Publication

Nascent RNA scaffolds contribute to chromosome territory architecture and counter chromatin compaction

Creamer, Kevin M
Kolpa, Heather J.
Lawrence, Jeanne B.
Embargo Expiration Date
Abstract

Nuclear chromosomes transcribe far more RNA than required to encode protein. Here we investigate whether non-coding RNA broadly contributes to cytological-scale chromosome territory architecture. We develop a procedure that depletes soluble proteins, chromatin, and most nuclear RNA from the nucleus but does not delocalize XIST, a known architectural RNA, from an insoluble chromosome "scaffold." RNA-seq analysis reveals that most RNA in the nuclear scaffold is repeat-rich, non-coding, and derived predominantly from introns of nascent transcripts. Insoluble, repeat-rich (C0T-1) RNA co-distributes with known scaffold proteins including scaffold attachment factor A (SAF-A), and distribution of these components inversely correlates with chromatin compaction in normal and experimentally manipulated nuclei. We further show that RNA is required for SAF-A to interact with chromatin and for enrichment of structurally embedded "scaffold attachment regions" prevalent in euchromatin. Collectively, the results indicate that long nascent transcripts contribute a dynamic structural role that promotes the open architecture of active chromosome territories.

Source

Creamer KM, Kolpa HJ, Lawrence JB. Nascent RNA scaffolds contribute to chromosome territory architecture and counter chromatin compaction. Mol Cell. 2021 Sep 2;81(17):3509-3525.e5. doi: 10.1016/j.molcel.2021.07.004. Epub 2021 Jul 27. PMID: 34320406; PMCID: PMC8419111. Link to article on publisher's site

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1016/j.molcel.2021.07.004
PubMed ID
34320406
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Distribution License