Quantitative measurement of muscle oxygen saturation without influence from skin and fat using continuous-wave near infrared spectroscopy
Yang, Ye ; Soyemi, Olusola O. ; Scott, Peter J. ; Landry, Michelle R. ; Lee, Stuart M. C. ; Stroud, Leah ; Soller, Babs R.
Citations
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Publication Date
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract
A method to non-invasively and quantitatively measure muscle oxygen saturation (SmO(2)) using broadband continuous-wave diffuse reflectance near infrared (NIR) spectroscopy is presented. The method obtained SmO(2) by first correcting NIR spectra for absorption and scattering of skin pigment and fat, then fitting to a Taylor expansion attenuation model. A non-linear least squares optimization algorithm with set boundary constraints on the fitting parameters was used to fit the model to the acquired spectra. A data preprocessing/optimization scheme for accurately determining the initial values needed for the optimization was also employed. The method was evaluated on simulated muscle spectra with 4 different scattering properties, as well as on in vivo forearm spectra from 5 healthy volunteer subjects during arterial occlusion. Measurement repeatability was assessed on 24 healthy volunteers with 5 repeated measurements, each separated by at least 48 hours.
Source
Opt Express. 2007 Oct 17;15(21):13715-30. DOI 10.1364/OE.15.013715