Loading...
Thumbnail Image
Publication

Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2 [preprint]

Becerra-Artiles, Aniuska
Nanaware, Padma P.
Muneeruddin, Khaja
Weaver, Grant
Shaffer, Scott A
Calvo-Calle, J Mauricio
Stern, Lawrence J.
Embargo Expiration Date
Abstract

Seasonal “common-cold” human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but identification and characterization of the T cell response to seasonal human coronaviruses remain largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal human coronavirus OC43. We identified MHC-I and MHC-II bound peptides derived from the viral spike, nucleocapsid, hemagglutinin-esterase, 3C-like proteinase, and envelope proteins. Only three MHC-I bound OC43-derived peptides were observed, possibly due to the potent MHC-I downregulation induced by OC43 infection. By contrast, 80 MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. These peptides elicited low-abundance recall T cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T cell lines. Among the validated epitopes, S903-917 presented by DPA101:03/DPB104:01 and S1085-1099 presented by DRB115:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. N54-68 and HE128-142 presented by DRB115:01 and HE259-273 presented by DPA101:03/DPB104:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow T cell cross-reactivity after infection or vaccination and could aid in the selection of epitopes for inclusion in pan-coronavirus vaccines.

Author Summary There is much current interest in cellular immune responses to seasonal common-cold coronaviruses because of their possible role in mediating protection against SARS-CoV-2 infection or pathology. However, identification of relevant T cell epitopes and systematic studies of the T cell responses responding to these viruses are scarce. We conducted a study to identify naturally processed and presented MHC-I and MHC-II epitopes from human cells infected with the seasonal coronavirus HCoV-OC43, and to characterize the T cell responses associated with these epitopes. We found epitopes specific to the seasonal coronaviruses, as well as epitopes cross-reactive between HCoV-OC43 and SARS-CoV-2. These epitopes should be useful in following immune responses to seasonal coronaviruses and identifying their roles in COVID-19 vaccination, infection, and pathogenesis.

Competing Interest Statement

The authors have declared no competing interest.

Author Summary There is much current interest in cellular immune responses to seasonal common-cold coronaviruses because of their possible role in mediating protection against SARS-CoV-2 infection or pathology. However, identification of relevant T cell epitopes and systematic studies of the T cell responses responding to these viruses are scarce. We conducted a study to identify naturally processed and presented MHC-I and MHC-II epitopes from human cells infected with the seasonal coronavirus HCoV-OC43, and to characterize the T cell responses associated with these epitopes. We found epitopes specific to the seasonal coronaviruses, as well as epitopes cross-reactive between HCoV-OC43 and SARS-CoV-2. These epitopes should be useful in following immune responses to seasonal coronaviruses and identifying their roles in COVID-19 vaccination, infection, and pathogenesis. Competing Interest Statement

The authors have declared no competing interest.

Source

Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2 Aniuska Becerra-Artiles, Padma P. Nanaware, Khaja Muneeruddin, Grant C. Weaver, Scott A. Shaffer, J. Mauricio Calvo-Calle, Lawrence J. Stern bioRxiv 2022.12.01.518643; doi: https://doi.org/10.1101/2022.12.01.518643

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1101/2022.12.01.518643
PubMed ID
36482973
Other Identifiers
Notes

This article is a preprint. Preprints are preliminary reports of work that have not been certified by peer review.

Funding and Acknowledgements
Corresponding Author
Related Resources

Now published in PLoS Pathogens, doi:10.1371/journal.ppat.1011032

Related Resources
Repository Citation
Rights
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.; Attribution 4.0 International