Critical Roles for Interleukin 1 and Tumor Necrosis Factor in Antibody-induced Arthritis

Hong Ji, Allison Pettit, Koichiro Omura, Adriana Ortiz-Lopez, Veronique Duchatel, Claude Degott, Ellen Gravallese, Diane Mathis, and Christophe Benoist

1 Section on Immunology and Immunogenetics, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
2 Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, 67404 Strasbourg, France
3 Beth Israel Deaconess Medical Center and New England Baptist Bone and Joint Institute, Harvard Institutes of Medicine, Boston, MA 02215
4 Service d'Anatomie et de Cytopathologie, Hôpital Beaujon, 92118 Clichy, France

Abstract

In spontaneous inflammatory arthritis of K/BxN T cell receptor transgenic mice, the effector phase of the disease is provoked by binding of immunoglobulins (Igs) to joint surfaces. Inflammatory cytokines are known to be involved in human inflammatory arthritis, in particular rheumatoid arthritis, although, overall, the pathogenetic mechanisms of the human affliction remain unclear. To explore the analogy between the K/BxN model and human patients, we assessed the role and relative importance of inflammatory cytokines in K/BxN joint inflammation by transferring arthritogenic serum into a panel of genetically deficient recipients. Interleukin (IL)-1 proved absolutely necessary. Tumor necrosis factor (TNF) was also required, although seemingly less critically than IL-1, because a proportion of TNF-deficient mice developed robust disease. There was no evidence for an important role for IL-6. Bone destruction and reconstruction were also examined. We found that all mice with strong inflammation exhibited the bone erosion and reconstruction phenomena typical of K/BxN arthritis, with no evidence of any particular requirement for TNF for bone destruction. The variability in the requirement for TNF, reminiscent of that observed in treated rheumatoid arthritis patients, did not appear genetically programmed but related instead to subtle environmental changes.

Keywords: transgenic • cytokine • knockout • inflammatory • TNF

Introduction

Inflammatory arthritides, in particular rheumatoid arthritis, have been the focus of intense investigation, but their etiology and pathogenesis remain controversial. There is no consensus on what initiates rheumatoid arthritis (RA)*; i.e., whether it is primarily an autoimmune response, an inflammatory response to some persistent microbial invasion, or a combination of the two. There is also dispute over the leukocyte populations that are involved in the initiation of joint inflammation. The paradigm currently dominating the field portrays antigen-specific T cells in the joint as inducing the inflammatory cascade by triggering macrophages and synoviocytes (1, 2), but this scenario has been questioned for a lack of direct experimental demonstration of certain of its key points, and because of some discordant observations, such as the paucity of T cell-derived cytokines in inflamed joints (3). In contrast, a role for inflammatory cytokines like TNF- and IL-1 is well established (4), most demonstratively by the impressive effect of therapeutic protocols that block TNF-TNF-R interactions (1). There has also been debate on the relative importance of the IL-1 and TNF- pathways (4). It has also been noted that, even in the best of trial outcomes, arthritis is not fully reversed and roughly one third of RA patients are refractory to TNF-TNF-R-blocking drugs.

*The present address of H. Ji is Serono Pharmaceutical Research Institute, 14 Chemin des Aulx, 1228, Plan-les-Ouates, Geneva, Switzerland.

Address correspondence to Diane Mathis and Christophe Benoist, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215. Phone: 617-264-2745; Fax: 617-264-2744; E-mail: dmathis@joslin.harvard.edu

Abbreviations used in this paper: CIA, collagen-induced arthritis; GPi, glucose-6-phosphate isomerase; LT, lymphotoxin; RA, rheumatoid arthritis.
The K/BxN TCR transgenic mouse is a recently developed model of inflammatory arthritis (5–9). A ILK/BxN animal spontaneously shows an autoimmune disease with m osteoarthritis (although not all of the clinical, histological, and immuno logical features of RA in humans. The disorder is critically dependent on both T and B cells. Although the pathologic manifestations are joint-specific, the process is initiated, and then perpetuated, by dual T/B cell autoimmune to a ubiquitously expressed antigen, glucose-6-phosphate isomerase (GPI). Transfer of anti-GPI Igs from arthritic K/BxN mice into healthy animals provokes arthritis within days, even when the recipients are devoid of lymphocytes. GPI-anti-GPI immune complexes (ICs) are the link between the system in T and B lymphocyte autoimmunity and the ensuing joint-specific inflammatory reaction, and the joint specificity is perhaps a reflection of the presence of GPI on the articular surface (10). Initiation of the inflammatory effect phase requires both the complement network and Fc receptors (11). The relevance of the K/BxN model to hum an RA is supported by a recent report that serum from an outcross two-thirds of RA patients contained anti-GPI Abs, absent from serum of normal individuals or of patients with Lyme arthritis or Sjogren’s syndrome (12), although one recent data show less obvious a correlation (unpublished data). The observation of GPI and GPI-anti-GPI complex on cartilage surface of human joints is also of interest (10).

