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ABSTRACT  
 

Evaluating anti-cancer drugs in vitro is an important aspect of the drug 

development pipeline. When evaluating anti-cancer drugs, two different 

measurements are used: relative viability, which scores an amalgam of 

proliferative arrest and cell death, and fractional viability, which specifically scores 

the degree of cell killing. These two metrics are often used interchangeably despite 

measuring different aspects of a drug response. This study explored the 

relationship between drug-induced growth inhibition and cell death, and found that 

most drugs affect both proliferation and death, but in different proportions, and with 

different relative timing. This causes a non-uniform relationship between relative 

and fractional response measurements. To unify these measurements, I created a 

data visualization and analysis platform, called drug GRADE, which characterizes 

the degree to which death contributes to an observed drug response. GRADE 

captures drug- and genotype-specific responses, which are not captured using 

traditional pharmaco-metrics.  

Current in vitro anti-cancer drug evaluation practices measure drug 

responses with cancer cell lines in mono-culture. However, many cell types in the 

tumor microenvironment influence cancerôs drug response and disease 

progression. Therefore, current drug evaluation practices overlook complex cell-

cell interactions that influence cancerôs drug response. In this study, I developed a 

high-throughput assay to study the effect of another cell type (cytotoxic T cells) on 

cancer viability in co-culture, in vitro. Further, I developed a reference framework 
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to model the complex interaction between cancer cells and cytotoxic T cells, and 

to model how T cell-mediated cell death is modulated by anti-cancer drug 

treatment. Taken together, this study highlights two new methods which enable 

better in vitro evaluation of drug responses in cancer. 
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I. CHAPTER I. INTRODUCTION 

I.A CURRENT CANCER THERAPIES 

I.A.1 Non-chemotherapeutic cancer treatments  

Cancer treatment options have vastly expanded since the discovery of cancer. 

The oldest form of cancer treatment is surgical intervention, the ideal treatment for 

many forms of cancer.1 However, surgical intervention is not always a viable 

treatment option. Many factors, such as cancer type, stage, metastatic potential, 

and accessibility, render surgery infeasible.2 

Much effort has been spent creating therapies to treat tumors that are 

surgically inviable. One such treatment is radiotherapy (RT). RT uses radiation to 

induce double-stranded breaks in the DNA of cells.3 These breaks initiate the DNA 

damage response and ultimately cause apoptosis if enough damage 

accumulates.4 However, sensitivity to DNA damage is tumor-type dependent. 

Thus, RT cannot be used to treat all cancer.  

I.A.2 A brief history of chemotherapy  

Another approach to cancer treatment is the use of chemotherapies. 

Chemotherapies are small molecules that target properties specific to cancer cells. 

The first-implemented chemotherapies were derivatives of mustard gas. These 

mustard gas analogs caused high levels of DNA damage, which initiated 

apoptosis.1 Clinical success of these early chemotherapies was originally 

attributed to their ability to preferentially target fast growing cells. Cancer cells often 

display a dysregulated cell cycle; they cannot properly arrest to fix broken DNA. 
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Conversely, normal cells are capable of cell cycle arrest and DNA damage repair. 

This discrepancy in cell cycle regulation seemed to explain why early 

chemotherapies preferentially affected faster-growing cancerous cells.5 However, 

this theory was later debunked. In reality, DNA damaging chemotherapies 

preferentially affect cells that are more primed for apoptosis, not cells that grow 

faster. There are many types of cancers with fast proliferation rates, but little-to-no 

sensitivity to DNA damage. On the other hand, there are some normal cell types, 

such as immune cells, that have higher levels of apoptotic priming than some 

cancers.6  

I.A.3 Classes of chemotherapy  

Chemotherapies can be broken down into specialized drug classes: endocrine 

therapies, targeted therapies, and immunotherapies. Drugs that fall under these 

headings are considered specialized because they are designed to target cancer-

specific phenotypes. For example, when the hormone estrogen binds to its 

receptor, the subsequent signaling activates cell growth. This signaling is 

abrogated if the binding site of the hormone receptor is blocked with a small 

molecule that mimics the hormone. By inhibiting the hormone receptor binding, 

endocrine therapies stop cancer cells which are reliant on hormone receptors for 

growth signaling.7 For example, Her2+ breast cancers are highly reliant on 

hormone receptors, making them excellent targets for endocrine therapies.8  Since 

most normal cells within the body do not require hormone receptors for growth 

signaling, these therapies have little effect on normal tissue.  
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I.A.4 Targeted therapies  

Targeted therapies are another specialized class of chemotherapy. This class 

is comprised of small molecules or monoclonal-antibodies that effect targets 

unique to cancer cells. Cancer-specific dependence on these targets can arise 

when the protein is solely expressed in cancer cells. For example, chronic myeloid 

leukemia (CML) is driven by the expression of a single protein, BCR-ABL1. BCR-

ABL1 is a fusion protein which does not exist in normal tissue.9 Thus, in CML, only 

the cancer cells express BCR-ABL1, making this protein ideal for targeted therapy. 

The targeted therapy for CML (imatinib) is incredibly effective in treating the 

disease and has little effect on healthy hematopoietic cells at relatively high 

doses.9 Unfortunately, most cancers are not driven by the expression of a single 

cancer-specific protein. 

