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Disseminated infection with the high virulence strain ofMycobacterium avium 25291 leads to
progressive thymic atrophy. We previously showed that M. avium-induced thymic atrophy
results from increased glucocorticoid levels that synergize with nitric oxide (NO) produced by
interferon gamma (IFNg) activated macrophages. Where and how these mediators act is not
understood. We hypothesized that IFNg and NO promote thymic atrophy through their effects
on bone marrow (BM) T cell precursors and T cell differentiation in the thymus. We show that
M. avium infection cause a reduction in the percentage and number of common lymphoid
progenitors (CLP). Additionally, BM precursors from infected mice show an overall impaired
ability to reconstitute thymi of RAGKO mice, in part due to IFNg. Thymi from infected mice
present an IFNg and NO-driven inflammation. When transplanted under the kidney capsule of
uninfectedmice, thymi from infectedmice are unable to sustain T cell differentiation. Finally, we
observed increased thymocyte death via apoptosis after infection, independent of both IFNg
and iNOS; and a decrease on active caspase-3 positive thymocytes, which is not observed in
the absence of iNOS expression. Together our data suggests that M. avium-induced thymic
atrophy results from a combination of defects mediated by IFNg and NO, including alterations
in the BM T cell precursors, the thymic structure and the thymocyte differentiation.

Keywords: thymus premature atrophy, Mycobacterium avium infection, IFN gamma, nitric oxide, BM T cell
precursors, thymocyte differentiation
INTRODUCTION

T cell progenitors migrate from the bone marrow (BM) to the thymus, where they encounter a
specialized environment that promotes their differentiation into new T cells. The thymus undergoes
physiological involution with aging (1, 2). This, together with reports from late 1990s showing that
removal of the thymus at an early age seemed to have little consequence on the normal T cell
org December 2021 | Volume 12 | Article 6964151
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repertoire of adults, led to the idea that the thymus was only
needed for T cell production early in life (3). However, further
investigation showed that thymectomy early in life leads to
premature immune aging (4). Importantly, the amount of
functional thymic tissue correlates with the reconstitution of
the peripheral T cell repertoire after severe lymphopenia, as is the
case of patients with acquired immunodeficiency syndrome
(AIDS) under antiretroviral therapy, or in patients with cancer
after BM transplant (5, 6). These data highlight the importance
of understanding premature thymic atrophy, which can affect the
overall immune health of the individual.

A variety of pathogens target the thymus and induce
premature thymic atrophy in humans, such as the Human
Immunodeficiency Virus (HIV), and experimental animal
models, such as the bacterium Mycobacterium avium, the
fungus Paracoccidioids brasiliensis, the parasite Tripanosoma
cruzi, and the virus Murine Leukemia Virus (MuLV), among
others (7, 8). Although the thymus is a target for infection with
different mycobacteria (9), M. avium-induced thymic atrophy
has been shown to be strain-dependent (10). For example,
premature thymic atrophy develops after infection with the
high virulence strain M. avium subspecies avium strain 25291,
but no signs of atrophy develop even after several months of
chronic infection with the low virulence strain 2447 (10, 11).

M. avium infection-induced thymic atrophy arises from a
synergy between glucocorticoids (GC) and nitric oxide (NO)
produced by interferon gamma (IFNg) activated macrophages
(Mf), since mice lacking IFNg, iNOS or the activation of Mf by
IFNg show no infection-induced thymic atrophy (10). However,
where and how these mediators act to lead to M. avium
infection-induced thymic atrophy is unknown.

Different alterations in the thymus occur during premature
thymic atrophy observed in different mouse models of infection
(7, 8, 12). Mechanisms that have been defined include: (i) thymic
structural changes (13, 14); (ii) reduction in thymocyte
proliferation (15); (iii) increased thymocyte cell death (16–19);
and, (iv) increased export of immature thymocytes to the
periphery (20–22). A frequently described mechanism is GC
overproduction that causes excessive death of thymocytes,
mostly at the double positive (DP) stage (23, 24). Additionally,
IFNg and NO can also induce thymocyte cell death, either
independently or by synergizing with GC (16, 25–28).

A possible mechanism of premature thymic atrophy, which
has been seldom explored, is alterations of T cell precursors in
the BM, and could include: (i) decreased production; (ii) arrest in
the BM and consequent decreased migration and/or (iii) loss of
ability to populate the thymus. In fact, infection-induced
alterations of the BM have been abundantly documented
following infection by bacteria including Mycobacterium
tuberculosis (29), M. avium (30), Group A Streptococcus (31)
and Escheriachia coli (32); viruses including the HIV (33),
Pneumovirus (34) and Vaccinia virus (35); and parasites such
as Plasmodium chabaudi (36), Plasmodium berghei (37) and
Trypanosoma brucei (38). IFNg is the major mediator produced
during some of these infections that promotes alterations in BM
cells (30, 31, 34, 36), via the expansion of LSK (Lineage- Sca1+
Frontiers in Immunology | www.frontiersin.org 2
cKit+) cells and the increased differentiation of cells from the
myeloid lineage (39). Other molecules such as tumor necrosis
factor (TNF), NO and type I IFN have also been associated with
BM alterations during infection (34, 38, 40). However, except for
two reports showing that the reduction of BM precursors is
associated with sepsis-induced and T. cruzi infection-induced
thymic atrophy (41, 42), we are not aware of other reports that
associate alterations in the BM with infection-induced
thymic atrophy.

We previously showed that M. avium strain 25291 infected
wild type (WT) mice have a reduction in the number of early
thymic precursors (ETP) (10), which is the most immature cell
population in the thymus. Additionally, mice that lack iNOS
expression (iNOSKO mice) are resistant to infection-induced
thymic atrophy, but have also reduced numbers of ETP (10).
While these data indicate that alterations in the BM T cell
precursors may not be sufficient to cause premature thymic
atrophy, it could be an important step in the process. Here,
we took advantage of KO mouse strains, cell transfer and
thymic transplant models to study how alterations mediated by
IFNg and/or iNOS affecting the thymic environment and/or
the BM contribute to premature thymic atrophy during M.
avium infection.
MATERIALS AND METHODS

Mice and Infection
C57BL/6 WT mice were purchased from Charles River
Laboratories (Barcelona, Spain) or bred at the Life and Health
Sciences Research Institute (ICVS - School of Medicine,
University of Minho, Braga, Portugal) from a breeding pair
purchased from Charles River Laboratories. B6.SJL-Ptprca
Pepcb/BoyJ (WT CD45.1) and IFNg–KO C57BL/6 mice were
bred at ICVS from a breeding pair purchased from The Jackson
Laboratory (Bar Harbor, ME, USA). Transgenic mice with a
selective impairment on IFNg signaling in CD68+ cells (MIIG)
(43) were bred at the Institute for Molecular and Cell Biology
(University of Porto, Porto, Portugal) from a breeding pair
provided by the Cincinnati Children’s Hospital Medical Center
and the University of Cincinnati College of Medicine
(Cincinnati, OH, USA). iNOS-deficient C57BL/6 (iNOSKO)
(44) mice were bred at ICVS after back-crossing the original
strain (kindly provided by Drs. J. Mudgett, J.D. MacMicking, and
C. Nathan, Cornell University, New York, NY, USA) onto a
C57BL/6 background for seven generations, or purchased from
The Jackson Laboratory. B6(Cg)-Rag2tm1.1Cgn (RAGKO) mice
were bred at ICVS from a breeding pair purchased from Instituto
Gulbenkien da Ciência (Oeiras, Portugal) or from The Jackson
Laboratory. iNOS and Rag2-double deficient (iNOS.RAG.2KO)
mice were obtained, at ICVS, after crossing F1 resulting from the
cross of iNOSKO and RAGKO mice.

