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Abstract
To celebrate Hans Frauenfelder’s achievements, we examine energy(-like) “landscapes” for 
complex living systems. Energy landscapes summarize all possible dynamics of some phys-
ical systems. Energy(-like) landscapes can explain some biomolecular processes, including 
gene expression and, as Frauenfelder showed, protein folding. But energy-like landscapes 
and existing frameworks like statistical mechanics seem impractical for describing many 
living systems. Difficulties stem from living systems being high dimensional, nonlinear, 
and governed by many, tightly coupled constituents that are noisy. The predominant mode-
ling approach is devising differential equations that are tailored to each living system. This 
ad hoc approach faces the notorious “parameter problem”: models have numerous non-
linear, mathematical functions with unknown parameter values, even for describing just a 
few intracellular processes. One cannot measure many intracellular parameters or can only 
measure them as snapshots in time. Another modeling approach uses cellular automata to 
represent living systems as discrete dynamical systems with binary variables. Quantitative 
(Hamiltonian-based) rules can dictate cellular automata (e.g., Cellular Potts Model). But 
numerous biological features, in current practice, are qualitatively described rather than 
quantitatively (e.g., gene is (highly) expressed or not (highly) expressed). Cellular autom-
ata governed by verbal rules are useful representations for living systems and can miti-
gate the parameter problem. However, they can yield complex dynamics that are difficult 
to understand because the automata-governing rules are not quantitative and much of the 
existing mathematical tools and theorems apply to continuous but not discrete dynamical 
systems. Recent studies found ways to overcome this challenge. These studies either dis-
covered or suggest an existence of predictive “landscapes” whose shapes are described by 
Lyapunov functions and yield “equations of motion” for a “pseudo-particle.” The pseudo-
particle represents the entire cellular lattice and moves on the landscape, thereby giving a 
low-dimensional representation of the cellular automata dynamics. We outline this promis-
ing modeling strategy.
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1 Introduction

Energy is both a fundamental concept and a practical tool. Often, students first encoun-
ter energy as a constant of integration, as a conserved quantity (total energy), that arises 
from integrating Newton’s equation of motion. The integration also naturally defines the 
potential energy for a conservative force. The total and potential energies constrain a 
classical particle’s past and future motion. Even when the particle dissipates energy, the 
potential energy landscape still lets us determine, at least in principle, the particle’s past 
and future trajectories if we know the path-dependent dissipation function. Physics is a 
quantitatively predictive science largely due to the predictive powers of energy landscapes, 
conserved quantities, and generally applicable principles such as energy minimizations 
or entropy maximizations that guide the dynamics of physical systems. Coming up with 
similarly quantitative and predictive descriptions of living systems remains challenging. In 
this sense, living systems (e.g., cell, tissue) share similar challenges as complex non-living 
systems whose dynamics are also difficult to describe and predict without large-scale com-
puter simulations (e.g., highly heterogenous (amorphous) materials; Earth’s climate).

Living systems are difficult to model and when modeled, one often uses computer simu-
lations or numerical solutions of nonlinear, coupled equations whose parameters cannot be 
measured or uniquely determined. Indeed, living systems are often high dimensional, non-
linear, and governed by many, tightly coupled constituents that are noisy. The predominant 
modeling approach, using differential equations that are tailored to each living system, thus 
faces the notorious “parameter problem”: modeling just a few intracellular processes can 
involve numerous nonlinear, mathematical functions with unknown parameter values (e.g., 
three nonlinear, coupled equations with ten free parameters). One cannot measure many 
intracellular parameters or can only measure them as snapshots in time by chemically fix-
ing the cells. As an example, even when a gene is regulated by just a handful of factors, 
we currently cannot analytically understand, without exhaustive numerical simulations, the 
precise gene-expression dynamics for many gene networks in a single cell (i.e., how many 
copies of mRNAs and proteins will be produced from each gene in a network as a function 
of time). The difficulty arises from the stochastic and deterministic equations that describe 
gene-expression dynamics quickly becoming analytically intractable as one increases the 
number of genes or transcriptional regulators in the gene network. For example, a realistic 
network of just four genes, with each one controlled by three or more transcription factors, 
can be analytically intractable. Even for a handful of genes, there can be many mathemati-
cal functions as candidates, many of which are nonlinear [1]. One can simulate the dynam-
ics of gene networks and other cellular processes (e.g., metabolic fluxes). But even so, 
the numerical simulations are often based on myriad parameters whose values cannot be 
uniquely inferred or measured in a living cell [2]. Consequently, one often creates, ad hoc, 
a numerical simulation that is tailored for a particular cellular process and then evaluates 
how sensitive the simulation is to large changes in the parameter values (i.e., “parameter-
sensitivity analysis”). The situation that we now have is that each simulation of a cellular 
process can seem disjointed from the others. It is therefore of interest to look for other 
approaches to modeling living systems and, more importantly, hidden principles that apply 
to multiple, seemingly unrelated, living systems. Such approaches may help us get around 
the ad hoc, brute-force simulations that are typical in modeling living systems today.

