Cardiovascular Risk Factors, Depression, and Alcohol Consumption During Joblessness and During Recessions in CARDIA Young Adults

José A. Tapia Granados, Paul J. Christine, Edward L. Ionides, Mercedes R. Carnethon, Ana V. Diez Roux, Catarina I. Kiefe, and Pamela J. Schreiner

Correspondence to Dr J. A. Tapia, Department of Politics, COAS, 3021-E MacAlister Hall, 3250-60 Chestnut Street, Drexel University, Philadelphia, PA 19104 (email: jat368@drexel.edu)

Author affiliations: Department of Politics, College of Arts and Sciences (José A. Tapia Granados), and School of Public Health (Ana V. Diez Roux), Drexel University, Philadelphia, Pennsylvania; Department of Epidemiology, School of Public Health, and Department of Internal Medicine, College of Medicine (Paul J. Christine) and Department of Statistics, College of Literature, Science & the Arts (Edward L. Ionides), University of Michigan, Ann Arbor, Michigan; Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois (Mercedes R. Carnethon); Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts (Catarina I. Kiefe); and Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, Minnesota (Pamela J. Schreiner).

Acknowledgments
The CARDIA Study is supported by contracts HHSN268201300025C, HHSN268201300026C, HHSN268201300027C, HHSN268201300028C, HHSN268201300029C, and HHSN268200900041C from the National Heart, Lung, and Blood Institute (NHLBI), the Intramural Research Program of the National Institute on Aging (NIA), and an intra-agency agreement between NIA and NHLBI (AG0005). Authors are listed in the byline in alphabetical order, except the first three.

© The Author(s) 2018. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Conflict of interest: none declared.

Running head: Cardiovascular Risk Factors in Recession and Joblessness

FOR APPROVAL OF GALLEYS AND ALL CORRESPONDENCE ABOUT THE PAPER:
Dr José A. Tapia, Department of Politics, COAS, 3021-E MacAlister Hall,
3250-60 Chestnut Street, Drexel University, Philadelphia, PA 19104
E-mail: jat368@drexel.edu
Office phone: 215-895-6762
Cell phone: 734-218-6676
Fax: 215-895-6614
ABSTRACT

Research has shown that recessions are associated with lower cardiovascular mortality but unemployed individuals have a higher risk of cardiovascular disease (CVD) or death. We used data from eight consecutive exams (1985-2011) of the CARDIA cohort, modeled in fixed-effect panel regressions, to investigate simultaneously the associations of CVD risk factors with (a) the employment status of individuals, and (b) macroeconomic conditions prevalent at the state where the individual lives. We found that unemployed individuals had lower levels of blood pressure, HDL-cholesterol, and physical activity, and significantly higher depression scores, but they were like their counterparts in smoking status, alcohol consumption, LDL cholesterol levels, body mass index, and waist circumference. One percentage point higher unemployment rate at the state level was associated with lower systolic (-0.41 mmHg, 95%CI: -0.65, -0.17) and diastolic (-0.19, 95%CI: -0.39, 0.01) blood pressure, higher physical activity levels, higher depressive symptom scores, and lower waist circumference and smoking. We conclude that levels of CVD risk factors tend to improve during recessions, but mental health tends to deteriorate. Unemployed individuals are significantly more depressed, and likely have lower levels of physical activity and HDL.

KEYWORDS: cardiovascular risk factors; blood pressure; recession; unemployment.

ABBREVIATIONS: BMI, body mass index; CARDIA, Coronary Artery Risk Development in Young Adults; CES-D, Center for Epidemiologic Studies Depressive Symptoms Scale; CI, confidence interval; CVD, cardiovascular disease; FE, fixed-effect(s); HDL, high density lipoprotein; LDL, low density lipoprotein; PAUW, physical activity unrelated to work.

Introduction

At the individual level, job loss or income reductions are associated with an increase in adverse health behaviors, a deterioration of self-rated health, and higher morbidity and mortality. However, during recessions when unemployment grows and income often decreases, there are improvements in major indicators of population health, including lower mortality, fewer symptoms of physical illness, and favorable changes in a number of health behaviors. This has been referred to as “the healthy recession paradox.”

