Loading...
Thumbnail Image
Publication

The exocyst complex in neurological disorders

Halim, Dilara O
Munson, Mary
Gao, Fen-Biao
Citations
Altmetric:
Student Authors
Dilara Halim
Faculty Advisor
Academic Program
Neuroscience
Document Type
Journal Article
Publication Date
2023-04-22
Keywords
Subject Area
Embargo Expiration Date
Abstract

Exocytosis is the process by which secretory vesicles fuse with the plasma membrane to deliver materials to the cell surface or to release cargoes to the extracellular space. The exocyst-an evolutionarily conserved octameric protein complex-mediates spatiotemporal control of SNARE complex assembly for vesicle fusion and tethering the secretory vesicles to the plasma membrane. The exocyst participates in diverse cellular functions, including protein trafficking to the plasma membrane, membrane extension, cell polarity, neurite outgrowth, ciliogenesis, cytokinesis, cell migration, autophagy, host defense, and tumorigenesis. Exocyst subunits are essential for cell viability; and mutations or variants in several exocyst subunits have been implicated in human diseases, mostly neurodevelopmental disorders and ciliopathies. These conditions often share common features such as developmental delay, intellectual disability, and brain abnormalities. In this review, we summarize the mutations and variants in exocyst subunits that have been linked to disease and discuss the implications of exocyst dysfunction in other disorders.

Source

Halim DO, Munson M, Gao FB. The exocyst complex in neurological disorders. Hum Genet. 2023 Apr 22. doi: 10.1007/s00439-023-02558-w. Epub ahead of print. PMID: 37085629.

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1007/s00439-023-02558-w
PubMed ID
37085629
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.