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Abstract

Background: Computationally derived (“synthetic”) data can enable the creation and analysis of clinical, laboratory, and
diagnostic data as if they were the original electronic health record data. Synthetic data can support data sharing to answer critical
research questions to address the COVID-19 pandemic.

Objective: We aim to compare the results from analyses of synthetic data to those from original data and assess the strengths
and limitations of leveraging computationally derived data for research purposes.

Methods: We used the National COVID Cohort Collaborative’s instance of MDClone, a big data platform with data-synthesizing
capabilities (MDClone Ltd). We downloaded electronic health record data from 34 National COVID Cohort Collaborative
institutional partners and tested three use cases, including (1) exploring the distributions of key features of the COVID-19–positive
cohort; (2) training and testing predictive models for assessing the risk of admission among these patients; and (3) determining
geospatial and temporal COVID-19–related measures and outcomes, and constructing their epidemic curves. We compared the
results from synthetic data to those from original data using traditional statistics, machine learning approaches, and temporal and
spatial representations of the data.

Results: For each use case, the results of the synthetic data analyses successfully mimicked those of the original data such that
the distributions of the data were similar and the predictive models demonstrated comparable performance. Although the synthetic
and original data yielded overall nearly the same results, there were exceptions that included an odds ratio on either side of the
null in multivariable analyses (0.97 vs 1.01) and differences in the magnitude of epidemic curves constructed for zip codes with
low population counts.

Conclusions: This paper presents the results of each use case and outlines key considerations for the use of synthetic data,
examining their role in collaborative research for faster insights.

(J Med Internet Res 2021;23(10):e30697) doi: 10.2196/30697
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Introduction

COVID-19 presents data and knowledge sharing challenges [1].
Clinical data exist at individual institutions; however, these data
are rarely shared with external entities. Big data from multiple
institutions allow for more comprehensive analyses, particularly
for characterizing rare outcomes [2,3]. In response to this need,
the National COVID Cohort Collaborative (N3C), an open
science community, was formed to ingest and harmonize
COVID-19 data from institutions across the United States [4].
The N3C sought a solution to preserve the privacy and
confidentiality of these clinical data while enabling their broad
dissemination [5-7] and partnered with MDClone (Beer Sheva,
Israel) to computationally derive “synthetic” N3C data and
support the rapid advancement of population health insights
[8].

Since synthetic derivatives of data can enable privacy-preserving
data downloads and accelerate discovery, these data assets can
potentially be of great utility to the N3C and the broader
informatics community. Our synthetic data validation
workstream was established to assist the N3C community in
better understanding the utility of synthetic data for research
purposes. Our previous work demonstrated statistical
equivalency between original and computationally derived data
sets from a local instance of MDClone [9]. We also used
synthetic data sets exclusively to apply machine learning to
predict decompensation in heart failure [10]. Others have
demonstrated repeatedly generated synthetic data sets from
MDClone produced stable results that were similar to the
original data [11].

However, the performance of MDClone—the comparison of
original to synthetic data—has not been validated using data
comprising multiple sources such as those originating across
health systems. To that end, we tested three use cases, including
(1) exploring the distributions of key features of the
COVID-19–positive cohort; (2) training and testing predictive
models for assessing the risk of admission among these patients;
and (3) determining geospatial and temporal COVID-19–related
measures and outcomes, and constructing their epidemic curves.
We analyzed data for each use case using original and synthetic
data. We conducted analyses using traditional statistics, machine
learning approaches, and temporal and spatial representations
of the data. Here we present the results of these analyses and
describe the strengths and limitations of using synthetic data
for research.

Methods

Overview
The Clinical and Translational Science Award Program
developed N3C in response to a need for integrating,
harmonizing, and democratizing individual-level COVID-19
data [4]. The N3C established a secure data enclave to store
data and conduct collaborative analytics. The subsequent
analyses resulted from a synthetic data pilot designed to evaluate
the utility of computationally derived data for the N3C
community. Synthetic data generation represents an emerging
technology that can support population health research at scale.

