Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling
Koon, Alex C. ; Ashley, James A. ; Barria, Romina ; DasGupta, Shamik ; Brain, Ruth ; Waddell, Scott ; Alkema, Mark J ; Budnik, Vivian
Citations
Student Authors
Alex C. Koon
Shamik DasGupta
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Keywords
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract
Adrenergic signaling has important roles in synaptic plasticity and metaplasticity. However, the underlying mechanisms of these functions remain poorly understood. We investigated the role of octopamine, the invertebrate counterpart of adrenaline and noradrenaline, in synaptic and behavioral plasticity in Drosophila. We found that an increase in locomotor speed induced by food deprivation was accompanied by an activity- and octopamine-dependent extension of octopaminergic arbors and that the formation and maintenance of these arbors required electrical activity. Growth of octopaminergic arbors was controlled by a cAMP- and CREB-dependent positive-feedback mechanism that required Octβ2R octopamine autoreceptors. Notably, this autoregulation was necessary for the locomotor response. In addition, octopamine neurons regulated the expansion of excitatory glutamatergic neuromuscular arbors through Octβ2Rs on glutamatergic motor neurons. Our results provide a mechanism for global regulation of excitatory synapses, presumably to maintain synaptic and behavioral plasticity in a dynamic range.
Source
Nat Neurosci. 2011 Feb;14(2):190-9. Epub 2010 Dec 26. Link to article on publisher's website