Functional and Structural Analysis of the Yeast SWI/SNF Complex: a Dissertation
Smith, Corey Lewis
Citations
Authors
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Subject Area
Collections
Embargo Expiration Date
Link to Full Text
Abstract
Modulating chromatin structure is an important step in maintaining control over the eukaryotic genome. SWI/SNF, one of the complexes belonging to the growing family of ATP-dependent chromatin remodeling enzymes, is involved in controlling the expression of a number of inducible genes whose proper regulation is vital for metabolism and progression through mitosis. The mechanism by which SWI/SNF modulates chromatin structure at the nucleosome level is an important aspect of this regulation. The work in this dissertation focuses on how the Saccharomyces cerevisiae SWI/SNF complex uses the energy of ATP-hydrolysis to alter DNA-histone contacts in nucleosomes. This has been approached in a two part fashion. First, the three-dimensional structure and subunit composition of SWI/SNF complex has been determined. From this study we have identified a potential region of the SWI/SNF complex that might [be] a site for nucleosomal interaction. Second, functional analysis of the ATPase domain of Swi2p, the catalytic subunit of SWI/SNF, has revealed that a specific conserved motif is involved in coupling ATP hydrolysis to the mechanism of chromatin remodeling. These results provide a potential model for the function of the SWI/SNF chromatin remodeling complex at the nucleosome level.