As described in more detail elsewhere [9], MDClone uses a
computational derivation approach. Briefly, novel data whose
features are queried independently for each distinct use case are
produced in a multidimensional space that adheres to the
statistical properties of the original source data. MDClone
censors categorical values that are unique to few patients by
removing the value and replacing it with the word “censored”
in the computationally derived data set. Extreme numerical
values also do not appear in the synthetic data set. Together,
these approaches ensure that outliers in the original data set will
not be identifiable in the synthetic data derivative.

All analyses were conducted using original data and
computationally derived data, respectively, which allowed us
to compare the results of analyses and assess the strengths and
limitations of leveraging synthetic data for COVID-19 insights.
All statistical analyses on the original and synthetic data sets
were done outside of MDClone on the Palantir Foundry Analytic
Platform (Palantir Technologies).

Analyses were conducted using Python (3.6.10l Python Software
Foundation). We obtained institutional review board approval
from our institutions for these analyses, in addition to
completing data use agreements and requests with the National
Center for Advancing Translational Sciences at the National
Institutes of Health.

Use Case 1: Exploring the Distributions of Key
Features of the COVID-19–Positive Cohort
The goal of this use case was to evaluate whether synthetic data
had similar distributions of demographic and clinical
characteristics among the COVID-19–positive cohort as
compared to original data. Key characteristics (n=15) of the
COVID-19–positive cohort were extracted from MDClone to
compare distributions between the synthetic and the original
data. The 15 features included age, gender, race, patients’ state
of residence, institution, median household income, BMI,
number of days between testing positive and hospital admission
(if hospitalized), diagnosis of diabetes, dyspnea, chronic kidney
disease (CKD), fever, cough, and in-hospital mortality. We
calculated mean and SD for continuous variables, and counts
and proportions for categorical variables.

Use Case 2: Training and Testing Predictive Models
for Assessing the Risk of Admission Among
COVID-19–Positive Patients
The goal of this use case was to evaluate whether synthetic data
would perform similarly when training and testing predictive
machine learning models on synthetic data as compared to
training and testing the models on original data. We included
230,703 patients who tested positive for COVID-19. Features
for predictive modeling included 11 variables: age, gender, race,
median household income, BMI, minimum oxygen saturation,
diabetes, dyspnea, CKD, fever, and cough. These variables were
chosen because of initial data suggesting their significant impact
on COVID-19 outcomes.

We calculated odds ratios (ORs) and 95% CIs for admission
within 14 days of a COVID-19 diagnosis by univariate logistic
regression (LR) and multivariable LR using synthetic and
original data, respectively. We then developed two widely used
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machine learning models, random forest (RF) and LR, to predict
admission within 14 days of a COVID-19 diagnosis based on
the 11 features. We randomly split the cohort into training (80%)
and testing (20%) data. The models were trained on the 80%
subset of the data and then tested on the remaining 20%. We
used a variety of metrics, including accuracy, precision, recall,
F1-score, area under the receiver operating characteristic (ROC)
curve, and precision-recall curves to evaluate model
performance. Each model was trained and evaluated on the
synthetic data set, the results of which were then compared
against a model trained and evaluated on the original data.

Use Case 3: Determining Geospatial and Temporal
COVID-19–Related Measures and Outcomes, and
Constructing Their Epidemiologic Curves
The purpose of this analysis was to assess concordance of
geospatial and temporal relationships between the synthetic and
original data to make the data actionable and interpretable
according to geography and time. Our data sets (original:
n=1,854,968 tests; synthetic: n=1,854,950 tests) were
event-based with each row representing a patient’s first
COVID-19 test result. The data sets included the following
variables: source partner with which the patient was affiliated;
lab test result (negative/positive); lab test date and time
(reference time point for data generation); age at confirmed lab
test result; admission start date (days from reference if admission
occurred within ±7 days of COVID-19–positive test result);
admission length of stay (in days); death (yes/null) during
admission; patient’s state of residence; patient’s 5-digit zip
code; and median household income, percent of residents under
the poverty line, percent without health insurance, and total
population by zip code.