1-10

11-21
These differential associations of macroeconomic fluctuations and individual-level economic shocks with health outcomes are puzzling, but known mechanisms could explain them. On one hand, individual-level job loss may result in stress, depression, and associated adverse health outcomes. On the other hand, economic recession may be linked not only to changes in consumption habits that may be harmful or beneficial to health, but also to reduced work hours, increased time for social and physical activities, and reductions in industrial activity, atmospheric pollution, and motor vehicle traffic, all of which are beneficial for health. Elucidating the relative importance of these processes is essential for understanding the health effects of economic fluctuations. However, we are aware of only one study in which longitudinal individual-level data were linked to contextual macroeconomic data so that the associations of health outcomes with individual-level and contextual economic conditions can be investigated simultaneously.

In this investigation, we use state-level macroeconomic data linked to longitudinal data from the Coronary Artery Risk Development in Young Adults (CARDIA) study to examine the associations of independent and interacting contextual and individual-level measures of economic conditions with several cardiovascular disease (CVD) risk factors.

Data

We used data from the CARDIA Study, a population-based prospective investigation of the determinants and evolution of CVD risk factors among young adults. The CARDIA study was initiated in 1985-1986 (Year 0) with 5115 subjects recruited from Birmingham, AL, Oakland, CA, Chicago, IL, and Minneapolis, MN. Recruited participants were aged 17-35 years, though the intended age range was 18-30. They were selected to be balanced on race (black or white), gender, education (high school or less and more than high school) and age (18-24 or 25-30) in
each of the four sites. Participants were contacted yearly by telephone and examined in person at follow-up examinations. The seven follow-up examinations included in this investigation were conducted in 1987-1988 (Year 2), 1990-1991 (Year 5), 1992-1993 (Year 7), 1995-1996 (Year 10), 2000-2001 (Year 15), 2005-2006 (Year 20), and 2010-2011 (Year 25) with retention rates of 91%, 86%, 81%, 79%, 74%, 72%, and 72% of the surviving cohort, respectively (Web Table 1). Details on the CARDIA study design and measurement are provided elsewhere.28

As main covariates, we used the employment status of the CARDIA participants and the contextual unemployment rate. Employment status was obtained from the answer to the question “Are you unemployed, laid off or looking for work?” (Year 0) or “Are you unemployed or laid off?” (all other years).

As a measure of the macroeconomic context, following prior investigations,14,29 we used the state unemployment rate (from the Bureau of Labor Statistics) corresponding to the year and state in which the CARDIA participant was living when an exam took place. Geocodes for residential addresses of the CARDIA participants are available for baseline, 7-, 10-, 15-, 20-, and 25-year follow up, so the analyses included only observations for these years. Though CARDIA participants lived in just four states at Year 0, they were distributed over a total of 44 states at Year 10, and all 50 states at Year 25. The longitudinal nature and geographic dispersal of the sample therefore provides substantial variation in state indicators.

We investigated the following 15 continuous CVD risk factors as outcomes: systolic and diastolic blood pressure (mmHg); alcohol consumption (mL/day); total physical activity and physical activity unrelated to work (PAUW), measured in “exercise units” roughly equivalent to kilocalories of weekly energy expenditure30 (further details on these two variables are provided in the Appendix); depressive symptoms, as measured by the Center for Epidemiologic Studies
Depressive Symptoms Scale (CES-D); plasma HDL, LDL, total cholesterol, and triglyceride levels; and five anthropometric measures (BMI, waist circumference, and triceps, suprailiac and subscapular skinfolds).

We also analyzed two categorical outcomes, smoking status (current smoker vs nonsmoker), and the presence or absence of metabolic syndrome (see Appendix for definition).

Income information in CARDIA was collected in categories, which makes adjustment for inflation very difficult. Information on education is available, but since individuals recruited for CARDIA were at least 18 years old in the first examination, we assumed the level of education attainment would not change in most participants or would change at most once in the whole follow-up period. For these reasons, we opted to not include income and education in the analysis.

Statistical Approach

We modeled repeated measures of CVD risk factors as a function of individual-level characteristics, including individual employment status, and contextual economic conditions—proxied by the state unemployment rate. We used panel fixed-effect (FE) models to estimate the association of a within-person change in employment status or exposure to state unemployment levels with within-person change in outcomes. We included a FE for each individual in order to account for all time invariant individual-level confounders, as well as FE for time (year) and state to account for state-invariant time varying confounders (or time trends) and time invariant state-level confounders, respectively.