Targeted therapies can also work when normal cells are not dependent on the 

activity of a protein that is driving cancer growth and survival. Kinase inhibitors are 

often used to target proteins which cancer cells have a unique dependence on for 

survival. For example, non-small cell lung cancer (NSCLC) is treated with the 

receptor tyrosine kinase inhibitor erlotinib, which targets the epidermal growth 

factor receptor (EGFR). While normal cells can tolerate the inhibition of EGFR by 

using other methods to signal growth, NSCLC cannot, thus makes NSCLC 

particularly responsive to EGFR inhibition.10 Kinase inhibitors are also used to 

target cell cycle proteins as a hallmark of cancer is a dysregulated cell cycle. 

Cancer cells often evade the regulation required to pause or exit the cell cycle.5 As 
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such, the cyclin-dependent kinases (CDKs), which drive cell cycle progression, are 

often targeted to specifically inhibit cancer growth. Normal cells can tolerate 

inhibition of certain CDKs and the subsequent pause in cell cycle progression. For 

instance, the CDK 4/6 inhibitor Palbociclib is a first-line treatment for advanced or 

metastatic luminal breast cancer.11 However, targeted therapies fail in cases 

where a clear cancer-specific protein does not exist.  

I.A.5 Immunotherapies  

The newest form of specialized chemotherapy is immunotherapy. 

Immunotherapies are a unique class of chemotherapy that function by activating 

the immune system to target cancer cells, rather than killing the cancer cell 

directly.12 Immunotherapies broadly fall into two different classes: immune 

checkpoint inhibitors (ICIs) and engineered immune cells. ICIs inhibit immune 

response suppression, which is upregulated by many cancers. Upon inhibition of 

this immune suppression, native cytotoxic immune cells (CD8+ T cells and natural 

killer (NK) cells) are able to detect, attack, and kill cancer cells.13,14 The other class 

of immunotherapy, engineered immune cells, involves training to hostôs immune 

system to recognize the cancer. CD8+ T cells or NK cells are removed from the 

patientôs body and engineered to express a chimeric antigen receptor (CAR) that 

specifically recognizes an antigen expressed on the cancer cell. These CAR cells 

are then re-introduced into the patientôs body, where they are able to detect and 

kill the cancer cells.15,16 Immunotherapies are highly effective therapies and lead 

to rapid cancer clearance as well as durable cancer remission.13,14  However, 



5 

 

immunotherapies do not work for all types of cancer or in all patients. For example, 

engineered immune cells fail in instances where they cannot access the cancer 

cells, as is the case for most solid tumors.17 Further, solid tumors frequently 

possess highly hypoxic environments, which are not conducive to immune cell 

health or function.18 Finally, not all cancers express an antigen that can be uniquely 

targeted by immunotherapies.13,15,19  

I.B COMMON MECHANISMS OF DRUG RESISTANCE  
Even if a cancer can be treated with one of the therapies mentioned above, 

cancer is still able to adapt and become resistant.5 Therefore, we require continued 

development of novel therapeutic strategies to effectively treat cancer. Importantly, 

these strategies must consider the mechanisms of drug resistance that cancers 

use to evade treatment. These mechanisms of drug resistance range from 

disease-wide heterogeneity to intra-cellular adaptations, such as transcriptional 

rewiring.  

I.B.1 Clonal heterogeneity  

While many consider cancer to be a homogenous disease, there is a great 

deal of heterogeneity amongst the cancer cells. Often, multiple cancer clones 

develop throughout disease progression.20 These unique cancer clones can have 

different levels of sensitivity to a given chemotherapy, leading to a non-uniform 

drug response. After sensitive clones die from a given treatment, insensitive clones 

are able to grow out. This causes the disease to develop into a more resistant, 

more aggressive state that will no longer respond to the original therapy.21,22  
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I.B.2 Transcriptional rewiring  

On a cellular level, drug resistance can stem from transcriptional rewiring. 

Transcriptional rewiring occurs when a cell transcriptionally up- or down- regulates 

cellular programs to adapt to their environment.23 For example, cancers can avoid 

targeted kinase inhibitors by transcriptionally down-regulating the inhibitorôs target 

gene.24 Cancer cells also upregulate drug pumps to develop drug resistance. 

Mammalian cells can express ATP-driven transporters, such as the multidrug 

resistance P-glycoprotein, which hydrolyze ATP to drive the efflux of drugs and 

other toxic molecules.25 Upregulation of these drug pumps eliminate 

chemotherapies from the cell, allowing the cells to experience a much lower 

effective dose of drug.  

