Loading...
Thumbnail Image
Publication

Interacting-heads motif has been conserved as a mechanism of myosin II inhibition since before the origin of animals

Lee, Kyounghwan
Sulbaran, Guidenn
Yang, Shixin
Mun, Ji Young
Alamo, Lorenzo
Pinto, Antonio
Sato, Osamu
Ikebe, Mitsuo
Liu, Xiong
Korn, Edward D.
... show 4 more
Embargo Expiration Date
Abstract

Electron microscope studies have shown that the switched-off state of myosin II in muscle involves intramolecular interaction between the two heads of myosin and between one head and the tail. The interaction, seen in both myosin filaments and isolated molecules, inhibits activity by blocking actin-binding and ATPase sites on myosin. This interacting-heads motif is highly conserved, occurring in invertebrates and vertebrates, in striated, smooth, and nonmuscle myosin IIs, and in myosins regulated by both Ca(2+) binding and regulatory light-chain phosphorylation. Our goal was to determine how early this motif arose by studying the structure of inhibited myosin II molecules from primitive animals and from earlier, unicellular species that predate animals. Myosin II from Cnidaria (sea anemones, jellyfish), the most primitive animals with muscles, and Porifera (sponges), the most primitive of all animals (lacking muscle tissue) showed the same interacting-heads structure as myosins from higher animals, confirming the early origin of the motif. The social amoeba Dictyostelium discoideum showed a similar, but modified, version of the motif, while the amoeba Acanthamoeba castellanii and fission yeast (Schizosaccharomyces pombe) showed no head-head interaction, consistent with the different sequences and regulatory mechanisms of these myosins compared with animal myosin IIs. Our results suggest that head-head/head-tail interactions have been conserved, with slight modifications, as a mechanism for regulating myosin II activity from the emergence of the first animals and before. The early origins of these interactions highlight their importance in generating the inhibited (relaxed) state of myosin in muscle and nonmuscle cells.

Source

Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E1991-E2000. doi: 10.1073/pnas.1715247115. Epub 2018 Feb 14. Link to article on publisher's site

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1073/pnas.1715247115
PubMed ID
29444861
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
© 2018. Published under the PNAS license, http://www.pnas.org/page/authors/licenses.
Distribution License