Eight- to ten-week-old female mice were infected
intravenously (i.v.) through a lateral tail vein with 106 colony
forming units (CFU) of the M. avium strain ATCC 25291 SmT
(obtained from the American Type Culture Collection,
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Manassas, VA, USA) or the strain 2447 (provided by Dr. F.
Portaels, Institute of Tropical Medicine, Antwerp, Belgium).
Bacterial inocula preparation and bacterial load quantification
in the organs was performed as previously described (11, 45). No
signs of major distress were observed for the first 2 months upon
infection, though some animals showed signs of deterioration of
body condition in a non-synchronous way. To avoid excessive
and unnecessary suffering of animals, humane endpoints were
applied, and mice were euthanized when reaching 25% weight
loss, relatively to the highest weigh reached.

Mice euthanasia was performed through controlled CO2

inhalation or an overdose of ketamine (150 mg/kg) and
medetomidine (2 mg/kg) injected intraperitoneally (i.p.),
followed by lethal blood collection (performed after
confirmation of anesthesia) and thoracotomy.

All experiments were performed in accordance with the
recommendations of the European Convention for the
Protection of Vertebrate Animals Used for Experimental and
Other Scientific Purposes (ETS 123) and 86/609/EEC Directive
and Portuguese rules (DL 129/92). The animal facility and people
directly involved in animal experiments were certified by the
Portuguese regulatory entity - Direção Geral de Alimentac ̧ão e
Veterinaŕia (DGAV); the animal experimental protocols were
approved by DGAV (# 015584), or by the Institutional Animal
Care and Use Committee at the University of Massachusetts
Medical School (Animal Welfare A3306-01), using the
recommendations from the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health and
the Office of Laboratory Animal Welfare.

Single Cell Suspensions
Spleens, thymi and BM were collected and processed
individually. Single cell suspensions were obtained from thymi
and spleens by gentle mechanical dissociation in complete
DMEM (cDMEM - DMEM supplemented with 10% heat-
inactivated FBS, 10 mM HEPES, 1 mM sodium pyruvate, 2
mM L-glutamine, 50 mg/ml streptomycin, and 50 U/ml
penicillin, all from Invitrogen Life Technologies); and from
femurs by gentle flush of the BM with cDMEM. Red blood
cells were lysed using a hemolytic solution (155 mM NH4Cl, 10
mM KHCO3, pH 7.2) for 4 min at room temperature, and cells
were re-suspended in cDMEM. The number of viable cells was
counted by trypan blue exclusion using a hemocytometer.

Flow Cytometry
One million cells were stained per panel for flow cytometry
analysis. For BM analysis, cells were stained with FITC-
conjugated anti-lineage markers [anti-CD3 (145-2C11), anti-
CD4 (RM4-5), anti-CD8 (53-6.7), anti-CD19 (6D5), anti-B220
(RA3-6B2), anti-CD11b (M1/70), anti-CD11c (N418), anti-NK1.1
(PK136), anti-Gr1 (RB6-8C5), anti-TER119 (TER119)], PE-
conjugated anti-cKit (2B8), PerCP-Cy5.5-conjugated anti-Sca1
(D7), PE-Cy7–conjugated anti-IL7Ra (A7R34), APC-conjugated
anti-Flt3 (A2F10), APC-Cy7-conjugated anti-CD48 (HM48-1)
and BV421-conjugated anti-CD150 (TC15-12F12.2). For
thymocyte analysis, cells were labeled with distinct combinations
of the following antibodies: FITC, PerCP-Cy5.5, BV510 or V500-
Frontiers in Immunology | www.frontiersin.org 3
conjugated anti-CD8 (53-6.7), PerCP-Cy5.5-conjugated anti-
CD24 (M1/69), PE or APC-conjugated anti-CD3 (145-2C11),
PE-Cy7 or APC-Cy7-conjugated anti-CD44 (IM7), APC-Cy7 or
V450-conjugated anti-CD4 (RM4-5), Alexa647-conjugated anti-
active caspase-3 (C92-605) and APC-conjugated Annexin V. For
live/dead cell analysis, propidium iodide (PI; Sigma-Aldrich,
Germany) was added at a final concentration of 1 mg/ml, 15
min before acquisition on the flow cytometer. For splenocyte
analysis, cells were labeled with the following antibodies: FITC-
conjugated anti-CD11b (M1/70), APC-conjugated anti-CD3 (145-
2C11), APC-Cy7-conjugated anti-CD19 (6D5), V450-conjugated
anti-CD4 (RM4-5) and V500-conjugated anti-CD8 (53-6.7). All
antibodies were purchased from BioLegend (San Diego, CA, USA)
except the V450-conjugated anti-CD4 (RM4-5), the V500-
conjugated anti-CD8 (53-6.7) and the Alexa647-conjugated anti-
active caspase-3 (C92-605), which were obtained from BD
Biosciences (San Jose, CA, USA). Acquisition was performed on
a LSRII flow cytometer (equipped with 3 lasers: blue - 5 detectors,
red - 2 detectors and violet - 6 detectors) using BD FACSDiva
software v6.0 (Becton and Dickinson, NJ, USA), or on a
MACSQuant flow cytometer (Miltenyi Biotec, Germany;
equipped with 3 lasers: blue - 5 detectors, red - 2 detectors and
violet - 2 detectors). Data were analyzed using FlowJo 10.7.1
(BD Biosciences).

Thymic Transplant
Thymi were aseptically removed from uninfected RAGKO or
fromWTmice infected for 70 days withM. avium 25291. Thymi
were maintained in cDMEM for no longer than 20 min until
being transplanted under the kidney capsule of WT CD45.1 mice
(anesthetized with 200 mg/Kg xylazine hydrochloride and 200
mg/Kg ketamine hydrochloride, administered i.v.). One thymic
lobe from uninfected RAGKO mice and one thymic lobe from
infected WT mice were transplanted to the same WT CD45.1
mouse (one on each kidney). Mice were euthanized 4 weeks after
transplant, and the transplanted thymi analyzed by
flow cytometry.