Our model is of the form:

\[F_{it} = \beta_0 A_{it} + \alpha_i + \beta_1 E_{it} + \beta_2 U_{jt} + \Psi_i + \Sigma_j + \epsilon_{it} \]

[eq. 1]
where \(F_{it} \) is the risk factor level for person \(i \) at year \(t \), \(A_{it} \) is the person’s age, \(\alpha_i \) is a FE for each individual, \(E_{it} \) is the time-varying employment status (1 for unemployed individuals at the time of the interview, 0 for all others), \(U_{jt} \) is the unemployment rate of state \(j \) where individual \(i \) was living at year \(t \), \(\Psi_t \) and \(\Sigma_j \) are FE for year \(t \) and state \(j \), and \(\varepsilon_{it} \) is the error term.

To assess the robustness of results to alternative ways of accounting for time trends and to improve the efficiency of the estimates, we also fitted the model,

\[
f_{it} = \beta_0 A_{it} + \alpha_i + \beta_1 E_{it} + \beta_2 U_{jt} + \Psi_t + \varepsilon_{it} \tag{eq. 2}
\]

in which \(f_{it} \) and \(u_{jt} \) are respectively the deviations of the dependent variable and the state unemployment rate from a non-linear Hodrick-Prescott trend, computed with a smoothing parameter \(\gamma = 100 \). Models of this kind in which the time series that form the panel are detrended by non-linear procedures have been shown to be more efficient in estimating macroeconomic effects on mortality.\(^{14}\) The inclusion of the detrended unemployment rate makes the state FE redundant (that is, \(\Sigma_j \) in eq. 1); therefore, that FE is excluded from the model. However, the year FE are retained to adjust for time effects affecting all states.\(^{14}\) We found that the standard model and the non-linear model yielded very similar results in terms of statistical significance of the estimates but the sizes of the estimates differed. We present the results of both types of model. Because the models with non-linear detrending theoretically yield more accurate parameter estimates, we use them as the best estimate of the size of the association.

For analyzing categorical outcomes—smoking status and the metabolic syndrome—we used the logistic regression analogues of equations [1] and [2].

Potential differences in the association between individual-level unemployment and the outcomes by levels of contextual unemployment were examined by including interactions between contextual unemployment and individual unemployment in the model.
Robust standard errors were computed accounting for the autocorrelation implied by repeated observations in each individual.

Results

The mean age of the CARDIA participants increased from 24.9 years in the mid-1980s (Year 0) to 50.2 years in Year 25 (Web Table 1). Notably, the proportion of participants with education beyond high school rose from 30.7% at baseline to 58.8% in Year 25. The proportion unemployed oscillates over time showing levels consistent with the changing macroeconomic conditions (as indicated by the state unemployment rates, Web Table 1, bottom). The proportion unemployed among CARDIA participants at baseline is two or three times greater than the unemployment rate in each of the four original states, consistent with the overrepresentation in the CARDIA cohort of young individuals and black persons, who both have greater unemployment rates than the general adult population.

Mean systolic and diastolic blood pressure, BMI, and waist circumference generally increased across the visits, while the proportion of current smokers declined. CES-D scores and physical activity also declined, although less consistently. Alcohol consumption, LDL and HDL did not show consistent trends.

If all 5115 individuals in the original CARDIA cohort had been examined in the seven follow-up exams, a total of $8 \times 5115 = 40,920$ observations would have been available for our analyses. Because of attrition and death, our samples were much smaller, but all regressions except one included over 19,000 observations (Tables 1 and 2).

We report here only the results for 10 continuous outcomes (Table 1): systolic and diastolic blood pressure, total physical activity, PAUW, depression, alcohol consumption, HDL, LDL,
BMI, and waist circumference. The other five continuous variables we investigated did not reveal any statistically significant association.

We found higher age consistently and significantly associated with higher levels of HDL and BMI (Table 1, for results of additional models see Web Table 2) but not with higher blood pressure or consumption of alcohol. Higher age was associated with marginally significant declines in both total physical activity and PAUW.