On both the synthetic and original data sets, we calculated the
aggregate count, 7-day midpoint moving average, and 7-day
slope (count – count 6 days prior) per day for positive tests. We
then plotted epidemic curves (Plotly version 4.14.1, Plotly
Technologies Inc) for positive tests with synthetic and original
data overlaid in the same figure. To test for significant

differences or equivalence between the synthetic and original
data epidemic curves, the paired two-sided t test (scipy version
1.5.3, stats.ttest_rel) and two-sided Wilcoxon signed rank test
(scipy version 1.5.3, stats.wilcoxon) were run for each metric
(count, 7-day moving average, and 7-day slope) treating the
counts for individual dates as pairs.

Next, we calculated the differences in the mean, SD, median,
IQR, and missingness of zip code–level social determinants of
health (SDOH) variables within the original data set. We then
compared these original data SDOH values for unique zip codes
in the original data that were censored versus uncensored in the
synthetic data. We defined censored zip codes as those present
within the original data set that could not be matched (n=11,222)
within the synthetic data set either due to not being present or
being labeled as censored within the synthetic data set. We
defined uncensored zip codes as present within both the
synthetic data and original data (n=5819).

Ethics
This study was reviewed and approved by the Washington
University in St. Louis’ and the University of Washington’s
institutional review boards.

Results

Use Case 1: Exploring the Distributions of Key
Features of the COVID-19–Positive Cohort
The MDClone synthetic data process generated 230,650
participants, compared to 230,703 in the original data.
Demographic and clinical variables comparing synthetic and
original data sets are displayed in Table 1. The mean age from
both data sources was the same (mean 41.6, SD 20.4 years;
Table 1). Approximately 47% of patients were male and 53%
were White in both data sources. The values of all means and
SDs (or counts and percentages) were the same or very similar
between original and synthetic data. Table 1 shows that the
distribution of demographic and clinical variables was similar
between original and synthetic populations.
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Table 1. Comparison of patient characteristics of available demographic and clinical variables: original vs synthetic data.

Synthetic data (n=230,650)Original data (n=230,703)

41.6 (20.4)41.6 (20.4)Age (years), mean (SD)

107,892 (46.8)108,194 (46.9)Gender (male), n (%)

Race, n (%)

121,564 (52.7)121,706 (52.8)White

40,824 (17.7)40,930 (17.7)Black

5117 (2.2)5203 (2.3)Asian

62,733 (27.2)62,864 (27.2)Other/unknown

Top 5 most prevalent states, n (%)

28,617 (12.4)29,875 (12.9)1

20,671 (9.0)21,191 (9.2)2

20,319 (9.0)21,045 (9.1)3

16,998 (7.4)18,006 (7.8)4

13,840 (6.0)14,391 (6.2)5

Top 5 most prevalent institutions, n (%)

32,743 (14.2)33,413 (14.5)1

23,986 (10.4)24,533 (10.6)2

15,065 (6.5)15,578 (6.8)3

11,255 (4.9)11,870 (5.1)4

10,850 (4.7)11,354 (4.9)5

56,662 (45,223, 71,029)56,738 (45,214, 71,250)Household income (US $), median (IQR)

30.3 (8.2)30.3 (8.4)BMI, mean (SD)

2.0 (3.2)2.1 (3.3)Admission start date (days from reference), mean (SD)

91.0 (9.7)90.9 (10.1)Minimum oxygen saturation, mean (SD)

31,929 (13.8)31,942 (13.8)Diabetes, n (%)

20,826 (9.0)20,867 (9.0)Dyspnea, n (%)

