Loading...
Thumbnail Image
Publication

Ubiquitination of CLIP-170 family protein restrains polarized growth upon DNA replication stress

Wang, Xi
Zheng, Fan
Yi, Yuan-Yuan
Wang, Gao-Yuan
Hong, Li-Xin
McCollum, Dannel
Fu, Chuanhai
Wang, Yamei
Jin, Quan-Wen
Embargo Expiration Date
Abstract

Microtubules play a crucial role during the establishment and maintenance of cell polarity. In fission yeast cells, the microtubule plus-end tracking proteins (+TIPs) (including the CLIP-170 homologue Tip1) regulate microtubule dynamics and also transport polarity factors to the cell cortex. Here, we show that the E3 ubiquitin ligase Dma1 plays an unexpected role in controlling polarized growth through ubiquitinating Tip1. Dma1 colocalizes with Tip1 to cortical sites at cell ends, and is required for ubiquitination of Tip1. Although the absence of dma1+ does not cause apparent polar growth defects in vegetatively growing cells, Dma1-mediated Tip1 ubiquitination is required to restrain polar growth upon DNA replication stress. This mechanism is distinct from the previously recognized calcineurin-dependent inhibition of polarized growth. In this work, we establish a link between Dma1-mediated Tip1 ubiquitination and DNA replication or DNA damage checkpoint-dependent inhibition of polarized growth in fission yeast.

Source

Wang X, Zheng F, Yi YY, Wang GY, Hong LX, McCollum D, Fu C, Wang Y, Jin QW. Ubiquitination of CLIP-170 family protein restrains polarized growth upon DNA replication stress. Nat Commun. 2022 Sep 22;13(1):5565. doi: 10.1038/s41467-022-33311-y. PMID: 36138017; PMCID: PMC9499959.

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1038/s41467-022-33311-y
PubMed ID
36138017
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/. © The Author(s) 2022Attribution 4.0 International