGF/MEK/ERK (fibroblast growth factor/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase) and TGF-β (transforming growth factor β) pathways using antibodies recognizing the phosphorylated (and activated) forms of ERK1/2 and Smad2/3, respectively (Tsang and Dawid, 2004; Whitman and Mercola, 2001). These factors act downstream of FGF and BMP (bone morphogenetic protein) signaling in differentiating ESCs and embryos and are critical for differentiation (Sui et al., 2013). Although Smad2/3 phosphorylation was unaltered in differentiating Tip60ci/ci ESCs, we observed impaired ERK phosphorylation in these mutants after 6 days of differentiation (Figure 4C). Together, these data suggest that the differentiation defect observed in Tip60ci/ci ESCs is due to at least two overlapping defects: delayed or reduced activation of ERK and impaired induction of key developmental transcription factors.

**DISCUSSION**

Here, we showed that Tip60 functions in ESC gene regulation and self-renewal, as well as pre-implantation development, independently of its KAT activity. This finding was unexpected,
because Tip60 depletion or knockout leads to a self-renewal defect in ESCs and pre-implantation lethality in mice (Fazzio et al., 2008a; Hu et al., 2009). Furthermore, KAT-impaired mutants of esa1, the yeast homolog of Tip60, are severely growth impaired (Selleck et al., 2005), suggesting that the critical cellular functions of this KAT are dependent on its acetylation activity.

The fact that Tip60 is largely a repressor of transcription in ESCs (Fazzio et al., 2008a), and that this repressive function is independent of its KAT activity, suggests that Tip60 regulates ESC gene expression in a manner that is distinct from other well-studied KATs, at least in part. Consistent with its role as a broadly acting repressor of transcription in ESCs, we found that Tip60 functions by a KAT-independent mechanism to limit chromatin accessibility directly over its promoter-proximal binding sites at many target genes. Additional studies will be necessary to determine whether Tip60 also performs this function in somatic cell types.

In contrast, the Tip60 KAT activity is essential during ESC differentiation and post-implantation development. Consequently, these findings demonstrate separable, essential functions of Tip60: its KAT-independent function is sufficient for Tip60’s essential role in ESC self-renewal and pre-implantation development, and its KAT-dependent function is required for post-implantation development and ESC differentiation. Interestingly, we found that the ATP-dependent histone exchange activity of p400 was also dispensable for gene regulation and self-renewal in ESCs, revealing that the Tip60-p400 complex represses differentiation genes in ESCs independently of its known chromatin-remodeling activities (Figure 4D). These findings necessitate a re-evaluation of current models of gene regulation by this essential chromatin regulatory complex.

What is the role of the Tip60 KAT activity during development? Given the defect of KAT-deficient ESCs and embryos in lineage specification, one possibility is that histone acetylation at differentiation genes in ESCs (as observed previously; Fazzio et al., 2008a) facilitates their upregulation when differentiation is induced. This provides a potential explanation for the counterintuitive role of Tip60 in the repression of differentiation genes in ESCs. Occupancy of Tip60-p400 at differentiation gene promoters helps repress these genes by reducing chromatin accessibility, while acetylation at these loci may allow more rapid induction after binding of differentiation-specific transcription factors. Together, these data show that not all functions of Tip60 are reliant on its KAT activity, and they raise the possibility that KAT-independent gene regulation by Tip60 plays important roles in additional cell types.

**EXPERIMENTAL PROCEDURES**

**Antibodies**

Antibodies used in this study were as follows: p400 (A300-541A; Bethyl Laboratories); StainAlive SSEA-1 (09-0067; Stemgent); Smad2/3 (8685; Cell

---

**Figure 4. Delayed and Impaired Expression of Developmental Regulators in Differentiating Tip60ci/ci ESCs**

(A) Heatmap indicating induction kinetics of each germ layer markers during differentiation of Tip60fl/+ controls or Tip60ci/ci mutant ESCs. FPKM, fragments Per kilobase of transcript per million mapped reads.

(B) K-means clustering (K = 9) of differentially expressed genes (log2 (fold change) > 0.7; multiple-testing-adjusted p value < 0.05) in Tip60fl/+ controls or Tip60ci/ci mutant ESCs during the differentiation time course. Large upregulated clusters are noted. Key regulatory proteins with impaired induction in Tip60ci/ci mutant ESCs are highlighted.

(C) Western blots (one of two independent experiments with similar results) of phosphorylated and total Smad2/3 and Erk1/2 during differentiation in Tip60fl/+ or Tip60ci/ci ESCs.

(D) Model indicating the KAT-independent role of Tip60 in ESC self-renewal and gene regulation, as well as pre-implantation development, and the KAT-dependent role of Tip60 in differentiation and post-implantation development. See Discussion for additional details. WT, wild-type.
Signaling Technologies); Phospho-Smad2/3 (8828; Cell Signaling Technologies); Erk1/2 (9102; Cell Signaling Technologies); Phospho-Erk1/2 (9101; Cell Signaling Technologies); H2AZ (ab11474; Abcam); Acetyl-H4 (06-598; Millipore); FLAG-M2 (F1804; Sigma); IgG (immunoglobulin G) ab37415; Abcam; and β-actin (A5316; Sigma).

