Loading...
Thumbnail Image
Publication

Critical Molecular Pathways in Cancer Stem Cells of Chronic Myeloid Leukemia: A Dissertation

Chen, Yaoyu
Citations
Altmetric:
Student Authors
Faculty Advisor
Shaoguang Li M.D., Ph.D.
Academic Program
Cancer Biology
UMass Chan Affiliations
Document Type
Doctoral Dissertation
Publication Date
2011-05-11
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract

Chronic myeloid leukemia (CML) is a disease characterized by the expansion of granulocytic cells. The BCR-ABL tyrosine kinase inhibitor imatinib, the frontline treatment for Ph+ leukemias, can induce complete hematologic and cytogenetic response in most chronic phase CML patients. Despite the remarkable initial clinic effects, it is now recognized that imatinib will unlikely cure patients because a small cell population containing leukemic stem cells (LSCs) with self-renewal capacity is insensitive to tyrosine kinase inhibitors.

In Chapter I, I briefly review the BCR-ABL kinase and its related signaling pathways. BCR-ABL kinase activates several signaling pathways including MAPK, STAT, and JNK/SAPK. BCR-ABL also mediates kinase-independent pathways through SRC family kinases. I will also discuss pathways involving β-catenin, hedgehog, FoxO and Alox5 are critical to the regulation of self-renewal and differentiation in LSC of CML.

As detailed in Chapter II, I describe our work evaluating the effects of omacetaxine, a novel CML drug inducing cell apoptosis by inhibition of protein synthesis, on self-renewal and differentiation of LSCs and BCR-ABL-induced CML and acute lymphoblastic leukemia (B-ALL) in mice. We found that treatment with omacetaxine decreased the number of LSCs and prolonged the survival of mice with CML or B-ALL.

In chapter III, I describe that Alox5 is an essential gene in the function of LSCs and CML development. We show evidence that Alox5 affects differentiation, cell division, and survival of long-term LSCs. Treatment of CML mice with a 5-LO inhibitor also impaired the function of LSCs similarly and prolonged survival.

In chapter IV, I present evidence of our work showing a further dissection the Alox5 pathway by comparing the gene expression profiles of wild type and Alox5-/- LSCs. We show that Msr1 deletion causes acceleration of CML development. We also show that Msr1 affects CML development by regulating the PI3K-AKT pathway and β-catenin.

Taken together, these results demonstrate that some pathways including Alox5 and Msr1 play an important role in regulating the self-renewal and differentiation of LSC. More efforts should be put into developing the novel strategies that may effectively target LSCs and thus cure CML.

Source
Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.13028/9zxx-3t73
PubMed ID
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Copyright is held by the author, with all rights reserved.
Distribution License