Loading...
Thumbnail Image
Publication

Toll-Like Receptors: Target of Hepatitis C Virus: A Dissertation

Chang, Serena Soyoung Yunmee
Embargo Expiration Date
Link to Full Text
Abstract

Hepatitis C Virus (HCV) is the primary cause of liver transplantation due to its chronic nature in up to eighty percent of infected cases. Around 3 percent of the world’s population is infected with HCV. Treatment for HCV is a combined Ribavirin and interferon-α (IFN-α) therapy effective in only fifty to eighty percent of patients depending on HCV genotype. The growing health concern with this disease is the lack of a cure despite liver transplantation. HCV targets hepatocytes, liver cells, but is not cytolytic. HCV has been shown to induce end stage liver disease through sustained inflammation from the host’s immune system in the liver. One of the key dilemmas in HCV research and the search for fully effective treatments or vaccines is the lack of animal models. HCV infectivity and disease is limited to primates, most specifically to humans, which cannot be fully replicated in any other living being. The mechanisms for HCV evasion or activation of the immune system are complex, many and discoveries within this field are crucial to overcoming this destructive hepatic infection.

Toll-like receptors (TLR) are cellular activators of the innate immune system that have been a target of HCV. Activated TLRs trigger both the inflammatory and anti-viral pathways to produce inflammatory cytokines and interferons. HCV proteins have been reported to activate a number of TLRs in a variety of cell types. In order to identify possible targets of HCV within the TLR family, we first characterized TLR presence and function in both human hepatic carcinoma cell lines and purified primary human hepatocytes. RNA from TLRs 1-10 was observed to varying degrees in both the hepatoma cell lines and the primary hepatocytes. We show the extracellular and/or intracellular presence of TLR2, TLR1, TLR3 and TLR7 proteins in hepatoma cell lines. TLR3 and TLR7 are located within the endosome and recognize viral RNA products. We recently reported that TLR2-mediated innate immune signaling pathways are activated by HCV core and NS3 proteins. TLR2 activation requires homo- or heterodimerization with either TLR1 or TLR6. We show NF-κB activation in hepatoma cells by TLR2/1, TLR2/6 ligand and HCV protein stimulation. In primary hepatocytes, HCV proteins induced both IL-8 and IL-6 production. We also show that primary hepatocytes initiate a Type 1 IFN response in addition to IL-8 and IL-6 production upon stimulation with a TLR7/8 ligand. Human hepatoma and primary hepatocytes are responsive to TLR2, TLR1, TLR6, TLR7/8 ligands and HCV proteins. Activation of these TLRs may contribute to the inflammatory mediated destruction caused by HCV or could be targets of HCV contributing to its immune evasion.

We found previously that hepatoma cells and primary hepatocytes are responsive to TLR2 ligands and HCV proteins. We also reported that TLR2 is activated by HCV proteins. Here we aimed to determine whether TLR2 coreceptors participated in cellular activation by HCV core or NS3 proteins. By designing siRNAs targeted to TLR2, TLR1 and TLR6, we showed that knockdown of each of these receptors impairs pro- and anti-inflammatory cytokine activation by TLR-specific ligands as well as by HCV core and NS3 proteins in Human Embryonic Kidney cells (HEK/TLR2) and in primary human macrophages. We found that HCV core and NS3 proteins induced TNF-α and IL-10 production in human monocyte-derived macrophages, which was impaired by TLR2, TLR1 and TLR6 knockdown. Contrary to human data, results from TLR2, TLR1 or TLR6 knockout mice indicated that the absence of TLR2 and its coreceptor TLR6, but not TLR1, prevented the HCV core and NS3 protein-induced peritoneal macrophage activation. TLR2 may utilize both TLR1 and TLR6 coreceptors for HCV core- and NS3-mediated activation of macrophages and innate immunity in humans. These results imply that multiple pattern recognition receptors could participate in cellular activation by HCV proteins contributing to inflammatory disease.

Two critical factors in chronic HCV infection are inflammatory disease and immune evasion. We have demonstrated that TLR2 and its co-receptors play a role in inflammatory-mediated induction via HCV NS3 and core administration. It has recently been shown that HCV targets the TLR3 pathway to aid in immune evasion. TLR3 is only one of four viral recognition receptors located within the endosome and it is plausible that HCV may target others. We hypothesized that HCV infection may interfere with the expression and function of TLR7, a sensor of single stranded RNA. Investigating any effect on TLR7 by HCV may reveal a new mechanism for HCV immune evasion. Low levels of both TLR7 mRNA and protein were measured in HCV replicating cells compared to control cells while reducing HCV infection with either IFNα or restrictive culture conditions restored the decreased TLR7 expression. Downstream of the TLR7 pathway, an increased baseline IRF7 nuclear translocation was observed in HCV replicating cells compared to controls. Stimulation with a TLR7 ligand, R837, resulted in significant IRF7 nuclear translocation in control cells. In contrast, HCV replicating cells showed impaired IRF7 activation. Use of RNA polymerase inhibitors on hepatoma cells, control and HCV replicating, revealed a shorter TLR7 half life in HCV replicating cells compared to control cells which was not seen in TLR5 mRNA. These data suggest that reduced TLR7 expression, due to RNA instability, directly correlates with HCV replication and results in impaired TLR7-induced IRF7-mediated cell activation.

In conclusion, Hepatitis C Virus manipulates specific Toll-like receptors’ expression and their signaling pathways to induce cytokine production. HCV utilizes surface receptors TLR2 and its co-receptors which once activated could contribute to inflammatory disease by production of inflammatory cytokines and possibly immune evasion. HCV down-regulates TLR7, a viral recognition receptor, by decreasing mRNA stability which could facilitate evasion of host immune surveillance.

Source
Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.13028/8v6p-cr46
PubMed ID
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Copyright is held by the author, with all rights reserved.
Distribution License