Loading...
Thumbnail Image
Publication

Viability of a drug-resistant human immunodeficiency virus type 1 protease variant: structural insights for better antiviral therapy

Prabu-Jeyabalan, Moses
Nalivaika, Ellen A.
King, Nancy M.
Schiffer, Celia A.
Embargo Expiration Date
Link to Full Text
Abstract

Under the selective pressure of protease inhibitor therapy, patients infected with human immunodeficiency virus (HIV) often develop drug-resistant HIV strains. One of the first drug-resistant mutations to arise in the protease, particularly in patients receiving indinavir or ritonavir treatment, is V82A, which compromises the binding of these and other inhibitors but allows the virus to remain viable. To probe this drug resistance, we solved the crystal structures of three natural substrates and two commercial drugs in complex with an inactive drug-resistant mutant (D25N/V82A) HIV-1 protease. Through structural analysis and comparison of the protein-ligand interactions, we found that Val82 interacts more closely with the drugs than with the natural substrate peptides. The V82A mutation compromises these interactions with the drugs while not greatly affecting the substrate interactions, which is consistent with previously published kinetic data. Coupled with our earlier observations, these findings suggest that future inhibitor design may reduce the probability of the appearance of drug-resistant mutations by targeting residues that are essential for substrate recognition.

Source

J Virol. 2003 Jan;77(2):1306-15.

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
PubMed ID
12502847
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Distribution License