All models showed that being unemployed is significantly associated with higher levels of depressive symptoms and lower levels of physical activity (Table 1). Compared to their counterparts, the unemployed participants had lower levels of systolic blood pressure (mean difference 0.48 mmHg, 95% CI: -0.83 to -0.13) and diastolic blood pressure (mean difference 0.26 mmHg, 95% CI: -0.53, 0.01), and lower levels of HDL cholesterol (mean difference, -0.61, 95% CI: -0.30, -0.92). Being unemployed was associated with a lower consumption of alcohol—although this was not significant in our main model—but was not associated with different levels of LDL, BMI, or waist circumference.

Higher levels of the state unemployment rate were significantly associated with lower levels of both systolic and diastolic blood pressure, with systolic blood pressure declining 0.41 mmHg (95% CI: -0.65, -0.17) per each percentage point increase in the state unemployment rate (Table 1, panel B). State unemployment was also significantly associated with higher depression scores: a one-percentage point increase in the unemployment rate was associated with a 0.2 units increase in the CES-D score of depressive symptoms (Table 1, panel B). Higher levels of unemployment were significantly associated with lower levels of waist circumference (with a decrease of 0.34 cm (95% CI: -0.48, -0.20) per one percentage point increase in unemployment), but no associations were observed for BMI. The state unemployment rate was not associated
with alcohol consumption, or with levels of LDL. In contrast, higher state unemployment was associated with higher physical activity: a one percentage point increase in the unemployment rate was associated with an increase of 14.3 points (95\% CI: 9.2, 19.4) in total physical activity and 12.8 points (95\% CI: 8.2, 17.4) in PAUW (Table 1, panel B).

Individual-level unemployment was not associated with current smoking but higher state unemployment was associated with lower odds of smoking (odds ratio 0.86, 95\% CI: 0.75, 1.00, Table 2, panel B).

With one exception, models to explore potential interactions produced non-significant results (Web Appendix, Web Table 2).

Since we investigated the associations of the employment status of individuals and the state unemployment rate with a total of 15 outcomes, we performed a Bonferroni-Holm correction. After correction, all the statistically significant results for the state unemployment rate remained at the 95\% level of confidence, but many of the associations of individual unemployment were no longer significant (Table 1).

Discussion

Our results provide valuable insights into the health consequences of changes in macroeconomic conditions or in the employment status of individuals. Results of this longitudinal cohort study show that when the economy slows down (as indexed by rising unemployment rates) both systolic and diastolic blood pressure decrease, the level of physical activity increases, smoking becomes less frequent and depression scores tend to slightly increase. Conversely, during economic expansions both systolic and diastolic blood pressure increase, physical activity declines, smoking increases and depression scores fall. In economic terminology, blood pressure...
and smoking are procyclical variables, increasing during the expansion phase of the business cycle, while depression symptoms and physical activity are countercyclical, increasing during recessions.

To our knowledge, only one previous study reported an association of macroeconomic conditions with blood pressure. An Icelandic study found that the 2008 financial crisis was associated with higher levels of blood pressure, but this result was based only on the comparison of prevalences of self-reported hypertension in two surveys in 2007 and 2009. In contrast, our findings—based on longitudinal data over a 25-year period and measured blood pressure—show that systolic and diastolic blood pressure are procyclical, i.e., increase during economic expansions and decrease during recessions. Given that high blood pressure is a risk factor for CVD, the tendency of blood pressure to diminish during recessions could be one of the mechanisms explaining why CVD deaths tend to be less frequent during economic downturns.

Certainly, the increase in blood pressure associated with one percentage point increase in the state unemployment rate is small, but macroeconomic fluctuations often imply changes of several percentage points in the unemployment rate. Furthermore, small changes in the population level of blood pressure can imply substantive changes in the risk of development of CVD in the entire population.

Tax statistics reveal that cigarette sales evolve procyclically, increasing during expansions and survey data have also shown that cigarette smoking tends to increase when the economy expands. Overall, our results confirm that changes in smoking levels may be one of the mechanisms explaining procyclical variations in mortality. Smoking has long-term effects on health that may take years to develop, but it can also have immediate effects by increasing the risk of acute cardiovascular or respiratory illness that leads to death.
We found no associations of individual or contextual unemployment with alcohol consumption, blood lipids, or metabolic syndrome. Based on these results, these variables are unlikely to be intermediate variables explaining the connection between macroeconomic fluctuations and changes in mortality. Procyclical changes in alcohol consumption have been suggested as one potential mechanism leading to procyclical mortality.11,26 However, our results do not provide support for this mechanism.