11,194 (4.9)11,225 (4.9)Chronic kidney disease, n (%)

30,200 (13.1)30,210 (13.1)Fever, n (%)

39,689 (17.2)39,703 (17.2)Cough, n (%)

1008 (0.4)1133 (0.5)Deceased, n (%)

Use Case 2: Training and Testing Predictive Models
for Assessing the Risk of Admission Among
COVID-19–Positive Patients
Features (n=11) used for prediction included age, gender, race,
median household income, BMI, minimum oxygen saturation,
diagnosis of diabetes, dyspnea, CKD, fever, and cough. Table

2 shows the OR for admission and for each of the 11 variables
by univariable LR yielded by original and synthetic data sources,
respectively. The comparison of ORs between original and
synthetic data sources show that the values for all 11 features
were the same or similar. For example, the OR for admission
by age from the original data was 1.04 (95% CI 1.04-1.04),
which was the same as that obtained from synthetic data.
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Table 2. Logistic regression for admission: original vs synthetic data.

Multivariable LR, OR (95% CI)Univariate LRa, ORb (95% CI)

Synthetic dataOriginal dataSynthetic dataOriginal data

1.00 (1.00-1.00)1.00 (1.00-1.00)1.04 (1.04-1.04)1.04 (1.04-1.04)Age

1.03 (0.93-1.15)1.11 (0.99-1.23)1.14 (1.10-1.17)1.20 (1.16-1.24)Male gender

0.93 (0.82-1.06)0.99 (0.87-1.12)2.09 (2.02-2.17)2.15 (2.07-2.22)Black race

1.00 (1.00-1.00)1.00 (1.00-1.00)1.00 (1.00-1.00)1.00 (1.00-1.00)Median household income

1.01 (1.00-1.02)0.97 (0.97-0.98)1.02 (1.01-1.02)1.02 (1.01-1.02)BMI

0.97 (0.97-0.98)0.97 (0.97-0.98)0.97 (0.96-0.97)0.97 (0.96-0.97)Minimum oxygen saturation

1.46 (1.30-1.63)1.45 (1.29-1.62)6.15 (5.95-6.36)6.14 (5.94-6.34)Diabetes

1.25 (1.11-1.41)1.23 (1.09-1.38)4.79 (4.61-4.97)4.79 (4.62-4.97)Dyspnea

1.26 (1.09-1.45)1.23 (1.07-1.42)7.17 (6.87-7.49)7.20 (6.89-7.52)Chronic kidney disease

1.45 (1.30-1.62)1.44 (1.29-1.61)2.62 (2.53-2.72)2.62 (2.52-2.71)Fever

1.45 (1.28-1.65)1.50 (1.32-1.70)1.38 (1.32-1.43)1.38 (1.33-1.43)Cough

aLR: logistic regression.
bOR: odds ratio.

The comparison of ORs between original and synthetic data
sources shows that the multivariable LR yielded the same or
similar results. For example, the OR for admission by Black
race from the original data was 0.99 (95% CI 0.87-1.12), which
was similar to that obtained from synthetic data (OR 0.93, 95%
CI 0.82-1.06). Of note, the ORs that corresponded to a one-unit
increase in BMI were on either side of the null (0.97 vs 1.01).

The machine learning models that were trained and tested on
original data and then trained and tested on synthetic data used
the same 11 features. Figure 1 shows the comparison of model
prediction performance using original and synthetic data,
respectively. We found the RF model achieved an under the
ROC curve of 0.814 (0.816 by LR) using original data, and
0.812 (0.815 by LR) using synthetic data (Figure 1 A and C).

Meanwhile, the RF model achieved an average precision of
0.298 (0.286 by LR) with original data and 0.308 (0.278 by LR)
with synthetic data (Figure 1 B and D).

Figure 2 shows additional metrics for the evaluation of model
performance. We observed the same or similar patterns by
accuracy, specificity, precision, sensitivity, and F1-score when
comparing models that were trained and tested on original data
as compared to those trained and tested on synthetic data.