I.B.3 Transient drug resistance  

Cancer cells can also develop drug resistance by transiently rewiring their 

cellular processes to cope with a chemotherapeutic stress. Once the stress is 

removed, the cancer cell population returns to a normal state. Transient rewiring 

or adaptation is not heritable and the cell population will be equally sensitive to 

drug treatment when rechallenged. No single clone grows out and overwhelms the 

cancer population. The cancer cell population will return to a similar distribution of 

cell states as before drug treatment. 26ï29 

I.B.4 Immune evasion  

Finally, cancer can resist death via the immune system using several 

distinct mechanisms, which fall under the term ñimmune evasionò. Cancer cells can 

release molecules, such as cytokines or adenosine, that dampen the activation 
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and killing-capacity of nearby immune cells.18 Cancer cells can also upregulate the 

expression of immune checkpoint ligands (PD-L1 and PD-L2), which are then 

presented on the surface of the cancer cells. These ligands interact with immune 

checkpoint receptors (PD-1 and CTLA-4) expressed on the surfaces of cytotoxic T 

cells and NK cells. Upon ligand binding, these receptors initiate a signaling 

cascade within the immune cell that dampens the immune response and initiates 

immune cell death.5 Ultimately, this helps the tumor to avoid immune detection and 

response.  

I.C PRE-CLINICAL EVALUATION OF DRUG RESPONSE  
It is necessary to fully characterize drugs in vitro before testing them in vivo or 

in a clinical setting. Full in vitro characterization of a therapeutic includes defining 

the dose-response curve, the pharmacological parameters (50% inhibitory 

concentration, IC50), the drug target, and the mechanism of action. Definition of 

these parameters facilitates experimental design for subsequent in vivo and clinical 

studies. However, more than 90% of cancer therapeutics validated in vitro fail in 

the clinical setting, demonstrating that in vitro data cannot predict in vivo response 

or clinical success.30   

Many factors contribute to the discrepancy between in vitro and in vivo 

efficacy. Although cancer cell lines share morphology and possess the same 

transcriptional profile as in vivo counterparts, in vitro systems do not perfectly 

mimic in vivo systems; thus, one cannot be used in place of the other.31,32  

Therefore, cancer cells lines fail to recapitulate the tumor heterogeneity seen in 
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vivo. Further, the same cancer cell line can vary massively between labs. 

Differences in cell lines between labs increases the variation in drug responses. 33 

These arguments highlight a need to improve our current systems for in vitro drug 

evaluation; ideally defining a new way to characterize drugs in vitro that better 

recapitulates responses seen in in vivo systems. 

I.D HOW DO CELLS RESPOND TO DRUGS? 

I.D.1 Growth arrest  

Cells can respond to a drug in two different ways: growth arrest or cell death. 

Growth arrest occurs when a cell pauses, or exits, the cell cycle in order to adapt 

to a perturbation. Canonically, cells initiate a growth arrest if they are dividing in 

suboptimal conditions, or if they detect damage within the cell.34 Cells will also 

growth arrest if the proteins that regulate the cell cycle are inhibited, if growth factor 

signaling pathways are inhibited, or if stress response pathways are activated. For 

example, in response to DNA damage, a cell will pause to fix the damage before 

proceeding with DNA replication. This ensures that the resulting daughter cells 

have the correct genetic information to function properly.10,34 If the cell is able to 

adapt to the perturbation, it will re-enter the cell cycle. However, some 

perturbations can stop a cell from dividing.35,36 Cells will initiate growth arrest for 

many reasons.  

Cancer cells do not have the same cell cycle regulatory machinery as normal 

cells. As a result, unperturbed cancer cells will continue to grow in conditions that 

would cause normal cells to growth arrest or exit the cell cycle.5 However, some 
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frequently used chemotherapeutic classes such as DNA damaging drugs, cell 

cycle protein inhibitors (cyclin-dependent kinase inhibitors), and growth signaling 

pathway inhibitors (EGFR inhibitors, kinase inhibitors) can cause cancer cells to 

undergo a growth arrest.10,11,37,38 Importantly, achieving growth arrest in a tumor is 

clinically relevant. While growth arrest does not kill the cancer cell, it often results 

in an extended survival window for patients.35 Unfortunately, cancers are often 

heterogenous and thus not all cancer clones will respond with the same sensitivity 

to a chemotherapy. As a result, while some clones may growth arrest in response 

to a drug, other clones will continue growing and mutating, leading to a more 

resistant form of disease. 

I.D.2 Cell death  

Cells can also respond to a drug by initiating cell death. Cell death can be 

classified into two categories: regulated cell death (RCD) or accidental cell death 

(ACD). RCD refers to cell death that has a specific signaling cascade executed by 

a specific set of molecules. Importantly, this process is regulatable. On the other 

hand, ACD occurs as the result of a perturbation so strong that the resulting cell 

death is unregulatable.39 Some types of RCD have a physiological purpose, such 

as apoptosis. Apoptosis is a cellôs programmed method of death when the cell 

becomes too old or too damaged to continue producing productive progeny. 

Apoptotic death involves the dying cell carefully packaging its contents to prevent 

the cell corpse from initiating an immune response. Billions of cells in the human 

body die every day via apoptosis.40,41  
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Early chemotherapies worked by initiating apoptosis in cells. Unfortunately, 

cancer cells often have mutated or dysregulated apoptotic machinery. Cancer cells 

will continue growing and dividing past the point at which they would normally kill 

themselves via apoptosis. Therefore, these early chemotherapies often had poor 

efficacy in inducing cell death.1,5 As our understanding of the different types of cell 

death has increased, more work has gone into developing chemotherapies that 

specifically target and turn on cell death machinery. For example, Abt-737 is a 

BH3-mimetic that causes mitochondrial outer-membrane permeabilization, which 

specifically initiates apoptosis. However, normal cell types can have similar levels 

of sensitivity to cell death-inducing stimuli as cancers.42,43 Further, cell death drugs 

that induce inflammatory types of cell death are even more dangerous due to their 

ability to cause an immune response. High levels of inflammatory cell death will 

over-activate the immune system, potentially leading to patient death.44 

I.D.3 Clinical drug evaluation   

Chemotherapy can cause both growth arrest and cell death in cancer cells. 