BM Adoptive Transfer
Single-cell suspensions of pools of BM cells were prepared from
uninfected or from 70 days M. avium 25291 infected WT or
IFNgKO mice. BM progenitor cells were purified from each
suspension using the Lineage Cell Depletion Mouse Kit
microbeads (Miltenyi Biotec). Magnetic separation was
performed with an autoMACS separator (Miltenyi Biotec).
After purification, viable cells were counted by trypan blue
exclusion using a hemocytometer; purity was confirmed by flow
cytometry stain using FITC-conjugated anti-lineage markers
and PE-conjugated anti-cKit. Cells (1-1.5 x 106) were
transferred i.v. to RAGKO or iNOS.RAG.2KO mice treated
with Busulfan (0.6 mg/mouse) administered i.p. 24 h before.
Recipient mice received prophylactic antibiotic treatment ad
libitum [2,5% of Bactrim (40 mg trimethoprim and 200 mg
sulfametoxazol) in drinking water] for 5 days (treatment
finished 2 days before BM transfer). Mice were euthanized 4
weeks after cell transfer and the recipient thymus and spleen
were analyzed by flow cytometry.
December 2021 | Volume 12 | Article 696415
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Measurement of Corticosterone
Serum Levels
To obtain the serum concentration of basal corticosterone levels,
blood samples were collected at 9 am (1 h after lights are on at the
animal facility) from a venous incision at the tip of the tail during a
period not exceeding 2 min for each mouse (to avoid corticosterone
sera level increase due to handling). Sera were isolated by
centrifugation and stored at -80 °C. Corticosterone levels were
determined using Corticosterone ELISA kit (ENZO life sciences,
Inc., NY, USA) according with manufacturer’s instructions.

Real Time-Quantitative PCR Analysis
Total RNA was extracted from 1 thymic lobe (except for 70 dpi,
where the whole thymus was used due to severe atrophy) and from
BM cells recovered from two femurs per mouse, using TRIzol™

Reagent (Invitrogen, Carlsbad, CA, USA). RNA was quantified
using NanoDrop 2000 (Thermo Scientific, MA, USA), and 1 mg
was run on a 1% agarose gel to check for RNA integrity.
Complementary DNA (cDNA) was synthesized using iScriptTM
Advanced cDNA Synthesis Kit (Bio-Rad Laboratories, CA, USA),
according to manufacturer’s instructions. Real Time-quantitative
PCR (RT-qPCR) was performed using the SsoFast EvaGreen
Supermix or the SsoFast EvaGreen low ROX (Bio-Rad
Laboratories, CA, USA) and the primer pairs described in
Supplementary Table 1. Expression of target and housekeeping
genes was analyzed on CFXTM Manager (Bio-Rad Laboratories)
using the “Gene Study” function or on the 7500 Fast Real-Time
PCR System using the 7500-software version 2.3 (Applied
Biosystems by Life Technologies) and exported to Microsoft
Excel for further calculations. 18S rRNA, Gapdh and Hprt were
used as housekeeping genes. The expression of Gapdh did not
comply with the requirements to be used as housekeeping gene
and was excluded from the analysis. Target genes expression
presented in graphs are relative to the expression of the
housekeeping genes 18S rRNA and Hprt.

Statistical Analysis
Results were expressed as mean or mean + SD, unless otherwise
said. Prism 8.4.3 (GraphPad, CA, USA) was used for all the
statistical analysis. Variables’ normality was accessed by
Kolmogorov-Smirnov test. Tests were used as indicated in figure
legends: two-tailed unpaired t-test, Mann-Whitney test, two-tailed
ratio paired t-test, ordinary one-way ANOVA followed by
Dunnett’s multiple comparisons test, or 2-way ANOVA followed
by Tukey’s multiple comparisons test. Differences between groups
were considered statistically significant for p-values <0.05.
RESULTS

Increased Proportion of LSK Cells in the
BM of Mice Infected With M. avium Strain
25291 Requires IFNg but Not iNOS
The differentiation of new T cells is dependent on the continuous
seeding of BM T cell precursors in the thymus. We hypothesized
that M. avium infection causes alterations on T cell precursors
Frontiers in Immunology | www.frontiersin.org 4
which contribute to infection-induced thymic atrophy. To test
this hypothesis, we analyzed the BM fromWTmice infected with
M. avium strain 25291, which induces premature thymic
atrophy, or with M. avium strain 2447, which does not cause
premature thymic atrophy. Additionally, BM from mice lacking
IFNg (IFNgKO), iNOS (iNOSKO) or the signaling of IFNg in Mf
(MIIG), crucial factors that contribute to M. avium strain 25291
infection-induced thymic atrophy (10), were also analyzed
after infection.

We observed that the bacterial load in the BM from mice
infected with strain 25291 is higher compared to that of mice
infected with strain 2447, reaching a 5-log difference at 70 days
post-infection (dpi; Figure 1A). At 80 dpi with M. avium strain
25291, mice lacking IFNg have similarly high bacterial load in
their BM compared to WT mice (Figure 1B), and iNOSKO mice
have a 2-log lower bacterial load than WT mice (Figure 1C), in
agreement with the bacterial load in the liver, spleen, lung and
thymus (10, 11). Infection of WT mice with strain 25291 leads to
decreased number of total BM cells (Figure 1D), as previously
described (46). On the other hand, the total number of BM cells
from WT mice infected with strain 2447 does not differ from
those of uninfected animals through 80 dpi (Figure 1D).

ToexamineT cell precursors in theBMduring infectionwithM.
avium strain 25291, we analyzed the different BM cell populations
by flow cytometry. Hematopoietic stem cells (HSC), which are part
of the LSK (Lineage- Sca1+ cKit+; see gating strategy, Figure 2A)
population, possess the capacity for self-renewal and can give rise to
all mature blood cell types (47). In comparison to uninfected mice,
animals infected with M. avium strain 2447 have a transient
increase in LSK cells percentage at 30 dpi, which return to normal
levels over time. In contrast, inmice infectedwith the highvirulence
strain 25291, there is a sustained increase in the percentage of LSK
cells throughout the time course evaluated (Figure 2B). Consistent
with the described induction of LSK cell expansion mediated by
IFNg (39), there is no alteration on LSK cells percentage in IFNgKO
mice infectedwithM. avium strain 25291 up to 80 dpi (Figure 2C).
Tounderstand if the increase in the percentage of LSKpopulation is
due to a direct effect of IFNg, or another mechanism dependent on
Mfactivation,MIIGmicewere infected.At80dpi,MIIGmice show
increased LSK cells percentage when compared to uninfectedmice.
However, the percentage of LSK cells is lower on MIIG in
comparison to WT mice (Figure 2D). As for iNOSKO mice, we
show that the percentage of LSK cells increase upon infection with
strain 25291 (80 dpi), similarly toWTmice (Figure 2E). Together,
these results show that the increase on LSK cells percentage during
infection byM. avium strain 25291 is partially dependent on IFNg-
induced activation of Mf but not on iNOS production. Finally,
infection byM. avium strain 25291 leads to a dramatic decrease in
the frequency of long term (LT)-HSC and short term (ST)-HSC
(Figures 2F, G).