Traditional quantities of physics such as position, momentum, and energy are neither 
measurable nor the most sensible quantities to describe networks of genes and cellular pro-
cesses. A more appropriate view of living systems and their chemical subsystems, such as 
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gene networks, is that they are complex dynamical systems described by a set of reaction-
rate (differential) equations. This is like viewing a system of particles as a dynamical sys-
tem. Viewing particle mechanics as a dynamical system, after the invention of Newtonian 
mechanics, led to Hamilton’s equation of motion. Hamilton’s equation of motion recapitu-
lated the Newtonian mechanics and showed a deeper, mathematical (geometric) structure 
that underlies classical mechanics. Similarly, by viewing living systems as dynamical sys-
tems, we can ask whether there exists a mathematical structure for dynamical systems that 
is generalizable to a large class of cellular processes. There has been notable progress in 
this direction, namely progress on chemical networks. Notable examples include the the-
ory of dissipative systems by Gregoire Nicolis, Ilya Prigogine, and their co-workers [3]. 
Another notable example of progress on (bio)chemical systems has been made by math-
ematicians such as Martin Feinberg, Friedrich Horn, and Roy Jackson who have built and 
advanced the chemical reaction network theory [4]. The chemical reaction network theory 
makes general statements, such as the number and stability of equilibrium (fixed) points 
of a dynamical system that represents a network of chemical reactions. The theory does so 
with a graph representation of chemical reactions in which a node represents a chemical 
species while a directed edge represents a chemical conversion. This theory also shows 
that functions like energy, a function that is non-increasing over time, exist for a set of 
chemical reactions whose graph structure satisfies certain criteria. This result is called the 
“deficiency zero theorem” [4]. Existing theories like the chemical reaction network theory 
provide deep insights into chemical reactions. Although they can help us understand well-
defined chemical reactions in test tubes, applying them to cellular processes has been chal-
lenging because (1) we often do not know the graph structure (connectivity) between the 
various molecular species inside a cell; (2) we know that the connections of such a graph 
would change over time in a cell but we do not know how; and (3) we do not know how to 
relate a phenotype to a genotypic information such as the steady-state expression levels of 
genes and their stability. Perhaps this last point is one of the most difficult challenges for 
physics and biology: how to turn numbers into life.

In this perspective paper, we explore the idea that living systems are dynamical sys-
tems and whether predictive landscapes like energy landscapes exist for describing these 
dynamical systems. We will begin by reviewing, for both biologists and physicists, how 
energy landscapes describe non-living (physical) systems. We will then describe recent 
studies that viewed multicellular systems as dynamical systems and used cellular autom-
ata to model how cells regulate each other’s gene expression [5–7]. These studies either 
discovered or suggest an existence of a predictive, energy-like landscape that produces  
an “equation of motion” for spatial-pattern-forming dynamics in a field of finite numbers 
of cells as well as other predictive, statistical metrics for the cellular automaton dynam-
ics. We will focus on cellular automata that follow verbal (qualitative) rules in which cells 
have discrete states rather than a continuum of states. Our focus on such cellular automata 
is due to a practical reason: much of the literature in biology use qualitative descriptions 
of cellular processes. That is, much of the literature in biology uses qualitative statements 
to describe living processes that one wishes to model. For example, a transcription fac-
tor either binds (strongly binds) or does not bind (weakly binds) to a particular location 
on a chromosome. A gene is either expressed (highly expressed) or not expressed (lowly 
expressed) [8, 9]. Such binary statements capture some of the most salient features of liv-
ing systems in terms of discrete variables (i.e., variables with two or finitely more states). 
These binary statements are approximations of the real phenomena. Cellular automata eas-
ily capture these binary statements. The rules of cellular automata can be qualitative state-
ments that do not require any knowledge of rate constants, thus seemingly avoiding the 
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“parameters” problem that plagues modeling of living systems with differential equations. 
Several other approaches, without involving cellular automata, also mitigate the parameters 
problem while still using a system of nonlinear equations [10, 11]. But qualitative rules of 
cellular automata have the advantage of easily describing living systems, much of which 
are still predominantly studied qualitatively rather than quantitatively. The challenge then 
is to quantitatively understand biologically motivated cellular automata whose rules are 
written in verbal, binary statements. It is challenging to predict dynamics of such cellular 
automata. For one, much of today’s mathematical machineries are designed for continuous 
dynamical systems (e.g., complex analysis, differential equations, chemical reaction net-
work theory). Relatively few mathematical tools and general theorems exist for analyzing 
cellular automata [12]. We will describe recent studies that show ways to overcome these 
challenges. We will end this paper by suggesting ways of advancing our understanding of 
cellular automata that model spatial patterning dynamics by cells that communicate with 
each other through diffusible molecules.

