Mitochondrial respiration contributes to the interferon gamma response in antigen-presenting cells
Kiritsy, Michael C ; McCann, Katelyn J ; Mott, Daniel ; Holland, Steven M ; Behar, Samuel M ; Sassetti, Christopher M ; Olive, Andrew J
Citations
Student Authors
Faculty Advisor
Academic Program
Document Type
Publication Date
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract
The immunological synapse allows antigen-presenting cells (APCs) to convey a wide array of functionally distinct signals to T cells, which ultimately shape the immune response. The relative effect of stimulatory and inhibitory signals is influenced by the activation state of the APC, which is determined by an interplay between signal transduction and metabolic pathways. While pathways downstream of toll-like receptors rely on glycolytic metabolism for the proper expression of inflammatory mediators, little is known about the metabolic dependencies of other critical signals such as interferon gamma (IFNγ). Using CRISPR-Cas9, we performed a series of genome-wide knockout screens in murine macrophages to identify the regulators of IFNγ-inducible T cell stimulatory or inhibitory proteins MHCII, CD40, and PD-L1. Our multiscreen approach enabled us to identify novel pathways that preferentially control functionally distinct proteins. Further integration of these screening data implicated complex I of the mitochondrial respiratory chain in the expression of all three markers, and by extension the IFNγ signaling pathway. We report that the IFNγ response requires mitochondrial respiration, and APCs are unable to activate T cells upon genetic or chemical inhibition of complex I. These findings suggest a dichotomous metabolic dependency between IFNγ and toll-like receptor signaling, implicating mitochondrial function as a fulcrum of innate immunity.
Source
Kiritsy MC, McCann K, Mott D, Holland SM, Behar SM, Sassetti CM, Olive AJ. Mitochondrial respiration contributes to the interferon gamma response in antigen-presenting cells. Elife. 2021 Nov 2;10:e65109. doi: 10.7554/eLife.65109. PMID: 34726598; PMCID: PMC8598164.
Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
Permanent Link to this Item
PubMed ID
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
This article is based on a previously available preprint in bioRxiv, https://doi.org/10.1101/2020.11.22.393538.