However, it is unclear which drug response is preferable. Growth arrest can extend 

the patientôs survival window, but can also allow resistant clones to grow out.5 

Theoretically, cell death should lead to a more durable response. Sensitive cells 

will die, given enough time and enough exposure to the drug. However, resistant 

clones will not die and continue growing. Further, not all cancers respond to 

cytotoxic agents. For example, acute lymphoblastic leukemias are incredibly 
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susceptible to death via apoptosis. However, other cancer types, such as renal 

cancer, are far less susceptible to apoptotic stimuli.6  

Ultimately, to understand a drug response, we need to measure the resultant 

levels of cell death AND growth arrest in a tumor. Existing methods used to 

evaluate tumor response in vivo cannot parse between growth arrest and cell 

death. The current methods use tumor size as a proxy for drug response. Loss of 

tumor mass relative to starting size indicates that some of the cancer cells have 

died. However, progression-free survival, meaning the tumor has not changed 

mass relative to its starting size, can be attributed to growth arrest. 45 Or partial cell 

death could occur in the tumor, but the surviving cells grow at a commensurate 

rate, thus maintaining a stable tumor size. Ultimately, any tumor growth that is less 

than untreated disease progression could result from an infinite space of growth 

arrest and cell death combinations.  

I.E CURRENT IN VITRO METHODS OF DRUG RESPONSE MEASUREMENT 

I.E.1 Relative viability  

Currently, drug responses are measured in two different ways: relative viability 

(RV) and fractional viability (FV). The predominant method, RV, compares the 

number of live cells in a drug treated condition to the number of live cells in an 

untreated or vehicle control condition. Relative viability is also referred to as 

percent viability, percent survival, drug sensitivity, or percent cytotoxicity. RV is 

often used due to ease of measurement (i.e., Cell Titer Glo, crystal violet, MTT, 

Alomar blue, and colony formation assays). Importantly, these methods are well-
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adapted for use in high-throughput assays. The other method, FV, compares the 

number of live cells to the number of total cells, both live and dead, in the treated 

population. The resulting fraction is also referred to as viable fraction, percent of 

cells, or percent cell death.38  

RV dose response data can be used to generate useful pharmacological 

metrics. One such metric is IC50 (50% inhibitory concentration) which signifies the 

drug dose at which there are half as many live cells than the untreated control. 

IC50 metrics cannot be generated if the treated cell population never reaches half 

the size of the untreated population. Therefore, it is more common to use EC50 

(50% effective inhibitory concentration), which reports the drug dose that is half as 

potent as the maximum potency of the drug. For example, if the maximal dose 

tested yields an RV of 0.6, the treated condition has only 60% of the live cells 

present as in the untreated condition. In this example, the EC50 would fall at the 

dose which yields an RV = 0.8, because that dose is half as potent as the 

maximally potent dose. However, that same dose would be considered the IC20, 

since the treated population has 20% less live cells than the untreated 

population.46  

I.E.2 Fractional viability  

Like RV, FV dose response data can be used to generate useful 

pharmacological metrics, such as IC50 and EC50 measurements. In the case of 

FV, IC50 represents the concentration at which half of the cell population is dead, 

while EC50 presents the concentration at which half the maximal cell death has 
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occurred.37 FV is also used in its inverse form, called lethal fraction (LF). LF 

represents to the fraction of dead cells in a cell population relative to the total 

number of cells in that population. LF is particularly useful for measuring the 

degree of cell death occurring in a population over time. Therefore, cell death 

kinetics are usually represented using LF. When LF kinetic data is fit to models of 

lag-exponential cell death, the fitted data generates useful metrics such as death 

onset time, maximal death rate, maximal death achieved, and the area under the 

death kinetic curve.47  

Unfortunately, FV metrics are less frequently generated than RV metrics 

because there are fewer commercial assays available to easily evaluate FV, as FV 

requires the measurement of both live and dead cells. Historically, concurrent live 

and dead cell measurements could only be made using flow cytometry using 

Live/Dead Fixable dyes or propidium iodide, or with quantitative microscope.48 

Although these methods generate high quality single-cell data, they have severe 

throughput limitations, making the generation of large-scale cell death 

measurements cumbersome. Further, both flow cytometry and quantitative 

microscopy often require sample fixation, making it impossible to monitor the 

amount of cell death present within a sample over time.47 

However, the invention of the SYTOX and YOYO-1 dyes have made 

measuring dead cell numbers more accessible.48 These cell impermeant dyes 

fluorescence 1000x more brightly when they bind to DNA than when not bound to 

DNA.49 Thus, they only fluoresce brightly when the cell membrane breaks down 
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during death. The measure of fluorescence is proportional to the number of dead 