2  Predictive landscapes for a particle and a gene

Potential energy landscapes in classical physics are useful because they simplify our analy-
sis of a particle’s motion by turning a vector problem into a scalar problem. Specifically, 
a potential energy landscape produces a vector field that dictates the force on a particle 
at every location. The vector field visually exemplifies the predictive power of physics: 
if we know the particle’s current velocity and position, then we can determine both its 
past and future trajectories. Analogously, one can also build predictive vector fields that 
describe gene-expression dynamics but only for sufficiently simple gene networks. Here, a 
vector field represents changes in the amount of mRNA or proteins for each gene, with the 
dimensionality of the space (“gene-expression space”) being equal to the number of genes 
in the network. A network of just four genes can be beyond our ability to visualize. For a 
network of three genes, the 3D space can be visualized but the underlying vector field may 
be difficult to determine due to the nonlinearity of the equations that govern the gene regu-
latory network and the parameters that those equations use, whose values may be difficult 
to determine.

A single scalar function (potential-energy function) produces vector fields that one 
can describe with differential equations. However, dynamical systems that represent 
gene expression do not lead to potential-energy-type functions because they lack the 
time-reversal symmetry. Hence, there may be no reduction of a vector problem into 
a simpler scalar problem for an arbitrary gene network. Aside from the direction of 
motion, potential energy landscapes reveal all possible equilibria of a particle and  
their stability. Similarly, vector fields that describe gene-expression dynamics also 
reveal equilibrium levels of gene expression (i.e., steady-state levels of mRNAs or  
proteins). These may be stable or unstable equilibria — they are fixed points of a 
dynamical system — just like the equilibrium positions of a physical particle. Inter-
estingly, one often finds more “exotic” fixed points for gene expression. For example,  
a fixed point of a gene network dynamics can exhibit excitability whereby a small  
perturbation in expression level leads to an excursion far away from the fixed point  
in the phase space that lasts for a long time — the initial perturbation does not expo-
nentially decay over time — before the system (gene expression levels) returns to the 
fixed point [13, 14]. Similar phenomena also arise in physical oscillators and laser 
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dynamics. One encounters such cases for gene expression dynamics because of the 
numerous, nonlinear functions that govern the production and degradation of biomol-
ecules. This highlights one of the main challenges of designing a common (not ad 
hoc) algorithm for modeling living systems: instead of a generic function, we need  
to consider the specific rates and numerous mathematical functions even for a few  
biomolecular processes. Moreover, these mathematical functions are typically phe-
nomenological in that they describe “lumped” actions of many players such as RNA 
polymerases and ribosomes. It is difficult to relate these phenomenological equations 
to established, traditional quantities from physics such as energy, entropy, and tem-
perature. This situation presents another challenge for biological physicists who look 
for generalizable principles that underlie living systems [15].

To describe the stochastic production and degradation of RNAs and proteins,  
one typically uses a Master equation. But Master equations are difficult to solve. To 
make progress, one approximates the Master equation with a Fokker–Planck equa-
tion. The steady-state solution to a Fokker-Planck equation can yield an energy-like 
function [16–18]. But only in very special cases can one express the steady-state  
solutions of Fokker–Planck equation in terms of a conservative flux. Concretely, in  
the case of a single gene that regulates its own expression with an autoregulatory 
positive feedback loop, the steady-state distribution for the copy number of mRNAs 
is determined by an “energy landscape” that resembles a double-well potential, with 
each of the two wells corresponding to two stable, steady-state expression levels.  
Ultimately, however, such a landscape from Fokker–Planck is not generalizable. For 
one, the landscape only works for steady-state gene expression and one does not  
need a landscape formulation to determine the steady-state expression level. Find- 
ing the landscape also requires solving the Fokker–Planck equation at a steady state, 
which is not analytically tractable in many situations. Recently, researchers have pro-
posed some promising approaches for deducing similar landscapes without needing  
to solve the Fokker–Planck equation. One of them involves sampling enough sto- 
chastic trajectories in the gene-expression space — generated by iteratively running 
Monte Carlo simulations of the Master equation for the gene network — and then 
deducing the main features of an “energy landscape” that would produce these tra-
jectories [19]. Given that Fokker–Planck dynamics in high dimensions is generally  
not computationally tractable, this is a promising direction for deducing landscapes 
that produce predictive vector fields in a gene-expression space.