Our early studies on K/BxN mice revealed augmented local synthesis of inflammatory cytokines, such as IL-6 and TNF-α, in arthritis joints (5). However, the functional relevance of this observation was not tested, other than a report that failed to dem onstrate a required role for TNF-α (13). The role of inflam matory cytokines in this model is in front of the effector phase, which is dependent from the hum an disease or rather to the var iants resistant to TNF/FnN Fr blockade.

Here, we apply the K/BxN serum transfer system to a panel of mice deficient in one or more inflammatory cytokines or their receptors. A critical role for IL-1 is established, along with a strong, but not absolute, contribution to TNF-α. Interestingly, we find that the requirement for TNF-α varies markedly from individual to individual, as it does in humans.

Materials and Methods

Mice. The knockout mice used for serum transfer were obtained from the Jackson Laboratory, brought to our animal facility at the H. N. E. Medical School animal facility at 4–5 wk of age, and used 1–3 wk later (in rare exceptions, the mice were bred in our colony). These mice included the following: IL-6 (14) on a C57Bl/6 background; IL-1α/β (15) on both C57Bl/6 (15) and B10.D2 (16) backgrounds; TNF-α (17) on a B10.D2 background; IL-1α/β (15) on both B10.D2 (15) and B10.D2 (16) backgrounds; TNF-α (17) on a C57Bl/6 background; TNF-α (17) on a C57Bl/6 background; TNFR1 (17) on a C57Bl/6 background; and TNFR2 (17) on a C57Bl/6 background.

RESULTS AND DISCUSSION

Inflammation. K/BxN mice develop a milder form of arthritis than the K/BxN mice reported by others (5–9). Interestingly, the TCR transgenic arthritis develops in 60% of female mice and 40% of male mice, with the onset of arthritis between 3 and 4 wk of age. The arthritis is characterized by an acute phase of inflammation, bone erosion, and cartilage destruction. An adjacent section was stained with hematoxylin and eosin (5 μm A-HD) for evaluation of inflammatory arthritis, bone erosion, and cartilage destruction. An adjacent section was stained with toluidine blue (5 μm A-HD) for specific identification of proteoglycans. Histopathological scoring was performed as described previously (6, 23).

RNA Analysis. RNA was prepared from ankle tissue by a modification of the LiCl/urea technique (22), designed to avoid contamination of the joint RNA with bone marrow-derived material by leaving the bone intact. A fine dissection of ankles (sectioned at the long bones of the lower leg and in the metatarsal area), the tissue was freed of skin and superficial tendons. The joints were immersed in 1 ml RNA solubilization solution (6 M urea, 2% SDS). A lethal cavities were opened with a scalpel and were exposed to the m edium to release the cellular contents. After 10–15 min incubation, the joint was removed and an equal volume of concentrated LiCl solution (6 M LiCl, 6 M urea, and 10 mM sodium acetate, pH 5) was added to precipitate the RNA. DNA was synthesized from these RNAs by MuLV reverse transcription (Gibco BRL).

Cyclophilin was used as an endogenous control using a probe concentration of 200 and 400 nM for each primer in each reaction. The probe and primer sequences used were as follows: probe, 5′ CTGGCCGCGTCTCCCT TAMRA 3′; and reverse primer, 5′ CAGACGCCACTGTCGCTTT 3′. For the quantification of TNF-α and IL-6, the TaqMan predeveloped assay reagents were used (PE, Applied Biosystems). For IL-1α, the probe and primer concentrations per reaction were the same as those used for cyclophilin. The probe and primer sequences used were as follows: probe, 5′ TGCAGCTGGAGATGTG-CATCCCTTAMRA 3′; and reverse primer, 5′ GGACGCACACCA 3′. To determine relative expression values, C(T) cytokine/C(T) cyclophilin was used to derive an expression index (2ΔΔCT), which was then divided by the expression value of a reference sample of total spleen RNA.

