Loading...
Thumbnail Image
Publication

Modulating Viscoelasticity, Stiffness, and Degradation of Synthetic Cellular Niches via Stoichiometric Tuning of Covalent versus Dynamic Noncovalent Cross-Linking

Tan, Yu
Huang, Henry
Ayers, David C.
Song, Jie
Embargo Expiration Date
Link to Full Text
Abstract

Viscoelasticity, stiffness, and degradation of tissue matrices regulate cell behavior, yet predictive synergistic tuning of these properties in synthetic cellular niches remains elusive. We hypothesize that reversible physical cross-linking can be quantitatively introduced to synthetic hydrogels to accelerate stress relaxation and enhance network stiffness, while strategic placement of isolated labile linkages near cross-linking sites can predict hydrogel degradation, both of which are essential for creating adaptive cellular niches. To test these hypotheses, chondrocytes were encapsulated in hydrogels formed by biorthogonal covalent and noncovalent physical cross-linking of a pair of hydrophilic building blocks. The stiffer and more viscoelastic hydrogels with DBCO-DBCO physical cross-links facilitated proliferation and chondrogenic ECM deposition of encapsulated cells by dissipating stress imposed by expanding cell mass/ECM via dynamic disruption/reformation of physical cross-links. Degradation of labile linkages near covalent cross-linkers further facilitated cell proliferation and timed cell release while maintaining chondrogenic phenotype. This work presents new chemical tools for engineering permissive synthetic niches for cell encapsulation, 3D expansion, and release.

Source

ACS Cent Sci. 2018 Aug 22;4(8):971-981. doi: 10.1021/acscentsci.8b00170. Epub 2018 Jul 20. Link to article on publisher's site

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1021/acscentsci.8b00170
PubMed ID
30159394
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Copyright © 2018 American Chemical Society. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
Distribution License