Fundamentally, however, it is not obvious that living systems conserve some quan-
tity, essentially because they are out of thermal equilibrium. A deeper reason for con-
servation of energy arising as a constant from integrating Newton’s equation is that the 
system’s Lagrangian is invariant under translation in time. This is just one application 
of Noether’s theorem, which states that a particular symmetry in a system, such as time-
translation invariance or rotational invariance, necessarily yields a conserved quantity 
such as energy (for time-translation invariance) and angular momentum (for rotational 
invariance). It is unclear that there is any symmetry in biological processes such as gene 
expression or metabolism. Hence, if there are conserved quantities that we could exploit 
to predict cellular dynamics, then such quantities do not arise from any (obvious) sym-
metry in the system. In fact, living systems are disordered systems with a clear (for-
ward) direction in time. Hence it is difficult to define any helpful symmetry to formulate 
a conserved quantity. Between the two challenges — the lack of any obvious symmetry 
and being out of thermal equilibrium — researchers have made progress on the latter by 
exploiting the idea of quasi-steady states. We turn to this in the next section.



360 L. Koopmans, H. Youk 

1 3

3  Landscapes for particles and genes with slow changes

When describing macroscopic systems with many particles, specifying the position and 
velocity of each particle is infeasible. Instead, in statistical physics, we can describe the 
collective behavior of particles in a probabilistic sense. For example, if we have a box of 
ideal gas, we can define a phase space, representing the position and moment of each parti-
cle, that captures every degree of freedom for the system. Then, in thermal equilibrium, we 
can show from first principles that the particles’ velocities are distributed according to the 
Boltzmann distribution. However, if a system is not in thermal equilibrium, the total energy 
changes over time and we would need a different approach to analyze the system. One 
such approach uses the potential energy landscape. For example, Potential Energy Land-
scape (PEL) has been successfully used to address a major challenge in condensed matter 
physics: explaining amorphous solids such as glass-forming materials [20–24]. Next to the 
complexity that the irregular positions of the atoms bring, the slow liquid-like motion of 
the atoms on larger time scales leads to a non-equilibrium system. For such materials, one 
can define a PEL in terms of the position of the atoms and their interactions. This leads to 
a rugged, complex, high-dimensional energy landscape [21–24]. This landscape can then 
be drastically simplified by only describing its geometric, global properties such as any 
local minima that it has, the distance and barrier heights between the local minima, and the 
landscape’s curvature. Such a reduction in information allows one to successfully model 
glass-forming systems and explain their macroscopic properties [20–24].

A more biologically relevant example of using energy landscapes to understand out-
of-equilibrium dynamics is in protein folding [25–30]. After translated by ribosomes, the 
resulting polypeptide folds into a specific three-dimensional shape to properly function in a  
cell. Reminiscent of the PEL approach, one can define a free energy landscape for this fold- 
ing process. The landscape, like PEL for glass-forming systems, is also a rugged, funnel-
shaped landscape with the native conformation corresponding to the bottom of the energy 
landscape. One can then apply this energy landscape to consider a protein to be adiabati- 
cally folding and thereby apply (quasi steady state) equilibrium thermodynamics to describe  
the folding dynamics. This landscape view helps us understand the protein-folding dynam-
ics and in characterizing all possible structures that a given sequence of peptides can form. 
Hans Frauenfelder, whom our article honors as part of the journal’s special issue, is one of 
the pioneers of this approach to understanding protein-folding dynamics [26–30].

Despite the success of statistical-physics approaches for studying protein-folding and 
molecular dynamics, it has been difficult to develop a similar approach for explaining liv-
ing systems whose behaviors are not obviously described in terms of physics quantities 
such as position, velocity, energy, and the likes. Gene-expression dynamics, whose more 
natural description is in terms of phenomenological variables such as the rates of produc-
tion, degradation, binding, and unbinding, is just one example that remains challenging to 
model without resorting to exhaustive numerical simulations in many cases. Researchers 
have made some progress by using equilibrium statistical mechanics in which one uses 
the binding energies of transcription factors to determine steady-state gene-expression lev-
els in microbes [31–38]. The main reason for the success of this approach is that certain 
processes, such as the binding and unbinding of a transcription factor at a target locus on 
DNA, occur much faster than the other processes involved in gene expression. Hence, one 
can assume that transcription factors obey an equilibrium (Boltzmann) distribution as a 
function of their binding energies. The challenge here is that one usually cannot obtain the 
binding energies of transcription factors inside a cell, even for one gene. Moreover, not all 



361Predictive landscapes hidden beneath biological cellular…

1 3

gene-expression dynamics have clearly separable timescales. Nonetheless, using equilib-
rium statistical mechanics with a quasi-steady-state approximation is a promising approach 
to studying gene-expression dynamics.