Increased LMPP and Decreased CLP in
the BM After Infection With M. avium
25291 Is Independent on IFNg and iNOS
There are two BM cell populations described as able to differentiate
into T cells in vitro and in vivo (48): (i) the lymphoid-primed
multipotent progenitors (LMPP), which is a subpopulation of LSK
December 2021 | Volume 12 | Article 696415
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cells that express Flt3 (Lin- IL-7Ra- Sca1+ cKit+ Flt3+); and (ii) the
common lymphoid progenitors (CLP), which are Lin- IL-7Ra+

Sca1int cKitint Flt3+. Compared to uninfected mice, the percentage
of LMPP (see gating strategy,Figure 3A) is increased after infection
withM. avium strain 25291, but not with strain 2447 (Figure 3B).
We also observed an increase in the number of LMPPwith bothM.
avium strain 25291 and 2447 that is sustained only for strain 25291
(SupplementaryFigure 1A). Thepercentage andnumber ofLMPP
is not different in M. avium strain 25291 infected IFNgKO
(Figure 3C and Supplementary Figure 1B), MIIG (Figure 3D
and Supplementary Figure 1C) and iNOSKO (Figure 3E and
Supplementary Figure 1D) mice comparing with WT infected
mice. These results show that the increased proportion of LMPP
doesnot require IFNgnor iNOSexpressionand thus isnot sufficient
to cause infection-induced thymic atrophy.

We observed an obvious decrease in both percentage and
number of CLP (see gating strategy, Figure 3F) in WT mice
infected withM. avium strain 25291, a change that is also observed
inmice infected with the low virulence strain 2447 (Figure 3G and
Supplementary Figure 1E). We also observed a reduction in the
percentage of CLP in M. avium 25291 infected IFNgKO mice
(Figure 3H). But the decrease in the percentage of CLP upon
infection with strain 25291 is dependent on the activation of Mf
by IFNg, since MIIG mice have the same percentage of CLP as
uninfected mice (Figure 3I). iNOSKO mice infected with M.
avium strain 25291 have a reduction in the percentage of CLP
similar to WT infected mice (Figure 3J). The number of CLP is
reduced in IFNgKO, MIIG and iNOSKOmice, as observed in WT
mice, at 80 dpi (Supplementary Figures 1F–H). These results
show that IFNg and the production of NO, are not required for the
CLP alterations upon M. avium strain 25291 infection.

To assess other molecules that might be involved in the
observed alterations in BM cell populations, we analyzed the
expression of genes previously described to affect the BM in
various infection/inflammation models. We observed that
Frontiers in Immunology | www.frontiersin.org 5
interleukine-6(Il6) expression is increased in WT mice infected
withM. avium strain 25291 compared to uninfected mice but not
in infected iNOSKO mice (Supplementary Figure 2A). No
significant differences were observed after infection in the
expression of glucocorticoid receptor (Gr) and tumor necrosis
factor (Tnf) in the BM (Supplementary Figures 2B, C).

BM Cells From WT Mice Infected With M.
avium 25291 Poorly Reconstitute Thymi
From RAGKO Mice
Since the observed reduction on the percentage and number ofCLP
is independentof IFNg and iNOS, this alterationwas excludedas the
mechanism responsible per se for M. avium-induced thymic
atrophy; still it might synergize with other mechanisms yet to be
identified. To investigate if alterations in BM precursors contribute
to M. avium infection-induced thymic atrophy, we transferred
lineage negative BM cells from uninfected or 70 days infected WT
or IFNgKO mice, into RAGKO recipients. Recipient mice were
euthanized 4 weeks later. Mice receiving BM cells from WT mice
infected with M. avium 25291 present an overall weaker thymic
reconstitution than mice receiving BM cells from uninfected mice
or from IFNgKO infected and uninfected mice (Figure 4A). The
observation that BM from infected IFNgKO mice has the same
ability to reconstitute the thymus asWTuninfected reveals that the
reduced ability to reconstitute the thymus of infectedWT BM cells
is not dependent on the altered percentage/number of CLP and
LMPP. In agreement with the data from thymic reconstitutions, a
lower number of total splenocytes, including total and both CD4+

and CD8+ T cells, were recovered from mice receiving BM from
infected WT mice, compared to mice receiving BM cells from
uninfected WT or IFNgKO infected mice (Figure 4B).

To test if the reconstitution of BM precursor cells from WT
infected mice is inhibited by NO production in the recipient
thymus, lineage negative BM cells from WT mice, uninfected or
M. avium 25291 infected (70 dpi) were transferred to
A B C D

FIGURE 1 | Bacteria load in the BM is higher after infection with M. avium strain 25291 than with strain 2447. (A) Representative kinetics of M. avium infection in the BM
of WT mice infected with strains 25291 (blue) or 2447 (pink). (B, C) Bacterial load in the BM from WT, IFNgKO and iNOSKO mice infected with M. avium strain 25291 for
80 days. At each time-point of infection, groups were compared by two-tailed unpaired t-test and were marked as: ***p <0.001; ****p <0.0001. (D) Total number of BM
cells per femur of uninfected WT mice (white), or after infection with M. avium strain 25291 (blue) or strain 2447 (pink) at 30, 60 and 80 dpi. The groups of infected mice,
at the several time-points, were compared with the uninfected mice by ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test and were marked as:
*p <0.05; **p <0.01; comparisons between infected groups were performed by 2-way ANOVA followed by Tukey’s multiple comparisons test, and marked as: #p <0.05,
##p <0.01. Data represent the mean ± SD (A) or mean (B–D) from 5 to 8 mice per group, from one of two independent experiments. UI stands for uninfected. dpi stands
for days post infection.
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iNOS.RAG.2KO recipients. Irrespective of donor BM cells being
from infected or uninfected mice, no differences between
RAGKO and iNOS.RAG.2KO recipient mice were observed
when comparing the reconstitution of the thymus (Figure 4C),
and the T cell pool in the spleen (Figure 4D).

The recruitment and entry of BM T cell precursors to the
thymus is mediated by chemokines expressed by thymic
epithelial cells (TEC), such as CCL21, CCL25 and CXCL12, as
Frontiers in Immunology | www.frontiersin.org 6
well as P-selectin. These molecules are recognized by their
receptors in precursor cells, such as CCR7, CCR9, CXCR4 and
PSGL1. The analysis of the expression of these molecules
revealed increased expression of Ccl25, Cxcl12 and P-selectin in
the thymus (Figure 4E), and decreased expression of Ccr7 in BM
cells (Figure 4F) upon M. avium strain 25291 infection.