Serum Transfer Protocol and Arthritis Scoring. K/BxN serum pools were prepared from arthritis mice 40–50 m. A rabbit was induced by intraperitoneal injection of 150–200 μl serum at days 0 and 2. A clinical index was evaluated on the level of paw for each animal (1–4 points for each affected paw; 0.5 points for a paw with only mild swelling or redness or only a few digits affected). Ankle thickness was assessed by a caliper (1), with ankle thickening being defined as the difference in ankle thickness from the day 0 mean.

Histology. Hind limb bones were collected and the knee and ankle joints were separated into 1 ml tubes. Specimens were dissected to remove skin and outer muscle, and subsequently fixed in 4% formaldehyde for 12 h and demineralized for 2 wk in 14% EDTA, followed by paraffin embedding (9 μm Caldeol 1000; Shandon). For each specimen, twenty 4-μm sagittal serial sections were cut, and every fifth section was stained with hematoxylin and eosin (5 μm A-HD) for evaluation of inflammatory arthritis, bone erosion, and cartilage destruction. An adjacent section was stained with toluidine blue (5 μm A-HD) for specific identification of proteoglycans. Histopathological scoring was performed as described previously (6, 23).

Conclusion. Kinetics of Inflammatory Cytokine Production. Transfer of K/BxN serum into normal recipients induces rapid and synchronous development of arthritis, the first signs of joint inflammation appearing within 24 h in fully susceptible strains (9). To begin exploring the induction of various inflammatory cytokines in this model and their temporal relationships, we measured the expression of their mRNA by quantitative real-time PCR. C57Bl/6 mice were in-
The first signs of induction were detectable a few hours after serum injection, with a modest but detectable rise from the baseline for all mRNAs at 6 h. TNF-α mRNA increased m ore substantially from 24 h onward. IL-1 transcripts followed roughly the same pattern, but with a sharper induction at 48 h and far more extensive induction, reaching 13,000-fold at maximum. IL-6 showed a delay, with a maximum by 72 h followed by a decline at 144 h that was reproducibly observed in several experiments. These results are consistent with the early appearance of inflammatory cytokine transcripts from cell recruitment, or from true induction of gene expression, or both, and a secondary, far more extensive, induction. The induction of IL-1 appears significantly more extensive than that of TNF-α.

No Role for IL-6. The induction of arthritis by K/BxN serum transfer does not require any contribution from T or B cells (6). Thus, one can readily evaluate the role of inflammatory cytokines purely on the effector phase of the disease, unencumbered by their influences on the immunological induction phase. Such complexities may have clouded results from collagen-induced arthritis (CIA) and antigen-induced arthritis models, where the known pleiotropic effects of such cytokines on the structure or responsiveness of the immune system complicate data interpretation. The K/BxN serum transfer system is applicable to a number of mouse strains (9), allowing one to investigate the effects of diverse natural and engineered mutations. This strategy was applied here, focusing on the contributions of IL-1, IL-6, and members of the TNF family, by transferring K/BxN serum into homozygous knockout mice lacking particular cytokines or cytokine receptors. Mice of matched genetic composition, bred in the same colony, were used as controls. In most cases, we preferred not to rely on injected cytokine inhibitors, such as anticytokine antibodies or soluble receptor molecules because negative results with such reagents can be difficult to interpret. (sufficient dose or stability of the compound? completeness of the blockade?). This is particularly an issue in a context as aggressive as that of K/BxN arthritis.

We first investigated the importance of IL-6, a pleiotropic cytokine expressed by a variety of cell types during inflammatory processes (24). IL-6 has complex pro- and antiinflammatory influences, with both local and systemic effects. For example, it promotes cell and macrophage differentiation (25), but also induces acute phase proteins, IL-1 receptor antagonist (26), and metalloproteinase inhibitors (27). Its role is variable in different inflammatory models (28). These have been conflicting reports of the requirement for IL-6 in animal models of arthritis: some investigators describe reduced disease in IL-6-deficient mice or after antibody blockade of its receptor (29, 30), whereas others report no such effect (31).