4  Predictive landscapes for living systems beyond gene networks

For cellular processes beyond gene expression dynamics in a cell, we do not yet know 
how and whether the concept of energy or an energy-like function can play a useful role. 
In principle, one can define the free energy of individual molecules that are involved in 
gene expression (e.g., RNA polymerases). But it is unclear how knowing the free energy 
can simplify the analysis. When searching for energy or some other function like it, we’re 
really talking about Lyapunov functions. Lyapunov functions are mathematical functions 
that monotonically change (non-increasing or non-decreasing) over time. There is no gen-
eral algorithm for constructing a Lyapunov function for a dynamical system or for deter-
mining whether one can even exist for a given system [39]. Thus, it is nontrivial to find 
a Lyapunov function, if it exists, for a living system. Moreover, we do not yet know of a 
general algorithm for determining how a cell will behave over time. This is unsurprising 
since a cell can do many things and the mathematical function would need to be tailored 
for the cellular feature that one wishes to study. If we examine the examples of energy 
landscapes for non-living systems, we see that potential energy is defined in terms of either 
physical location of a particle or, more generally, the coordinates that we can assign to 
each degree of freedom in a system. In a cell, it is generally unclear what the “degrees 
of freedom” are, how we would measure these, and how these would be mathematically 
represented. In fact, it is not obvious that we can use metrics from physics such as pres-
sure, energy, and position to describe some of the most important cellular and organismal 
behaviors, many of which do not originate from mechanical means. The combination of so 
many mechanical and chemical parts that lead to a phenotype can also blur the contribu-
tion of each, even those that involve mechanical aspects of a cell that physicists are more 
familiar with explaining. Although there may not be a conserved quantity for most cellular 
processes, there may still be nontrivial, mathematical functions that can yield a predictive, 
“equation of motion” for the cellular process of interest. In our view, this is ultimately what 
a biological physicist can realistically hope for. Recent studies by our group have found 
such functions for cellular automata that self-organize spatial patterns. We describe these 
in the next section.

5  Predictive landscapes for cellular automata that self‑organize 
spatial patterns

Continuous dynamical systems are described by differential equations. They are biolog-
ically relevant, interesting, and pose many challenges. A less well-explored approach is 
modeling living systems as discrete dynamical systems. There are also less mathemati-
cal tools for analyzing discrete dynamical systems, such as those modeled by cellular 
automata, than there are for analyzing continuous dynamical systems [12]. For example, 
the whole of mathematical (complex) analysis is more naturally suited for analyzing con-
tinuous dynamical systems than discrete dynamical systems. Cellular automata are natu-
ral choices for modeling discrete dynamics of multicellular systems as they use individual 
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agents that each has discrete states and interacts with their nearest-neighboring cells. [40, 
41].

Discrete systems are suitable for modeling living systems whose dynamics involve two 
or more processes that occur with differing timescales (i.e., fast and slow). This means that 
we can assume that the faster processes equilibrate first and then the slower processes build 
on top of (or respond to) the already-equilibrated, faster processes. As the slower processes 
change, however, they can perturb the quasi-steady states reached by the faster processes, 
causing the faster processes to exit their equilibria and then equilibrate in new states. This 
leads to a back-and-forth between the fast and slow processes, causing the entire system 
to stay out of equilibrium for a long time, potentially forever. Such back-and-forth dynam-
ics are common for living systems. These bidirectional feedbacks are often nonlinear in 
nature, making their analyses difficult. Multicellular systems frequently exhibit these back-
and-forth behaviors [42–45]. For example, cells can communicate with one another by 
secreting molecules that diffuse from one cell to another. The molecules can diffuse on 
a timescale that is shorter than the timescale at which gene expression changes occur due 
to a cell sensing the molecules. Hence, we can consider the secreted molecules to reach a 
steady-state concentration and the cells reacting to it by, say, turning on or off gene expres-
sion after sensing the molecules. One of these genes may encode the secreted molecule, 
meaning that the cells can, in turn, change the rate at which they secrete the molecules or 
change the expression level of the receptor that senses the molecule. Such “secrete-and-
sense cells” are ubiquitous in nature [42, 44, 45]. A cellular automaton is ideal for mod-
eling such systems.

