Publication

Purification of a novel insulin-stimulated protein kinase from rat liver

Klarlund, Jes K.
Bradford, Andrew P.
Milla, Maria G.
Czech, Michael P.
Embargo Expiration Date
Abstract

We previously described a novel insulin-stimulated protein kinase activity that phosphorylates Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) in cytosolic extracts of adipocytes (Yu, K-T., Khalaf, N., and Czech, M. P. (1987) J. Biol. Chem. 262, 16677-16685). In the present experiments, cytosolic extracts of livers from insulin-treated rats also exhibited a 30-100% increase in this Kemptide kinase activity and served as an abundant source for purification. The Kemptide kinase was purified in parallel from liver extracts of insulin-treated or control rats through five chromatographic steps and one polyethylene glycol precipitation. The chromatographic behavior of the insulin-stimulated Kemptide kinase differed significantly from the control kinase on Mono Q and heparin-Sepharose resins. The purified kinase preparations retain insulin stimulations of 2-10-fold. Analysis of the purified control and insulin-stimulated kinases by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed single bands with similar silver staining intensity and apparent molecular masses of 52 kDa. The insulin-stimulated Kemptide phosphorylating activity also coincided with the major silver-stained band following isoelectric focusing in polyacrylamide gels. The stimulation of kinase activity in response to administration of insulin is due to an increase in Vmax, whereas the Km for Kemptide (0.3 mM) is unchanged. The apparent molecular mass of the native kinase determined by gel filtration is approximately 50 kDa, suggesting that it exists as a monomer. Either Mg2+ or Mn2+ serve as cofactors for the kinase which phosphorylates a variety of basic substrates including a number of peptides and histones. The activity of the Kemptide kinase is not changed by several compounds that have been shown to modulate other kinases. Based on these data, we conclude 1) a novel insulin-sensitive Kemptide kinase in liver cytosol has been purified to near homogeneity, and 2) insulin administration acutely modulates the specific activity of this Kemptide kinase in livers of intact rats.

Source

J Biol Chem. 1990 Jan 5;265(1):227-34.

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
PubMed ID
2403557
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Distribution License