IL-6-deficient mice on the C57BL/6 background (14) were transferred with serum from arthritic K/BxN mice, and arthritis development was monitored as described previously (6). The representative experiment in Fig. 2A demonstrated a very similar arthritis course in IL-6-deficient mice and controls. The initial onset of symptoms was the same, all distal joints were affected, and with a comparable degree of inflammation (measured as ankle thickness). These observations were confirmed by results from three individual experiments tabulated in Fig. 2B. Histological examination of the ankle joints revealed the image of synovitis and joint infiltration typical of K/BxN mice (synovial thickening and infiltration, presence of neutrophils in the articular cavity, pannus formation, and cartilage destruction; Fig. 2C; unpublished data). Further, cartilage damage and proteoglycan loss was evident on toluidine blue-stained ankle sections from serum-injected mice at comparable levels for IL-6-deficient and control mice (unpublished data).

These data are in agreement with those of van den Berg and colleagues, who found little role for IL-6 in joint inflammation in CIA or zymosan-induced arthritis (31). They contrast with other reports showing an effect of IL-6 blockade in the CIA model (29, 30). The explanation for these discrepancies may lie in the positive impact of IL-6 on the immunological induction phase of the CIA: milder responses in mice pretreated with the collagen-II antigen in the absence of IL-6 function (29, 30). Together, these data are consistent with the notion that IL-6 does not play a major role in the inflammatory effector phase of arthritis.

An Essential Role for IL-1. Although attempts at blocking the IL-1 pathway in RA patients in therapeutic trials have not met with success at those interfering with the activity of TNF, there exists a substantial body of evidence implicating this inflammatory cytokine in several
inflammatory arthritis. This has ranged from the initial demonstration of TNF-α expression in arthritic synovium, to establishing the efficacy of TNF-α/TNF-R blocking agents in animal models, to the successes of such reagents in therapeutic intervention in human RA (1, 4, 39–42). Aberrant expression of TNF-α is also sufficient to induce arthritis in transgenic animals (43). These results evoked models of arthritogenesis in which TNF-α plays a central and indispensable role (for review see 1). We tested the efficacy of K/BxN serum transfer in animals carrying knockout mutations of the genes encoding TNF-α or its close homologue, lymphotxin (LT)-α (17–21). TNF-α and LT-α mediate their pleiotropic effects by binding to one of two known receptors, TNF FR 1 (p55) and TN FR 2 (p75).

We also investigated the effect of knockout mutations of the genes encoding either or both of these molecules. The data, summarized in Table I, allow several conclusions. First, and most simply, LT-α seems not to be required for the development of K/BxN serum-transferred arthritis. LT-α-deficient mice respond normally on all counts, in the kinetics and intensity of inflammation and in the appearance of histological lesions (proliferative synovitis, infiltration of the joint cavity by neutrophils, and formation of a destructive pannus).

Second, the absence of TNF-α had a marked effect in mice with arthritogenic Ig. IL-1 plays a central role, critically required for disease progression. We have not been able to reproduce this effect by treatment with blocking anti-IL-1R mAb (unpublished data), likely because of the known difficulty to achieve complete blockade of IL-1 action with biologic reagents (for review see reference 4). The central role of IL-1 in the K/BxN model is reminiscent of its requirement in CIA and other murine arthritis models (32, 33, 35). It is also consistent with the finding that in particular expression of IL-1α, alone, is sufficient to induce full-blown arthritis (38).
23 examined over the course of this study. This finding is illustrated for representative cohorts in Fig. 4. The presence of responder TNFR1- and TNFR2-deficient mice was not restricted to one or two experimental groups, but was observed in a number of independent experiments. In contrast, a certain degree of clustering was observed, some experimental groups showing a high incidence of arthritis development (see below). When disease did develop, the time of onset was quite variable, usually delayed by several days relative to wild-type controls, and the degree of inflammation always remained below the maximum attainable. Histological analysis also revealed significant signs of inflammation in those mice with clinically detectable arthritis.