A cellular automaton can be considered a computer. It evolves over time by applying 
a pre-defined algorithm to the initial configuration that we assign to the “cells” on a grid. 
We can consider the initial configuration of the cellular lattice to be an “input data” for a 
computer program [40]. Cellular automata reveal how iteratively applying the same rules 
can lead to complex dynamics. This is a deep notion in computational theories and biol-
ogy. Perhaps one of the most well-known cellular automata is John Conway’s Game of 
Life [46]. The Game of Life has captured the attention of the public and scientists alike 
because it is Turing complete, meaning that anything that a computer can do can also be 
programmed into the initial configuration assigned to the Game of Life [47]. Loosely, 
Turing completeness means that anything can happen in the Game of Life if the user can 
determine the initial configuration that will produce the desired dynamics. For modeling 
multicellular systems, one of the most widely used cellular automata is the Cellular Potts 
Model (CPM) [48, 49]. In CPM, adjacent cells mechanically interact by exerting force on 
one another, through the cell–cell contacts. A Hamiltonian captures the cell–cell interac-
tion energies in a simplified and insightful way. The CPM then evolves over time with the 
rule that the Hamiltonian must be non-increasing over time, leading to a final configuration 
of the tissue in which the Hamiltonian takes on a locally minimal value. CPM is an exam-
ple of a cellular automaton in which the Hamiltonian is built in as the rule.

Unlike CPM, many cellular automata do not have a built-in Hamiltonian that dictates 
the dynamics. Instead, verbal (qualitative) rules dictate their temporal evolution as in the 
Game of Life. It is a priori unclear whether a predictive, energy-like landscape or any Lya-
punov function exists for such cellular automata and if so, how one might find them [39]. 
In a recent work, our group showed that such a landscape exists for a cellular automaton 
that models spatial-patterning dynamics of a field of secrete-and-sense cells [6] (Fig. 1A). 
In this “secrete-and-sense automaton,” cells communicate by secreting and sensing one 
type of diffusing molecule called a “signaling molecule” [5, 6]. A cell can secrete multiple 
copies of the signaling molecule and sense the concentration of the molecules on itself. 
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The concentration of the signaling molecule on a cell determines whether that cell turns 
on the expression of a gene (if the concentration is above a certain threshold value) or 
turns off the expression (if the concentration is below the threshold value). Thus, a cell 
can be in one of two states: “ON” or “OFF.” With N cells, the cellular automaton can start 
with  2 N possible states. When a cell is ON, then it secretes the signaling molecule at a 
“high” rate whereas it secretes the signaling molecule at a “low” (basal) rate if the cell is 
OFF. Our group found that this cellular automaton always terminates with a configuration 
(spatial configuration of ON and OFF cells) that is more spatially ordered than the initial 
configuration [5, 6] (Fig. 1A, left box). Although a reaction–diffusion equation governs the 
steady-state concentration of the signaling molecule on each cell, the temporal evolution of 
the cell states can be mapped onto verbal rules. This is because of the binary nature (high/
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Fig. 1  Predictive landscapes for cellular automata that self-organize spatial patterns via cell–cell commu-
nication. A Left box: Cellular automaton in which each cell (circle) has two possible states (2 colors) and 
secretes one type of signaling molecule that activates its own secretion [6]. This cellular automaton always 
terminates with a static configuration that is more ordered than the initial configuration. Right box: Pseudo-
energy landscape in which a ball represents the entire cellular lattice (shown in left box). The ball rolling 
down the landscape represents the temporal evolution of cellular automaton. The landscape is sticky, caus-
ing the ball to stick with some probability at each location (shown in color bar) which represents cellular 
automaton halting. B Left box: Cellular automaton in which each cell (circle) has four possible states (4 
colors) and secretes two types of signaling molecules, each of which either activates or represses the secre-
tion of itself or the other molecule [7]. This cellular automaton does not always terminate because it can 
form a never-ending (looping) dynamic spatial pattern such as a perpetually traveling wave (rightmost con-
figuration in left box). Right box: Hypothesized predictive landscape for this cellular automaton
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low) of the secretion rate for the signaling molecule and the fixed distances between the 
immotile cells. We can convert the reaction–diffusion equations into verbal rules that dic-
tate the cellular automaton such as, for example, “a cell adopts an ON-state if at least four 
of its nearest neighbor cells are in the ON-state.” Changing two control parameters of the 
system—the threshold concentration K and the maximal secretion rate SON of the signal-
ing molecule – alters these verbal rules (e.g., turning on a cell now requires three nearest 
neighbors as ON-cells, not four). In this cellular automaton, one can use a phase diagram 
that is determined as a function of K and SON to summarize how these verbal rules that run 
the automaton change (e.g., a cell turns ON if there are at least four nearest-neighbor cells 
that are ON) [5, 6].

