Loading...
Thumbnail Image
Publication

Cryo-TEM simulations of amorphous radiation-sensitive samples using multislice wave propagation

Himes, Benjamin
Grigorieff, Nikolaus
Citations
Altmetric:
Student Authors
Faculty Advisor
Academic Program
UMass Chan Affiliations
Document Type
Journal Article
Publication Date
2021-09-30
Subject Area
Embargo Expiration Date
Link to Full Text
Abstract

Image simulation plays a central role in the development and practice of high-resolution electron microscopy, including transmission electron microscopy of frozen-hydrated specimens (cryo-EM). Simulating images with contrast that matches the contrast observed in experimental images remains challenging, especially for amorphous samples. Current state-of-the-art simulators apply post hoc scaling to approximate empirical solvent contrast, attenuated image intensity due to specimen thickness and amplitude contrast. This practice fails for images that require spatially variable scaling, e.g. simulations of a crowded or cellular environment. Modeling both the signal and the noise accurately is necessary to simulate images of biological specimens with contrast that is correct on an absolute scale. The 'frozen plasmon' method is introduced to explicitly model spatially variable inelastic scattering processes in cryo-EM specimens. This approach produces amplitude contrast that depends on the atomic composition of the specimen, reproduces the total inelastic mean free path as observed experimentally and allows for the incorporation of radiation damage in the simulation. These improvements are quantified using the matched filter concept to compare simulation and experiment. The frozen plasmon method, in combination with a new mathematical formulation for accurately sampling the tabulated atomic scattering potentials onto a Cartesian grid, is implemented in the open-source software package cisTEM.

Source

Himes B, Grigorieff N. Cryo-TEM simulations of amorphous radiation-sensitive samples using multislice wave propagation. IUCrJ. 2021 Sep 30;8(Pt 6):943-953. doi: 10.1107/S2052252521008538. PMID: 34804546; PMCID: PMC8562658. Link to article on publisher's site

Year of Medical School at Time of Visit
Sponsors
Dates of Travel
DOI
10.1107/S2052252521008538
PubMed ID
34804546
Other Identifiers
Notes
Funding and Acknowledgements
Corresponding Author
Related Resources
Related Resources
Repository Citation
Rights
Copyright © Himes and Grigorieff 2021. This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.