We found that total physical activity and PAUW decreased in unemployed individuals but increased when the state unemployment did. Indeed, physical activity is the only risk factor for CVD for which we found opposite associations for individual-level and state-level unemployment. If most physical activity were work-related one would expect to see lower levels in unemployed persons and lower levels during recessions, as physical exertion at work is very likely linked to total hours at the job, and overtime is more common during economic expansions. However, we found that both total activity and PAUW increased during recessions but were lower in the unemployed than in the employed.

Using data from the American Time Use Surveys (ATUS), Colman and Dave40 found that recreational exercise increased during recessions. However, they also concluded that total exertion, which supposedly quantifies the health-inducing effect of physical activity, decreased in the working-age population during recessions, because it is 95% work-related.

Colman and Dave used ATUS data for the years 2003-2010, which encompassed only one business cycle, and their models did not include time trends at the national or at the state level. Individual employment status was not included in their models and they assumed that individuals freely choose how to use their time, so that they may exercise less during periods of economic
expansion when the so-called opportunity cost of leisure is higher because of higher wages. A
different and probably more realistic explanation of increased exercise during recessions is that
overtime and regular working hours are procyclical, so that they fall in economic downturns.\(^3\)(p.
136) Thus employed individuals would have more time to exercise when the economy is
depressed. Furthermore, overexertion during work is likely to covary with overtime and rhythm
of worth, procyclically, and individuals who overexert themselves at work may be less likely to
exercise during non-working hours. The increase in both total physical activity and PAUW that
we observed during periods of lower state unemployment is consistent with these explanations.

In our study, unemployed individuals had lower levels of both total physical activity and
PAUW—though these results were no longer significant with the Bonferroni-Holm adjustment—
and higher scores of depressive symptoms than their counterparts. These findings may be linked,
as other research has shown that depression is associated with decreased physical activity.\(^4\) We
did not find that the unemployed smoke more, have higher blood pressure, have higher
prevalence of metabolic syndrome or drink more. Indeed, they appeared to drink less alcohol and
have lower blood pressure than those who are employed or not looking for work, though they
also had lower HDL-cholesterol—these results were not significant after the Bonferroni-Holm
correction. One could speculate that higher levels of depression, less physical activity and lower
levels of HDL may contribute to the increased risk CVD and premature death observed in
unemployed individuals in other studies.\(^10,20\) In reference to the Bonferroni-Holm correction, we
present it as additional information, but we note it is far from being an accepted standard and
concrete applications of it have been considered statistically unsound in many scientific fields.\(^42,\)
Ruhm found that periods of recession increase the level of depressive symptoms in the population.26 Our results are consistent with Ruhm’s finding and we also found that unemployed individuals have a significantly increased level of depressive symptoms. The mean CES-D score in the US population 44 and in the CARDIA cohort (Web Table 1) is about 10, and a score of 16 has been used as the cut-off point indicating clinical depression, though some authors recommend higher cut-off points of 20 or 22.41,44 If 0.23 (Table 2, panel B) is an acceptable estimate of the association of state-level unemployment with depressive symptoms, a severe economic downturn like the Great Recession which raised the unemployment rate by as much as 13 percentage points in some states would raise the mean score of depressive symptoms in the population 1 or 2 points. Independently, being unemployed raises an individual’s depression score by 0.6 points. Since depressive symptoms are positively associated with suicide, these associations may in part explain the observation that suicides tend to fall during economic expansions and rise in recessions.45,45-49

A limitation of the present study is the lack of investigation of lagged effects. The FE analyses allow us to determine whether change in the unemployment variables (at the individual or contextual level) is related with contemporaneous change in the outcomes. A major strength of this approach is that it controls for all time-invariant confounders. However, we were unable to investigate lagged effects, thus for instance we do not know whether the unemployed develop a higher or lower BMI one year after becoming unemployed. The structure of CARDIA data does not allow for that kind of investigation. It would be possible to model outcomes as a function of state unemployment rates in the year or two preceding a CARDIA exam. However, CARDIA data do not tell us where individuals were living one or two years before the exam, or if they were unemployed or not at the time. Using finite mixture methods (FMM) Deb et al. found an
important increase in BMI and alcohol consumption in fractions of about 16% and 10%, respectively, of those who had become unemployed because of a plant closure one or two years earlier.50 Unfortunately we were unable to investigate these lagged effects with our data.