In the secrete-and-sense cellular automaton, we quantified the spatial order — how 
ordered the multicellular configuration of ON and OFF cells is — by defining a weighted 
spatial autocorrelation function called the “spatial index” I [5, 6]. The spatial patterns 
generated by the cellular automaton include stripes and islands formed by ON-cells clus-
tered together, as seen in real secrete-and-sense cells in nature. Moreover, two “macrostate 
variables” simplify the description of the spatial-pattern-forming dynamics of the cellular 
automaton: the fraction p of cells that have the gene of interest in the ON state and the 
spatial index I. With these two macrostate variables, one no longer needs to keep track 
of which of the hundreds of cells in the lattice are ON and which are OFF. A trade-off, 
however, is that one now must resort to a probabilistic description of the cellular automa-
ton dynamics since each macrostate (p, I) can have numerous (thousands or more) micro-
states (i.e., one of the  2  N spatial configurations). Crucially, one can find a predictive 
landscape that approximately describes how the cellular automaton evolves over time in 
the two-dimensional space spanned by p and I [6] (Fig. 1A, right box). One can visual-
ize this “pseudo-energy landscape” because it is a function only of the two macrostate 
variables: p and I. The landscape, at once, reveals all possible final configurations and 
the probability with which the cellular automaton terminates at each configuration. The 
pseudo-energy landscape also reveals, to a good approximation, how the multicellular con-
figuration evolves over time. One can write the pseudo-energy function in terms of the 
microstate variables (i.e., the ON/OFF state of every cell). It then mathematically resem-
bles a Hamiltonian for a spin system with non-nearest neighbor interactions. In the cellular 
automaton, the strength of the interaction between two communicating cells is defined by 
a “signal strength” function that is a function of the distance between the two cells (spins) 
and other parameters. One can rigorously prove that this function does not increase over 
time, thereby proving that the function is a Lyapunov function like physical energy [6]. But 
unlike a physical energy, the pseudo-energy function does not provide a definite, stopping 
condition for the cellular automaton. Instead, there is a “trapping probability” assigned to 
each location on a landscape: the probability that the cellular automaton terminates for 
each value of (p, I). Intuitively, this means that the pseudo-energy landscape is adhesive, 
with the adhesiveness (trapping probability) shown as a heatmap color painted on the land-
scape (Fig. 1A, right box). The shape (gradient) of the landscape represents the direction 
in which the particle, which represents the configuration of all cells — rolls down. This 
represents the temporal evolution of the macrostates of the cellular automaton. These fea-
tures make the pseudo-energy landscape useful to understand the dynamics of the secrete-
and-sense cellular automaton. It provides a probabilistic view of the dynamics because the 
macrostates — p and I — do not define the stopping condition of the cellular automaton. 
Moreover, many microstates can belong to one macrostate (p, I). The reduction in dimen-
sions from  2 N to two (i.e., p and I) comes at the expense of relinquishing determinism for 
a probabilistic description. Finally, one can precisely determine how changing the verbal 
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rules of the cellular automaton changes the pseudo-energy landscape’s shape and the adhe-
siveness at each location of the landscape [6].

In terms of one of the macrostate variables, the fraction p of cells that are ON, and given 
the location in the phase diagram (i.e., the values of K and SON), a mean-field approach lets 
one derive an analytical formula for the total number of spatial configurations that a field 
of cells can have (i.e., the total number of terminal configurations of the cellular automa-
ton). We first derived this formula, which we call “multicellular entropy,” for the secrete-
and-sense automaton with one type of molecule (i.e., with one cell type and one type of 
secreted molecule [5]). We later generalized the multicellular entropy to secrete-and-sense 
automata involving any number of cell types and any number of secreted molecules (e.g., 
three types of cells with two molecules whereby each cell type has a different K and SON 
for each molecule type) [6]. For the simplest secrete-and-sense automaton, which has just 
one type of secreted molecule and one type of cell, all initial configurations lead to the cel-
lular automaton eventually halting with a more spatially ordered configuration (e.g., clus-
tered island of ON-cells).

One primarily uses energy landscapes to determine a system’s equilibrium states. Turing 
showed that there cannot be a general method that determines whether an arbitrary cellu-
lar automaton (computer program) will definitively halt [50]. This is known as the halting 
problem. It is thus likely that there cannot be a general method that takes an arbitrary cel-
lular automaton as an input and then constructs a mathematical function, like an energy 
landscape, that definitively predicts the configurations with which the cellular automaton 
will terminate. At best, we can hope to give the probability of the automaton stopping for 
each configuration. The adhesive pseudo-energy landscape does this for the secrete-and-
sense automaton with one type of signaling molecule.