Third, joint inflammation developed normally in both the TNFR1- and TNFR2-deficient mice, as well as in TNFR1/TNFR2 double–deficient animals (Table I; the genotypes of the mice were reconfirmed at the end of the experiment). Clinical and histological parameters were essentially indistinguishable from normal controls. This observation was quite unexpected, as TNFR1 and TNFR2 are the only known receptors for TNF-α, with no reported indication of another possible receptor in spite of the broad attention that TNF-α has received (44). As both the cytokine and cytokine receptor mutations were on a susceptible (B6 129) F2 background, one would have expected that they have the same phenotype in both deficient strains. These conflicting results prompted us to question the effect of the TNF-α mutation, as well as the responsiveness in TNF-α-deficient mice, due to the absence of the cytokine, or instead to an independent factor in the genome that has received the broad attention that TNF-α has received (44). As both the cytokine and cytokine receptor mutations were on a susceptible (B6 129) F2 background, one would have expected that they have the same phenotype in both deficient strains.

These conflicting results prompted us to question the effect of the TNF-α mutation, as well as the responsiveness in TNF-α-deficient mice, due to the absence of the cytokine, or instead to an independent factor in the genome that has received the broad attention that TNF-α has received (44). As both the cytokine and cytokine receptor mutations were on a susceptible (B6 129) F2 background, one would have expected that they have the same phenotype in both deficient strains.

Table I. Arthritis Incidence in Mice Deficient in TNF and TNFR Families

<table>
<thead>
<tr>
<th>Strain</th>
<th>Arthritis</th>
<th>Days of onset</th>
<th>Max CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFR1/2 / (B6x129F2)</td>
<td>/</td>
<td>2,2,2,2,2,1,4,2</td>
<td>4,4,4,4,2,4,3</td>
</tr>
<tr>
<td>B6 / (B6x129F2)</td>
<td>/</td>
<td>2,2,2,2,2,2,2</td>
<td>2,2,3,3,4,4,4</td>
</tr>
<tr>
<td>TNFR2 / (B6x129F2)</td>
<td>/</td>
<td>2,2,2,2,2,1,4,2</td>
<td>4,4,4,4,2,4,3</td>
</tr>
<tr>
<td>B6 / (B6x129F2)</td>
<td>/</td>
<td>2,2,2,2,2,1,4,2</td>
<td>4,4,4,4,2,4,3</td>
</tr>
<tr>
<td>TNF / (B6x129F2)</td>
<td>/</td>
<td>2,2,2,2,2,1,4,2</td>
<td>4,4,4,4,2,4,3</td>
</tr>
<tr>
<td>Lt / (B6x129F2)</td>
<td>/</td>
<td>2,2,2,2,2,1,4,2</td>
<td>4,4,4,4,2,4,3</td>
</tr>
<tr>
<td>TNFR1 / (B6x129F2)</td>
<td>/</td>
<td>2,2,2,2,2,1,4,2</td>
<td>4,4,4,4,2,4,3</td>
</tr>
<tr>
<td>B6 / (B6x129F2)</td>
<td>/</td>
<td>2,2,2,2,2,1,4,2</td>
<td>4,4,4,4,2,4,3</td>
</tr>
</tbody>
</table>

Figure 4. Variability of arthritis in TNF-α-deficient mice. TNF-α-deficient (left) and control mice (right; matched for gender/age and genetic background) were injected with 150 μl serum from arthritic K/BxN animals on days 0 and 2. Arthritis was evaluated by measuring ankle thickening as in Fig. 2. The data are pooled from six different experiments. All mice originated from the Jackson Laboratory.
Further experiments were performed to address the cause of the variable effect of the TNF-

 deficiency. It could be explained by genetic, epigenetic, or environmental variation controlling the activity of TNF-

 independent pathways; stochastic threshold effects could also be involved. Arthritogenesis requiring a certain degree of local inflammation might result, only seldom reached in the absence of TNF-

. As the knockout mouse was crossed on a mixed (129xB6) F2 background, we reasoned that modifier alleles at other loci, able to complement the TNF deficiency, might segregate randomly in the F2 knockout mice. To test this hypothesis, several crosses were set up between combinations of resistant or susceptible TNF-

