The Role of Neurexins in Serotonin Signaling and Complex Behaviors
Cheung, Amy
Citations
Authors
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract
Extensive serotonin (5-HT) fiber innervation throughout the brain corroborates 5-HT’s modulatory role in numerous behaviors including social behavior, emotion regulation, and learning and memory. Abnormal brain 5-HT levels and function are implicated in Autism Spectrum Disorder (ASD) which often co-occurs with other neuropsychiatric conditions. While 5-HT therapeutics are used to treat ASD, variable improvements in symptomatology require further investigation of 5-HT-mediated pathology. Neurexins (Nrxns) are presynaptic cell adhesion molecules that maintain synapse function for proper neural circuit assembly. Given that aberrant Nrxn and 5-HT function independently contribute to signaling pathology and behavioral impairments, it is critical to understand how Nrxn-mediated 5-HT neurotransmission participates in pathological mechanisms underlying ASD.
Using fluorescence in situ hybridization, I found that the three Nrxn genes (Nrxn1, Nrxn2, and Nrxn3) are differentially expressed in 5-HT neurons in the dorsal raphe nucleus (DRN) and median raphe nucleus which contain the primary source of 5-HT neurons in the brain. Our lab generated a mouse model with selective deletion of Nrxns in 5-HT neurons to investigate the function of Nrxns in 5-HT signaling. The loss of Nrxns at 5-HT release sites reduced 5-HT release in the DRN and hippocampus and altered 5-HT innervation in specific brain regions. The lack of 5-HTergic Nrxns also reduced sociability and increased depressive-like behavior in males. This mouse model provides mechanisms to shed new light on 5-HT neurotransmission in the generation of complex behaviors.