cells present within the sample. Work in our lab has improved upon these assays 

to concurrently capture live cell measurements. Live cell numbers can be inferred 

by killing all cells at the end of the assay and measuring the corresponding total 

cell fluorescence. By subtracting the endpoint dead cell fluorescence from the 

endpoint total cell fluorescence, one can calculate the endpoint live cell 

fluorescence. Further, one can use the total cell fluorescence at the assay start to 

back-calculate the total number of cells present at intermediate time points. This 

powerful method allows for calculating both RV and FV from the same assay.50 

Importantly, these dyes are well-adapted for use in a plate reader, and are stable 

in a cell culture environment, making them excellent to use in high throughput 

assays where cell death is monitored over time.49,51 Together, RV and FV are 

powerful tools for evaluating new drugs. 

I.F COMMON MISTAKES AND ASSUMPTIONS  WHEN EVALUATING IN VITRO 

DRUG RESPONSES 
 

I.F.1 RV and FV are NOT interchangeable  

Perhaps the most common mistake made when evaluating in vitro drug 

responses is equating RV and FV measures. These two measures are often used 

interchangeably, but they are not the same. RV measures the ratio of live cells in 

a treated population compared to the live cells in an untreated population.52 FV 

measures the ratio of live cells compared to the total number of cells within the 
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same treated population. Thus, RV measures an amalgam of both growth arrest 

and cell death, while FV is solely a measure of cell death. 38  

I.F.2 Growth rate as a confounding  factor  

Another common mistake comes from ignoring the influence differing growth 

rates across cell lines on drug response measurements. RV in particular is heavily 

influenced by variation in growth rate across cell lines. Cell lines with faster growth 

rates will have proportionally larger changes in RV when exposed to a cytostatic 

drug than cell lines with slower growth rates.  For example, a cytostatic drug in a 

cell line that doubles every 24 hours will have an RV of 0.125 after three days of 

drug treatment. However, if you test that same cytostatic drug in a cell line that 

doubles every 36 hours, by the end of a three-day experiment, the RV is 0.25. 

These results suggest that the drug is less efficacious in the second cell line. In 

reality, the drug is equally efficacious in both cell lines, and the difference in RV 

measure is a result of the variation in growth rate across the two cell lines. A new 

metric, Growth Rate inhibition (GR), addresses this issue by scaling RV relative to 

the number of cells present at the beginning of the assay. By scaling relative to 

starting cell number, GR allows comparison of RV-based measurements across 

cell lines with different growth rates.53 GR is the current gold standard metric used 

to evaluate drug responses in vitro, especially when comparing metrics between 

different cell lines.  
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I.F.3 Cytostasis and cyto toxicity are not mutually exclusive   

While GR addresses a common mistake in the in vitro evaluation of drug 

responses, it does not account for another common assumption: a drug can only 

have a single action and can only illicit a single response. This misconception 

assumes that the drug can only function in a single way at a specific dose: it is 

cytostatic, OR is cytotoxic. A GR value between 0 and 1 indicates that there are 

more cells present in the treated condition at the assay endpoint relative to the 

start, but there are still fewer cells than the untreated condition. As stated in the 

GR paper, ñGR valueélies between 0 and 1 in the case of partial growth 

inhibitionéò.52 This assumes that a drug dose that yields a GR value between 0 

and 1 must act via growth rate inhibition alone. But it can also be achieved with a 

partially cytotoxic drug that causes cell death in a subset of cells, while the 

remaining cells continue growing normally. This example would also yield a GR 

value between 0 and 1, suggesting that intermediate phenotypes exist; drugs can 

be cytostatic AND cytotoxic.38  

I.F.4 Drugs can derive efficacy from off -target effects  

Another common assumption with in vitro drug evaluation is that targeted 

therapies are mono-phasic; regardless of dose, a targeted therapy always has the 

same mechanism of action.  Under this assumption, the proportional increase in 

drug potency relative to increasing drug dose is due to increasing inhibition of the 

drugôs binding target.54 However, recent work has shown that therapeutic doses of 

many targeted therapies derive their efficacy from off-target binding. For example, 

the CDK 4/6 inhibitor (abemaciclib) derives its cytotoxicity from its inhibition of off-
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target CDKs and kinases. Similarly, a mTOR inhibitor (Torin2) derives its efficacy 

from its inhibition of PI3K-like kinases, in addition to mTOR. It is important to note 

that drug mechanism of action can change depending on drug dose. A drug may 

preferentially inhibit its target at low doses but, once the target is saturated, then 

inhibit other off-target proteins at higher doses.11,55 These are important facets of 

drug action that we must take into consideration when evaluating drugs in vitro.  

I.F.5 Faults in the drug discovery pipeline  

Many of these common mistakes and assumption come into play in the drug 

discovery pipeline for targeted therapies. The discovery pipeline, in general, starts 

with the identification of a compound for its binding affinity to the driving enzyme 

of a particular cancer genotype. The compoundôs efficacy is evaluating by testing 

a dose range of the compound in an in vitro viability assay. Usually, viability is 

evaluated using RV or GR, and not with a cell death-specific metric like FV. Next, 

the specificity of the compound to its target is established in a separate assay. 