Overall, these results show that BM T cell precursors from
mice infected for 70 days with M. avium 25291 have a lower
A B

C D E

F G

FIGURE 2 | Mice infected with M. avium strain 25291 have higher percentage of LSK cells in an IFNg-dependent and iNOS-independent manner. (A) Schematic
representation of the gating used to identify LSK cell population in the BM from uninfected WT mice (top), or infected for 80 days with M. avium 25291 (bottom).
Total BM cells were previously selected eliminating doublets and debris. (B) Percentage of LSK cells from uninfected WT mice (white) or after infection with M. avium
strain 25291 (blue) or strain 2447 (pink) at 30, 60 and 80 dpi. Comparisons between infected and uninfected mice were performed using ordinary one-way ANOVA
followed by Dunnett’s multiple comparisons test, and marked as: ****p < 0.0001; comparisons between all the infected groups were performed using a 2-way
ANOVA followed by Tukey’s multiple comparisons test, and marked as: ##p < 0.01, ###p <0.001, ####p < 0.0001. (C–E) Percentage of LSK cells from uninfected
(white) or infected for 80 days with M. avium 25291 (blue) of WT, IFNgKO, MIIG or iNOSKO mice. Groups were compared using 2-way ANOVA followed by Tukey’s
multiple comparisons test; statistical differences between uninfected and infected mice were marked as *p < 0.05 and ****p < 0.0001; and between infected groups
as ##p < 0.01, ####p < 0.0001. (F) Schematic representation of the gating used to identify LT-HSC and ST-HSC cell populations in the BM from uninfected WT mice
(top), or infected for 70 days with M. avium 25291 (bottom) (G) Percentage of LT-HSC and ST-HSC cells in WT uninfected (white) or after 70 days of infection with
M. avium 25291 (teal). Comparisons between infected and uninfected were performed by two-tailed unpaired t-test and marked as ****p < 0.0001. Bars represent
the mean from 4 to 8 mice per group from one of two independent experiments. UI stands for uninfected. dpi stands for days post infection.
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FIGURE 3 | The increase on the percentage of LMPP and the decrease on the percentage of CLP in mice infected with M. avium 25291 is independent on
IFNg and iNOS. (A) Schematic representation of the gating used to select LMPP population in the BM from uninfected WT mice (top), or infected for 80 days
with M. avium 25291 (bottom). Total BM cells were previously selected eliminating doublets and debris. (B) Percentage of LMPP in the lineage negative
population from uninfected (white) WT mice or infected with M. avium strain 25291 (blue) or strain 2447 (pink) at 30, 60 and 80 dpi. (C–E) Percentage of
LMPP in the lineage negative population from uninfected (white) or infected for 80 days with M. avium 25291 (blue), WT, IFNgKO, MIIG or iNOSKO mice.
(F) Schematic representation of the gating used to select CLP population in the BM from uninfected WT mice (top), or infected for 80 days with M. avium
25291 (bottom). Total BM cells were selected eliminating doublets and debris. (G) Percentage of CLP in the lineage negative population from uninfected WT
mice (white), or infected with M. avium strain 25291 (blue) or strain 2447 (pink) at 30, 60 and 80 dpi. (H–J) Percentage of CLP in the lineage negative
population from uninfected (white) or infected for 80 days with M. avium 25291 (blue), WT, IFNgKO, MIIG or iNOSKO mice. In all graphs, bars represent the
mean from 4 to 8 mice per group, from one of two independent experiments. In B and G comparisons between infected and uninfected mice were evaluated by
ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test and marked as: **p < 0.01, ***p <0.001, ****p < 0.0001; comparisons between infected
groups were evaluated by 2-way ANOVA followed by Tukey’s multiple comparisons test and marked as: ###p < 0.001, ####p < 0.0001. In (C–E, H–J), comparisons
were evaluated by 2-way ANOVA followed by Tukey’s multiple comparisons test and marked as: *p < 0.05, **p < 0.01, *** p < 0.001, ****p < 0.0001 for comparisons
between uninfected and infected, and as: #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 for comparisons between infected groups. UI stands for uninfected.
dpi stands for days post infection.
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ability to reconstitute mice lacking T cells in a process dependent
on the expression of IFNg on BM cells but independent of NO
production by the recipient thymus. The data presented here
support the hypothesis that infection-induced BM cells
alterations play a relevant part on thymic atrophy caused by
M. avium infection.

IFNg and iNOS Expression Is Associated
With a More Inflammatory Profile in the
Thymus After Infection
The observation that IFNgKO and iNOSKO mice have the
same alterations on the percentage/number of BM T cell
Frontiers in Immunology | www.frontiersin.org 8
precursors as WT mice after infection, but no premature
thymic atrophy (10), suggests that these alterations per se are
insufficient to cause premature thymic atrophy. Therefore, we
hypothesized that IFNg and NO production have a direct impact
in the thymus that synergizes with alterations in the BM
precursor cells. To investigate this hypothesis, the expression
of inflammatory molecules in the thymus of WT, IFNgKO and
iNOSKOmice was evaluated after infection withM. avium strain
25291. We observed lower expression of iNos in the thymus of
infected IFNgKO mice compared to infected WT mice
(Figure 5A), while Ifng expression is increased upon infection,
independently of iNOS expression (Figure 5B). In respect to
A B

C D

E F

FIGURE 4 | Overall decreased ability to reconstitute thymi from RAGKO mice by BM cells from M. avium strain 25291 infected mice is IFNg-dependent. (A, B) RAGKO mice
were reconstituted with lineage negative BM cells from uninfected (white) or 70 days M. avium 25291 infected (purple) WT (solid) or IFNgKO mice (dashed). (A) Number of the
four main thymocyte populations (DN, DP, CD4SP and CD8SP). (B) Number of splenic total T cells, and of CD4+ and CD8+ T cells. (C, D) RAGKO (solid) or iNOS.RAG.2KO
(dashed) mice were reconstituted with lineage negative BM cells from uninfected (white) or 70 days M. avium 25291 infected (purple) WT mice. (C) Number of cells from the
four main thymocyte populations. (D) Number of splenic T cells and its subpopulations. RNA expression levels in WT mice uninfected (white) or infected with M. avium strain
25291 for 70 days (teal). (E) Expression in the thymus of the chemokines Ccl21, Ccl25 and Cxcl12, and of P-selectin. (F) Expression in the BM of the chemokines receptors
Ccr7, Ccr9 and Cxcr4, and of Psgl1. In (A–D) bars represent the mean + SEM from 3 to 6 mice per group from one of two independent experiments. Comparisons
were performed using 2-way ANOVA followed by Tukey’s multiple comparisons test, and marked between infected and uninfected mice as: *p < 0.05, **p < 0.01,
***p < 0.001. For p-values between [0.05; 0.10], their values are represented in the graphs. In E and F bars represent the median from 10 to 16 mice per group
from two pooled independent experiments. Comparisons between infected and uninfected were performed by two-tailed unpaired t-test or Mann-Whitney test,
according to normality, and marked as **p < 0.01, ***p < 0.001, ****p < 0.0001. UI stands for uninfected. dpi stands for days post infection. DN stands for double
negative. DP stands for double positive. SP stands for single positive.
December 2021 | Volume 12 | Article 696415

