Publication

Prediction of protein helices with a derivative of the strip-of-helix hydrophobicity algorithm

Reyes, Victor E.
Phillips, Lisa
Humphreys, Robert E.
Lew, Robert A.
Embargo Expiration Date
Abstract

The strip-of-helix hydrophobicity algorithm was devised to identify protein sequences which, when coiled as alpha or 3(10) helices, had one axial, hydrophobic strip and otherwise variably hydrophilic residues. The strip-of-helix hydrophobicity algorithm also ranked such sequences according to an index, the mean hydrophobicity of amino acids in the axial strip. This algorithm well predicted T cell-presented fragments of antigenic proteins. A derivative of this algorithm (the structural helices algorithm (SHA] was tested for the prediction of helices in crystallographically defined proteins. For the SHA, eight amino acid sequences, 2 cycles plus one amino acid in an alpha helix, with strip-of-helix hydrophobicity indices greater than 2.5, were selected with overlapping segments joined. These selections were terminated according to simple "capping rules," which took into account the roles of N-terminal Asn or Pro and C-terminal Gly in the stability of helices. In analyses of 35 crystallographically defined proteins with known alpha and 3(10) helices, the predictions with the SHA overlapped (had overlap indices x greater than or equal to 0.5) with 34% of known helices, touched (had overlap indices 0.5 greater than x greater than 0) or overlapped with 66% of known helices, or were neighboring (came within 6 residues) or touched or overlapped with 82% of known helices. At each level of judging the quality of prediction, the SHA was usually less sensitive (correct predictions/total number of known helices) and more efficient (correct predictions/total number of predictions) than the Chou-Fasman and Garnier-Robson methods. It was simpler in design and calculation. The chemical mechanisms underlying these algorithms appear to apply both to protein folding and to selection of T cell-presented antigenic sequences.

Source

J Biol Chem. 1989 Aug 5;264(22):12854-8.

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
PubMed ID
2787794
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Distribution License