Then, the compound is moved in vivo to test its efficacy in a mouse model of the 

target cancer genotype. Efficacy in vivo is evaluated using tumor size and 

progression-free survival as markers of animal viability.48,56  

Unfortunately, there are many instances in this pipeline where mistakes in 

evaluating drug responses can lead to the formation of false assumptions about a 

drugôs efficacy or mechanism of action. For example, just because a drug binds to 

the target of interest does not mean that the drug derives its efficacy through that 

interaction. Many studies have demonstrated that targeted therapies derive their 
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efficacy via off-target interactions.11,30,55 Further, this pipeline fails to confirm that 

the desired dose in the in vivo environment is akin to that same dose in the in vitro 

environment. Not only do we have to consider how drugs are metabolized by the 

body, but we also have to consider the different aspects of the tumor 

microenvironment that can affect how a drug is ñseenò by cancer. For example, 

bacteria within the tumor microenvironment can both protect cancer cells from 

drug, but also modulate cancer growth and development.57ï60 Other cells in the 

tumor microenvironment, such as fibroblasts, can influence the susceptibility of 

cancer cells to chemotherapies. The fibroblasts can influence the priming state of 

the cancer cells, making them more or less sensitive to cell death.61,62 Further, the 

effect of the chemotherapy on normal cells is often not evaluated outside of in vivo 

experiments. As our understanding of the tumor microenvironment grows, it is 

increasingly important that we understand how chemotherapies affect the non-

cancerous cells in and around a tumor. With the advent of immunotherapies, it is 

increasingly important that we understand how chemotherapies effect immune 

cells. Immunotherapies are increasingly being used in combination with canonical 

chemotherapies, but without prior evaluation of how the chemotherapy effects 

immune cell health and function.13,15,63ï68 This is particularly astounding as studies 

have already demonstrated that immune cells are incredibly susceptible to cell 

death.6,69 By carefully and thoroughly evaluating potential therapies in a few key 

cell types in vitro before moving into in vivo models, we could save a great deal of 
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time and money by not pursuing drugs that will ultimately not work in an in vivo 

setting.   

I.G OVERVIEW OF THESIS 
While there has been great advancement in the development of new cancer 

therapies, there are still many areas that can be improved upon. This thesis will 

focus on improving our methods for evaluating in vitro drug responses. Chapter 

two will focus on exploring the relationship between growth arrest and cell death 

in a drug response, and how these relationships vary across drug, dose, time, and 

genotype. Chapter two will also include the creation of a metric that integrates RV 

and FV data to distinguish distinct phases of a drug response. Chapter three will 

investigate the development of a framework to model interactions between drugs 

and distinct cell types in mixed culture. In particular, chapter three will investigate 

how the relationship between cytotoxic T cells and cancer cells can be modulated 

by different chemotherapies. Finally, chapter four will discuss how these studies 

advance our methods of in vitro drug response evaluation, and comment on where 

further advancement in the field is needed.  

  



20 

 

II. CHAPTER II: DRUG GRADE:  AN INTEGRATED 

ANALYSIS OF POPULATION GROWTH AND CELL DEATH 

REVEALS DRUG-SPECIFIC AND CANCER SUBTYPE -

SPECIFIC RESPONSE PROFILES  

II.A INTRODUCTION 
 Precise evaluation of a cellôs response to drug is a critical step in pre-clinical 

drug development. Failures in this process have contributed to issues with 

irreproducibility of phenotypes across experimental platforms, spurious 

associations in precision medicine, and misannotated mechanisms of drug 

action.11,55,70,71 Recent studies continue to reveal that we generally do not know 

how drugs function, even for drugs that are well-studied and precisely 

engineered.30 Traditional methods to evaluate a drug response have relied on 

pharmacological measures of a drugôs dose-response relationship, such as the 

EC50 or IC50. These features are important, but they reveal a biased and 

incomplete insight. Notably, measures of drug potency such as the EC50/IC50 are 

poorly correlated with other important features, such as the maximum response to 

a drug (i.e. drug efficacy).46 Furthermore, measures of drug potency provide 

minimal insights into the mechanisms of drug action. In recent years several drug 

scoring algorithms have been developed to improve the evaluation of 

pharmacological dose-responses, including approaches that facilitate an 

integrated evaluation of drug potency and efficacy.46,72 Additionally, it has now 

been well-demonstrated that differences in proliferation rate between cell types 

were a confounding factor in most prior measurements of drug sensitivity.52 
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Correcting for these artifactual differences in the apparent drug sensitivity 

generates a more rational evaluation, and has identified drug sensitivity-geneotype 

relationships that are missed using traditional methods.52,73  

One issue that has not been explored in detail is the underlying data itself. 

In nearly all cases, drug sensitivity is scored by comparing the relative number of 

live cells in the context of drug treatment to the number of live cells in a vehicle 

control condition. This metric is variably referred to as ñrelative viabilityò, ñpercent 

survivalò, ñpercent viabilityò, ñdrug sensitivityò, ñnormalized cytotoxicityò, etc. 