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Barreira-Silva et al. Mycobacterium avium-Induced Thymic Atrophy
Gr expression, no clear differences were observed upon
infection with M. avium strain 25291 (Figures 5C, D),
although WT, but not iNOSKO infected mice, show higher
serum levels of corticosterone (Figure 5E). Infection induces
the expression of Il6 in WT mice but not in IFNgKO and
Frontiers in Immunology | www.frontiersin.org 9
iNOSKO mice (Figures 5F, G). We also observed a tendency
for increased Tnf expression in the thymus of WT, not
present in iNOSKO mice (Figures 5H, I), despite high
variability for this particular gene within groups and
between experiments.
A B
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FIGURE 5 | M. avium strain 25291 infected IFNgKO and iNOSKO mice present a milder inflammatory profile in the thymus than WT infected mice. RNA expression
levels in the thymus of WT, IFNgKO and iNOSKO mice uninfected (white) or infected with M. avium strain 25291 for 50 (yellow) or 70 (teal) days. (A) iNos; (B) Ifng;
(C, D) Gr; (F, G) Il6; and (H, I) Tnf. (E) Basal corticosterone levels in the serum of WT and iNOSKO mice uninfected (white) or infected with M. avium strain 25291 for
70 days (teal). Bars represent the median for all graphs except for (E) where mean is represented; for (A, C, F, H) from 4 to 6 mice per group from one experiment;
for (B, D, E, G, I) from 10 to 12 mice per group from two pooled independent experiments. Statistically significant differences were accessed by 2-way ANOVA
followed by Tukey’s multiple comparisons test and marked between uninfected and infected groups as: *p < 0.05, **p < 0.01; and between infected groups as:
#p < 0.05, ##p < 0.01. For p-values between [0.05; 0.10], their values are represented in the graphs. UI stands for uninfected. dpi stands for days post infection.
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Thymic Stroma From M. avium 25291
Infected Mice Is Unable to Support
Optimal T Cell Differentiation
To determine if alterations in the thymic stroma (considered here
as composed by TECs, antigen presenting cells and the overall
milieu) contribute to infection-induced thymic atrophy, we
investigated the ability of thymi from infected animals to
support thymocyte differentiation when BM cells from
uninfected mice are provided. Thus, atrophied thymi from
infected WT mice (CD45.2) and from uninfected RAGKO mice
(CD45.2), were transplanted under the kidney capsules of
uninfected WT CD45.1 mice (i.e., one thymus on each kidney
of the same recipient mouse; Figure 6A). Four weeks after
transplant mice were euthanized and the four main thymocyte
populations within CD45.1+ cells were analyzed in the
transplanted thymi and in the endogenous thymi of recipient
mice (Figure 6B). Transplanted thymi from infected WT mice
show lower percentage of total thymocytes with origin in the
recipient mice (CD45.1+), when compared with transplanted
thymi from uninfected RAGKO mice. Still, precursor cells from
recipient mice are recruited and replace most of the donor
thymocytes in the transplanted thymi from infected WT mice,
as the majority of cells recovered are CD45.1+(Figure 6C). The
percentage of the thymocyte populations in the transplanted WT
infected thymi are significantly distorted, while that in the
transplanted RAGKO thymi are similar to the ones observed in
the endogenous thymi (Figure 6D). The absolute number of each
thymocyte population is higher in uninfected RAGKO thymi than
in thymi from infected WT mice (Figure 6E). These results show
that thymic stroma from WT mice infected withM. avium 25291
has an impaired ability to support thymocyte differentiation.

Upon 70 days of infection by M. avium strain 25291, a
disruption of the thymic structure is observed, although there
is variability between mice. While some infected WT mice
maintain a compartmentalized thymic structure, with clear
distinction between cortex (cTECs, stained mostly by K8) and
medulla (mTECs, stained mostly by K5), others present a thymus
without clear distinction of the two main compartments and
densely stained for K5 and K8 (Supplementary Figure 3).
However, even in infected WT mice that preserve a clear
compartmentalization between cortex and medulla, there is a
reduction of the cortex region, as observed in K8 and HE stains
(Supplementary Figure 3).

Increased Thymocyte Death in Infected
Mice Is Independent of Caspase-3
Activation
To further dissect the mechanisms that lead to infection-induced
thymic atrophy we investigated thymocyte death by analyzing the
incorporation of propidium iodide (PI) and binding of annexin V
by thymocytes. Infection by both M. avium strains (25291 and
2447) leads to a reduction in the percentage of viable cells (Annexin
V-PI-) andan increase in the percentage of apoptotic cells (Annexin
V+PI-/low) (Figure7A).However, these alterationsoccur earlier and
are of a greater magnitude in mice infected with the high virulence
strain 25291 compared to mice infected with the low virulence
Frontiers in Immunology | www.frontiersin.org 10
strain 2447 (Figure 7A). Increased percentage of thymocytes
undergoing necrosis/late apoptosis (Annexin V+ PIhigh) is
observed upon infection with M. avium strain 25291, but not
with strain 2447 at 70 dpi (Figure 7A).

To understand if these alterations are dependent on IFNg
and/or NO production, we analyzed thymocyte cell death in
thymi from IFNgKO and iNOSKO mice at 70 dpi. The reduction
in the percentage of viable thymocytes, and the increase in the
percentage of apoptotic thymocytes is similarly observed in
IFNgKO and iNOSKO mice, indicating that these alterations in
death do not require IFNg or NO (Figure 7B). However, neither
IFNgKO nor iNOSKO infected mice reveal an increased
percentage of necrotic/late apoptotic thymocytes in
comparison to the uninfected peers (Figure 7B). With respect
to the four main thymocyte populations, DP, CD4 single positive
(SP) and CD8SP are the ones most affected after infection, in an
IFNg and NO independent manner (Supplementary Figure 4A-
D). In infected WT mice, DP thymocytes is the only population
with increased percentage of necrosis/late apoptosis, a difference
not present in IFNgKO or iNOSKO infected mice, as observed in
total thymocytes (Supplementary Figure 4B).

Finally, we observed that infection with both M. avium strains
leads to decreased percentage of active caspase-3 positive
thymocytes. In mice infected with strain 25291, this decrease is
evidentasearlyas30dpi, and is sustainedup to70dpi. Incontrast, the
reduction in the percentage of active caspase-3 positive thymocytes is
onlyobserved at 70dpi inmice infectedwith strain2447 (Figure7C).
Upon infection with strain 25291, the percentage of active caspase-3
positive thymocytes decreases in IFNgKO mice, though to a lower
extent in comparison to WT mice (Figure 7D). These results show
that the increasedapoptosisoccurring in thymocytes after infection is
independent of caspase-3 activation. Additionally, the reduction in
the percentage of active caspase-3 positive thymocytes is partially
dependent of IFNg and dependent of iNOS.
DISCUSSION

Infection by M. avium strain 25291 results in severe thymic
atrophy, a process dependent on the synergy between GC and
NO produced by IFNg activated Mf (10). Here we investigate
where and how these mediators cause M. avium-induced
thymic atrophy

Following infection with M. avium strain 25291 we found an
increase in the percentage of LSK cells in the BM which is
dependent on IFNg. Our results are coherent with previous
reports describing LSK expansion during infection by M.
tuberculosis, M. avium and Vaccinia virus (29, 30, 35, 39). To
our knowledge, we report for the first time that the expansion of
LSK cells duringM. avium infection is at least partially dependent
on Mf activation by IFNg. The experiments leading to this
conclusion were those using MIIG mice, whose CD68+ cells are
defective in IFNg signaling. Although an increase on the
percentage of LSK cells can be observed at 80 dpi in MIIG mice,
it does not reach the same magnitude of increase as that observed
in infected WT mice. The expansion of LSK cells during M.
tuberculosis infection has been associated with two cytokines
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Barreira-Silva et al. Mycobacterium avium-Induced Thymic Atrophy
produced byMf, TNF and IL-6 (29).We also observed an increase
in the mRNA expression of these two cytokines in the BM afterM.
avium strain 25291 infection, supporting the relevance of activated
Mf in LSK expansion. We also show that the expansion of LSK
cells is independent of iNOS, as iNOSKO infectedmice present the
same alteration in this BM population as WT infected mice. This
shows that the expansion of LSK might be part of the mechanism
leading to thymic atrophy but clearly not sufficient.