The cellular automaton for secrete-and-sense cells that communicate with two distinct 
signaling molecules display dynamics that markedly differ from those of the one-molecule 
cellular automaton. The most interesting dynamics occur when the two molecules regu-
late each other’s secretion. Most notably, the cellular automaton with two molecules may 
not terminate at all or not terminate within a reasonable, observable time on a computer 
whereas the cellular automaton with one molecule always terminates for any initial con-
figuration. In particular, the two-molecule cellular automaton with just 100 to 200 cells can 
lead to a perpetually traveling wave (Fig. 1B, left box) or puddles of spiral waves that con-
stantly change over time until they start to periodically cycle through a set of states indefi-
nitely. These “dynamic spatial patterns” self-organize from an initially disordered field of 
cells. Although a “landscape” has not yet been found for these types of cellular automata, 
we found hints for its existence [7] (Fig. 1B). Specifically, the start of any process by which 
the dynamic spatial patterns form seems to resemble a ball, representing a cellular lattice 
configuration, rapidly rolling down a side of a bowl and landing on the bowl’s flat bottom 
(Fig. 1B, right box). Height of a bowl represents the amount of spatial order (quantified by 
the spatial index I). A decreasing height represents an increasing spatial order. Hence the 
ball rapidly rolling down the side of a bowl represents the cellular lattice quickly becom-
ing more spatially ordered at the start of a process that generates a dynamic spatial pattern. 
After this stage of the process, the lattice configuration appears to erratically and randomly 
fluctuate without becoming either more or less spatially ordered. We can think of these 
fluctuating dynamics to resemble a billiard ball bouncing around, erratically and randomly, 
on the bowl’s flat bottom. Eventually and seemingly without any warning, the lattice con-
figuration undergoes a rapid becomes more spatially ordered and forms a traveling wave or 
some other highly organized, dynamical spatial pattern. This is as if the particle suddenly 
falls through a small crack somewhere on the flat bottom after randomly bouncing around 
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for a while (Fig. 1B, right box). While this picture is not quantitative and is merely an anal-
ogy, we found several features in the two-molecule cellular automata that strongly suggest 
some landscapes like the bowl may underlie the two-molecule cellular automata that gener-
ate dynamic spatial patterns [7].

6  Outlook

Cellular automata are useful in modeling discrete dynamics of living systems. As an example  
of its relevance, experimentalists have recently discovered that the lizard skin uses a hexago- 
nal lattice of cells (like the triangular lattice of cells in [5–7]) to pattern the skin color and 
that this real-life patterning dynamics is a cellular automaton [51]. Use of cellular autom-
ata in understanding living systems has a long history, starting with Von Neumann’s cellu-
lar automaton that yields self-replicating structures [52]. Commonly used cellular automata 
for modeling biological dynamics usually have built-in Hamiltonians that dictate how the 
cells in the automata change their states over time. Minimizing this Hamiltonian over time 
is imposed as a rule for the cellular automaton. This is the case in Cellular Potts Model [48,  
49]. Moreover, physicists have typically used cellular automata to model mechanical aspects  
of living systems (e.g., Vicsek model for motion of birds [53] and the CPM for mechani-
cal shuffling of cells in a tissue [48, 49]). A relatively underexplored avenue of research is  
using cellular automata that do not have any built-in Hamiltonians and are not describable  
by mechanical, electrical, or any other traditional quantities of physics (e.g., position, veloc- 
ity, forces, and energy). An example of this is the cellular automata for secrete-and-sense 
cells that regulate each other’s gene expression by secreting and sensing signaling molecules  
[5–7]. We believe that insights into biology can arise from studying this latter class of cel- 
lular automata which are governed by “simple” verbal rules. One of the major advantages  
of cellular automata with qualitative statements as rules that govern local cell–cell interac- 
tions is that much of the salient biological features are verbally described as discreet (binary)  
approximations (e.g., transcription factor either (strongly) binds or does not (strongly) bind  
to a promoter) [7, 8]. Our viewpoint here is like that of others, including those who have 
recently described the advantages of discretizing (binarizing) features of biomolecular net- 
works to build models that reveal the essential features of living systems [54–57]. Qualitative  
rules of cellular automata also do not require knowing the values of myriad parameters, many  
of which are difficult to ascertain in living systems. Cellular automata based on qualitative 
rules that do not start out with a built-in Hamiltonian may unveil new connections between 
theories of computational complexity and biology. Some outstanding questions are: What are  
the classes of dynamics that can arise for each type of biologically motivated rule in a cellular  
automaton? How do the cellular automaton dynamics change if we mutate each rule? Can 
objects such as pseudo-energy landscapes underlie cellular automaton dynamics as is the case  
for the secrete-and-sense cells? We expect that addressing these questions for biologically 
motivated cellular automata will reveal a comprehensive classification of all possible cellu-
lar dynamics that can arise from local cell–cell interactions. Ultimately, we suspect that this  
more abstract line of investigation may reveal deep links between living systems and theories  
of computation.
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