-deficient mice. Should alleles at independent loci be segregating, there should be heritable transmis-

sion of these traits to the progeny. As shown in Fig. 6 A, this was not the case. A cross between two resistant m ice yielded a dominant proportion of responder m ice; the transmis-

sion of a recessive susceptibility allele in this family would be very unlikely to yield such a pattern (P 0.001). Thus, the variability does not stem from Mendelian genetic elements. Epigenetic variation could perhaps account for these results. However, we observed a clear correlation between the origin and life history of the m ice and their responses to K/BxN serum (Fig. 6 B). Those m ice bred at the Jackson Laboratory and shipped to Boston 7–15 d before challenge showed mainly a resistant phenotype, whereas those bred in Boston and tested there were mainly susceptible (P 0.003). In both cases, the barrier facilities have SPF status, free of major mouse pathogens, but minor bacterial flora varies. Thus, the segregation of responses is one consistent with an environmental explanation than with an epigenetic one.

Together, these experiments point to a distinct involvement of TNF- in Ab-induced arthritis, but one that is not absolutely essential. This conclusion differs from that reached by Kyburz et al. (13), who found no effect of anti-TNF- therapy in arthritis development in straight K/BxN transgenic m ice. We have also made similar observations, injecting several different anti-TNF- reagents into young K/BxN m ice (unpublished data). However, we interpret these negative results with caution because of the very aggressive nature of the disease that develops in the transgenic m ice and uncertainties concerning the efficiency of Ab-mediated blockade. On the other hand, the present results do concur with reports of robust development of CIA in TNF- -deficient m ice (46). Although it is conceivable that the cytokine network adapts to such m ice in a way that TNF- deficiency is, in a sense, an inherent part of the variability in the response of RA patients to TNF- / TN FR blockade (1). The results of Fig. 6 make it perhaps more plausible that environmental effects are at play, the degree of TNF- involvement being dependent on the general inflammatory state of the individual. It should be worthwhile trying to pinpoint what these influences might be, in both m ice and hum ans, and the present system does provide a handle.

There are several potential interpretations for the strong arthritis that develops in TNF FR1/2-deficient m ice. The m ost straightforward is that other receptors can compensate for the absence of TNF FR1/2 and mediate TNF- signals. Although the existence of such a receptor has not been reported to date, the elucidation of the TNF FR family makes it quite possible that other receptors will be found to bind TNF- . W hether these are indeed the primary receptors mediating arthritis, or whether they only come into play when the primary TNF FR1/2 receptors are absent, will need to be explored. Alternatively, one might propose that TNF- -independent arthritis pathways are particularly active when TNF FR1/2 are missing, perhaps by compensating downstream signal transduction adap-

Figure 5. Triggering the TNF receptor complements TNF deficiency. TNF- deficient m ice were injected with 150 l serum from arthritis K/BxN and allogenic days 0 and 2. Arthritis was evident by day 7 when injected at days 7, 11, and 15 with anti-TNF FR1 mAb 55R-293, which has significant agonistic activity (A) or with control mAbs (B). These controls included anti-TNF FR1 mAbs devoid of agonistic activity or an irrelevant mAb. C) Anti-TNF FR mAbs were injected without K/BxN serum. A threshold was evaluated by measuring ankle thickening above. The data are pooled from four different experiments using all m ices originated from the Jackson Laboratory.

Figure 6. Environmental, not genetic, influences on TNF FR-independent arthritis. A) TNF- deficient m ices from the Jackson Laboratory were tested by transfer of K/BxN serum, and m ices of different phenotypes were crossed. White m ices were resistant m ice; black m ices were m ices with TNF FR1/2 deficiency. B) A combination of results of challenge of TNF- deficient m ices with K/BxN serum, either from m ices purchased from the Jackson Laboratory or bred in our Boston colony; *P 0.003.
tors. For example, the absence of TNFR1 might free TRADD, FADD, or TRAF molecules for more efficient interaction with other receptors.

