Publication

Fabrication of tissue engineered tympanic membrane patches using computer-aided design and injection molding

Hott, Morgan E.
Megerian, Cliff A.
Beane, Rich
Bonassar, Lawrence J.
Citations
Altmetric:
Student Authors
Faculty Advisor
Academic Program
Document Type
Journal Article
Publication Date
2004-07-06
Keywords
Subject Area
Embargo Expiration Date
Abstract

OBJECTIVES/HYPOTHESIS: The goal of the current study was to use computer-aided design and injection molding technologies to tissue engineer precisely shaped cartilage in the shape of butterfly tympanic membrane patches out of chondrocyte-seeded calcium alginate gels. METHODS: Molds were designed on SolidWorks 2000 and built out of acrylonitrile butadiene styrene (ABS) using fused deposition modeling (FDM). Tympanic membrane patches were fabricated using bovine articular chondrocytes seeded at 50 x 10 cells/mL in 2% calcium alginate gels. Molded patches were cultured in vitro for up to 10 weeks and assessed biochemically, morphologically, and histologically. RESULTS: Unmolded patches demonstrated outstanding dimensional fidelity, with a volumetric precision of at least 3 microL, and maintained their shape well for up to 10 weeks of in vitro culture. Glycosaminoglycan and collagen content increased steadily over 10 weeks in culture, demonstrating continual deposition of new extracellular matrix consistent with new tissue development. CONCLUSIONS: The use of computer-aided design and injection molding technologies allows for the fabrication of very small, precisely shaped chondrocyte-seeded calcium alginate structures that faithfully maintain their shape during in vitro culture. In vitro fabrication of tympanic membrane patches with a precisely controlled geometry may have the potential to provide a minimally invasive alternative to traditional methods for the repair of chronic tympanic membrane perforations.

Source

Laryngoscope. 2004 Jul;114(7):1290-5.

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1097/00005537-200407000-00028
PubMed ID
15235363
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Distribution License