Overall, our investigation shows that recessions are linked to lower blood pressure, less smoking, higher levels of physical activity, smaller waists (though not in unemployed individuals, see Web Table 2) and higher depression scores. On the other hand, at the individual level, being unemployed is associated with lower blood pressure, less alcohol intake, lower levels of physical activity and HDL, and higher levels of depression. While the associations at the individual level can involve causality in both directions,5, 7 as a third variable (say, a previous health condition) could be the cause of both effects, the association of changes in CVD risk factors with macroeconomic changes indexed by the rate of unemployment suggests causality just in one direction, as it would be hard to argue that changes in blood pressure or the frequency of smoking can have an effect on the economy, or that a third variable is causing both effects.

Taken together, our results indicate that risk factors for CVD, except for depressive symptoms, tend to decline during economic recessions. This decline in CVD risk factors during recessions may help to explain the procyclical oscillation of CVD mortality. Future research replicating our findings and attempting to understand the drivers of these patterns is warranted.

Acknowledgments

The CARDIA Study is supported by contracts HHSN268201300025C, HHSN268201300026C, HHSN268201300027C, HHSN268201300028C, HHSN268201300029C, and HHSN268200900041C from the National Heart, Lung, and Blood Institute (NHLBI), the Intramural Research Program of the National Institute on Aging (NIA), and an intra-agency
agreement between NIA and NHLBI (AG0005). Following the title of the paper, authors are listed in alphabetical order, except the first three.

Conflict of interest: none declared.
REFERENCES

Table 1. Mean changes in cardiovascular risk factors associated with changes in age, individual-level unemployment and state-level unemployment (robust standard errors, clustered for individuals, bracketed below the parameter estimate). CARDIA Study, 1985-2011.