(hereafter referred to as Relative Viability, or RV). RV is a convenient measure of 

drug response, and can be quantified using most commonly used population-

based assays (e.g. MTT, Cell Titer-Glo, Alomar blue, colony formation, etc.). 

Importantly, changes to relative viability can result from partial or complete arrest 

of cell proliferation, increased cell death, or both of these behaviors.52 Because RV 

is determined entirely from live cells, this measure provides no insights into the 

number of dead cells, or importantly, the relationship between proliferative arrest 

and cell death following application of a drug. When using RV, it is generally 

unclear to what extent a cell population is undergoing proliferative arrest versus 

cell death at a given drug concentration (Figure II-1A). 

 An alternative measure of drug sensitivity exists, in which a drug response 

is quantified as the fractional proportion of live and dead cells in the drug treated 

population (Figure II-1A). This metric is variably called ñlethal fractionò (or its 

inverse, ñviable fractionò), ñpercent of cellsò, or ñpercent cell deathò, etc. (hereafter 
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referred to as Fractional Viability, or FV). In contrast to RV, FV provides direct 

insights into the degree of cell death within a population. Additionally, FV 

calculations do not require comparison between treated and untreated groups, 

which minimizes issues associated with plating bias, a common issue in multi-well 

assays.74 In spite of these benefits, Fractional Viability is less commonly used, 

because this measure generally requires either extra measurements, or the use of 

an experimental platform that provides single cell data, such as in flow cytometry-

based evaluation of apoptosis, or quantitative microscopy.47,75  

Relative and fractional measures of drug response are often used 

interchangeably, in spite of the fact that these are clearly different metrics.53,76 In 

this study, we explored the relationship between these two common measures of 

drug sensitivity. We find that RV and FV score unique and largely unrelated 

properties of a drug response. RV accurately reports the cell population size but 

not the degree of cell killing. Alternatively, FV exclusively reports drug-induced cell 

death, but does not reveal any insight into the size of the surviving population. By 

directly comparing relative and fractional drug responses, we find that at any given 

dose, most drugs induce a coincident decrease in the cell proliferation rate and an 

increase in the cell death rate. Furthermore, when evaluating across a large panel 

of drugs, we find a non-uniform relationship between inhibition of cell proliferation 

and activation of cell death, spanning the entire continuum of possible behaviors. 

We find that the relative proportion of drug-induced proliferative inhibition versus 

cell death varies by drug, by dose, and by genotype. Furthermore, these features 
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are not captured by traditional pharmaco-metrics such as the EC50/IC50. We 

develop a quantitative analysis platform, called Drug GRADE (Growth Rate 

Adjusted DEath), that captures the timing and relative magnitude of proliferative 

inhibition versus cell death. Evaluation of drug GRADE improves the ability to 

resolve cancer subtype-drug response relationships. Taken together, this study 

highlights the complex and non-uniform relationship between cell proliferation and 

cell death, and provides an analytical framework for understanding these 

relationships.   
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Figure II-1. RV and FV produce largely unrelated insights about drug response (A) Schematic defining 
common ways to quantify drug responses: Fractional Viability (FV) and Relative Viability (RV). (B) Simulated 
data of drug response over time for (i) untreated, (ii and iii) partially cytostatic/cytotoxic, and (iv) fully cytotoxic 
conditions. RV and FV are values are on a scale of 0-1 (RV = 1 means the population is 100% as large as the 
untreated; FV = 1 means the population is 100% alive). (C-K) STACK assay to measure RV and FV. U2OS-
Nuc::mKate2+ cells treated with drug in the presence of SYTOX Green. (C) Representative images from cells 
treated with either DMSO, 3.16 ɛM Camptothecin (Cam.), or 1 ɛM Palbociclib (Palbo.). Scale bars in images 
represent 100 microns in length. (D-E) Quantified live and dead cell counts over time for cells treated with 
Cam. (D) or Palbo. (E), as in (C). (F-G) RV dose-response functions for Cam. (F) or Palbo. (G). (H-I) FV dose-
response functions for Cam. (H) or Palbo. (I). (J-K) RV vs. FV at all doses for Cam. (J) or Palbo. (K). For 
panels (D-K), data are mean +/- s.d. of four replicates. (L) RV vs. FV at all doses for 85 cell death/growth 
targeting drugs. Dots for a given drug represent mean response at each tested dose. Dose titration for each 
drug connected by a colored line. (M) RV vs. FV for 1833 Bioactive Compounds, each tested at 5 µM. Data 
in (M) are from Forcina et al. (2017). See also Figure II-2 and Table S1. 
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Figure II-2. The relationship between relative and fractional responses differ by drug, Related to 
Figure II -1. (A) The number of live and dead cells present over a 72-hour time course at different 
concentrations of Camptothecin, a bi-phasic drug. Dashed red and green are live and dead cell numbers for 
control untreated cells, respectively. (B) The number of live and dead cells present over a 72-hour time 
course at different concentrations of Palbociclib (10, 3.16, 1, 0.316, 0.1, 0.0316, or 0.01 µM). For (A) and (B) 
data are mean +/- s.d. of four replicates. (C) The growth rate and death rate calculated using an exponential 
growth model or lag-exponential death model, respectively, for each dose of Camptothecin and Palbociclib 
shown in panels (A) and (B). (D) RV and FV measured for a panel of 85 drugs at different time points as 
indicated. See also Table S1. 
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II.B RESULTS 