Bone Destruction and Formation. There is some debate about the role of inflammatory cytokines in promoting focal bone erosion in the course of arthritic diseases. Osteoclasts are essential to the process, and essentially no focal destruction of the bone occurs in their absence. Resistance to bone erosion was previously demonstrated in mice deficient in the TNF family member receptor activator of NF-kB ligand (RANKL) that had received K/BxN serum, as in the CIA model after blockade of RANKL by osteoprotegerin treatment (23, 47). This finding is consistent with the fact that RANK/RANKL axis is required for the generation of osteoclasts and also plays a role in their activation (for review see reference 48). In contrast, it is also possible that other inflammatory cytokines play a role. IL-1 can activate osteoclasts, and promote bone resorption in vivo (49, 50). TNF promotes osteoclast differentiation in the presence of RANKL (51, 52), and there are indications that TNF/TNF receptor blockade can retard bone destruction in RA patients, even when the effect on the inflammatory component is limited (53). Thus, we asked whether bone destruction could be seen in the absence of these cytokines. As described previously, obvious instances of focal bone destruction were seen in normal mice injected with K/BxN serum; similar images were also observed in LT-deficient mice (Fig. 7, A and B). For TNF, we focused in particular on those mice that showed significant joint inflammation. In these instances, clear evidence of focal bone destruction was also observed (Fig. 7 C). Although impossible to truly quantify, given the variability of inflammation in the TNF-deficient animals, the extent of the erosive lesions in the absence of TNF was largely on par with the extent of inflammation.

We could not draw any conclusion on the role of IL-1 in bone destruction, as the upstream inflammatory phase did not develop in its absence. However, our results are not consistent with the view that TNF plays an obligate role in promoting bone destruction; synoviitis and joint inflammation could still lead to extensive destruction in its absence.

Synthesis: Intersection of IL-1 and TNF Pathways. There has been quite some debate as to the relative roles and importance of IL-1 and TNF in arthritogenesis. In animal models where the function of these cytokines has been tested, their importance varies from high to very low (see reference 4). For Ab-mediated arthritis that K/BxN disease may typify, our results point to a more crucial function for IL-1. These roles, and the slightly different kinetics of induction of cytokine transcription in the joint during arthritis initiation, are consistent with a model in which the point of action of TNF would be upstream of that of IL-1 (1). TNF-independent pathways, perhaps relying on other members of the TNF family, may also trigger IL-1 independently. This view is consistent with the importance of TNF in promoting IL-1 production by synoviocytes from RA patients (54), or with the fact that IL-1 blockade prevents the arthritis induced by transgene-encoded TNF-α expression (55). It should also be pointed out that the experiments shown in Fig. 1 only detect transcriptionally induced TNF production. However, it is likely that even earlier release of TNF occurs in the first minutes or hours of the disease, released from intracellular stores of synoviocytes or mast cells upon triggering by C5a or FcγRIII. These molecules constitute two essential links between the anti-GPI Abs and the inflammatory manifestations of K/BxN arthritis (11), and both pathways are known to precipitate rapid TNF release.

The relevance of the Ab-mediated arthritis model that K/BxN mice present to human arthritic diseases had been questioned, in part, because it does not fit well with the paradigm in which autoreactive T cells within the joint provoke local TNF release, a model bolstered by the
successes of anti-TNF therapy. The present results show that arthritis induced by Ab complexes in the joint also end up with the production of TNF and IL-1, and is highly dependent on these cytokines.

We would like to thank D. M. R. Schaeber for the generous gift of mAbs, and J. H. Resqueux, S. Johnson, and Q. M. Pham for excellently managing the KR N colony.

This work was supported by grants from the Association pour la Recherche contre la Polyarthrite and the National Institutes of Health (R01 AR/AM6580-01) to D. M. this and C. Benoist, and an Arthritis Foundation Biomedical Sciences grant to E. Gravallese. K. O. hm usa received a fellowship ship from the Uehara M emorial Foundation, and A. Pettit is supported by the National Health and Medical Research Council of Australia, and by the Arthritis Foundation.