Cell Lines
Mouse ESC lines were derived from E14 (129/Ola) (Hooper et al., 1987) and grown as described previously (Chen et al., 2013). Tip60CI/CI, Tip60CI/Ci, and Tip60CICi cells with endogenous broad Cre recombinase (Dooley et al., 1989; Lakso et al., 1996) were generated using a full-length cDNA probe of cre (Rivera-Pérez and Magnuson, 2005), using a full-length cDNA probe of cre. Whole-mount in situ hybridization was performed as previously described (Rivera-Pérez and Magnuson, 2005), using a full-length cDNA probe of cre.

Cell Staining
10⁵ ESCs were grown on gelatin-coated six-well plates for 48 hr. AP staining was performed using a kit (EMD Millipore, SCR004), following the manufacturers’ guidelines. SSEA-1 staining of live ESCs was also performed per the manufacturers’ instructions (Stengert, 09-0067).

Tip60-p400 Purification
Tip60-p400 complex was purified from nuclear extracts of wild-type, Tip60CI/Ci, and p400Δ593 cells with endogenous 6xHis/3xFLAG tags at the Tip60 locus, as described previously (Chen et al., 2013). Purified proteins were separated on SDS-PAGE gels, and silver staining was performed using a Silver Staining Kit (ThermoFisher, LC6100).

Western Blotting
30 μg of nuclear extract per lane (prepared using the NE-PER Kit; ThermoFisher, 78833) were used for western blotting.

Generation of Tip60CICi/CI Mice
Tip60CI/CI heterozygous mice were generated by crossing Tip60 floxed mice (Chen et al., 2013) with the allele described earlier with Tg(EIIa-cre) mice, which broadly express Cre recombinase (Dooley et al., 1989; Lakso et al., 1999). Mice were genotyped by PCR with primers listed in Table S2. Tip60CI/CI mice were maintained as heterozygotes on an inbred FVB/N background and intercrossed to generate Tip60CI/CI, Tip60CI/Ci, and Tip60CiCI embryos. Animal studies were performed in accordance with the guidelines of the Institutional Animal Care and Use Committee at the University of Massachusetts Medical School (A-2165) and NIH.

RNA In Situ Hybridization
Whole-mount in situ hybridization was performed as previously described (Rivera-Pérez and Magnuson, 2005), using a full-length cDNA probe of T (Herrmann, 1991). Embryos were genotyped after staining by PCR, using primers listed in Table S2.

Chromatin Immunoprecipitation
Chromatin immunoprecipitation and deep sequencing were performed as described previously (Chen et al., 2013; Hainer et al., 2015). Chromatin immunoprecipitation (ChIP)-qPCR was performed using SYBR FAST (KAPA Biosystems), with primers described previously (Fazzio et al., 2008a).

RNA-Seq
 Strand-specific library construction and RNA-seq were performed by Applied Biological Materials and the UCLA Clinical Microarray Core for ESCs and differentiating ESCs, respectively. Data analysis is described in the Supplemental Experimental Procedures.

ATAC Sequencing
ATAC sequencing (ATAC-seq) was performed essentially as described previously (Buenrostro et al., 2013, 2015). Two independent ATAC reactions per biological replicate were performed, using 35,000 and 70,000 ESCs each. After library preparation, the two reactions were found to have indistinguishable distributions of fragment sizes and were, therefore, combined for sequencing. (Therefore, each biological replicate consisted of two ATAC reactions.) Data analysis is described in the Supplemental Experimental Procedures.

Statistical Methods
For non-genomic in vitro experiments, two-tailed t tests were used to calculate statistical significance. A chi-square test was used to evaluate genotypes of offspring from Tip60CI/+ intercrosses. Adjusted p values were calculated for RNA-seq data using DEseq2. Significance of differences in ATAC-seq read enrichment were calculated by a hypergeometric test using the dhyper package in R.

ACCESSION NUMBERS
The accession number for the deep-sequencing data reported in this paper is GEO: GSE85505.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures, four figures, and three tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2017.04.001.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS
We thank J. Benanti and T. Tsukiyama for critical reading of the manuscript. This work was supported by NIH grants R01HD072122 (to T.G.F.), R01HD083311 (to J.A.R.-P.), and R01CA131158 (to I.B.). T.G.F. is supported as a Leukemia and Lymphoma Society Scholar. S.J.H. is a Special Fellow of the Leukemia and Lymphoma Society.

Received: September 23, 2016
Revised: March 1, 2017
Accepted: March 30, 2017
Published: April 25, 2017
REFERENCES