Figure 3 shows the feature importance according to RF (Figure
3 A) and LR models (Figure 3 B) using original (magenta) and
synthetic (blue) data. Both the RF and LR models’demonstrated
that features such as age, income, and minimum oxygen
saturation were high-ranking informative features.
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Figure 1. Prediction performance for the two models by receiver operating characteristic curves (A, C) and precision-recall curves (B, D) by using
original and synthetic data. Results for the RF model are in the first row (A, B); the second row (C, D) is for LR. AUC: area under the curve; LR: logistic
regression; RF: random forest.

Figure 2. Model performance metrics from original (green) and synthetic (gold) data by accuracy, specificity, precision, sensitivity, and F1-score: RF
model (A) and LR model (B). LR: logistic regression; RF: random forest.

J Med Internet Res 2021 | vol. 23 | iss. 10 | e30697 | p. 6https://www.jmir.org/2021/10/e30697
(page number not for citation purposes)

Foraker et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Feature importance for the 11 variables in RF (a) and LR (b) models: original vs synthetic data. CKD: chronic kidney disease; LR: logistic
regression; RF: random forest.

Use Case 3: Determining the Zip Code–Level
Distributions of COVID-19–Related Outcomes and
Calculating Their Epidemiologic Curves
A graphical comparison of the epidemic curves for aggregate
positive tests (cases) between the synthetic and original data is
shown in Figure 4. Pairwise statistics for the epidemic curve
metrics are shown in Table 3; no significant differences were
found between the synthetic and original data epidemic curves
across all metrics (Wilcoxon signed rank test P value range
.50-.90; Student paired t test P value range .996-.998).

Compared to censored zip codes, uncensored zip codes had a
higher median household income, a lower percentage of
residents under the poverty line, a lower percentage of patients
without health insurance, a higher total population, and fewer
missing values for all four SDOH. Total population and data
missingness were the two greatest differences between
uncensored and censored zip codes. Uncensored zip codes had
a 74% higher median total population and had approximately
70% fewer missing SDOH values than censored zip codes (Table
4).

Figure 4. Original data (light blue) and synthetic data (light red), with their overlap (purple).
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Table 3. Epidemic curves aggregate cases’ paired statistical tests, comparing original to synthetic data.

t test P valuet statisticWilcoxon P valueWilcoxon resultDate rangeMetric

>.99–0.002.5026,288335Counts

>.99–0.006.7826,0053297-day moving average

>.99–0.002.9025,788.53297-day slope

Table 4. SDOH values for zip codes that were uncensored (n=5819) compared to censored (n=11,222) zip codes.

% missingIQRMedianSDMeanSDOHa and censored status

Median household income (US $)

3.2828,69257,35226,75563,536Uncensored

10.9827,06754,35826,54960,544Censored

–7.70 (70.1)+1625 (6.0)+2994 (5.5)+206 (0.8)+2992 (4.9)Difference (%)

Percent under poverty line

2.9210.4010.808.7412.89Uncensored

9.1211.5011.6010.1513.87Censored

–6.20 (68.0)–1.10 (9.6)–0.80 (6.9)–1.41 (13.9)–0.98 (7.1)Difference (%)

Percent without health insurance

2.846.507.505.098.52Uncensored

9.008.008.107.099.65Censored

–6.16 (68.4)–1.50 (18.8)–0.60 (7.4)–2.00 (28.2)–1.13 (11.7)Difference (%)

Total population

2.7323,17212,26316,12817,363Uncensored

8.6921,436704817,31714,540Censored

–5.96 (68.6)+1736 (8.1)+5215 (74.0)–1189 (6.9)+2823 (19.4)Difference (%)

aSDOH: social determinants of health.

