Protein arginine methyltransferase 5 (Prmt5) localizes to chromatin loop anchors and modulates expression of genes at TAD boundaries during early adipogenesis [preprint]
Syed, Sabriya A ; Shqillo, Kristina ; Nand, Ankita ; Zhan, Ye ; Dekker, Job ; Imbalzano, Anthony N
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract
Protein arginine methyltransferase 5 (Prmt5) is an essential regulator of embryonic development and adult progenitor cell functions. Prmt5 expression is mis-regulated in many cancers, and the development of Prmt5 inhibitors as cancer therapeutics is an active area of research. Prmt5 functions via effects on gene expression, splicing, DNA repair, and other critical cellular processes. We examined whether Prmt5 functions broadly as a genome-wide regulator of gene transcription and higher-order chromatin interactions during the initial stages of adipogenesis using ChIP-Seq, RNA-seq, and Hi-C using 3T3-L1 cells, a frequently utilized model for adipogenesis. We observed robust genome-wide Prmt5 chromatin-binding at the onset of differentiation. Prmt5 localized to transcriptionally active genomic regions, acting as both a positive and a negative regulator. A subset of Prmt5 binding sites co-localized with mediators of chromatin organization at chromatin loop anchors. knockdown decreased insulation strength at the boundaries of topologically associating domains (TADs) adjacent to sites with Prmt5 and CTCF co-localization. Genes overlapping such weakened TAD boundaries showed transcriptional dysregulation. This study identifies Prmt5 as a broad regulator of gene expression, including regulation of early adipogenic factors, and reveals an unappreciated requirement for Prmt5 in maintaining strong insulation at TAD boundaries and overall chromatin organization.
Source
Syed SA, Shqillo K, Nand A, Zhan Y, Dekker J, Imbalzano AN. Protein arginine methyltransferase 5 (Prmt5) localizes to chromatin loop anchors and modulates expression of genes at TAD boundaries during early adipogenesis. bioRxiv [Preprint]. 2023 Jun 14:2023.06.13.544859. doi: 10.1101/2023.06.13.544859. PMID: 37398486; PMCID: PMC10312757.
Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
Permanent Link to this Item
PubMed ID
Other Identifiers
Notes
This article is a preprint. Preprints are preliminary reports of work that have not been certified by peer review.