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Systolic BP</th>
<th>Diastolic BP</th>
<th>Physical activity</th>
<th>PAUW</th>
<th>CES-D</th>
<th>ml/day alcohol</th>
<th>HDL cholest.</th>
<th>LDL cholest.</th>
<th>BMI</th>
<th>Waist circumference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=23,700</td>
<td>n=23,698</td>
<td>n=23,679</td>
<td>n=23,578</td>
<td>n=14,435</td>
<td>n=20,148</td>
<td>n=19,584</td>
<td>n=18,143</td>
<td>n=23,652</td>
<td>n=23,293</td>
</tr>
<tr>
<td>A. Models with fixed effect for year, state, and individual</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.14</td>
<td>-0.01</td>
<td>-8.0<sup>a</sup></td>
<td>-7.6<sup>a</sup></td>
<td>-0.13</td>
<td>0.11</td>
<td>0.46<sup>b</sup></td>
<td>0.77</td>
<td>0.12<sup>a</sup></td>
<td>0.26</td>
</tr>
<tr>
<td>(0.24)</td>
<td>(0.21)</td>
<td>(4.7)</td>
<td>(4.3)</td>
<td>(0.18)</td>
<td>(0.49)</td>
<td>(0.23)</td>
<td>(0.53)</td>
<td>(0.07)</td>
<td>(0.16)</td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>-0.77<sup>c</sup></td>
<td>-0.31</td>
<td>-11.1<sup>b</sup>,<sup>e</sup></td>
<td>-10.8<sup>b</sup>,<sup>e</sup></td>
<td>1.43<sup>d</sup></td>
<td>-0.99<sup>a</sup></td>
<td>-0.45<sup>b</sup>,<sup>e</sup></td>
<td>0.04</td>
<td>-0.11</td>
<td>-0.04</td>
</tr>
<tr>
<td>(0.24)</td>
<td>(0.19)</td>
<td>(4.7)</td>
<td>(4.3)</td>
<td>(0.22)</td>
<td>(0.56)</td>
<td>(0.23)</td>
<td>(0.51)</td>
<td>(0.07)</td>
<td>(0.16)</td>
<td></td>
</tr>
<tr>
<td>State unemployment rate</td>
<td>-0.27<sup>d</sup></td>
<td>-0.27<sup>d</sup></td>
<td>6.8<sup>c</sup></td>
<td>6.2<sup>d</sup></td>
<td>0.12<sup>b</sup></td>
<td>0.09</td>
<td>-0.26<sup>d</sup></td>
<td>0.26</td>
<td>-0.03</td>
<td>-0.13<sup>b</sup></td>
</tr>
<tr>
<td>(0.07)</td>
<td>(0.06)</td>
<td>(1.6)</td>
<td>(1.5)</td>
<td>(0.06)</td>
<td>(0.15)</td>
<td>(0.08)</td>
<td>(0.18)</td>
<td>(0.02)</td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>B. Models with fixed effect for year and individual, and HP-detrended dependent variable and state unemployment rate</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.19</td>
<td>0.12</td>
<td>-6.5<sup>a</sup></td>
<td>-5.8<sup>a</sup></td>
<td>0.03</td>
<td>0.06</td>
<td>0.36<sup>a</sup></td>
<td>0.38</td>
<td>0.10<sup>b</sup></td>
<td>0.23<sup>b</sup></td>
</tr>
<tr>
<td>(0.18)</td>
<td>(0.15)</td>
<td>(3.57)</td>
<td>(3.3)</td>
<td>(0.12)</td>
<td>(0.35)</td>
<td>(0.21)</td>
<td>(0.39)</td>
<td>(0.05)</td>
<td>(0.10)</td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>-0.48<sup>c</sup>,<sup>e</sup></td>
<td>-0.26<sup>a</sup></td>
<td>-0.90<sup>b</sup>,<sup>e</sup></td>
<td>-7.9<sup>b</sup>,<sup>e</sup></td>
<td>0.60<sup>d</sup></td>
<td>-0.64</td>
<td>-0.61<sup>d</sup></td>
<td>0.59<sup>a</sup></td>
<td>-0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>(0.18)</td>
<td>(0.14)</td>
<td>(3.5)</td>
<td>(3.3)</td>
<td>(0.45)</td>
<td>(0.46)</td>
<td>(0.16)</td>
<td>(0.35)</td>
<td>(0.04)</td>
<td>(0.10)</td>
<td></td>
</tr>
<tr>
<td>HP-detrended state unemployment rate</td>
<td>-0.41<sup>d</sup></td>
<td>-0.19<sup>a</sup></td>
<td>14.3<sup>d</sup></td>
<td>12.8<sup>d</sup></td>
<td>0.23<sup>d</sup></td>
<td>0.12</td>
<td>-0.07</td>
<td>0.05</td>
<td>-0.04</td>
<td>-0.34<sup>d</sup></td>
</tr>
<tr>
<td>(0.12)</td>
<td>(0.10)</td>
<td>(2.5)</td>
<td>(2.3)</td>
<td>(0.09)</td>
<td>(0.21)</td>
<td>(0.10)</td>
<td>(0.24)</td>
<td>(0.03)</td>
<td>(0.07)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BP, blood pressure; PAUW, physical activity unrelated to work; CES-D, score of depressive symptoms; BMI, body mass index; n, number of observations used in the regression; HP, Hodrick-Prescott.

^a P < 0.1. ^b P < 0.05. ^c P < 0.01. ^d P < 0.001. ^e P > 0.05 only after the Bonferroni-Holm adjustment.
Table 2. Odds ratio of being a smoker associated with age, individual unemployment and state level unemployment rate in two types of fixed-effect models.\(^a\) CARDIA Study, 1985-2011

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Odds ratio</th>
<th>95%CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Fixed effects for years and states</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.88</td>
<td>0.71, 1.11</td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.94</td>
<td>0.77, 1.17</td>
</tr>
<tr>
<td>State unemployment rate</td>
<td>0.92(^b)</td>
<td>0.86, 1.01</td>
</tr>
<tr>
<td>B. State unemployment rate HP-detrended (γ = 100) and fixed effects for years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.87</td>
<td>0.79, 1.08</td>
</tr>
<tr>
<td>Unemployed</td>
<td>1.00</td>
<td>0.81, 1.23</td>
</tr>
<tr>
<td>HP-detrended state unemployment rate</td>
<td>0.86(^c)</td>
<td>0.75, 1.00</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; HP, Hodrick-Prescott; γ, smoothing parameter;

\(^a\) Smoking status modeled as 0 if the person says never was a smoker or is no longer a smoker, and 1 if the respondent says is presently a smoker; CI computed from robust standard errors clustered for individuals; regressions included fixed effects for individuals and included 23,228 observations.

\(^b\) \(P < 0.1\).

\(^c\) \(P < 0.05\).