Loading...
Thumbnail Image
Publication

In vivo correction of anaemia in beta-thalassemic mice by gammaPNA-mediated gene editing with nanoparticle delivery

Bahal, Raman
Greiner, Dale L.
Brehm, Michael A.
Glazer, Peter M.
Embargo Expiration Date
Link to Full Text
Abstract

The blood disorder, beta-thalassaemia, is considered an attractive target for gene correction. Site-specific triplex formation has been shown to induce DNA repair and thereby catalyse genome editing. Here we report that triplex-forming peptide nucleic acids (PNAs) substituted at the gamma position plus stimulation of the stem cell factor (SCF)/c-Kit pathway yielded high levels of gene editing in haematopoietic stem cells (HSCs) in a mouse model of human beta-thalassaemia. Injection of thalassemic mice with SCF plus nanoparticles containing gammaPNAs and donor DNAs ameliorated the disease phenotype, with sustained elevation of blood haemoglobin levels into the normal range, reduced reticulocytosis, reversal of splenomegaly and up to 7% beta-globin gene correction in HSCs, with extremely low off-target effects. The combination of nanoparticle delivery, next generation gammaPNAs and SCF treatment may offer a minimally invasive treatment for genetic disorders of the blood that can be achieved safely and simply by intravenous administration.

Source

Nat Commun. 2016 Oct 26;7:13304. doi: 10.1038/ncomms13304. Link to article on publisher's site

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1038/ncomms13304
PubMed ID
27782131
Other Identifiers
Notes

Full list of authors omitted for brevity. For full list see article.

Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Copyright © 2016, The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.