Within the LSK population, we observed a reduction in the
percentage of LT-HSC and ST-HSC. HSC are very sensitive to
the surrounding microenvironment and HSC alterations
associated with infection and inflammation have been well
described. These alterations include the reduction of the HSC
pool and changes in their proliferation (30, 49–54). During
chronic inflammation or chronic IFNg signaling there is
impaired self-renewal of HSC that culminates in the reduction
of this population (49). We propose that this same mechanism
leads to the reduction in HSC percentage observed upon
infection with M. avium strain 25291.

Regarding the most direct T cell precursors in the BM, CLP
and LMPP, we show thatM. avium infection induces an increase
Frontiers in Immunology | www.frontiersin.org 11
in the percentage and number of LMPP, which is independent of
IFNg and iNOS. Kong et al., using a sepsis model, described an
increase in the number of LMPP associated with premature
thymic atrophy (41), which is consistent with our results. In
contrast, the percentage and number of CLP is reduced after M.
avium infection with either strain 25291 or 2447, being clearly
more evident for the more virulent strain 25291. This decrease of
CLP is independent of IFNg and iNOS. Reduction of CLP was
also reported after P. chabaudi infection, although thymic
atrophy was not assessed in this study (36). In contrast,
infection with Vaccinia virus, known to cause thymic atrophy,
leads to an increase of CLP in the BM (35). These results indicate
that directionality of the changes in this BM population is
pathogen specific and not always associated with infection-
induced thymic atrophy.

BM resident Mf are essential for bone marrow niche
homeostasis. Mf are in close contact with HSC and contribute
for the maintenance of quiescence, self-renewal and proliferation
of these cells (55, 56). BM resident Mf are also crucial for
erythropoiesis (57), and it has been shown that infection withM.
avium strain 25291 induces alterations in the production of
A B
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FIGURE 6 | Thymic stroma from WT mice infected with M. avium 25291 does not properly support T cell differentiation. (A) Experimental schematic representation
of thymi transplant from M. avium infected WT mice (70 dpi) and uninfected RAGKO mice (both CD45.2) under the kidney capsule of WT CD45.1 recipient mice.
Mice were euthanized 4 weeks after transplant. (B) Representative plots of the CD45.1+ four main thymocyte populations (DN, DP, CD4SP and CD8SP) from WT
CD45.1 recipient mice endogenous thymi, and from transplanted WT infected and RAGKO uninfected thymi. (C) Percentage of cells recruited from the recipient
mouse (CD45.1+), and (D) percentage and (E) number of cells from the four main thymocyte populations from endogenous thymi of WT CD45.1 recipient mice
(grey), or from transplanted thymi from 70 days M. avium 25291 infected WT mice (teal) or uninfected RAGKO mice (white). Data represent the mean from five mice
per group from one of two independent experiments. Comparisons between WT 70 dpi and uninfected RAGKO were performed by 2-tailed ratio paired t test and
marked as: #p < 0.05, ##p < 0.01, ###p < 0.001. UI stands for uninfected. dpi stands for days post infection. DN stands for double negative. DP stands for double
positive. SP stands for single positive.
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FIGURE 7 | The percentage of viable cells and of cells positive for active caspase-3 decrease after infection. (A) Representation of the gating (top) and plotting of
viable (left graph – AnnexinV- PI-), apoptotic (center graph – AnnexinV+ PI-/low) and necrotic/late apoptotic (right graph – AnnexinV+ PIhigh) thymocytes from uninfected
WT mice (white) or infected for 30, 60 or 70 days with M. avium 25291 (blue) or M. avium 2447 (pink). (B) Representation of the gating (top) and plotting of viable
(left graph – AnnexinV- PI-), apoptotic (center graph – AnnexinV+ PI-/low) and necrotic/late apoptotic (right graph – AnnexinV+ PIhigh) thymocytes from WT, IFNgKO or
iNOSKO mice uninfected (white) or infected for 70 days with M. avium 25291 (teal). (C) Representative histogram and plotting of active caspase-3 positive
thymocytes from uninfected WT mice (white) or infected for 30, 60 or 70 days with M. avium 25291 (blue) or M. avium 2447 (pink). (D) Representative histogram and
plotting of caspase-3 positive thymocytes from WT, IFNgKO or iNOSKO mice uninfected (white) or infected for 70 days with M. avium 25291 (teal). For all the
analysis, total thymocytes were previously selected eliminating doublets and debris. Bars represent the mean from: 3 to 5 mice per group from one experiment for
(A, C); 9 to 14 mice per group from two pooled independent experiments for (B, D). In (A, C) comparisons between infected and uninfected mice were evaluated by
ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test and marked as: *p < 0.05, ***p < 0.001, ****p < 0.0001; and comparisons between
infected groups were evaluated by 2-way ANOVA followed by Tukey’s multiple comparisons test and marked as: #p < 0.05, ##p < 0.01, ###p < 0.001, ####p <
0.0001. In (B, D), comparisons were performed by 2-way ANOVA followed by Tukey’s multiple comparisons test, and marked as *p < 0.05, **p <0.01, ***p < 0.001,
****p < 0.0001 for differences between uninfected and infected, and as #p < 0.05, ##p <0.01, ###p < 0.001, ####p < 0.0001 for differences between infected groups.
UI stands for uninfected. Casp3 stands for active caspase-3. dpi stands for days post infection.
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erythrocytes and an accelerated removal of those cells from the
circulation, resulting in anemia (46). Not only IFNg impact the
BM, other cytokines that are produced by Mf, such as IL-6, TNF
and type I IFN, have been also associated with disturbances in
BM precursors after infection and/or inflammation (29, 34, 40).
In fact, both Il6 and Tnf mRNA expression is increased in the
BM ofM. avium strain 25291 infected mice. It has been described
that the overproduction of IL-6 after infection with Group B
Streptococcus is associated with iNOS expression (58). We also
show that up-regulation of Il6 expression in the BM after
infection with M. avium is dependent on iNOS. The activation
of Mf might therefore play a role in infection-induced
alterations in hematopoiesis, as is suggested by the results
presented here.