Submitted: 19 March 2002

Accepted: 14 May 2002

References

soluble tum or necrosis factor receptor p55. Blood. 83:113–118.
27. Silacci, P., J. M. Daver, A. Degeras, R. Peter, C. M. an-
uedu, and P. A. Gurneen. 1998. Interleukin (IL)-6 and its sol-
uble receptor induce TIMP-1 expression in synoviocytes and
chondrocytes, and block IL-1-induced collagenolytic activity.
28. Fattoni, E., M. Cappelletti, P. Costa, C. Selitto, L. Cantoni,
1994. Defective inflammatory response in interleukin 6-defi-
29. Ohashi, S., Y. Sasaki, T. Mima, I. Sasek, K. Nishikoa, S.
N. Omura, M. Kopp, Y. Katada, T. Tanaka, M. Suenaga, and
T. Kiishima. 1998. Interleukin 6 plays a key role in the de-
USA. 95:8222–8226.
30. Takagi, N., M. Mihama, Y. Moriya, N. Nishikoa, K.
Blockage of interleukin-6 receptor on elastin joint disease in
mice: murine collagen-induced arthritis. Arthritis Rheum. 41:
2117–2121.
31. van de Loo, F., A. Kuiper, F. H. van Enckevort, O. J.
Antz, and W. B. van den Berg. 1996. Interleukin-6 induces carti-
lage destruction during experimental arthritis. A study in in-
The effect of an interleukin-1 receptor antagonist protein on type II
collagen-induced arthritis and antigen-induced arthritis in
33. van den Berg, W. B., L. Josten, M. M. A. M. Elen, and A. A.
van de Loo. 1994. An elastin of established murine colla-
gen-induced arthritis with anti-IL-1 R1 treated. Clin. Exp.
1995. The type I interleukin-1 receptor acts in mediating th-
m or necrosis factor (TNF) to induce arthritis in TNF-trans-
35. Josten, L., M. M. A. M. Elen, F. van de Loo, and W. B.
van den Berg. 1996. Antibody against tumor necrosis factor-
ocyte treated of established type II collagen-induced arthritis in DBA/1
mice: a comparative study using anti-TNF-α, anti-IL-1α, and
Heinegard, and W. B. van den Berg. 1999. IL-1α antibody beta
blockade prevents cartilage and bone destruction in murine type II
collagen-induced arthritis whereas TNF-α antibody blockade
only an elastin joint inflammation. J. Immunol. 163:
5049–5055.
37. Feldman, M., F. M. Brennan, and R. N. M. M. High. 1996. Role of
cytokines in rheumatoid arthritis. Annu. Rev. Immunol. 14:
397–440.
Schanberg, L. R. M. Ofted, et al. 1997. Constitutive intra-
articular expression of human IL-1 β induce a beta form ing gene.
transfer to rabbit synovium produces all major pathologies of hu-
Harden, and M. A. Pau llini. 1992. Involved end of endo-
genous tum or necrosis factor alpha and transforming grow th
factor beta during induction of collagen type II arthritis in
40. Piguet, P. P., G. E. G. Fau, C. Vesin, H. Loetscher, R. G. entz,
mice is treated by treatment anti-IL-1α or anti-IL-1 receptor factor
(TNF) by a recombinant soluble TNF receptor. Im-
munol. 77:510–514.
41. W. Iliin, T. M. Felm ann, and R. N. M. M. High. 1992. Anti-
TNF 151 ameliorates joint disease in murine collagen-induced ar-
Influence of a recombinant human soluble TNF receptor PSEntin
protein on type II collagen-induced arthritis in mice. J.
43. Keffler, J., L. Pinbert, H. C. Lasenb, S. Georgopoulos, B.
expressing human tum or necrosis factor: a predictive genetic
44. Knaaer, T., J. V. B. eck, and J. L. P. Opperheime. 1999. Proin-
famma ry cytokines: TNF and IL-1 in mice, chee mokines, TGF-β,
and others. In Fundam ental Immunology. W. E. P. aul, editor. Lip-
ppotti-Raven Publishers, Philadelphia. 775.
G. O'Donnell, and R. D. Schreiber. 1995. Monoclonal anti-
bodies specific for murine p55 and p75 tum or necrosis factor
receptor: identification of a novel in vivo role for p75. J.
2001. Severe inflammatory arthritis and 3-year nephropathy in
2001. The role of TNF receptor family members and
other TRAM-dependent receptors in bone resorption.
Arthriti.
48. G. Swall,
2001. The role of TNF receptor family members and
other TRAM-dependent receptors in bone resorption.
Arthritis.
49. G. Swall,
2001. The role of TNF receptor family members and
other TRAM-dependent receptors in bone resorption.
Arthritis.
2001. The role of TNF receptor family members and
other TRAM-dependent receptors in bone resorption.
Arthritis.
2001. The role of TNF receptor family members and
other TRAM-dependent receptors in bone resorption.
Arthritis.