Discussion

Principal Findings
Our main findings demonstrated that computationally derived
data had the same or similar statistical output as the original
data sets, with the caveat that zip codes with a lower population
had data suppressed/censored for privacy reasons more often
than zip codes with a higher population. In each use case, the
results of the analyses appear sufficiently similar between the
synthetic derivative and the original data across the various
methods used to assess similarity (means, medians, P>.05,
overlapping CI, etc) to draw the same conclusions with the
exception of one OR on either side of the null in multivariable
analyses (0.97 vs 1.01). In several instances, the results were
exactly the same and rarely were there statistically significant
differences between data sets.

Small sample sizes, missing values, and high dimensionality
can all adversely affect the data synthesis process and the
precision and interpretability of original data. Our geospatial
analysis shows that zip codes that are censored to protect patient
privacy have a lower population, which will likely make using
these computationally derived data to study rural populations
more challenging. Additionally, the lower original data quality

found within censored zip codes—seen in greater SDOH
missingness—as compared to uncensored may indicate broader
data quality issues in rural zip code data. Such issues may pose
a further challenge to data synthesis.

This was the first validation of computationally derived data
using the N3C data. Our study adds to the growing literature of
synthetic data validation in the following ways. First, our study
is the first assessment of N3C synthetic data utility and has been
conducted prior to the broad dissemination of N3C synthetic
data. Thus, our study provides insight to the validity of N3C
synthetic data prior to its dissemination for use by the broader
N3C community. Second, our results from use case 3 support
the temporal validity of these computationally derived data as
an alternative to date-shifting when privacy must be protected
yet temporality maintained.

For these descriptive and quantitative analyses, the synthetic
data appear to produce similar patterns and results compared to
the original data, except for in the context of high missingness.
We acknowledge that these use cases may not represent all
possible ways in which the synthetic data may be used by the
N3C community and thus validation should continue. In addition
to continuously validating these data for different use cases and
analytic methods, we seek to explore the performance of other
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commercial systems in the N3C community and their approaches
to synthetic data generation and the privacy-preserving aspects
of each approach.

We also suggest that the synthetic data can be used by
researchers for hypothesis generation to then be validated later
on original data. Another potential use case that could be
valuable to the N3C community, which we do not explicitly
test here, is the potential for synthetic data to be used for
software engineering projects that seek to develop digital health
tools for combating the COVID-19 pandemic. Computationally
derived data that are faithful to the original data could be used
to develop and test such tools.

Limitations
For these analyses, we compared the data statistically and did
not conduct privacy evaluations of the synthetic data that will
be a focus of future investigations. We used a P value threshold
of .05 to maintain simplicity of presenting results from multiple
use cases. We acknowledge that such thresholds would (and
should) vary by use case and specifically by the amount of error
a researcher is willing to tolerate given the context of the
research question. We also acknowledge that other statistical
tests such as equivalence testing could be suitable to assess the
equivalence of computationally derived data to original data.
However, the threshold for equivalence will yet again depend
on the use case.

Our geospatial and temporal analysis was limited in scope. Our
work is ongoing, and future analyses will assess validity of other
measures (eg, tests, admissions, deaths, or positivity) over
time—both in aggregate and at the zip code level—in greater
detail.

Conclusions
We conclude that the potential for leveraging synthetic data for
the conduct of COVID-19 research in N3C is substantial. We
expect that the use of synthetic data will accelerate the conduct
of data-driven research studies across the community, as it will
allow the N3C to overcome data sharing barriers and rapidly
create COVID-19 analytic insights [4]. Future directions for
this work include developing and validating additional clinical
risk prediction models, using a larger repertoire of analytic
methods, conducting geospatial and temporal analyses in greater
detail and at the zip code level, and evaluating additional
strengths and limitations of computationally derived data for
research [1].

Clinical Relevance Statement
Data synthesis platforms like MDClone are expected to enhance
the N3C community’s ability to use clinical data for faster
COVID-19 insights and reduce barriers to data access by
multiple stakeholders.
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