Unlike BM cells from uninfected WT or IFNgKO infected
mice, BM cells from M. avium strain 25291 infected WT mice
have an overall impaired ability to reconstitute the thymus and
the periphery of RAGKO mice. One could associate the reduced
ability of BM cells from infected WT mice to reconstitute the
thymus from RAGKO mice with the reduced number of CLP
after infection. However, infected IFNgKO mice show the same
reduction in CLP, and the BM cells from these mice reconstitute
the thymus from RAGKO mice similarly to uninfected mice.
These results show that during infection by M. avium 25291,
changes in the overall ability of BM cells to progress into T cell
differentiation contribute to premature thymic atrophy. To our
knowledge, only two reports associate BM defects with
premature thymic atrophy. One of them shows that sepsis-
induced thymic atrophy is associated with a dramatic decrease
in early thymic precursors (ETP) as a consequence of impaired
migration of progenitors from the BM to the thymus, and the
inability of BM progenitors to commit to the lymphoid lineage
(41). A possibility is that infection might impair the migration
and entry of BM T cell precursors into the thymus. Although we
showed before a reduction on the number of ETPs in the thymus
of infected mice (10), we saw no obvious differences on the
expression of chemokine receptors responsible for the migration
of BM T cell precursors, Ccr9 and Cxcr4, nor on Psgl1 that is
needed for the entry of the precursors in the thymus, in BM cells
from infected WTmice. Only the expression of the receptor Ccr7
is decreased after infection, although no alterations were
observed on the expression in the thymus of its chemokine
ligand Ccl21. This is in contrast with a previous report on sepsis-
induced thymic atrophy, in which the authors show a down-
regulation of the expression of CCR7, CCR9 and PSGL1 (41).

The severe alterations in the BM during M. avium strain
25291 infection do not appear to be the sole cause of thymic
atrophy. T cell differentiation only occurs in the thymic
microenvironment, which is supported by TECs. By
performing thymic transplants, we show that the stroma of M.
avium-atrophied thymi are impaired in their capacity to support
the differentiation of new T cells when provided with BM
precursors from uninfected WT mice, which are able to give
rise to T cells in thymic stroma of RAGKO mice. In a model of
thymic atrophy during pregnancy, thymic stromal cells were
shown to have limited capacity to produce chemokines essential
Frontiers in Immunology | www.frontiersin.org 13
for T cell precursors homing to the thymus, including CCL25,
CXCL12, CCL21 and CCL19 (59). The limited ability to recruit
BM T cell precursors to the thymus could be a mechanism
consistent with our previous observation that a reduction on the
most immature thymocytes (ETPs; T cell precursor cells that just
entered the thymus) occurs after infection with M. avium strain
25291 (10). However, we show that the expression in the thymus
of Ccl25 and Cxcl12 is increased after infection with M. avium
strain 25291. P-selectin, that is essential for the rolling and entry
of T cell precursors in the thymus, is also increased in thymi from
infected WT mice. These data led us to propose that there are
limitations in the thymic stroma to retain T cell precursors and/
or support T cell differentiation itself. Long-term infection with
the high virulence strain 25291 leads to alteration in the
proportion of the two main thymic regions, namely a
reduction in the cortex and a proportional increase in the
medulla, that might simply be associated with lack of
thymocytes. In some mice, but not all, thymi from 70 dpi
reveal a lack of clear distinction between cortex and medulla
and an overall increased expression of K5 and K8. This type of
disorganized thymic structure has been previously observed
during HIV (60–62), MuLV (63), Leishmania infantum (64)
and P. berghei (65) infections.

It is possible that infection with M. avium strain 25291
impairs thymocyte differentiation itself, either by blocking a
certain differentiation stage or by inducing thymocyte cell
death. We observed increased expression of Il6 in the thymus
of infected mice, which is in accordance with a study showing
that over-expression of IL-6 inhibits the differentiation of double
negative (DN) thymocytes in a model of T. cruzi infection-
induced thymic atrophy. Increased GC, IFNg, TNF and NO
levels have been associated with augmented thymocyte apoptosis
during infection and other conditions (25–28, 66–68). We found
a reduction in the percentage of viable (Annexin V- PI-)
thymocytes after infection, independent of IFNg and iNOS.
During T cell differentiation, all the non-positively selected
thymocytes die by programmed cell death, which represents
around 90% of the thymocytes. For this reason, the thymus is a
specialized organ for dead cell clearance (69). This makes it
challenging to study cell death in the thymus since dead cells are
difficult to be tracked. This rapid clearance could explain why
only a slight decrease in the percentage of viable thymocytes is
observed after infection. Still, an increase in thymocyte death is
consistent with most infection-induced thymic atrophy models,
in which increased thymocyte apoptosis is suggested to be the
main mechanism (19, 70–77). We detect an increase in Tnf
mRNA expression in the thymus after infection with M. avium
strain 25291, which was associated with thymocyte apoptosis in
other models (26, 66, 67). However, the increase in thymocyte
apoptosis was also observed in WT mice infected withM. avium
strain 2447, and in IFNgKO and iNOSKO mice infected with
strain 25291, all conditions without infection-induced thymic
atrophy (10). This lack of correlation implies that while cell
apoptosis may contribute to M. avium-induced thymic atrophy,
it is not the sole mechanism. Additionally, we observed a
decrease in the percentage of thymocytes positive for active
December 2021 | Volume 12 | Article 696415
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caspase-3. Thus, while thymocytes are dying by apoptosis,
apoptosis may be mediated by a mechanism other than
activation of caspase-3. However, as caspase-3 is fundamental
for T cell differentiation in the thymus (78), the reduction in the
percentage of cells expressing the active form of this enzyme
suggests that infection is affecting other unexplored parameters
of thymocyte differentiation, in an iNOS dependent manner.
Finally, WT infected mice have an increase in the percentage of
necrotic/late apoptotic thymocytes, which is not observed in
IFNgKO and iNOSKO infected mice. As this increase is only
detected at late time points (70 dpi), and thymic atrophy is
already evident earlier (10), this implies that the appearance of
necrotic/late apoptotic thymocytes is not the driver ofM. avium-
induced thymic atrophy.

In conclusion, we show that the mechanism of M. avium-
induced premature thymic atrophy results from the association of
several factors that seems to be cumulative: (1) alterations of the T
cell precursors in the BM; (2) impaired ability of BM precursors to
commit to thymocyte differentiation once within the thymus; (3)
reduced capacity of thymic stromal cells to sustain T cell
differentiation; and (4) IFNg- and iNOS-independent thymocyte
apoptosis. Together, our data shows that infection with M. avium
strain 25291 induces IFNg production that alters BM T cell
precursors but that other alterations, independent of IFNg and
iNOS, are also required. This is probably associatedwith the parallel
production of IL-6, TNF and/or other pro-inflammatory cytokines.
T cell precursors that reach the thymus encounter a harsh
microenvironment affected by prolonged inflammation, which
impairs their ability to differentiate, and/or leads to death, and
culminates in premature thymic atrophy.
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