II.B.1 Relative Viability and Fractional Viability produce largely unrelated 

insights about drug response  
 

In an effort to gain deeper insights into the mechanisms of action for 

common anti-cancer drugs, we began by exploring the relationship between two 

common measures of drug response: relative viability (RV) and fractional viability 

(FV) (Figure II-1A). A critical difference between these two measures is that RV is 

focused entirely on the live cell population across two conditions (drug-treated and 

untreated), whereas FV includes both live and dead cells, but only in the drug 

treated condition. Additionally, because RV uses an untreated control as a 

reference point, this measure generally cannot distinguish between responses that 

are due to inhibiting proliferation versus those that are due to activating cell 

death.52 Likewise, while decreased FV must require some degree of cell death, it 

is generally unclear if death occurs in a proliferating or inhibited/arrested 

population. Thus, while RV and FV should be correlated, if not identical, at 

extremely strong or weak response levels, the theoretical relationship between 

these numbers is unclear, particularly at intermediate levels of response (Figure II-

1B). We reasoned that exploring the relationship between RV and FV in detail 

might reveal hidden principles of drug sensitivity that are not captured using 

traditional measures. We evaluated drug responses in U2OS cells using the 

STACK assay, a quantitative live cell microscopy assay that measures both live 

and dead cells and has equal sensitivity in quantifying RV and FV.47 We began by 
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investigating RV and FV responses to two drugs: Camptothecin, a topoisomerase 

I inhibitor and potent apoptotic agent, and Palbociclib, CDK4/6 inhibitor that 

primarily induces proliferative arrest without inducing any cell death.11 As 

expected, Camptothecin induced high levels of cell death, whereas Palbociclib 

strongly inhibited growth of the population without causing any cell death (Figure 

II-1C-E and 2A-B).  

To characterize the relationship between RV and FV responses, we profiled 

each drug using an eight-point half-log dose titration. From these data, we 

calculated both RV and FV metrics at the assay endpoint (Figure II-1F-I). A direct 

comparison of RV and FV for Camptothecin revealed a discontinuous relationship 

featuring two, clearly distinct, dose-dependent behaviors (Figure II-1J). In the first 

phase (low doses, which accounts for the majority of the RV scale), relative viability 

is strongly decreased in a dose dependent manner while only modestly affecting 

fractional viability. In the second phase (higher doses), fractional viability 

decreases sharply while relative viability is only modestly affected (Figure II-1J). 

These two phases reflect a decrease in proliferation rate with minimal cell killing at 

low doses, followed by an increase in death rate, that occurs at high doses and 

only in growth arrested cells (Figure II-2C). Alternatively, for Palbociclib which does 

not kill any cells, only the first of these two phases were observed (Figure II-1K 

and Figure II-2C).  

To determine if bi-phasic response is a common behavior of many drugs or 

drug classes, we tested full dose-response profiles for a panel of 85 drugs, which 



28 

 

target a variety of different proteins controlling cell proliferation and/or cell death 

(Table S1). For these drugs, the correlation between RV and FV responses varied 

by drug, but were generally not well correlated (Figure II-1L and 2D). For some 

compounds we observed a bi-phasic dose response similar to Camptothecin, 

characterized by two linear but discontinuous phases, with death occurring only 

following full proliferative arrest. For most drugs, however, these two phases were 

more mixed, and doses were found in which the RV and FV values report 

intermediate levels of proliferative inhibition and cell death. To supplement these 

data, we also reanalyzed a large publicly available dataset of 1833 bioactive 

compounds that were previously tested using the STACK assay.47 The overall 

profile of responses across these diverse compounds also highlights a spectrum 

of behaviors, rather than exclusively bi-phasic responses (Figure II-1M). Thus, 

these data demonstrate that relative and fractional measures of drug response are 

not interchangeable, and highlight the lack of a uniform relationship between FV 

and RV across drugs.  
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Figure II-3. RV and FV differ due to idiosyncrasies in the strength and relative timing of drug -induced 
proliferative inhibition versus cell death . (A) Correlation between IC50 computed using RV (RV50) or FV 
(FV50). Pearson correlation coefficient shown. (B) Death kinetics computed for 85 cell death and growth 
inhibiting drugs. SGI-1027 (red), Abemaciclib (purple), ABT-737 (blue), and Entinostat (green) highlighted. 
(C) Correlation between death onset time (DO) and the FV50/RV50 ratio. Pearson correlation coefficient 
shown. (D-E) Cell numbers over time for 10 ɛM Abemaciclib. (D) Live cells. (E) Dead cells. (F) Relationship 
between FV and RV for a dose range of Abemaciclib (0 ï 10 ɛM) at 72hr. (G-H) Cell numbers over time for 
3.16 ɛM Entinostat. (G) Live cells. (H) Dead cells. (I) Relationship between FV and RV for a dose range of 
Entinostat (0 ï 31.6 ɛM) at 72hr. For panels (D-I), data are mean +/- s.d. from 3 biological replicates. See 
also Figure II-4. 






































































































































































































